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Abstract

We study the role of connectivity of communication networks in private com-
putations under information theoretic settings. We show that some functions can
be computed by private protocols even if the underlying network is 1-connected
but not 2-connected. Then we give a complete characterisation of non-degenerate
functions that can be computed on non-2-connected networks.

Furthermore, we present a general technique for simulating private protocols
on arbitrary networks. Using this technique every private protocol can be simu-
lated on arbitrary k-connected networks using only a small number of additional
random bits.

Finally, we give matching lower and upper bounds for the number of random
bits needed to compute the parity function on k-connected networks.

Keywords: private computation, connectivity, parity.

1 Introduction

Consider a set of players, each knowing an individual secret. The goal is to compute a
function depending on these secrets such that after the computation none of the players
knows anything about the secrets of the other players that cannot be derived from
function value and its own secret. An example for such a computation is the “secret
ballot problem”: The members of a committee wish to decide whether the majority
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votes for yes or no. But after the vote nobody should know anything about the opinions
of the other committee members, not even about the exact number of yes and no votes,
except for whether the majority has voted for yes or no. To come to a decision, any
two members can talk to each other in private. If however the members are distributed
in a network, then only those members can talk to each other that are connected by a
link. In this work, we investigate the influence of the underlying network on the ability
to perform private computations.

Depending on the computational power of the players we distinguish between cryp-
tographically secure privacy and privacy in information theoretic sense. In the first case
we assume that no player is able to recompute any information about the input within
polynomial time (see e.g. [5, 16, 22, 23]). In the second case we do not restrict the
computational power of the players (see e.g. [3, 6]). Hence, the latter notion of pri-
vacy is much stronger than the former. In this paper, we use the information theoretic
approach.

1.1 Previous Results

Private computation has been the subject of a considerable amount of research. Tra-
ditionally, one investigates the number of rounds and random bits as complexity mea-
sures for private protocols. Chor and Kushilevitz [10] have studied the number of
rounds necessary to compute the sum modulo an integer. This function has also been
investigated by Blundo et al. [4] and Chor et al. [8]. The number of random bits needed
to compute the parity function, i.e. the sum modulo 2, has been examined by Kushile-
vitz and Mansour [18] and Kushilevitz and Rosén [20]. Gál and Rosén [14] have shown
that the parity function cannot be computed by any private protocol in o(log n/ log d)
rounds using d random bits. They have also given an almost tight randomness-round
tradeoff for private computations of arbitrary Boolean functions depending on their
sensitivity. Bounds on the maximum number of rounds needed in the worst-case to
compute a function by a private protocol have been given by Bar-Ilan and Beaver [2]
and by Kushilevitz [17].

The number of random bits necessary to compute a Boolean function by a private
protocol is closely related to its circuit size. Kushilevitz et al. [19] have shown that
every function that can be computed with linear circuit size can also be computed by a
private protocol with only a constant number of random bits. Using this result one can
show that the majority function can be computed by a private protocol using a constant
number of random bits and simultaneously a linear number of bits exchanged between
players (for the circuit complexity of majority see e.g. [21]).

So far we have assumed that players do not attempt to cheat. Depending on the
way players attempt to acquire information about the input of the other players we
distinguish between dishonest players and players who can work in teams (e.g. [3, 5,
6, 12]). The goal in this approach is to investigate the number of dishonest players or
players in a team that are necessary to learn anything about the input of the remaining
players. Chor and Kushilevitz [9] have shown that Boolean functions with one bit
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output can be computed with teams either of size at most bn−1
2
c or of any size up to n.

For extensions, see Chor, Geréb-Graus, and Kushilevitz [7, 8].
All papers mentioned above do not restrict the communication capabilities of the

players. In other words, they use complete graphs as underlying communication net-
works. However, most realistic parallel architectures have a restricted connectivity
and nodes of bounded degree. Franklin and Yung [13] were the first who studied the
role of connectivity in private computations. They have presented a protocol for k-
connected bus networks, which simulates communication steps of a private protocol
that was originally written for a complete graph. To simulate a single communication
step, their protocol uses O(n) additional random bits.

