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Improved Approximation Lower Bounds
on Small Occurrence Optimization

Piotr Berman * Marek Karpinski f

Abstract

We improve a number of approximation lower bounds for bounded occur-
rence optimization problems like MAX-2SAT, E2-LIN-2, Maximum Indepen-
dent Set and Maximum-3D-Matching.

1 Introduction

We refer to [BK99] and [BKO01] for a general background and notations. We define
Ed-OCC-Ek-LIN-2 as a problem of constructing an assignment that maximizes the
number of satisfied equations for a given system of linear equations modulo 2 (hence
LIN-2), where each equation has exactly k variables (hence Ek) and each variable
occurs exactly d times. If we drop an E in the acronym of the problem than we have
“at most d occurrences” or “at most k variables”. We replace Ek-LIN-2 with MAX-
Ek-SAT if we maximize the number of satisfied disjunctive clauses. d-MIS problem
is the problem of maximizing the size of an independent set in a d-regular graph.

FEach result of this paper (for a Problem X considered) is of the following form:
if0<e< 1/(k—1), it is NP hard to approximate a Problem X to within a factor
k/(k—1)—c¢

The challenge is to obtain as small k as possible for every problem. Fig. 1 summarizes
the progress of this paper as compared with the previous results [BK99], [BK01], and
[CCO02].
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Problem Former | Improved
3-MIS and 3D-matching 140 98
4-MTS 74 50
5-MIS 68 50
E3-OCC-E2-LIN-2 152 140
E3-OCC-2-LIN-2 121 112
E3-OCC-MAX-2-SAT 788 460
E3-OCC-MAX-E2-SAT 788 464
E4-OCC-MAX-E2-SAT 588 268
E4-OCC-MAX-2-SAT 588 262
4-0CC-MAX-2-SAT 588 252
E6-OCC-MAX-E2-SAT 308 164
E6-OCC-MAX-2-SAT 246 160

Figure 1: Summary of the results: values of k.

2 Amplifiers

The notion of an amplifier generalizes the concept of a specific variety of expanders
that are used in proving inapproximability results. This notion was introduced by

Papadimitriou in [P94] (for directed graphs) and it formalizes the construction of
Papadimitriou and Yannakakis of [PY91], see also [AT.97].
Consider an undirected graph G = (V,E). We define

Cut(U)={ecE: eZ Uand e ¢ V— U} and cut(U) = |Cut(U)|.

We say that G is a strong expander if for every U C V we have cut(U) >
min(|U[, [V —U]).

We say that G is an amplifier for X C V if it contains no bad sets for X.
A set A C Vis bad for X if cut(A) < min(|X N A, |X = Al).

An amplifier for X is B-regular if each node in X has B — 1 neighbors and
each node in V — X has B neighbors.

We have the following results on constructibility of regular expanders.

Theorem 1. For a set with . nodes, in random linear time one can conslruct a
3-reqular amplifier with 7n nodes and 10n edges.

Proof. Berman and Karpinski [BK99]. 0

Theorem 2. For a set with . nodes, in random linear time one can conslruct a
T-regular amplifier with n nodes and 3n edges.
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Figure 2: 3-regular amplifiers for [X| =4,5,6,8, o’s are the elements of X.

Proof. Bolobas [Bo88]. O

We are going to prove the following theorem.

Theorem 3. For a set with n nodes, in random linear ltime one can construct a
b-reqular amplifier with 1.8n nodes and 4n edges.

Proof. The construction is as follows: start with two sets X = {Xo,...,X4n_1} and
U ={lo,...,Un_1}. Pick a random matching between X and U. For 1 < n collapse
X4ai,...,%X4i13 into one node of X, and for 1 < 0.8n collapse Usi,...,Usita into one

node of U =V —X. Repeat until the resulting graph has exactly 4n edges.

A bad set A C V can be normalized. We first define B = ANX and U; as the set of
elements of U with exactly 1 neighbors in B. We can replace A with BUUz;UU, U Us:
A N X is unchanged and cut(A) does not increase, thus this new A is still bad.

Let k = [B| and a; = [U;]. Clearly, cut(A) = a; + as + 2(az + az) < k.

We need to show that the probability that our graph is not an amplifier converges
to 0 as n increases. In particular, the probability that a fixed set B C X defines a bad
set is much smaller than C(n, k)™, where C(n, k) is the binomial coefficient. Because
we can choose either B or X — B for our discussion, we assume that k < n/2.

Let P’ be the probability that B defines a bad set, and let P = P'C(n, k). P is an
upper bound on the probability that there exists a bad set. We establish probability
P’ as follows: B contains 4k edge ends. The other ends of these edges are in set u,
and every set of 4k such ends is equally probable, hence term C(4n,4k)~! in P’. Then
we count the number of such sets that are consistent with parameters ay,...,as. We
have C(0.8n;ao,...,as) partitions of U into Ug,...,Us. For each element of U; we
select in C(5,1) ways the edge ends that can connect to set B. Thus we get the
following formula for P:

0.8n! 5atas 1092+ 4kl 4(n— k) nl

P = .
ao! ai! az! az! a4! as! 4n! k! (n—X%k)!

