Electronic Colloquium on Computational Complexity, Report No. 6 (2003)

3CNF Properties are Hard to Test

Eli Ben-Sasson* Prahladh Harsha' Sofya Raskhodnikoval
eli@eecs.harvard.edu prahladh@mit.edu sofya@mit.edu
Abstract

For a boolean formula ¢ on n variables, the associated property P, is the collection of n-bit
strings that satisfy ¢. We prove that there are 3CNF properties that require a linear number
of queries, even for adaptive tests. This contrasts with 2CNF properties that are testable
with O(y/n) queries [7]. Our results add two novel observations to the recent lower bounds of
Bogdanov, Obata and Trevisan [3]. First, notice that deciding P, is easy once all the input is
read. Thus, property testing can be hard even for easily computable properties. Second, for
every bad instance (i.e. an assignment that does not satisfy ¢) there is a 3-bit query that proves
this fact. Nevertheless, we show that finding such a short witness requires a linear number of
queries.

We provide a general characterization of linear properties that are hard to test, and in the
course of the proof include a couple of observations which are of independent interest.

1. In the context of linear property testing, adaptive 2-sided error tests have no more power
than non-adaptive 1-sided error tests.

2. Random linear codes with linear distance and constant rate are very far from being locally
testable.

*Department of Engineering and Applied Sciences, Harvard University and Laboratory for Computer Science
Massachusetts Institute of Technology Cambridge, MA 02139. Supported by NSF grants CCR. 0133096,CCR, 9877049,
CCR 9912342, CCR 0205390 and NTT Award MIT 2001-04.

tLaboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139. Supported in
part by NSF Award CCR 9912342 and NTT Award MIT 2001-04

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139.

ISSN 1433-8092

1 Introduction

1.1 Property Testing

Property testing deals with a relaxation of decision problems where one must determine whether
an input belongs to a particular set, called property, or is far from it. “Far” usually means that
many characters of the input have to be modified to obtain an element in the set. Property testing
was first formulated by Rubinfeld and Sudan [15] in the context of linear functions and applied to
combinatorial objects, especially graphs, by Goldreich, Goldwasser and Ron [10]. This has recently
become quite an active research area, see [14, 5] for surveys on the topic.

One of the important questions in property testing is characterizing properties that can be tested
with a sub-linear number of queries into the input. A series of works identified classes of properties
testable with constant query complexity. Goldreich et al. [10] found many such properties. Alon
et al. [2] put all regular languages in that category. Their result was extended by Newman [13]
to properties that can be computed by oblivious read-once constant-width branching programs.
Fischer and Newman [8] demonstrated a property computable by a read-twice constant-width
branching program which required super-constant query complexity, thus showing that Newman’s
result does not generalize to read-twice branching programs. Several papers [1, 6] worked on the
logical characterization of graph properties testable with a constant number of queries.

1.2 Testing kKCNF Properties

Every property over the binary alphabet can be represented as a Boolean formula, which in turn
can be converted to a CNF form. Thus, testing a property over the binary alphabet can be viewed
as testing whether a given assignment to Boolean variables is close to one that satisfies a fixed CNF
formula. Since we know that there exist properties over the binary alphabet which require testing
algorithms to read a linear portion of the input [10], testing assignments to general CNF formulas
is hard. A natural question is whether restricting CNF formulas to have a constant number of
variables k per clause allows for faster testers. At first sight there is hope for obtaining good
testers in this case, because for any assignment that does not satisfy the formula there exists a set
of k queries that witnesses this fact. Moreover, reading all the input easily decides the problem.
Indeed, Fischer et al. [7] prove that properties expressible as sets of satisfying assignments to 2CNF
formulas are testable with O(y/n) queries, where n is the length of the input. This work left open
the question of property testing of kCNFs for & > 2.

1.3 Our Results

In this paper we show that testing properties defined by 3CNF formulas requires a linear number
of queries. Thus, we present a gap between 2CNFs and 3CNFs. We show the existence of families
of 3CNF formulas which require a linear number of queries. Our lower bound applies to adaptive
tests, i.e. tests where queries might depend on the answers to previous queries. This gives a class
of properties which are easy to decide exactly (linear time), but are hard to test.

The hard 3CNF property we use is a vector space V' C {0,1}" that can be expressed as the set of
solutions to a homogeneous 3LIN formula. We give a general characterization of spaces that are
hard to test (definition 1), which may be of independent interest. Intuitively, V' is hard to test if

the dual space V- has a basis under which every vector of V- of small weight is a sum of a tiny
fraction of the basis. Thus, querying the input on a vector in the dual space of small weight can
only “detect” a small number of falsified constraints.

The vector spaces we use are built upon random (¢, d)-regular error correcting codes. These codes,
introduced by Gallager [9], are known to achieve constant rate and linear minimal distance. We
show that this important class of codes is not locally testable! by a long shot. Moreover, the
property that makes random codes so good in terms of minimal distance, namely expansion, is also
behind the poor testability of these codes. This sheds some light on the important open question of
the existence of error correcting codes that achieve (i) constant rate; (ii) linear distance; and (ii3)
are locally testable (for more information on this question, and the best constructions of locally
testable codes, see Goldreich and Sudan [11]).

In the course of proving the lower bound for adaptive tests we show that for linear properties every
adaptive 2-sided error test can be converted to a non-adaptive 1-sided error test with the same
query complexity and essentially identical error parameters (Theorem 3). This result seems also of
independent interest.

We shortly discuss the connection of this paper to other results. There are two published linear
lower bounds for property testing. One is the abovementioned generic bound due to Goldreich et
al. [10] and the other is for testing 3-coloring in bounded degree graphs due to Bogdanov, Obata
and Trevisan [3]. The properties for which the lower bounds are proved are hard to decide even if
all the input is read. Thus, one might conjecture that a property that is easy to decide is also easy
to test. Our result rules this out.

There is a simple and elegant unpublished linear lower bound observed by Sudan [17]. His property
consists of polynomials over F,, of degree at most n/2 where each polynomial is given by its eval-
uation on all elements of the field. It is not hard to see that every non-adaptive 1-sided error test
for this property requires linear query complexity. Since the property of low-degree polynomials is
linear, our reduction from general to non-adaptive 1-sided error tests implies a linear lower bound
for adaptive 2-sided tests for this property. Observe that this property is easy to decide once all
the input is read, but is not expressible by a family of 3CNF formulas.

Both linear lower bounds of [17] and [3] capitalize on the existence of inputs that are far from having
the property, yet any local view of a constant fraction of them can be extended to an element having
the property?. But if the property is defined by a kCNF ¢ this cannot happen. For, clearly, any
string that does not have the property must falsify at least one clause of ¢. Thus, there is some
view of the input of size k, that proves the input does not have the property. Our result shows that
in certain cases, finding such a falsified clause requires reading a constant fraction of the input,
even if the assignment is far from any satisfying one.