1.2 Our Results

In this paper we investigate the number of random bits needed to compute functions
by private protocols on k-connected networks. We present a new simulation technique
that allows us to reduce the number of additional random bits by taking the connec-
tivity of the network into account (Section 3). Our technique simulates any oblivious
private protocol on any given network on an arbitrary k-connected network (k ≥ 2)
with only a small number of additional random bits.

In Section 4, we study the parity function to a greater extent. For every k-connected
graph with k ≥ 2, we design a private protocol for computing the parity function that
uses only dn−2

k−1
e − 1 random bits. This considerably reduces the number of random

bits compared to the general simulation technique of Section 3 for the specific case of
the parity function. This result is tight: There are k-connected graphs on which every
private protocol needs that many random bits to compute the parity function.

All of the above results hold for k ≥ 2. In Section 5, we investigate graphs that are
not 2-connected. Our first insight is the following: The parity function over n > 2 bits
cannot be computed by a private protocol on any network that is not 2-connected. This
can be generalised to a large class of non-degenerate functions. We call a function
f : {0, 1}n → {0, 1} non-degenerate if for every 1 ≤ i ≤ n, there are bit strings
x and y of length n that differ only in the ith bit such that f(x) 6= f(y). In other
words, a non-degenerate function depends on all of its input bits. It turns out that
there are functions that can be computed by private protocols, even if the underlying
network is not 2-connected. An example is the following non-degenerate function
f : {0, 1}2n+1 → {0, 1} (for n ≥ 2):

f(z, x, y) := (z ∧
∧n

i=1 x[i]) ∨ (z ∧
∧n

i=1 y[i]) .

Here, z is a single bit and both x and y are bit strings of length n; x[i] and y[i] denote
the ith bit of x and y, respectively. We construct a communication network G for f
as follows: Let Gx and Gy be complete networks with n players each. Then connect
another player Pz with all players in both Gx and Gy. The network obtained is not
2-connected. Using a slight modification of the protocol presented by Kushilevitz et
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al. [19], one can compute the subfunctions

fx(z, x) := z ∧
∧n

i=1 x[i] and

fy(z, y) := z ∧
∧n

i=1 y[i]

by a private protocol on the networks Gx with Pz and Gy with Pz, respectively. After
the computation has been completed, Pz is the only player that knows the results of
both subfunctions. Due to symmetry we only consider the case z = 1. Then fy(z, y) =
0 and therefore, since fy has been computed by a private protocol, Pz does not learn
anything about y. Furthermore, Pz does not learn anything about x except what he is
able to deduce from fx(z, x).

We fully characterise the class of non-degenerate functions that can be computed
on non-2-connected networks. It turns out that the above example is fairly representa-
tive: Each such function has this if-then-else structure. The corresponding non-
2-connected network consists of two 2-connected components of appropriate sizes.
This characterisation can be generalised to the case where the players can work in
teams.

2 Preliminaries

2.1 Notations

For i, j ∈ IN with i ≤ j define [i] := {1, . . . , i} and [i..j] := {i, i + 1, . . . , j}.
Throughout this paper, we will often use the following string operations. Let x =
x[1]x[2] . . . x[n] ∈ {0, 1}n be a string of length n. Then for I ⊆ [n] and α ∈ {0, 1}|I|,
xdI←α is defined by

z = xdI←α :⇐⇒ ∀i ∈ [n] : z[i] =











x[i] if i 6∈ I

α[j] if i ∈ I and i is the
jth smallest element in I .

In other words, we substitute the bits of x by the bits of α at the positions specified by
I . For sets I1, I2, . . . , Ik ⊆ [n] and strings α1, α2, . . . , αk ∈ {0, 1}∗ with |αi| = |Ii| we
define

xdI1,I2,...,Ik←α1,α2,...,αk
:= (xdI1←α1

) dI2,...,Ik←α2,...,αk
.

Let x denote the bitwise negation of x, i.e. ∀i ∈ [n] : x[i] = x[i]. For a function
f : {0, 1}n → {0, 1}, a set of indices I ⊆ [n], and a string α ∈ {0, 1}|I| define the
partially restricted function fdI←α : {0, 1}n−|I| → {0, 1} by assigning the values given
by α to the positions in I , i.e.