We will find the parameters that yield the maximum probability. We have the fol-
lowing system for o; = ai/n and k = k/n:

Xtototastoatas = 0.8 (1)
a1 + 200 + 203 + ot k' <k (2)
x4+ 20 4+ 3xs + 4o + 55 = 4k (3)



o = ajo (4)
100 = 25002 (5)
100 = 25x50 (6)
Equation (1) says that the union of U;i’s forms U, (2) says that cut(A) <k, (3)

says that cut(B) = 4k, and equations (4-6) say that we cannot increase P by little
changes in the values of o’s.

We consider three ways that change a’s without changing cut(A) and cut(B).
First, we can add (1.—3,3,—1) to (ay,az,as,as), i.e. increment a;, decrement a;
by 3 etc. This multiplies P with

az(ax = 1)(a2 —2)ay @
(@ +(as+N(az +2) + (a3 +3) ~ arad’

If we assume that neither this change not its opposite increase P we obtain (4). (5)
and (6) are similar.
It is easy to see that (4-6) hold iff for some x, 3,y we have

X = & a = 5af o = 10ap?
o = ay’ oy = Sapy? oz = 10aB?y
Suppose that y > 1, then 5as > 2.5(xg + &5), 1 + doxq > 2.5(0¢1 + oq), 202 +
3os > 2.5(0t2 + «3), which with (1) and (3) imply that 4k > 2, hence k > n/2, a
contradiction. Therefore y < 1.
Because 4 cut(A) < cut(B), we have

20aP + 800cB? + 80y 4+ 20xBy> < 5 + 2082 + 30 By + 20apy> + 5oy’ =

AR +16R%2 + 16R%>Y < P +4R%+ 6Py +v° < 3p + 122 + 10R%y < ¥°.

If 6B >y and y < 1 then 3R + 122 + 10p%y > (% + % + ;—2)}/5, a contradiction.
Therefore 63 < y.

Suppose that k" < k. Then we can increase cut(A), i.e. by adding (—1,1,1,—1) to
(ao, ar, as,as). This changes P roughly by a factor of 250(0065061_10611 =v2B? > 36.
Therefore k' = k.

Suppose that k < 0.5. Then we can decrease n, say be removing 5 nodes from
X and 4 nodes from U, and since we do not want to change cut(A) or cut(B), we
remove these 4 nodes from Uy. The resulting change in P is the factor

o 1
08n) (1 =)

To show that this factor is larger then 1, it suffices to show that a/0.8 > (1—k)3.75.
Because (1 —x)*7 is convex, (1 —0)* = 1—=2x 0 and (1 —0.4)>7° ~ 0.147,
(1—k)>7 < max(0.2,1—=2k). Thus it suffices to show that ay/0.8 > max(0.2, 1 —2«)
and this is pretty easy.



We conclude that k' = k = 0.5. We can now repeat the reasoning that showed
Y < 1 to show that in this case y = 1. Thus

Ko =05 = & X =004 = daf o =a3 = 10ap?
and equalities (2-3) translate into

10ap + 40ap? 0.5
5+ 25ap + 50ap? = 2

Thus 5+ 253 + 50B82% = 2/ = 40B + 160B% & 22p> + 3B — 1 = 0. This gives
B~ 0.155656, ax = 0.197964, and thus

oo =0o5 = 0.197964 a1 =04 = 0.154072 o =o3 = 0.047964

Stirling formula and ¢(x) = x* allow to approximate P'/™ as

(D(Og) 50.30814 100.9592 2

.969.
®(0.19796)? ©(0.15407)? @ (0.04796)? 24 < 076

3 Eqg-Reductions

The following notion of a gap property was introduced in [BKO1]:

(f(n),g(n)) gap property of an optimization problem A means that for
every sufficiently small positive ¢ it is NP-hard to distinguish between
two groups of instances of A of size n: those that have no solutions with
score above f(n) 4+ e¢n and those that have solutions with score at least
g(n) —en.

While not formalized in exactly that fashion, gap properties were widely used in
proving lower bounds on approximation ratios that can be attained by polynomial
time algorithms.

For example, Hastad [H97] has shown that if 0 < ¢ < 0.5 then for systems of n
linear equations modulo 2 with 3 variables per equation it is NP-hard to distinguish
between instances where a solution may satisfy m — ¢ equations and instances where
no solution satisfies more then n/2 + ¢ equations. Thus the problem E3-LIN-2 has
instances with even number of equations modulo 2 with 3 variables each, n the number
of equations in an instance and this problem has (n/2 4+ ¢,n — ¢) gap property. We
will be omitting € terms, so we can say that this problem has (n/2,n) gap property.