1.4 Paper Organization

After required definitions (section 2), we present a self contained proof of the main Theorem in
section 3. The proofs of the claims needed for the proof follow in sections 4-7.

YA code C is locally testable if the property C is testable with constant query complexity.

’E.g. in Sudan’s example any evaluation of a polynomial on d points can be extended to an evaluation of a
polynomial of degree d' > d. Thus, seeing n/2 — 1 values of the polynomial still does not mean the polynomial has
degree n/2.

2 Definitions

Property testing

A property is a collection of strings of a fixed size n. A property is linear if it forms a vector space.
In this paper, strings are over binary alphabet unless mentioned otherwise. The distance dist(zx, P)
of a string z to a property P is mingcp dist(z, z'), where dist(x,z') denotes the Hamming distance
between the two strings. The relative distance of z to P is its distance to P divided by n. A string
is e-far from P if its relative distance to P is at least ¢.

A test for property P with distance parameter €, error u and query complexity q is a probabilistic
algorithm that queries at most g bits of the input, accepts strings in P with probability at least 1—pu
and accepts strings that are e-far from P with probability at most u, for some 0 < p < % A test
with distance parameter € and error p is referred to as an (e, u)-test. A property is (g, u, q)-testable
if it has an (e, u)-test that asks at most ¢ queries on every input.

A couple of special classes of tests are of interest. An algorithm is non-adaptive if it asks all queries
in advance, before getting the answers. Namely, a query may not depend on the answers to previous
queries. An algorithm has 1-sided error if it always accepts an input that has the property.

CNF and linear formulas

Recall that a Boolean formula is in conjunctive normal form (CNF) if it is a conjunction of clauses,
where every clause is a disjunction of literals. (A literal is a Boolean variable or a negated Boolean
variable.) If all clauses contain at most three literals, the formula is a 3CNF.

A linear (LIN) Boolean formula is a conjunction of constraints, where every constraint is satisfied
if and only if the variables in the constraint add up to 0 mod 2. If all constraints contain at most
d literals, the formula is a dLIN.

Let ¢ be a formula on n variables. An n-bit string satisfies ¢ if it satisfies all clauses (constraints)
of the formula. An n-bit string is e-far from satisfying ¢ if at least an ¢ fraction of the bits need
to be changed to make the string satisfy ¢. Each formula ¢ defines a property SAT(¢) = {z| =
satisfies ¢}. For brevity, we refer to a test for SAT(p) as a test for .

3 Main Theorem

In this section we state and prove the main theorem.

Theorem 1 (Main) There exist 0 < §,e <1, 0 < pu < % such that for every sufficiently large n,
there is a 3CNF formula ¢ on n variables that requires dn queries for every adaptive (e, u)-test.

The hard properties of Theorem 1 are simply linear spaces over {0,1}". Each of them is the space
of solutions of a homogeneous system of 3LIN equations. Consider a vector space V over {0,1}".
Denote the dual space by V. Let A = (4i,...,An) be a basis for V. For z € {0,1}", let |z| =
Yo, xi (regular addition, not mod 2). By definition, V' = {z|(z, A;) = 0 for all A; € A}. Thus,
viewing each A; as a constraint, we can represent V as a dLIN formula where d = maxa;c4 |Ail-
Since A is linearly independent, each o € V1 has a unique representation as a sum of vectors in A.

We now present sufficient conditions for a vector space to be hard to test.

Definition 1 (Hard Linear Properties) Let V be a vector space over {0,1}" and let A be a
basis for V4. Fiz 0 < e, < 1.

e A is e-separating if every x € {0,1}" that falsifies exactly one constraint in A has |z| > en.

o A is (q,p)-local if every a € {0,1}" that is a sum of at least ym vectors in A has |a| > q.

Intuitively, we use the first condition to form a distribution over words that are far from the vector
space. The second condition means that to “get information” about a fraction y of the constraints
in A, a test needs at least ¢ queries. Proof (of Main Theorem 1): Our first step is to show
that any linear space conforming to definition 1 is hard to test by “simple” tests, i.e. ones that
have 1-sided error and are non-adaptive.

Theorem 2 (Non-Adaptive 1-Sided Error) Fiz0<e<1,0< pu< % Let V' be a vector space
over {0,1}*. If V' has an e-separating (¢, p)-local basis A = (A1, ..., An), then every non-adaptive
1-sided error (e,1 — 2u)-test for V requires q queries.

Theorem 2 is proved in section 4. Next we show that 2-sided error adaptive tests are no more
powerful than 1-sided error non-adaptive ones, whenever the property we test is linear. This
theorem is of independent interest as it refers to any testing of a linear property.

Theorem 3 (Adaptive 2-Sided Error) Let V be a vector space over {0,1}". For every adaptive
(e,u,q)-test T for V, there is a 1-sided error non-adaptive (¢,2u,q)-test T' for V.

The proof of Theorem 3 appears in section 5. The theorem is proved in two steps. We first reduce
2-sided error adaptive tests to 1-sided error adaptive ones, while doubling the error (Theorem 10).
Then we show that 1-sided error adaptive tests are no better than non-adaptive ones (Theorem
11). The reduction doubles the error because it preserves the difference between the completeness
(acceptance probability of strings in V', 1 — u) and soundness (acceptance probability of strings far
from being in V, u). A different (Fourier based) approach to proving Theorems 2 and 3 appears in
appendix B. So far we have shown that any linear property conforming to definition 1 is hard to test,
even by adaptive, 2-sided error tests. The following theorem assures us that such linear properties
exist. The proof of this theorem, which uses the probabilistic method, appears in section 6.

Theorem 4 (Hard Linear Properties Exist) There ezist integer d > 0 and constants p,¢,0,
such that for all sufficiently large n there is a collection A, C {0,1}" of vectors of weight at most
d which is linearly independent, e-separating and (6n, u)-local.

We now have dLIN formulas that are hard to test. The following reduction brings d down to 3
while preserving the properties of definition 1 (with smaller constants).

Theorem 5 (Reduction Theorem) Every linearly independent, e-separating, (dn, p)-local A C
{0,1}™ of vectors of weight at most d can be converted to a linearly independent, £*-separating,
(6*n*, p*)-local A* C {0,1}™" of vectors of weight at most 3. If €,0, u are strictly positive constants,
so are €*,0%, y*.

Theorem 5 is proved in section 7. Recall that a 3LIN formula can be defined by a 3CNF. This
completes the proof of the main Theorem 1. I

4 Lower Bounds for Non-Adaptive 1-Sided Error Tests

In this section we give the proof of Theorem 2. Proof (of Theorem 2): We employ Yao’s minimax
principle. It states that to prove that every g-query randomized test fails with probability more
than § it is enough to exhibit a distribution B on the inputs for which every ¢-query deterministic
test fails with probability more than 4.

For i = 1...m let B; be the uniform distribution over n-bit strings that falsify constraint A; and
satisfy the rest. The distribution B is the uniform distribution over B;’s. Lemma 6 shows that
distribution B is over strings which are e-far from V. Lemma 8 proves that every low complexity
deterministic test is likely to fail on B.