∀x ∈ {0, 1}n−|I| : fdI←α(x) := f(0ndI,J←α,x) ,
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where J = [n] \ I . Finally, for a string x ∈ {0, 1}n and a set I ⊆ [n] define x[I] ∈
{0, 1}|I| by

∀j ≤ |I| : (x[I])[j] = x[i] :⇐⇒ i is the jth smallest element in I .

x[I] is the substring obtained by deleting from x all bits at positions not in I .
A graph G is called k-connected if, after deleting an arbitrary subset of at most

k − 1 nodes, the resulting node-induced graph remains connected. Equivalently, for
any two nodes u and v of G, there are at least k pairwise internally node-disjoint paths
between u and v. In particular, if G is k-connected, then each node has degree at least
k.

2.2 Private Computation

We consider the computation of Boolean functions f : {0, 1}n → {0, 1} on a network
of n players. In the beginning each player knows a single bit of the input x. The
players can send messages to other players via point-to-point communication using
secure links where the link topology is given by an undirected graph G = (V, E).
When the computation stops, all players know the value f(x). The goal is to compute
f(x) such that no player learns anything about the other input bits in an information
theoretic sense except for the information he can deduce from his own bit and the
result. Such a protocol is called private.

Definition 1 Let Ci be a random variable of the communication string seen by player
Pi, and let ci be a particular string seen by Pi. A protocol A for computing a function
f is private with respect to player Pi if for every pair of input vectors x and y with
f(x) = f(y) and x[i] = y[i], for every ci, and for every random string Ri provided to
Pi,

Pr[Ci = ci | Ri, x] = Pr[Ci = ci | Ri, y] ,

where the probability is taken over the random strings of all other players. A protocol
A is private if it is private with respect to every player.

We call a protocol synchronous if the communication takes place in rounds and
each message consists of a single bit. We call a synchronous protocol oblivious if
the number of bits (which is either zero or one) that player Pi sends to Pj in round t
depends only on i, j, and t but not on the input and the random strings. Furthermore, we
do not bound the computational resources of the players. We assume that all of them
are honest, i.e. the computation and the interactions between players are determined
only by the protocol.

For an oblivious protocol A let L(Pi, Pj,A) be the total number of bits sent from
Pi to Pj in A and

L(A) :=
∑

i∈[n]

∑

j∈[n]\{i}

L(Pi, Pj,A) .
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We distribute the input bits among the nodes of the graph. For convenience, we call
the node that gets bit x[i] player Pi. The players Pi and Pj can communicate directly
with each other if and only if they are connected by an edge in the graph.

3 Private Computation on k-connected Networks

Most known private protocols are written for specific networks. A simulation of such
a private protocol on a different network can be done in such a way that each player
of the new network simulates a player of the original network step-by-step. Hence,
we have to find a way to realize the communication steps between all players that are
not directly connected. Franklin and Yung [13] have presented a strategy to simulate a
transmission of one single bit on a hypergraph by using O(n) additional random bits.
Thus, the whole simulation presented by them requires O(m + nL(A)) random bits
where m is the number of random bits used by the original protocol. If we consider
2-connected graphs we can simulate each communication step between two players Pi

and Pj by one additional random bit r as follows: Assume Pi has to send bit b to Pj.
Then Pi chooses two disjoint paths to Pj and sends r to Pj along the first path and
r ⊕ b, the parity of r and b, along the second path. In this way, O(m + L(A)) random
bits are sufficient.

To reduce the number of random bits even further, we consider the following opti-
misation problem:

Definition 2 (Max-Neighbour-Embedding) Let G = (V, E) be a graph with edge
weights σ : E → IN and G′ = (V ′, E ′) a graph with |V | = |V ′|. Let π : V → V ′ be a
bijective mapping. Then the performance of π is defined as

ρ(π) :=
∑

{u, v} ∈ E and
{π(u), π(v)} ∈ E′

σ({u, v}) .

The aim is to find a bijection π : V → V ′ that maximises ρ(π) over all bijections.

By reduction from 3-Dimensional-Matching [15, SP1], it can be shown that the
decision problem corresponding to Max-Neighbour-Embedding is NP-hard, even if
both graphs have maximum degree 4.