We define the Eq-reductions as tools to prove gap properties.

Consider two maximization problem, A and B with objective functions a and
b. An Eq-reduction from A to B has 5 randomized polynomial time computable
functions, T,t,v,p and r, in its description:



e instance translation T and parameter translation t; if X is an instance of A with
parameter 1 then T(x) is an instance of B with parameter t(n);

e solution normalization v; if y is a solution of T(X), then v(u) is another solution

of T(X) such that b(v(y)) > b(y);

e solution equivalence p and value equivalence r; let Sp(x) be the set of solutions
of an instance x of problem P, p is 1-1 onto function from Sa(x) to v(Sg(T(x)))
such that b(p(s)) = r(a(s),n).

Observation 4. Assume thal problem A has (f(n), g(n)) gap property and that there
exists an Fg-reduction from A to B with the parameters described above. Then problem
B has (r(f(n),n),r(g(n),n)) gap property.

3.1 Reducing E3-LIN-2 to E2-LIN-2

We refer to [BKO01] for the corresponding discussion on standard reductions for linear
equations, and describe a reduction from E3-LIN-2 into 2-LLIN-2. Consider a system E
of n equations modulo 2 with 3 variables per equation. We define T(E) by replacing,
one by one, each equation in E. Given an equation w+ x +y = b, we replace it with
S(w,x,y,b). Because b is actually a constant, we have 12 equations with 2 variables
and 4 equations with 1 variable (which must be an auxiliary one), thus t(n) = 16(n).
If the parameter of an instance of E2 — LIN — 2) is (the number of equations with
one variable, the number of equations with two variables), then t(n) = (4n,12n).

Let x be the vector of the variables of E and a be the vector of the auxiliary
variables of T(E). Given a value of (x, a) we can compute v(x, a) by changing each a;
in such a way that a maximal number of equation is satisfied, if the two choices are
equally good, we set a; = 0. Because no equation involves two auxiliary variables,
these value selections cannot conflict and they can be performed independently.

The solution equivalence is p(x) =v(x, a’), observe that v(x, a’) does not depend
in a’. It is easy to see that the value equivalence is v(k,n) = 10n + 2k.

Value equivalence 10n + 2k translates (n/2,n) gap property of E3-LIN-2 into
(TOn+n,10n + 2n) = (11n,12n) gap property of 2-LLIN-2; of we wish n to refer to
the size of the new instance, i.e. 161, we got (11/16 n,12/16 n) gap.

Remark 1, The system T(E) consists of equations that have 1 or 2 variables. We can
define a similar reduction where we introduce a new variable z, and we first replace
each equation w4+x+y = b with w+x+y+2z = b and then replace the new equation
with a system of 16 equations as described above. We will use T/(E) to denote the
resulting system of equations with 2 variables each. This was the original reduction

of Hastad [H97].

Remark 2, In the subsequent reductions we will assume that each variable in an
instance of 2-LIN-2 or E3-LIN-2 has a sufficient number of occurences, For example,



we can replicate all equations n times, so in terms of new number of equations each

1/2

variable occurs at least n'/< many times.

3.2 Hardness of E3-OCC-3-LIN-2

Given an instance of E3-LIN-2 where each variable occurs sufficiently often, we can
replace it with an instance in which each variable occurs exactly 3 times. Suppose
that we start with 2n equations, so we have 6n variable occurences. We make each
variable occurence a separate variable; given m contact occurences of a variable, we
add é6m checker occurences. We connect these occurences with a graph that is a
3-regular amplifier for the contact occurences and then we replace each edge {x,y}
with equality x =y = x+y = 0. As analyzed in [BK99], this creates an instance
of E3-OCC-3-LIN-2 with 2n equations of length 3, 60n equations of length 2 and for
which it is difficult to tell if we can satisfy almost all equations or at most (614 ¢)n
of them. We will call such an instance a Hybrid instance.

Chlebik and Chlebikova [CC02] showed that we can reduce the number of equa-
tions in the amplifiers by 0.9n, which automatically improves some of the results
discussed in this note.

4 Hardness of k-MIS

We are going to discuss now small degree instances of MIS problem.

4.1 Hardness of 4-MIS

Theorem 5. For every ¢ € (0,1/49), it is NP hard to approximate 4-MIS to within
a factor 50/49 — ¢.

Proof. Given an instance of E3-LIN-2 and the corresponding Hybrid instance con-
struct an instance of 4-MIS as follows.

e For every variable x that is an amplifier node we create an edge Py = {xo,x1}.

e For every amplifier edge {x,y} we connect Py and P, with edges {xo,y1} and
JLXJ )UO}'

e For every variable x that is a contact occurence we create a direct contact, an
edge Dy = {Xo, X1} that is connected with Py with edges {xq, %7} and {x7, %o},

e For an equation e = x+y + z = b we create equation quadruple Q. of nodes of

the form where nodes of the form where x + 3 +v = b mod 2. We
connect with X ., U-p and Z . We connect the nodes of Q. with arbitrary
two disjoint edges.