Lemma 6 If A is e-separating, each string x falsifying exactly one constraint in A is e-far from V.

Proof: Let y € V. Then z + y falsifies exactly one constraint in A. Since A is e-separating,
dist(z,y) = |z + y| > en. By definition, dist(z,V) > en.

We say that a test detects a violation if there is no string in V' that is consistent with the answers
to the queries. By linearity, we obtain the following claim.

Claim 7 A test detects a violation if and only if there is a linear combination « of constraints in
A such that (z,a) =1 for all z € V' which are consistent with the answers to the queries.

Observe that an 1-sided error test has to accept a string if it does not detect a violation.

Lemma 8 Let T be a deterministic 1-sided error non-adaptive test with < q queries. If A is
(g, p)-local then Pry [T (z) = 0] < 2p.

Note that if A is not (g,)-local, there is a test T" with < g queries and Pry . g[T(z) = 0] > p. Let
@ =) 4ccA where C C A, |C| > pum and |a| < ¢q. Then T is the test that queries 1-coordinates
of a.. It detects a violation whenever the only falsified constraint is in C.

Proof (of Lemma 8): Let @) be the set of queries posed by 7. A query to variable z; is viewed
as a vector in {0,1}" which is 1 at coordinate i and 0 everywhere else. The only constraints in V+
that T" can check for violation are the ones that can be expressed as a linear combination of the
queries. Call this set of constraints cons(Q), i.e. cons(Q) = {a € V*|a € Span(Q)}.

For each a € cons(Q), let C, be the set of constraints in A whose sum is a. This set is well
defined as the set of constraints A is linearly independent. Let T' be the family of sets C,, where
a € cons(Q). Thus, the only violations that 7" detects are the violations caused by falsifying some
constraint in Joep C. Namely, Pry g[T(z) = 0] = = 3, Prg,[T(z) = 0] = ~ |Ucer C| -

~m m
It remains to show |UceF C'| < 2pum. We observe that if ai, a0 € cons(Q), so does a1 + az. In
terms of C,’s this implies that if C;,Cy € T, so is C1ACy3. Since |Q| < ¢ and A is (g,)-local,

|Ca| < pm. We can now apply Lemma 9 to conclude that |Joep C| < 2um. |

Theorem 2 follows from Lemmas 6 and 8. |

Lemma 9 LetT' = {C|C C [m]} be a family of subsets of [m] such that T is closed under symmetric
difference and for all sets C in T, |C| < w. Then ‘U06FC| < 2w.

3For sets A, B, the symmetric difference of A and B, AAB = {z|z € A and z ¢ B} U {z|r ¢ A and z € B}.

Proof: Suppose z € C for some C € I'. We then observe that for any set C' in I" (including
C) either z € C' or z € CAC' but not both. Since T is closed under symmetric difference and
C' = CA(CAC"), each element in (o C occurs in exactly half the sets of I'. Therefore,

Ucel=>1cl

Cel cerl

Il
2

Since |C| < w for any C € I" and the empty set belongs to I', we conclude that the number of
elements in (Jocr C is less than 2w. I

5 Reducing 2-Sided Error Adaptive to 1-Sided Error Non-Adaptive

In this section we prove Theorem 3 by presenting a generic reduction that converts any adaptive
test with 2-sided error for linearity checking to a non-adaptive one with 1-sided error. We perform
this reduction in two stages, we first reduce an adaptive test with 2-sided error to an adaptive test
with 1-sided error (Theorem 10) and then reduce this to a non-adaptive test with 1-sided error
(Theorem 11). The second reduction was suggested by Madhu Sudan.

Theorem 10 (2-sided to 1-sided error) Let V be a vector space over {0,1}". For every adap-
tive (e, u, q)-test T for V', there is a 1-sided error adaptive (e,2u,q)-test T' for V.

Theorem 11 (Adaptive to non-adaptive for 1-sided error) LetV be a vector space over {0,1}".
For every 1-sided error adaptive (&, s, q)-test T for V, there is a 1-sided error non-adaptive (&, p, q)-
test T' for V.

Assume without loss of generality, that associated with every test T, there exists a set of decision
trees T = {I'1,T'9,... } and a distribution D7 on this set of decision trees such that on input z, T
chooses a decision tree I' with probability Dy (') and then answers according to I'(x).

The reduction in Theorem 10 is carried out by relabeling the leaves of each decision tree I' in
Dr to obtain an “optimal” tree I, where every leaf [is labelled 0 if the path reaching [violates
some constraint in V1 and is labelled 1 otherwise. On input z, the new test picks a decision
tree I' according to Dr and outputs I'(z + v) where v is a random vector in V. It is easy to see
that the new test has 1-sided error and the same query complexity as the old one. Moreover, the
modification might only increase the difference between the acceptance probability of the strings
in V and that of strings far from V.

The reduction from a 1-sided error adaptive test to a non-adaptive test with 1-sided error in
Theorem 11 is performed in the following manner: The non-adaptive test T chooses a decision tree
I" from Y7 according to the distribution Dr just as the adaptive test 7" would do. However, instead
of querying according to T, the test T' chooses a random branch of the tree I' and non-adaptively
queries all the variables that occur along this branch. It then accepts the answers iff they do not
violate any constraint in the dual space V.

We leave the finer details of the reductions and the proofs of Theorems 10 and 11 to Appendix A.
The linearity of the space V plays a crucial role in the correctness of both reductions.

6 Random Codes Require Linear Size Queries

In this section we prove Theorem 4. In particular, we show that a random (c, d)-regular code with
high probability obeys definition 1, for large enough constants ¢, d. We start by defining such codes,
originally introduced and analyzed by Gallager [9].

6.1 Random Regular Codes

Let G = (L, R, E) be a bipartite multi-graph, with |L| = n, |R| = m, and let d(v) be the degree of a
vertex v. G is called (c,d)-regular if for all v € L, d(v) = ¢, and for all v € R, d(v) = d. A random
(¢, d)-regular graph with n left vertices and m = §n right vertices, is obtained by selecting a random
matching between cn “left” nodes, and dm = cn “right” nodes. Collapse ¢ consecutive nodes on
the left to obtain n c-regular vertices, and collapse d consecutive nodes on the right to obtain m
d-regular vertices. Notice that the resulting graph may be a multi-graph (i.e. have multiple edges
between two vertices). The code associated with G is obtained by letting R define Ct, as in the
following definition.

Definition 2 Let G = (L, R, E) be a bipartite multi-graph, with |L| = n,|R| = m. Associate a
distinct Boolean variable x; with any i € L. For each j € R, let N(j) C L be the set of neighbors
of j. The j’th constraint is A; = ZieN(j) x; mod 2. Let A(G) be the m X n matriz where the jth
row of A(G) is Aj. The code defined by G is

C(G) = (A(G))" = {z € {0,1}"A(G) -z = 0}

A random (c,d)-regular code is obtained by taking C(G) as in the previous definition, for G a
random (c, d)-regular graph.