In the following lemma we estimate the performance for the case that G′ is k-
connected.

Lemma 1 Let G = (V, E) be a graph with n nodes and edge weights σ. Let G′ =
(V ′, E ′) be a k-connected graph with n nodes. Then we have

max
π : V → V ′

π is bijective

ρ(π) ≥
k

n − 1

∑

e∈E

σ(e) .
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Proof: By the definition above, there is no difference between edges with weight 0 and
nonexistent edges. Therefore, we treat nonexistent edges like edges with weight 0 and
restrict ourselves to the case that G is a complete graph. The graph G′ is k-connected.
Thus, every node in V ′ has degree at least k.

Let Π be a random bijection from V to V ′. Since every node in V ′ has degree at
least k, the probability that two arbitrary nodes u and v are neighbours under Π, i.e.
{Π(u), Π(v)} ∈ E ′, is at least k

n−1
. Thus, the edge e = {u, v} ∈ E yields weight σ(e)

with probability at least k
n−1

and its expected weight is at least k
n−1

· σ(e). Hence, the
expected performance ρ(Π) fulfils

E(ρ(Π)) ≥
∑

e∈E
k

n−1
· σ(e) = k

n−1
·
∑

e∈E σ(e) .

Thus, there exists a bijection with performance at least k
n−1

·
∑

e∈E σ(e). ut

A bijection that fulfils the requirements of the above lemma can be computed in
polynomial time using the method of conditional expectation (see e.g. Alon et al. [1]).

Theorem 1 Every oblivious private protocol A using m random bits can be simulated
with m+(1− k

n−1
)·min{L(A), k−2

k−1
·(n2−n)+ L(A)

k−1
} random bits on every k-connected

graph.

Proof: Let G = (V, E) be the network used in protocol A and G′ = (V ′, E ′) be
the k-connected network for protocol A′. To simulate A we first choose a bijection
between the players in G and the players in G′. For every edge {Pi, Pj} ∈ E define
σ({Pi, Pj}) := L(Pi, Pj,A)+L(Pj, Pi,A). In Lemma 1 we have seen that there exists
a bijection π : V → V ′ with performance ρ(π) ≥ k

n−1
L(A). Using this bijection, at

least k
n−1

·L(A) bits of the total communication in A are sent between players that are
also neighbours in G′. Thus, this part of the communication can be simulated directly
without additional random bits.

For the remaining (1 − k
n−1

) · L(A) bits we proceed as follows: Let Pi and Pj be
two players that are not directly connected in G′. Then Pi partitions the bits he will
send to Pj into blocks B1, . . . , BdL(Pi,Pj ,A)/(k−1)e of size at most k − 1. Furthermore,
Pi chooses k node-disjoint paths from Pi to Pj . Pi uses a separate random bit r[`] for
each block B`. He sends r[`] along the first path and b⊕ r[`] for each b ∈ B` along the
remaining paths, each bit on a separate path.

∑

i∈[n],j∈[n]\{i}dL(Pi, Pj,A)/(k − 1)e ≤ k−2
k−1

· (n2 − n) + L(A)
k−1

holds, because we
round at most n2 −n fractions with denominator k− 1. (This is a worst-case estimate.
Given a concrete protocol, additional knowledge about the distribution of the bits on
the links may be used to get a better bound.) But we surely never need more than
(1− k

n−1
) ·L(A) bits altogether. Both observations together imply the bound proposed.

ut
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4 Computing Parity on k-connected Networks

It is well known that the parity function of n bits can be computed on a cycle by using
only one random bit. On the other hand, using our simulation discussed in Section 3
we get an upper bound of n − 1 random bits for arbitrary 2-connected networks. The
aim of this section is to close this gap. We present a private protocol for parity that
uses dn−2

k−1
e − 1 random bits and show that there are k-connected networks on which

parity cannot be computed with less than d n−2
k−1

e − 1 random bits.

Lemma 2 There exist k-connected networks with n ≥ 2k players on which the parity
function cannot be computed by a private protocol with less than d n−2

k−1
e − 1 random

bits.