A Hybrid instance created from an E3-LIN-2 instance with 2n equations is trans-
lated into a graph G that has 8 x 6n pairs (for nodes in the amplifiers and the direct
contacts) and 2n Q-quadruples.

Let Japy = {Xa, Up, Zy) and let Iypy = Jupy U {[2BY]].

Lemma 6. Given equation e = x +y +z = b, the gadget of e is Ae = Q. U Dy U
Dy UD,. FEvery mazimum independent set in A is of the form Iyg,.

Proof. Consider an independent set ] C A.. Because the four nodes of Q. are
connected with a matching, |[J N Q.| < 2. Note that every two nodes in Q. have
exactly one common neighbor in A — Q. and thus together they have 5 such
neighbors. Therefore if |J N Q] = 2 then |] — Q.| < 2 and |]| < 3. Because
JTND, < 1,if|JN Qe| = 0 then |J| < 3. Finally, if |J N Q.| = 1, then for some , B,y
we have ] N Qe = {[«BY]}, and X&,Yp,Zy are the only nodes of Ae = Q. that are not
connected to [xBy]. Therefore if |J| =4 then ] = Lypy. (l

We will describe a normalization of an independent set I in G in stages. Apply
each rule in turn as long as possible.

(i) Normalization of equation gadgets. Consider equation x +y + z = b and its
gadget Ae. One of the cases below must apply.

Case a: there exist «, 3,y are such that x + 3 +y =b mod 2 and x &€ I,
Yo €1, 2« € 1. Weset IN A, to be Iyp,y.

Case b: case a does not hold, i.e. Px NI = {xq}, PyNI={ygs}, P.NI={zy},
and x + 3 +7v #b. Weset IN A¢ to be Japy.

(ii) First assignment of Boolean values. To every D- or P- pair that contains a node
of I with subscript « give value &, note that after the normalization of equation
gadgets every D-pair has a value.

(iii) Second assignment of Boolean values. If Py has no Boolean value assigned and
no neighbor with value —«, insert x4 to I and assign value & to Py.

(iv) Third assignment of Boolean values. Let W be the graph where nodes are pairs
without Boolean values, Because a pair in W has a neighbor with value 0 and a
neighbor with value 1, it has at most one neighbor in W. Thus W has connected
components of size 1 or 2.

Consider a connected component of size 1: its pair has two neigbors with value
b and one with value —b, we give this pair value b.

Consider a connected component of size 2: it has four neighbors, two with value
0 and two with value 1; we give value 0 to the elements of this component.

Now every element of W is adjacent to a different edge between pairs with
different Boolean values.



(v) Normalization of Boolean values. After this assignment of values, the connec-
tions between pairs with value 0 and pairs with value 1 form a matching. If
the size of this matching within an amplifier A is a, and this amplifier contains
some 7m P-pairs, then INA| = 7m —a. If A has k < m/2 direct contact
pairs with value —b then the property of the amplifiers says that a > b. We
convert entire A and the adjacent direct contacts to value b, thus assuring that
IIN Al = 7m,; to keep I as the independent set, we may need to remove its
elements from b variable quadruples.

After normalization, every pair in amplifiers and every contact pair has exactly one
element in I, and we have exactly one value given to all occurences of a variable
of the original instance of E3-LLIN-2. One can also see that an equation quadruple
contains an element of I if and only if this equation is satisified by the values given
to the variables. Given 2n equations, we had 48n pairs and 2n quadruples, thus
vs 2n question is translated into 49n vs 50n question. U

In terms of T defined in [CC02] we can improve the above bound from 50 to 6T+8.

4.2 Hardness of 3-MIS

Theorem 7. For every ¢ € (0,1/97), it is NP hard to approximate 3-MIS to within
a factor 98/97 — ¢.

Proof. Given an instance of E3-LIN-2 and the corresponding Hybrid instance con-
struct an instance of 3-MIS as follows. We use the fact that amplifiers of the Hybrid
instance have the following structure: all nodes are on a single cycle, which we will
view as directed for the sake of the construction, and the nodes that are checker
occurences are connected with an additional matching.

e For every variable x that is an amplifier node we create a path P, =
(X00, Xi1, Xi0, Xo1)-

e For every amplifier cycle edge (x,y) we connect Py and Py with edges {xi0,Yo1}
and {Xi1, Yoo -

e For every amplifier matching edge (x,y) we connect Py and P, with edges
{X003y01} and {X(,] ,Uoo}-

e For every variable x that i1s a contact occurence we create a direct contact, a path
Dy = (%00, Xi1, Xi0, Xo1). We connect Py with Dy with edges edges {00, X1} and
{Xo1 ) X00}-

e For an equation e = x +y + z = b we create equation quadruple Q. of nodes of
the form where ax + 3 +v = b mod 2. We connect Qe, Dy, Dy and D, as
shown in Fig. 3.
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Figure 3: Gadgets of equations x +y+z=1mod 2 and x+y +z =0 mod 2.