6.2 Some Expansion Properties of Random Regular Graphs
To prove C(G) obeys definition 1, we use standard arguments about expansion of the random
graph G. We reduce each requirement on A(G) to a requirement on G, and then show that the

expansion of a random G implies that it satisfies the requirements. We need the following notions
of neighborhood and expansion.

Definition 3 (Neighbors) Let G = (V, E) be a graph. For S CV, let

e N(S) be the set of neighbors of S.
o NI(S) be the set of unique neighbors of S, i.e. vertices with ezactly one neighbor in S.

o N°UM(S) be the set of neighbors of S with an odd number of neighbors in S.
Notice that N1(S) C N°d(S).

Definition 4 (Expansion) Let G = (L, R, E) be a bipartite graph with |L| = n, |R| = m.

e G is called an (), y)-right expander if

VS C R, |S] < yn, IN(S)| > A-|S].

e G is called an (), ~y)-right unique neighbor expander if

VS C R, |S| <yn, [NY(S)| > A-S].

e G is called an (), y)-right odd expander if

VS C R, |S| > yn, [N°¥(S)| > X-|S].

Notice that expanders and unique neighbor expanders discuss subsets of size at most yn, whereas
odd expanders discuss subsets of size at least yn. Left expanders (all three of them) are defined
analogously by taking S C L in definition 4.

The following lemmas are proved using standard techniques for analysis of expansion of random
graphs, such as those appearing in e.g. [4, 16]. We defer the proofs to appendix C.

Lemma 12 There ezists a constant r > 0 such that for any integers ¢ > 5,d > 2, a random
(c,d)-regular graph is with high probability a (1,7 - d~2)-left unique neighbor expander.

Lemma 13 For any odd integer ¢, any constants p > 0,0 < p®, and any integer d > (2“62 a

(e
random (c,d)-regular graph is with high probability a (9, u)-right odd expander.

6.3 Random Codes Require Large Query Complexity

We are ready to prove Theorem 4.

Theorem 14 For any odd integer ¢ > 5, there exists an integer d > ¢, and constants €,0,u > 0,
such that for a random (c,d)-reqular graph G, the set A(G) is with high probability (i) linearly
independent, (ii) (on,u)-local, and (iii) e-separating.

Proof (of Theorem 4): Fix ¢ =5. Let d,¢,d, u be as in Theorem 14. The theorem follows. I

Proof (of Theorem 14): Given odd ¢ > 5 we will define the constants d, €, §, 4 throughout the
course of the proof.

(i) We need to show that adding up any subset of A(G) cannot yield 0. Since we are working
modulo 2, this is equivalent to proving

VT C R, N°%(T) # .

For small T' we use unique neighbor expansion, and for large T' we use odd neighbor expansion.

Fix ¢, and reverse the roles of left and right in lemma 12. We conclude the existence of constant
r > 0, such that for any d > 5, G is whp a (1,7 - ¢~2)-right unique neighbor expander. This
implies that if |T| < r-¢2-|R|, then N°¥(T) # (), because N°%(T) O N*(T) and N*(T) # 0.

Lemma 13 says that for any pu > 0, and large enough d, all sets of size at least um have
nonempty odd neighborhood. (Actually, the lemma shows that the odd neighborhood is of
linear size, which is more than what we need here.) Fixing p,d,d to the following values
completes the proof of the first claim:

2uc2

— -2, — .
=T -C 7 5—/1,/2, d>m
(ii) Notice that if T C R, then N°%(T) is exactly the support of ZjeT A;. Thus, it suffices to

show that N°(T) is large for large subsets T'.

By the definition of d, u,¢ from part (ii) and by lemma 13 G is whp a (én,u)-right odd
expander. This means A(G) is (dn, u)-local. Part (%) is proved.

(iii) Let G_; be the graph obtained from G by removing vertex j € R and all edges touching
it. Since A(G) is linearly independent, it is sufficient to show that C(G_;) has no element of
Hamming weight < en.

Let be a non-zero element of C(G_;), and let S, C L be the set of coordinates at which
z is 1. Consider the graph G ;. In this graph, the set of unique neighbors of S; is empty
because z € C(G_;) (otherwise, some j' € N'(S;), so (4, z) = 1, a contradiction.) Thus,

N'(S,) C {3} (1)

where N1(S;) is the set of unique neighbors of S, in G. Clearly, |S;| > 1, because the left
degree of G is ¢ > 1. But if |S;| < r-d 2 -n then by lemma 12 |[N*(S;)| > |Sz| > 1, in
contradiction to equation (1). We conclude that for any z € C(G_;), |z| > r-d~2, so A(G)
is e-separating for € satisfying:

e<r-d >

Part (%ii) is completed, and with it the theorem. |

7 Reducing dLIN to 3LIN

In this section we prove Theorem 5 which directly follows from the final theorem of this section.
The randomized construction from section 6 produces d-linear formulas which are hard to test for
some constant d. We would like to make d as small as possible. This section obtains 3-linear hard
to test formulas. First we give a reduction from d-linear to f%] + 1-linear formulas, and then apply
it log d times to get 3-linear formulas.

Let ¢ be a d-linear formula on variables in X = {z1,...,z,}. The reduction maps ¢ to a ([£] +1)-
linear formula on variables X U Z where Z is a collection of new variables {z1,..., 2y, }. For each
constraint ¢;, say 1. ..®xg = 0, in ¢, two constraints, cz1 and c? are formed: z1 .. .@x[%] Dz =0
and Trayq D...0x,®z =0. Let V be the vector space over {0,1}" of vectors satisfying ¢, and

let A be an m-dimensional basis for the vector space V* of constraints. Define R(A) to be the
collection of 2m vectors over {0, 1}"*™ formed by splitting every constraint in A in two, as described
above. The following three lemmas show that the reduction preserves the properties which make
the formula hard to test.

Lemma 15 R(A) is independent.

Proof: It is enough to prove that no set of constraints in R(.A) sums up to 0. Let C € R(A). If
only one of the two constraints involving a new variable z appears in C, then the sum of vectors
in C has 1 in 2’s position. If, on the other hand, all constraints appear in pairs, then the sum of
vectors in C' is equal to the sum of the constraints in A from which C’s constraints were formed.
By independence of old constraints, this sum is not 0.

Lemma 16 If A is e-separating, then R(A) is €'-separating where ' =

__&
1+m/n "

Proof: Let 2’ be a vector in {0,1}"*™ that falsifies exactly one constraint, say c}, in R(A).
Namely, (z/,cl) = 1 and (z,c') = 0 for all ¢ € R(A),c’ # c}. Let z = ! ...zl,. Then (z,¢;) =

n
(z',cl +) = (a',el) + (2',c?) = 1, and similarly, (z,c) = 0 for all ¢ € A,c # ¢;. Thus, z falsifies
exactly one constraint in A. Since A is e-separating, |z| > en. It follows that |z'| > en, implying

that R(A) is 5 -separating. |

Lemma 17 If A is (q, u)-local, then R(A) is (¢, p')-local where ¢' = % and p' = p+ %.