Proof: We consider the bipartite graph Kk,n−k (which is k-connected) and show that
every private protocol that computes the parity function on this network needs at least
dn−2

k−1
e−1 random bits. Let {P1, P2, . . . , Pk} and {Pk+1, Pk+2, . . . , Pn} be the two sets

of nodes of Kk,n−k. For every i = 1, . . . , k and j = k + 1, . . . , n we have an edge
{Pi, Pj} in Kk,n−k. Now assume to the contrary that there exists a private protocol A
on Kk,n−k using less than dn−2

k−1
e − 1 random bits.

Let R = 〈R1, . . . , Rn〉 be the contents R1, . . . , Rn of all random tapes. For a
string x ∈ {0, 1}n and i ∈ [n], let Ci(x, R) be a full description of the communication
received by Pi during the computation of A with random bits R on input x. Moreover,
let

C(x) = {〈c1, c2, . . . , ck〉 | ∃R ∀i ∈ [k] ci = Ci(x, R)} .

We consider computations of A on inputs

X = {x | x[1] = x[2] = . . . = x[k] = 0 and
⊕n

i=1x[i] = 0} .

For every x ∈ X and every communication c1 we define

C(c1, x) = {〈c2, . . . , ck〉 | 〈c1, c2, . . . , ck〉 ∈ C(x)} .

From the fact that A is private it follows:

Claim: ∃c1 ∀x ∈ X C(c1, x) 6= ∅.

Let x ∈ X . Because x is a valid input for the protocol A, there exists at least one tuple
〈c1, . . . , ck〉 in C(x). Hence, there exists at least one c1 with C(c1, x) 6= ∅. If for some
y ∈ X the set C(c1, y) is empty, then this contradicts the definition of private protocols
— the claim is proved.

Note that |X| = 2n−k−1 and that we have
⋃

R Ci(x, R) =
⋃

R Ci(y, R) for all x, y ∈
X and i ∈ [k]. Furthermore, from a bound on the number of different communication

strings from Kushilevitz and Rosén [20] it follows that |
⋃

R Ci(x, R)| < 2
n−k−1

k−1 be-
cause A uses less than n−k−1

k−1
random bits. Hence, we have |

⋃

x∈X C(c1, x)| < 2n−k−1.
Therefore, by the pigeon hole principle and the previous claim we obtain

∃c1, c2, . . . , ck ∃x, y ∈ X : x 6= y and 〈c2, . . . , ck〉 ∈ C(c1, x) ∩ C(c1, y) .
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This means that there are two different input string x, y ∈ X such that on either string
the players P1, . . . , Pk receive c1, . . . , ck, respectively. Let i be a position where x and
y differ, i.e. x[i] 6= y[i]. Note that k + 1 ≤ i ≤ n. Let R = 〈R1, . . . , Rn〉 and R′ =
〈R′1, . . . , R

′
n〉 be the contents of the random tapes such that ci = Ci(x, R) = Ci(y, R′)

for all 1 ≤ i ≤ k.
During a computation of protocol A on input xd{i}←y[i] with random strings R′′ =

〈R1, . . . , Ri−1, R
′
i, Ri+1, . . . Rn〉 the players P1, P2, . . . , Pk again receive the commu-

nication strings c1, c2, . . . , ck. This is because the graph is bipartite and Pi can only
communicate with P1, . . . , Pk. Hence, for this input they compute the same result as
for x — a contradiction. ut

Now we show that this bound is best possible. To obtain a private protocol that
computes the parity function with dn−2

k−1
e − 1 random bits, we use the result from

Egawa, Glas, and Locke [11] that every k-connected graph G with minimum degree at
least d and with at least 2d nodes has a cycle of length at least 2d through any set of k
nodes. From this result we get the following lemmas.

Lemma 3 Let G = (V, E) be a k-connected graph with |V | ≥ 2k. Then for every sub-
set V ′ ⊆ V with |V ′| = k, there exists a simple cycle of length at least 2k containing
all nodes in V ′.

Proof: Since G is k-connected, every node has degree at least k. Thus, G contains a
simple cycle of length 2k running through all nodes in V ′ by [11, Thm. 3]. ut

Lemma 4 Let G = (V, E) be a k-connected graph with |V | ≥ 2k. Then for every
subset V ′ ⊆ V with |V ′| = k + 1, there exists a simple path containing all nodes in
V ′.