A Hybrid instance created from an E3-LIN-2 instance with 2n equations is trans-
lated into a graph G that has 7 x 6n paths of length 4 (for nodes in the amplifiers
and the direct contacts) and 2n Q-quadruples.

Given equation e = x + Yy 4+ z = b, the gadget of e is Ac = Q. UD, UD, UD,.
We define Japy = {Xox, Xias Uop, Ui, Zoy, Ziy) and Iapy = Japy U {[xBY] .

Lemma 8. If ] C A is an independent set, then |J| < 7.

Proof. We present the proof for the case when b = 1, using the left part of Fig. 3.
We cover A, with a cycle of length 7: (Xo0, %i1,0010], Yoo, Ui1, Uio,011]) and a path of
length 9: (Zo1, Zio, Zi1, Zoo,001], X071, Xi0,0000], Jo1). Clearly, if |J| > 7 then ] must have
the maximum number of nodes in the cycle and on the path, i.e. 3 and 5 nodes
respectively. Thus ] contains these nodes from the path: Z.1,Zi1,1001], Xi0 and Yor1,
and only 3 nodes on the cycle are not their neighbors: X.0,111 and y,0. However, |
cannot contain both and Xoo. (]

Lemma 9. Assume that e = x+y+z = b mod 2, I is an independent sel, ] = INA,,
Xox € Px NI, Yyog € PyNI, 2oy €P, NI and x+ B +v #Db. Then|[]] <6.

Proof. In the proof of Lemma 8 we argued that if [J N Q| > 2 then [J| < 6.
Thus we can assume that |J N Qe < 2. Assume by the way of contradiction that
]l > 6, then |[JN D,| > 1 for two v’s among x,y,z, say x and y. This implies that
JN(DxUDy) = {Xi«, Xoa, Uip, Yop )} and the only element of Q. that may belong to J is
[xB—~v]; consequently [JN D,| = 2. Because Z,—, is adjacent to zoy, ] N D, = {Ziy, Zoy -
This is a contradiction because one of these two nodes must be a neighbor of [xp—~y]. [

We will describe a normalization of an independent set I in G in stages. Apply
each rule in turn as long as possible.

(i) Normalization of equation gadgets. Consider equation x +y +z = b and its
gadget Ae. One of the cases below must apply.
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Case a: there exist «, 3,y are such that x + 3 +v =b mod 2 and x, « & [,
Yoo € L, Zo-a  I. We set IN Ag to be Iygy.

Case b: case a does not hold, i.e. Px NI = {x«}, PyNIT={yg}, P.NI={zy},
and ax+ B +v #b. Weset IN Ae to be Jupy-

(ii) Elimination of ambigous paths. We say that a amplifier variable v is ambigous if
{Voo,Vo1} C L. Suppose that (x,y) is a cycle edge of an amplifier, y is ambigous
and x is not. If xo0 € [ we remove Yoo from I and replace it with xi7, and if
Xo1 € I, we replace yo1 with xi0. Note that a matching edge of an amplifier
cannot connect ambigous variables; therefore this rule eliminates all ambigous
variables.

(iii) Temporary removal of nodes. If [P, N I| < 1, T becomes I — Px. Let a be the
number of such paths.

(iv) First assignment of Boolean values. To every D- or P- path that contains two
nodes of T with subscript & give value . Because we have normalized the
equation gadgets, every Dy has a value assigned.

(v) Second assignment of Bolean values. If Px NI = @ and no neighbor of Py
has assigned value —a, we assign value @ to Py and insert xix and X, to L.
Remaining Py’s without assigned values have one neighbor with value 0 and
one with value 1.

(vi) Putting back the removed node. For every path Py such that Py N1 = &,
consider the edge (x,y) of an amplifier cycle. If yoo & I, insert xio, otherwise
insert Xi7.

(vii) Perform the third assignment of Boolean values and the normalization of
Boolean values as in the proof of Theorem 5.

After normalization, every Py and every Dy contains exactly two elements in I, and
we have exactly one value given to all occurences of a variable of the original instance
of E3-LIN-2. One can also see that an equation quadruple contains an element
of I if and only if this equation is satisified by the values given to the variables.
Given 2n equations, we had 48n paths and 2n quadruples, thus n vs 2n satisfied
equations translates into (48 x2+1)n vs (48 x2)+2n nodes in an independent set. [

In terms of T defined by [CC02] we can improve the above bound from 98 to
12t 4 14.