Proof: Let o/ € {0,1}™"" be the sum of a subset T' of y’ - 2m constraints in R(A). Let T, be the
subset of constraints in 1" that appear in pairs. Namely, for every new variable z, both constrains
with z are either in T5 or not in T,. Let T3 =T\ Ts.

Case 1: |Ty| > ¢'. For every constraint in T, the new variable z from that constraint does not
appear in any other constraint in 7. Therefore, o is 1 on 2’s coordinate. Hence, |&/| > |T1| > ¢'.

Case 2: |Ty| < ¢'. Then |Ty| = |T| — |T1| > w'm — ¢’ = 2um. Let S be the set of constraints in A
that gave rise to constraints in 7%. Then [S| = |T%|/2 > pm. Old variables appear in the same
number of constraints in S and in T5. Thus,

LR

ceTy

Zc >r.

ceS

The last inequality follows from the fact that A is (g, u)-local. When constraints from 77 are added
to D .cr, ¢ each T constraint zeroes out at most [%1 coordinates. It also adds at least 1 to the

weight of the sum since it contains a new variable that does not appear in any other constraints in
T. Hence,

d d
o) 23|~ 5| za—gd =d |

cETy ceTy

Now we study what happens if the reduction is applied a few times until d becomes 3.

Theorem 18 Let V be a vector space over {0,1}" and let A be an m-dimensional basis for V*
containing vectors of weight at most d. Let A* be a set of m* vectors over {0, 1}"*, obtained by
applying the reduction R logd times, until the weight of every vector is 8. If A is e-separating
(g, p)-local, then A* is €*-separating and (g*, p*)-local, where

d+2

* * * €) » 2q . * _ 9
14+ (d—1)ym/n’ T =ar F —ht d+1

m*=dm; n*=n+(d-1)m; € =

10

Proof: The theorem follows from lemmas 15, 16, 17.

Acknowledgements

We thank Madhu Sudan for (i) many helpful conversations; (i) suggesting the reductions of section
5; and (7ii) allowing us to include the “hard to test” properties based on Reed-Muller codes. We
are thankful to Piotr Indyk for referring us to Azuma’s inequality to simplify the analysis and to
Michael Sipser for helpful discussions.

References

1]

2]

ArLoN, N., FisCHER, E., KRIVELEVICH, M., AND SZEGEDY, M. Efficient testing of large
graphs. Combinatorica 20, 4 (2000), 451-476.

ALoON, N., KRIVELEVICH, M., , NEWMAN, I., AND SZEGEDY, M. Regular languages are
testable with a constant number of queries. SIAM Journal of Computing 30, 6 (2001), 1842—
1862.

BoagpanNov, A., OBATA, K., AND TREVISAN, L. A lower bound for testing 3-colorability
in bounded-degree graphs. In Proc. 43rd IEEE Symp. on Foundations of Comp. Science
(Vancouver, Canada, 16-19 Nov. 2002). (to appear).

CHVATAL, V., AND SZEMEREDI, E. Many hard examples for resolution. Journal of the ACM
35, 4 (Oct. 1988), 759-768.

FiscHER, E. The art of uninformed decisions: A primer to property testing. Bulletin of
the European Association for Theoretical Computer Science 75 (Oct. 2001), 97-126. The
Computational Complexity Column.

Fi1scHER, E. Testing graphs for colorability properties. In Proc. 12th Annual ACM-SIAM
Symposium on Discrete Algorithms (New York, 7-9 Jan. 2001), pp. 873-882.

FiscHER, E., LEEHMAN, E., NEWMAN, [., RASKHODNIKOVA, S., RUBINFELD, R., AND
SAMORODNITSKY, A. Monotonicity testing over general poset domains. In Proc. 34th ACM
Symp. on Theory of Computing (New York, 19-21 May 2002), pp. 474-483.

FiscHER, E., AND NEWMAN, I. Functions that have read-twice, constant width, branching

programs are not necessarily testable. In Proc. 17th Conference on Computational Complezity
(Montréal, Québec, Canada, 21-24 May 2002), pp. 73-77.

GALLAGER, R. G. Low Density Parity Check Codes. MIT Press, Cambridge, MA, 1963.

GOLDREICH, O., GOLDWASSER, S., AND RON, D. Property testing and its connection to
learning and approximation. Journal of the ACM 45, 4 (July 1998), 653-750.

GOLDREICH, O., AND SUDAN, M. Locally testable codes and PCPs of almost linear length.
In Proc. 43rd IEEE Symp. on Foundations of Comp. Science (Vancouver, Canada, 16-19 Nov.
2002). (to appear).

11

[12] MoTwANI, R., AND RAGHAVAN, P. Randomized Algorithms. Cambridge University Press,
Cambridge, 1995.

[13] NEWMAN, I. Testing membership in languages that have small width branching programs.
SIAM Journal of Computing 31, 5 (2002), 1557-1570.

[14] RoN, D. Property testing (a tutorial). In Handbook of Randomized Computing (2001), S. Ra-
jasekaran, P. M. Pardalos, J. H. Reif, and J. D. Rolim, Eds., vol. 9 of Combinatorial Opti-
mization, Kluwer Academic Publishers, pp. 597-649.

[15] RUBINFELD, R., AND SUDAN, M. Robust characterizations of polynomials with applications
to program testing. SIAM Journal of Computing 25, 2 (Apr. 1996), 252-271.

[16] SPIELMAN, D. Computationally Efficient Error-Correcting Codes and Holographic Proofs.
PhD thesis, Massachusetts Institute of Technology, June 1995.

[17] SuDAN, M. Personal Communication.

A Proofs of Theorems 10 and 11

We can assume the following regarding the behavior of any adaptive test, without loss of generality.
Associated with T', there exists a set of decision trees Y7 = {I';,I's, ... } and a distribution Dr on
this set of decision trees such that on any input x, T' chooses a decision tree I" with probability
Dr(T) and then answers according to I'(x). Theorem 10 is proved in Section A.1 while Theorem 11
is proved in Section A.2.

A.1 2-Sided to 1-Sided Error

Let V' C {0,1}" be a vector space. As before, let A = {A;,As,... , Ay} be a basis for the dual
space V1. The space {0,1}" can be partitioned into 2™ sets as follows: For each S C A, let Vg
be the set of vectors that violate all the constraints in S and satisfy all other constraints in A. In
this notation, Vjy = V. From the above definitions, it follows that if z € Vg for some S C A, then
Vs=xz+V.

For any subset S of A and any test 7', define pr(S) as follows:

pr(S) = average (Pr[T(y) = 1])
yeVs

For notational brevity, we denote pr (), the average acceptance probability of strings in V', by pr.