Proof: By Lemma 3, G contains a cycle C running through k of the nodes in V ′.
If the last node v of V ′ is also on C, we simply delete one edge of C and are done.
Otherwise, since G is connected there is path from v to a node u of C, such that each
internal node of this path is not in C. By deleting one edge of C incident with u, we
obtain the desired path. ut

Lemma 5 Let G = (V, E) be a k-connected graph with |V | ≥ 2k + 1. Then G has a
simple path with at least 2k + 1 nodes.

Proof: By Lemma 3, G has a cycle of length at least 2k. If this length is strictly
greater than 2k, we delete one of its edges and are done. Otherwise, there is a node v
not in the cycle. We now construct a path as in the proof of Lemma 4. ut

To compute the parity function by a private protocol on an arbitrary k-connected
network G, we proceed as follows. We first assume that G has at least 2k + 1 nodes.

1. Mark all nodes in G red. Set z[i] := x[i] for each player Pi.
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2. Choose a path in G of length 2k + 1. According to Lemma 5 such a path always
exists. The first player Pi in the path generates a random bit r. Then Pi computes
r ⊕ z[i], sends the result to the next player in the path, and sets z[i] := r.

Each internal player Pj on the path receives a bit b from its predecessor in the
path, computes b ⊕ z[j], sends this bit to its successor, and changes its colour to
black.

The last player P` on the path receives a bit b from its predecessor and computes
z[`] := z[`] ⊕ b.

After this step, 2k − 1 players have changed their colour.

3. We repeat the following step dn−3k+1
k−1

e times.

Choose k + 1 red nodes and a path in G containing all these nodes. According
to Lemma 4 such a path always exists. We can assume that the start and the end
node of the path are among the k + 1 given players, hence both are red. Then
the first player Pi on this path generates a random bit r, computes r⊕ z[i], sends
the result to the next player in the path, and sets z[i] := r.

Each internal player of the path Pj receives a bit b from its predecessor in the
path. If Pj is a black player, it sends b to its successor. If Pj is a red player, it
computes b⊕ z[j], sends this bit to its successor, and changes its colour to black.

The last player P` on the path receives a bit b from its predecessor and computes
z[`] := z[`] ⊕ b.

After this step, k − 1 players have changed their colour. Hence, after d n−3k+1
k−1

e
iterations of this step we have at least

dn−3k+1
k−1

e · (k − 1) + 2k − 1 ≥ n − k

black players. Thus, at most k are red.

4. Choose a cycle in G containing all red nodes. According to Lemma 3 such a
cycle always exists. Let Pi0 be a red player. Then Pi0 generates a random bit r,
computes r ⊕ z[i0], and sends the result to the next player in the cycle.

Each other player Pj on the cycle receives a bit b from its predecessor. If Pj is a
black player, it sends b to its successor. If Pj is a red player, it computes b⊕z[j],
sends this bit to its successor, and changes its colour to black.

If Pi0 receives a bit b, he computes b ⊕ r. The result of this step is the result of
the parity function.

Let us count the number of random bits used in the protocol above. In the second
and in the last step we use one random bit. In the third step we need d n−3k+1

k−1
e random

bits. Hence, the total number of random bits is

dn−3k+1
k−1

e + 2 = dn−2
k−1

e − 1 .
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It remains to show that the protocol is private and computes the parity function. The
correctness follows from the fact that each input bit x[i] is stored by exactly one red
player and each random bit is stored by either none or two players that are red after
each step. By storing a bit b we mean that a player Pi knows a value z[i] that depends
on b. Since Pi0 is the last red player, he knows the result of the parity function.

Every bit received by some player in the second and third step is masked by a
separate random bit. Hence, none of these players can learn anything from these bits.
The same holds for all players except for player Pi0 in the last step. So we have to
analyse the bits sent and received by Pi0 more carefully. In the last step z[i0] is either
x[i0], a random bit, or the parity of a subset of input bits masked by a random bit. In
neither case Pi0 can learn anything about the other input bits from the bit he receives
and the value of z[i0] except for what can be derived from the result of the function
and x[i0].