4.2.1 Hardness of 3D-Matching

In 3D-Matching problem we are given 3-partitie hypergraph with node set VoUViUV)
and hyperedge set E such that for every edge e and for i =0,1,2 we have eN'V;| = 1.
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4

A matching is a set of pairwise disjoint hyperedges and we want to approximate a
maximum matching.

We can put another restriction on the problem: every node belongs to exactly
two hyperedges. Then the line dual hypegraph is a 3-regular graph. This restricted
3D-Matching is a restricted 3-MIS. The restriction is that we can color edges with 3
colors and each node belongs to edges of 3 different colors.

We can provide the 3 coloring to the instances of 3-MIS (ﬁ.ﬂé.
produced in the proof of Theorem 7 if we restrict them a o—
bit. First, the amplifiers should form a bipartite graph, |
second, one the cycles of amplifiers some contacts should ———(O=e

be separated by six checkers, and some by five (however ¢
few). .

As we see here on the right, and equation gadgets can
be colored provided that (a) every two edges that connect the gadget to an amplifier
have the same color, and (b) not all edges connecting the gadget to an amplifier have
the same color.

Fig. 4 shows how we can color edges inside an amplifier. In this figure every
path Py is depicted as a column, with white and black cirles indicating nodes that
correspond to the two Boolean values. Edges that correspond to the matching edges
of the amplifiers are the short incomplete edges that extend up and down from the
columns, and edges that connect to equation gadgets are similar, except longer.

%WWW%WWW%
TN

Figure 4: Coloring in the amplifier

5 Hardness of k-OCC-MAX-2-SAT

5.1 Hardness of E3-OCC-2-LIN-2 and E3-OCC-E2-LIN-2

The results of this sections are obtained by modifying the Eq-reductions that are
described in the following lemma.

Lemma 10. There exists an Fq-reduction R from E3-LIN-2 to E3-OCC-2-LIN-2 with
value equivalence function 110n 4+ 2k and an FEg-reduction R" from FE3-LIN-2 to FE3-
OCC-E2-LIN-2 with value equivalence 138n + 2k.
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J @ amplifier
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Figure 5: Part of the gadget replacing an equation with 3 variables. The
other two variables also have their cycles of 6 variables. Empty circles
indicate variables, solid circles indicate equations with just 1 variable,
edges indicate equations. We can add variable z to the original equation
to eliminate the equations with 1 variable only.

Proof. Given a system of equations E we describe the instance transformation in

five steps. Whenever we refer two an edge between variables x and y we mean their
equality, i.e. the equation x +y = 0.

()
(i)

(iii)

(iv)

For R’ only: add z to each equation.

For a variable x that has m occurrences, create a 3-regular amplifier with 2m
contacts. Every node in this amplifier is a variable.

Replace each equation of E, say xo + x1 + x2 = b with 16 equations of
S(xo0,%x1,%2,b). Next, replace each variable occurence in S(xo,x1,%2,b) with
a new variable, occurences of one variable form quadruples.

Connect quadruples of auxiliary variables into simple cycles.

To each quadruple of a variable x, say x°,x',x%,x? add two extra variables x*,x°

and connect them into a simple cycle (x%,x*, x',x%,%x>,x?). Connect x* and x°
with two contacts of the amplifier of x; make sure that each contact is used only
once in this manner.

The solution normalization is described in four stages.

(i)

(i)

In each amplifier and each cycle of an auxiliary variable make all values equal
to the value that is the majority among the contacts, this cannot decrease the
number of satisfied equations by the very definition of an amplifier. Note that
a cycle of 4 nodes is an amplifier for these nodes.

Let o be the common value of the variables in the amplifier of variable x.
Consider a cycle of variable x in which not all values are equal, and let us use
the above notation Xg,...,Xs. Suppose that we have & edges between & and
—« values on the cycle, B many —« values among Xo,...,X3 and y many —«
values among X4, Xs, 1.e. adjacent to the amplifier. If 6 +v > 3, we convert =«
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values to & without decreasing the number of satisfied equations. As 3 <4 and
b equals 2 or 4, we are done if § # 2, or if B —vy < 2. Moreover, if B =4, we
can convert each & value to —a and increase the number of satisfying equations
and that also normalizes the cycle. Thus it remains to normalize the case when

d=2,3 =3,y =0. One can see that this is not possible.

(iii) Now each cycle is consistent. We normalize the values in the cycles of auxiliary
variables as in the normalization of T, to maximize the number of satisfied
equations.

(iv) Suppose that a cycle of an original variable x is consistent, but with value —a
while its amplifier is consistent with value x. We convert this cycle to «, and
renormalize the auxiliary variables. We gain 2 equations that connect the cycle
with the amplifier of x, and we loose at most 2 equations (among 16 equations
if S(x,...) we satisfy 10 or 12, so we could drop by at most 2).

The solution equivalence is simple: the value of x is given to all replica in its
amplifiers, the other variables in the new instance are set with some default and then
we normalize this solution.