Let T be 2-sided error (adaptive) (e, u,q)-test for V. Let Y7 and Dr be the associated set of
decision trees and the corresponding distribution respectively. For any decision tree I' in Y7, we
define an optimal labeling of its leaves which converts the 2-sided error test 7" into one with 1-sided.

Definition 5 Let ' be a decision tree. IV is the decision tree with the same queries as I', and the
following leaf label for any leaf l: 1 is labelled 0 if the path reaching | violates some constraint in
VL and is labelled 1 otherwise.

12

We now define the 1-sided error test 7" corresponding to T'.

Definition 6 (1-Sided Error Test) Given a 2-sided error (adaptive) test T for V, define the
test T' as follows: On input x, T' chooses a decision tree I' according to the distribution Dr as T
does. It then chooses a random v € V and answers according to I'(z + v).

Clearly, T" is a 1-sided error test as it never rejects unless it detects a violation. Also, 7" has the
same query complexity as T. The only fact that needs to be verified is that the error of T” is at
most 2u.

Lemma 19 For any non-empty set S C A, pr — pr(S) < prr — pr/(S).

Proof: If every decision tree I' in Y is labelled optimally as mentioned in Definition 5, then the
lemma is true. Otherwise, there exists a decision tree I'y in Y7 and a leaf [in I'; such that [is
not labelled optimally. Let T'; be the decision tree formed by changing the label of label [in T.
And let T be the test defined as follows: On input z, T' chooses a decision tree T according to the
distribution Dy as T does. It then chooses a random v € V. If I' = I'y it answers according to
' (z + v) else it answers according to T'(z + v).

It suffices to show that pr — p7(S) < ps — ps(S) for any set S. The lemma then follows by
inductively modifying the label of every leaf in Y7 that is not labeled optimally.

Let S be any non-empty subset of A. There are two cases to consider.

Case(i) The path reaching [falsifies some constraint in V+.
In this case, [is labelled 1 in I'; and 0 in T'y. pr is unaltered by this label change. (i.e., pr =
pr(0) = p7(0) = p7). On the other hand, pr(S) can only decrease. (ie., ps(S) < pr(S).)
Hence, pr — pr(S) < pjs — pp(S).

Case(ii) The path reaching I does not falsify any constraint in V.

Here, [is labelled 0 in T'; and 1 in I';. Let U be the set of variables queried along the branch
leading to [and b € {0,1}* be the answers corresponding to these queries. Let X be the set
of vectors z in V such that z|y = b. Thus, every string in X is rejected by I'; but is accepted
by T'; while the acceptance of the remaining strings in V is unaltered. Hence, the probability
pr increases by the quantity D (T") - | X|/2" ™, ie.,

X

) 2n—m

pi = pr+Dr(T)

Similarly, if Y is the set of vectors y in Vg such that y|y = b, we have that

1Yl

2n—m

pi(S) = pr(S)+ Dr(T)

Either Y is empty, in which case pr(S) does not increase. Suppose Y is non-empty. Let W
be the set of variables not queried along the branch leading to [. Any string y in Y can be
decomposed into two parts - the portion b actually seen by the test (i.e., involving the variables
in U) and the portion 4’ not seen by the test (i.e., involving variables in W). Hence, y can be

13

written as y = (b,y'). Let Y/ = {¢|(b,y') € Y}. Similarly, define X' = {2'|(b,z") € X}. Let
y = (b,y') be any string in Y. Then, Y’ = ¢y’ + X'. Hence, |Y| = |Y'| = |X’'| = | X|. Thus,
the increase in pr(S) is the same as the increase in pp. Hence, in either case, we have,

pr — pr(S) < pj — p7(S)
I

Thus, the difference between the average acceptance probabilities of strings in V and strings e-far
from V only increases in the transformation from T to T”. Since the error of test T' is u, this
difference for the test 7" is at least (1 —pu) — p = 1 — 2u. Hence, this difference for 7" is also at least
1 —2u. However, we know that the acceptance probability of strings in V for the 1-sided error test
T' is 1. Hence, the acceptance probability of strings e-far from V for test 7" is at most 2u. This
proves Theorem 10.

A.2 Adaptive to Non-Adaptive

Let V be a vector space over {0, 1}". We first show how to transform any 1-sided error deterministic
adaptive test for V' into a 1l-sided error (probabilistic) non-adaptive test and then extend this
transformation to work for probabilistic adaptive tests too.

A g-query deterministic adaptive test for V is a decision tree of height at most ¢q. Let I" be any
g-query 1-sided error deterministic adaptive test (decision tree) for V. Since I' has 1-sided error,
it must accept if it does not detect any violation. We may also assume that T' rejects on detecting
a violation as this only decreases the acceptance probability of strings not in V. Furthermore, we
may also assume that I' rejects as soon as it detects a violation. Recall from Claim 7, that a test
detects a violation if and only if it observes a constraint o € V' that is violated by the answers to
the queries.

Let o = apay ... ay, be any constraint that is checked by I'. Then there exists a path from the
root along which I' queries all variables z; such that a; = 1. Let z; be the last variable (starting
from the root) that is queried among the above and v the corresponding non-leaf node at which
it is queried. We call such nodes constraint nodes as it is at these nodes that the test detects if a
constraint is violated or not. We call the remaining non-leaf nodes of I' as query nodes. We label
the query nodes by the variable being queried at that node and constraint nodes by the constraint
being checked at that node. From the observations made in the earlier paragraph, we conclude
that every constraint node has a child that is a leaf node labeled 0 and conversely, any leaf node
labeled 0 is the child of a constraint node.

We now define test T, which is the non-adaptive test corresponding to the deterministic adaptive
test T'.

Definition 7 (Non Adaptive test for 1-sided error deterministic test) Given a 1-sided er-
ror deterministic (adaptive) test T' for V', define the test Tr as follows:

On input x,

1. vy < root node,i < 0

2. While v; is not a leaf node do,

14

(a) Query the variable corresponding to node v;.
(b) If v; is a query node, then set v;11 to be one of the children of v; with probability % each.

(c) If v; is a constraint node labeled «, check if © satisfies the constraint «. If it satisfies,
then set v;11 to be the child of v; that is not a leaf labeled 0 else set viy1 to be the child
of v; that is a leaf labeled 0.

(d) Increment i.

3. If the leaf node v; is labeled 1, accept, else reject.

Tt reaches a leaf labeled 0 if and only if the constraint corresponding to the parent of this leaf node
is violated. Hence, Tt is 1-sided error test. It is not obvious that Tt is a non-adaptive test. This is
because in step 2(c), the test chooses the path corresponding to the leaf labeled 0 iff the constraint
is not satisfied. This is the only “adaptive” portion of test 7. However, this can be easily made
non-adaptive in the following manner without altering the acceptance probability of the test: At
any constraint node, the test assumes that the constraint has been satisfied and proceeds along
the branch which is not a leaf labeled 0. Then, at the end it checks if all the constraints along the
branch have been satisfied. If not, it rejects, else it accepts.