Theorem 2 Let G be an arbitrary k-connected network with n nodes such that n ≥
2k. Then the parity function of n bits can be computed by a private protocol on G
using at most dn−2

k−1
e − 1 random bits. There exist k-connected networks for which this

bound is best possible.

Proof: The case n ≥ 2k + 1 has already been demonstrated. If n = 2k, then G has a
cycle containing all nodes of G by Lemma 3. On a cycle, we can compute parity with
only one random bit.

The lower bound follows from Lemma 2. ut

For 2-connected networks G with n ≥ 4 nodes, the previous theorem implies that
the parity function can be computed using at most n − 3 random bits. There are such
networks for which this is sharp.

5 Private Computation on Non-2-connected Networks

Throughout this section, f : {0, 1}n → {0, 1} denotes the function we want to com-
pute, where n ≥ 3. We assume that f is non-degenerate (as defined in Section 1.2).
Furthermore, I1, I2, J1, and J2 denote both subsets of input positions and sets of in-
dices of players.

We say that a pair (J1, J2) of two disjoint subsets J1, J2 ⊆ [n] has the flip-property
if there exist an input x ∈ {0, 1}n and two strings α ∈ {0, 1}|J1| and β ∈ {0, 1}|J2|

with
f(xdJ1,J2←α,β) 6= f(xdJ1,J2←α,β) = f(xdJ1,J2←α,β) .

We call the strings α and β flip-witnesses for (J1, J2).

Lemma 6 If a function f : {0, 1}n → {0, 1} is non-degenerate, then for every parti-
tion I1, I2 of [n] and every i ∈ I1 and j ∈ I2 we have: There exist subsets J1 ⊆ I1 and
J2 ⊆ I2 with i ∈ J1, j ∈ J2 such that (J1, J2) has the flip-property.
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Loosely speaking, this lemma says that each non-degenerate function behaves on
subsets of input positions in some sense like the parity function.

Proof: From the definition of non-degenerate it follows that for every i ∈ I1 and
j ∈ I2 there exist input strings y, z ∈ {0, 1}n with

f(yd{i}←0) 6= f(yd{i}←1) and f(zd{j}←0) 6= f(zd{j}←1) .

f(yd{i}←0) 6= f(yd{i}←1) can be rewritten as f(yd{i},{j}←0,y[j]) 6= f(yd{i},{j}←1,y[j]). If
f(yd{i},{j}←0,y[j]) = f(yd{i},{j}←1,y[j]), then J1 = {i}, J2 = {j} fulfil the flip-property
with witnesses (1, y[j]) and we are done. If f(yd{i},{j}←1,y[j]) = f(yd{i},{j}←0,y[j]),
then J1 = {i}, J2 = {j} fulfil the flip-property with witnesses (0, y[j]). If neither case
holds, we have

f(yd{i},{j}←0,0) = f(yd{i},{j}←0,1) 6= f(yd{i},{j}←1,0) = f(yd{i},{j}←1,1) . (1)

Analogously, J1 = {j}, J2 = {i} fulfil the flip-property, if f(zd{i},{j}←z[i],0) =
f(zd{i},{j}←z[i],1) or f(zd{i},{j}←z[i],1) = f(zd{i},{j}←z[i],0). If neither case holds, we
also have

f(zd{i},{j}←0,0) = f(zd{i},{j}←1,0) 6= f(zd{i},{j}←0,1) = f(zd{i},{j}←1,1) . (2)

Next we construct two sets with the flip-property from y and z. By (1) and (2), we may
assume that y[i] 6= z[i] and y[j] 6= z[j]. Otherwise, we can flip y[j] or z[i] since f(y)
and f(z) do not depend on y[j] and z[i], respectively. Analogously, we can assume
that f(y) 6= f(z). Otherwise, we can flip the bits y[j] and z[j] simultaneously. Since
f(y) does not depend on y[j], we have f(y) 6= f(z) afterwards. Define

Y1 := { k ∈ I1 | y[k] 6= z[k] } and Y2 := { k ∈ I2 | y[k] 6= z[k] } .