It remains to calculate the value equivalence.

We started with E that had n equations and 3n variable occurrences. In reduction
R’, we add z to each equations, which makes 4n variable occurrences.

For each equation, we made 16 equations, of which 12 are satisfied if the equation
was satisfied, and otherwise only 10.

In these 16 equations, we have 16 occurrences of auxiliary variables that are con-
nected into simple cycles, thus creating 16 satisfied equations.

An occurrence of an original variable has a cycle with 6 equations, 2 equations
connecting 1t with its amplifier. A wheel amplifier has 10 equations for each contact,
so this occurrence needs 20. The total number of equations for an occurrence is
6+2+20=28.

In Eq-reduction R, for each original equation we created 164+164+44+3x 28416 =
116 equations. In a normalized solution that satisfies the original equation we satisfy
124+ 16+ 3 x 28 = 112, and otherwise we satisfy two equations less. Thus the value
equivalence is r(k,n) = 110n + 2kn.

In Eg-reduction R’ we have need to add 28 satisfied equations, thus we produced
144n? equations and the value equivalence is T(k,n) = 138n? 4 2kn. H
We conclude that (n/2,n) gap property of E2-LIN-2 implies (112/1161,111/116n)
gap property of E3-OCC-2-LIN-2. and (140/144n,139/144n) gap property of E3-
OCC-2-LIN-2.

By using the same approach as in [BK99], we can extend the result for E3-OCC-
E2-LIN-2 to an identical result for 3-MAX-CUT. Thus we can formulate this conclu-

sion as follows.
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Theorem 11. For every ¢ € (0,1/139), it is NP hard to approxzimate E3-OCC-
FE2-LIN-2 and FE3-MAX-CUT to within a factor 140/139 — ¢ and to approximate
E3-OCC-2-LIN-2 to within a factor of 112/111 — €.

5.2 How to Modify Eq-Reductions

We will use a modification of Eq-reduction from E3-LIN-2 to E3-OCC-2-LIN-2. Sup-
pose that we have an instance X of E3-LIN-2 with 2n equations. We form a system
of constraints f(X) where each equation of X is replaced with some L constraints, and
in normalized solutions of f(X) the satisfied equations of X correspond to a group of
L constraints where all but 4 are satisfied, and unsatisfied equation corresponds to a
similar group where all but 6 are satisfied. If we ignore en terms, it is hard to tell
if we can satisfy only n or up to 2n equations of X, this maps into a questions if we
can satisfy only Ln — 6n 4+ Ln —4n constrainst or up to Ln —4n 4+ Ln — 4n, which
gives the hardness of the ratio (2L — 8)/(2L —10) = (L —4)/(L —5). In terms of the
theorem schema from the introduction we have K =L —4.

We split the construction of our group of L constrains into several parts. In the

reduction of E3-LIN-2 to E3-OCC-E2-LIN-2 such a group contained the following
building blocks:

e 4 groups of equations that involve a single a, each group had j = 8 equations
(the cycle of 4 and the incident equations);

e 3 x-cycles and their connections to their amplifier, hence 3 times k = 8 equations
(6 on a cycle, 2 to connect to the amplifier);

e pieces of 3-regular amplifiers that together have 6 contacts, and the amplifiers
has 1 = 10 equalites per contact.

This gives L =4j + 3k + 61 = 116 and K = 112. We will show new versions of these
building blocks of the reduction to find the respective values of j,k and L.

5.2.1 Equations with a Fixed Auxiliary Variable

Equation with a fixed auxiliary variable form a system $ like that:

Xo + a 1 a = Xo
x1+a = 0 a = X
x2+a = 0 = a = %X
b+a 0 a = 0

The universal form on the right can always be obtained if we replace some x’s with
their nagations. Because we choose the value of a, we view this system as a function
fs 110,12 — Z that returns maximum number of satisfied equations in S. Because
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4-OCC-MAX-2-SAT  FE3-OCC-MAX-2-SAT (E)6-OCC-...

=

(E)4-OCC-MAX-E2-SAT

Figure 6: Replacement systems for equations with a fixed auxiliary variable.

we want to replace this system with a larger one, it is convenient to decrease the
value of this function by the number of equations in the system. Thus fs(0,0,0) =
0,fs(0,0,1) =—1,fs(0,1,1) = =2 and fs(1,1,1) = —1 (note that f is symmetric).

We will construct a system T in which each x occurs twice and which otherwise
satisfies limitations of a particular variation of MAX-2-SAT. As we will see, a require-
ment that the set of constrains should be regular increases the size of T. The next
figure represents these variations of T as follows. Circles with an x inside indicate
variables X, X1 and xz; empty circles indicate replicated copies of a, arrows indicate
implications, indicates a clause of the form —uV —v and [ indicates a clause
of the form —u. When in a system some variables occur less than allowed nummber
of times, we can add implications between such variables; incomplete arrows indicate
where we can do it.