The query complexity of Tt is no more than the height of tree I'. The following lemma relates the
accepting probability of Tt to the average acceptance probability of T'.

Lemma 20 Let I' be any 1-sided error deterministic adaptive test for V. and Tt the corresponding
non-adaptive test (as in Definition 7). Then for any string z € {0,1}",

Pr[Tr(z) =1] = av;zgﬁge (T'(x))

Proof: For any string x and v a node of decision tree I, let 7;(v) denote the fraction of strings
in z + V that follow a branch containing the node v when queried according to the decision tree '
and p, (v) be the probability that v is one of the nodes v; for some i, when z is tested by the test
Tr. We can easily check that

Pr(Tr(z) =1] = Y pa(v)
average(T(z)) = Y mu(v)

veV

where the summation in both cases is over all leaf nodes of I' labeled 1. Thus it is sufficient if we
prove that for all nodes v of ' and all strings z, gz (v) = 75 (v).

We prove this result by induction on the depth of the node v. If v is the root node, then p,(v) =
7z(v) = 1. Assume that py(u) = m5(u) for all strings z and all nodes u of depth d — 1. Let v be
any node of the tree I' of depth d > 1. Let u be the parent of v. By the induction hypothesis,
pz(u) = mp(u). If pr(u) = mx(u) = 0, then pz(v) = mx(v) = 0. Otherwise two cases arise.

Case (i) u is a query node. In this case, it can be easily checked that m,(v) = m;(u)/2 and
pz(v) = pg(u)/2. Hence, pg(v) = m5(v).

15

Case (ii) w is a constraint node. Let the label of u be . We first note that every string in z +V
satisfies exactly the same set of constraints as z. Suppose z satisfies the constraint a. If v
is the child of u that is not a leaf labeled 0, then 7, (v) = 75(u) and g, (v) = pg(u). If v is
the child of u that is a leaf labeled 0, then p,(v) = 7;(v) = 0. Hence, in both case we have
pz(v) = mz(v). The case when z does not satisfy the constraint « is similar.

Let T be 1-sided error (adaptive) (e, u,q)-test for V. Let T and Dr be the associated set of
decision trees and the corresponding distribution respectively. We now define the non-adaptive test
T’ corresponding to 7.

Definition 8 (1-sided error Adaptive Test) Given a 1-sided error adaptive test T' for V, de-
fine the test T' as follows: On input z, T' chooses a decision tree I according to the distribution
Dr, it then performs non-adaptive test Tr on the string © and answers according to Tr(z).

Since Tt is non-adaptive, so is T”. T' inherits its query complexity from Tt which in turn inherits
it from 7. Thus, the query complexity of T” is at most gq. The fact that 7" inherits its error also
from T is given by the following lemma.

Lemma 21 Let T be any 1-sided error (adaptive) test and T' the non-adaptive version of T (as
in Definition 8). Then, for any string = € {0,1}",

Pr[T'(z) =1] = av:;gge (Pr[T(z 4+ v) =1])

Proof: This lemma follows from Lemma 20 as follows.
Pr[T"(z) =1] = Pr[Tr(z) =1L «+ Dr] - Pr[T « Dr]

= (a,verage(I‘(x + v))> -Pr[T + Dy (From Lemma 20)
veV

= average (F(ac +v) - Pr[l «+ DT])
veV

B

B Alternative Proof using Fourier Analysis
In this section we prove the following theorem, that combines Theorems 2 and 3.

Theorem 22 Fiz 0 < e < 1,0 < pu < % If a vector space V over {0,1}" has an c-separating
(g, p)-local basis A = (A1,...,Ap), then every adaptive 2-sided error (e, 3 — p)-test requires g
queries.

16

Our proof is based on Fourier analysis. For f : {0,1}" — R a Boolean function, the Fourier
representation of f is
- X e

ae{0,1}n
where (o,) = Y 1" ; @; - ; mod 2, and

> @) ()

z€{0,1}»

Proof (of Theorem 22): Let V = AL, and let G be the uniform distribution over words in V.
Let B; be the uniform distribution over words that falsify constraint A; and satisfy the rest, and
let B be the uniform distribution over B;. For a decision tree I', define its distinguishing factor to
be

AT, A) = |Pgr[I‘ =1]— I;r[I‘ = 1]

If the error probability of the test is p, then the distinguishing probability of the test* is at least

(1—(3 —n) — (3 — p) = 2u. Thus, by Yao’s minimax principle, in order to prove Theorem 22, it

suffices to prove the following lemma.
Lemma 23 For any [’ of depth less than q, A(T, A) < 2u.

(From here on we concentrate on proving lemma 23. The following claim is proved by a similar
proof to that of Theorem 10, and hence we omit it.
Claim 24 For any decision tree T', and its optimal 1-sided error labeling T from definition 5

A(T,A) < AT, A)
By the previous claim we may assume wlog I' has optimal labeling, and has 1-sided error.

Claim 25 For any I-sided error decision tree T' and any o € V*:

a>0

Proof: For £ aleaf of T', let fy:{0,1}" — {0,1} be the Boolean function that is one if x reaches
£ in T, and zero otherwise. let L;(I") be the set of leaves of I that are labeled one. For any
z € {0,1}", z leads to exactly one leaf of T, so:

=) Jila

LeL1(T)
By linearity of the Fourier transform, we get:
Fa = Z (fe)a
LeLy(T)

Thus, in order to prove the lemma, we only need to show that for any £ € Ly ('), and any o € V+,
(fe), > 0. Let Supp(£) be the variables queried along the branch leading to ¢, and let Supp(«) be
the set of variables set to 1 in a. There are two cases to consider.

“The distinguishing probability of the test is the expected distinguishing probability of an individual test (decision
tree).

17

Supp(a) C Supp(£): Since £ € L1(T"), and T" has 1-sided error, we know that the path reaching
¢ does mnot falsify any constraint in V. Since Supp(a) C Supp(f), we conclude that any
z € f, 1(1) must obey (e, z) = 0. Hence

(fa=2" 3 (D@ =215 1) >0

zef; (1)

Supp(a) € Supp(£): (fg)a measures the correlation of f; with the linear function (—1){®. As

Supp(a) € Supp(£) we immediately get (f), = 0, because exactly half of f, (1) sets (—1)fe)
to zero and the other half sets it to one.

We calculate the Fourier representation of the good and bad distributions.

R -n €L
6= 3 g0 ={ 0 anh

otherwise
z€{0,1}7

Bio = 27" Y Bi(z)(-1)=

ze€{0,1}"
— (O!,’U»,;)) e 1
_ —k(_1y\(ztvi,a) _ (1) 2 acV
4_2:6(]2 (=1) { 0 otherwise
T+v;

For any linearly independent set A = {A41,...,An} let n4(a) be the following function:

(1 A C] = A
nae) = { 0 otherwise (2)

Notice that for o ¢ V+ we define n4(a) = 0. This will simplify our exposition. Notice that 74 is
well defined for any set of vectors A that is linearly independent.