When we allow clauses of length one, we obtained j equal to 7 for 4-OCC-MAX-
2-SAT, and to 8 for E3-OCC-MAX-2-SAT. Otherwise, we obtained 11 (12) for (E)3-
OCC-MAX-E2-SAT, 9 (11) for (E)4-OCC-MAX-E2-SAT and 8 (9) for (E)6-OCC-
MAX-E2-SAT.

5.2.2 Equations of an Amplifier

For amplifiers we did not notice as yet any size savings if we allow shorter clauses or
a below-maximal number of occurences. Therefore we will skip E’s when we discuss
various versions of MAX-2-SAT.

For 3-OCC-MAX-2-SAT we adapt 5-regular amplifiers from Theorem 3. We re-
place such a node of degree 5 with a system of 20 implications, and an equation
with a system of 4 implications; thus we replace 1.8 node and 4 equations with 52
implications, so we have | = 52.

For 3-OCC-MAX-2-SAT we adapt 7-regular amplifiers from Theorem 3, i.e. strong
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expanders. These amplifiers for each contact have one node and 3 edges. We replace
such a node with a system of 21 implications and each equality edge with 2 implica-
tions, so we get | = 27.

For 6-OCC-MAX-2-SAT we adapt 9-regular “very strong” expanders. According
to Bolobas [Bo88] a random 9-regular graph has isoperimetric number larger then 2;
therefore if we have a minority among contacts of size k, the min-cut between this
minority and the majority of contacts is at least 2k. As a result we can use this contact
node twice. A contact with 9 connections inside the expander and 2 connections
outside can be replaced with a system of 22 implications plus 9 implications for the
9 adjacent expander edges. Thus we get 1 =31/2.

Figure 7: Replacements of of nodes of degree 5, 7 and 11 by 3-, 4- and
6-regular graphs of implications.

5.2.3 Equations of an x-Cycle

We connect copies of x as in the Fig. 8. The adjacent inequalities are attached
as follows: Xo and x3 are connected with the amplifier (by equality gadgets), and
X1,%X2,%X4 and x5 with the auxiliary variables. In case of 6-regular system, we have
only 5 variables, and instead of variable x3 being connected with a respective contact
of the amplifier, say X3, we have implications x4 — X3 — Xs.

To compute 1, we count the number of implications inside the gadgets and add
implications of equality gadgets that connect them with the amplifiers. For 3-regular
systems, equality (equation with two variables) gadget is a cycle of 4 implications,
and in other cases this is a pair of implications. One can see that for 3-OCC-, 4-OCC-
and 6-OCC- problems we got | = 36,22, 13.

X3
X2 X4
X1 X5
X0

Figure 8: Cycle gadgets implemented as 3-, 4- and 6-regular graphs of implications.
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5.2.4 Summary of the MAX-2SAT Results.

We summarize now the results on the small occurrence instances of MAX-2SAT.

Theorem 12. For every e € (0,1/(k—1), it is NP hard to approximate a version of
MAX-2-SAT to within a factor k/(k — 1) — ¢, where for

o [3-OCC-MAX-2-SAT we have k =464 =4 x 12+ 3 x 36+ 6 x 52 — 4;

o K3-OCC-MAX-E2-SAT we have k =460 =4 x 11 4+3 x 36+ 6 x 52 — 4;
o F/-OCC-MAX-FE2-SAT we have k =268 =4 x 11 +3 x 224+ 6 x 27 —4;
o [/-OCC-MAX-2-SAT we have k =262 =4 x95+3 x 2246 x 27 —4;

o [-OCC-MAX-2-SAT we have k =252 =4 x7 +3 x 2246 x 27 —4;

e F6-OCC-MAX-E2-SAT we have k=164 =4x9+3 x 13+ 6 x31/2—4;
o (-OCC-MAX-E2-SAT we have k=160=4 x8+3 x 13 +6 x 31/2 —4;

6 Open Problems

Our constructions have two parts: gadgets that replace equations of E3-LIN-2, and
amplifiers. Tt would be very interesting to investigate how the theory of optimal
gadgets can be applied here. Our impression is that because of the degree bounds,
we have quite large gadgets, e.g. for 4-OCC-MAX-2-SAT we have gadgets with more
then 90 clauses. Exhaustive search for a better gadget does not have to be feasible,
but some research is clearly needed towards that end.

The amplifiers are not fully understood either. Moreover, systems of implications
and independent set problems should have their own versions of amplifier properties
and a separate probabilistic analysis.

How about the explicit inapproximability bounds for very small occurrence in-
stances of MAX-3SAT and MAX-4SAT? Very recently, [BKS03] established the first
inapproximability results on E4-OCC-MAX-E3-SAT and E6-OCC-MAX-E4-SAT. Tt
would be very interesting to shed some more light on the approximation hardness of
such instances.
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