Let F = G — B. We calculate -7:—04-

Claim 26 £, = 224(®)

2"m

Proof: By linearity of the Fourier transform we get:

Since both G and B; are non-zero only on a € V1, we fix our attention there. The key observation
is that (a,v;) = 1 if A; is one of the rows needed to sum up in order to reach «, and (o, v;) = 0
otherwise. This means that if @ =), .; A; then exactly |I| elements B;, contribute negatively to

B, whereas m — |I| elements contribute positively. The claim follows because Fo = C;a — Ba. |

18

We calculate A(T',.A) for ' of depth < ¢ using Fourier representations.

AT, A) = Y G(z) T(z) -) Blx)-I(x)

=y 2l g

m
«a

By claim 25, ['y > 0 for any o € V-, If o ¢ V-, then na(e) = 0. Since n4(a) > 0 we conclude
that all elements in the sum above are non-negative. If |@| > ¢ then ', = 0 because I" reads less
than ¢ bits and so has zero correlation with a. If |a| < g, then n4(a) < pwm. This is simply the
definition of A being (g, 1)-local. Thus we conclude:

A, A) <21 Y Ty (3)

acV+L

Claim 27 ¥, . To < 1.

Proof: Let H(a) be the characteristic function of V+, i.e. the function that is one on o if @ € V+
and zero otherwise. It’s Fourier representation is

—k
& — 9N — (‘T’a> = 2 T € V
H, =2 Z H(a)(-1) { 0 otherwise
ac{0,1}n

So

Yt = Ylav!
= Y H(o)- (2—") T(x)- (—1)<w>)

T

The last inequality follows because I'(z) < 1 for all z, and |V| = 2¢. |
Plugging claim 27 into equation (3) we get:
AT, A) <2u

We have proved lemma 23, and with it the proof of Theorem 22 is completed. |

C Proofs from Section 6

Proof (of Lemma 12): We need a couple of lemmas, the proof of which will follow.

Lemma 28 For any integers ¢ > 2,d, and any constant o < c—1, a random (c, d)-regular bipartite
graph with n left vertices, is with high probability a (o, €)-left expander, for any e satisfying

(c—a) 7c—o¢;—l
e < (2e(l+a) : (?)) (4)

Lemma 29 Let G be a (c,d)-regular bipartite graph. If G is an («,€)-left expander, then G is an
(2a — ¢, €)-left unique neighbor expander.

We do not try to optimize constants. Let a = %, Noticing that for ¢ > 5, § < @ < c¢—1. By
lemma 28, G is a («, €)-right expander for any ¢ satisfying equation (28).

For our selection of ¢, and any ¢ > 5, the following inequalities can be verified:

1+ a)
c—a-1) >3

o R

<2/3

(c—a)
(c—a—-1) 2

Hence setting € = (100 - d) 2 satisfies equation (28). Finally, by lemma 29, we get that G is whp a
(1,7d2)-left unique neighbor expander.

Proof (of Lemma 28): Let BAD be the event that the random graph is not an expander. This
means there is some S C L, |S| < en such that |[N(S)| < a-|S]|.

Fix sets S C L,T C R, |S| = s < en,|T| = as, and let B; be the event that all edges leaving S
land inside T'. We upper-bound the probability of this bad event.

sl ods — i ads\ “
Pr(Bs] = H cn — 1 < < cn)

1=0

20

The inequality follows as long as ads < cn. We now use a union bound over all sets S C L |S| =
s<enandallsets T C R, |T|= as. Let x be the constant x = e!t®. (%i)c_a.

Pr[BAD] < 3 (n>-(;n>-Pr[Bs]

S—1 S S
ACRONC)
- S 0]
s=1
En c—a—11°%
B SON
s=1
c—a—1

By definition of @, ¢ —a — 1> 0, hence (£)

1 (c—a) _c—zx%l
e < (2k) =D = (26(“'0‘) : (a_d)) (6)

For this value of €, each term of the sum (5) is at most 1/2. Set A = min{3, <%}, and split the
sum (5) into two sub-sums.

Pr[BAD] < [n : (f)c_a_l])

< Sl S

— _ A _ 2 A
nA.K_n(A 1)2)\+n.2 nt_ en A+2X +p.27"

Kon /9 4p.2 = o(1)

VARPVA

We conclude that with high probability, G is an («, ¢)-left expander. |
Proof (of Lemma 29): Let S C L,|S| < ¢|L|. Then by expansion we get

a-|S] <|N(S)|

Any neighbor of S that is not a unique neighbor, must be touched by at least 2 edges leaving S.
Since the left degree of G is ¢, we get

L e ISI=INTS) _ e IS+ INE(S))

IN(S)] < IN'(S)] 5 5

Combining the two equations, we get our claim. |

Proof (of Lemma 13): In the proof, we make use of the following theorem (see [12])

21

Theorem 30 (Azuma’s Inequality) If Xy,...,X; is a martingale sequence such that |X; —
Xit+1] <1 for all i, then

Pr{| X, — Xo| > A4 < 2e7X72

Fix TCR |T| =t> uym. Let X = |[N°%(T)|. We start by computing E[X]. For i = 1...n, let
X; be the random variable indicating whether vertex i € L is in N°¥(T'). Clearly X = 3.7, X, so
by the linearity of expectation, we need only compute E[X;]. Recall that cn = dm, Let odd(c) =
{1,3,5,... ,c} be the set of positive odd integers < ¢, and notice that ¢ € odd(c) because c is odd.

dm\ ((1—p)dm
ElX;] = Yicodd (“77) - ()

()

Vv

We conclude by linearity of expectation:
B[X] > 4 -n — O(1)

We now make use of the following edge-exposure martingale to show concentration of X around
its expectation. Fix an ordering on the udm edges leaving 7', and define a sequence of random
variables Yy, ...Y, 4, as follows: Y; is the random variable that is equal to the expected size of
NO(T) after the first 4 edges leaving T have been revealed. By definition, Y4, = X, Yy = E[X],

and the sequence is a martingale, where |Y; — Y; 1| < 1 for all 4 < pdm. Since d > %, we
apply Azuma’s inequality (Theorem 30) and get:

PrX <én] < Pr[|Yugm — Yo| > (u° —6)n]

d
= PrHYudm =Yl > (p° - 5)27”]

_dw®=8)?
< 2 ez M < 9o~ (1+e)m

c_5)2 . . .
Where ¢ = d(’;uicf) — 1> 0. There are at most 2™ possible sets 7' C R, so a union bound gives:

Pr[3T C R|T| > pm |y Aj| <dn] < 2m-2e UHI™ = o(1)
JET

We conclude that A(G) is whp a (6, 1)-right odd expander. |

ECCC ISSN 1433-8092
22 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