Let Y1 = {i1, . . . , i|Y1|} with i1 < i2 < . . . < i|Y1| and Y2 = {j1, . . . , j|Y2|} with
j1 < j2 < . . . < j|Y2|. By construction, i ∈ Y1 and j ∈ Y2. Define ρ ∈ {0, 1}|Y1| and
σ ∈ {0, 1}|Y2| such that

∀` ∈ [1, |Y1|] : ρ[`] := y[i`] and ∀` ∈ [1, |Y2|] : σ[`] := y[i`] .

Note that
ydY2←σ = zdY1←ρ . (3)

To prove the lemma, we distinguish the cases f(y) 6= f(ydY2←σ) = f(z) and f(y) =
f(ydY2←σ) 6= f(z).

1. If f(y) 6= f(ydY2←σ) = f(z), we choose

α := y[i], β := σ, J1 := {i}, J2 := Y2, x := y .

We have

f(xdJ1,J2←α,β) = f(y) 6= f(yd{i}←y[i]) = f(xdJ1,J2←α,β)

12



by the choice of y and i. Furthermore,

f(xdJ1,J2←α,β) = f(y) 6= f(ydY2←σ) = f(xdJ1,J2←α,β)

by assumption. Thus, (J1, J2) fulfils the flip-property.

2. If f(y) = f(ydY2←σ) 6= f(z), then f(y) = f(zdY1←ρ) 6= f(z) by (3). We set

α := ρ, β := z[j], J1 := Y1, J2 := {j}, x := z .

We have

f(xdJ1,J2←α,β) = f(z) 6= f(zd{j}←z[j]) = f(xdJ1,J2←α,β)

by the choice of z and j. Furthermore,

f(xdJ1,J2←α,β) = f(z) 6= f(zdY1←ρ) = f(xdJ1,J2←α,β)

by assumption. Thus, (J1, J2) fulfils the flip-property.

Since this case distinction is exhaustive, we can always find subsets J1 ⊆ I1 and
J2 ⊆ I2 fulfilling the claim of the lemma. ut

A set I1 with ∅ 6= I1 6= [n] is dominated by an input position k ∈ I1 if the following
holds: For each pair of subsets J1 ⊆ I1 and J2 ⊆ [n] \ I1 that fulfils the flip-property,
we have k ∈ J1. A function is `-dominated if there exists a set I1 ⊆ [n] of size ` that
is dominated by some k ∈ I1. A function f is called dominated if there exists an ` > 1
such that f is `-dominated. Otherwise, f is called non-dominated.

Theorem 3 Let f be a non-degenerate function and G be a network that can be sep-
arated into two networks G1 and G2 of size n1 and n2, respectively, by removing one
bridge node from G. If f can be computed by a private protocol on G, then f is
(n1 + 1)- and (n2 + 1)-dominated.

Theorem 3 follows from Lemma 6 and the next Lemma 7 as follows: Assume on
the contrary that f is not (n1 + 1)-dominated. The other case is treated symmetrically.
Let I1 and I2 be the sets of indices corresponding to players in G1 and G2, respectively,
and let Pk be the bridge player connecting G1 and G2. By Lemma 6, there are J1 ⊆ I1∪
{k} and J2 ⊆ I2 such that (J1, J2) has the flip-property, because f is non-degenerate.
Since f is not (n1 + 1)-dominated, there are also subsets J ′1 ⊆ I1 ∪ {k} and J ′2 ⊆ I2

such that (J ′1, J
′
2) has the flip-property and k /∈ J ′1. Lemma 7 implies (setting I1 = J ′1

and I2 = J ′2 in the claim of the lemma) that f cannot be computed by a private protocol
— a contradiction. This proves Theorem 3.

Lemma 7 Let G be a network with n nodes. Assume that there exist I1, I2 ⊆ [n] and
k ∈ [n], such that the following conditions hold:
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1. I1, I2 6= ∅ and k 6∈ I1 ∪ I2, I1 ∩ I2 = ∅,

2. for every path Wi,j from Pi to Pj with i ∈ I1 and j ∈ I2, we have Pk ∈ Wi,j , and

3. (I1, I2) has the flip-property.

Then f cannot be computed on G by a private protocol.

Proof: Assume that there exists such a protocol. Let M t
i be a message sent by player

Pi in round t and T (A) be the maximum number of rounds of A for all inputs of length
n and all random tapes. M t

i is a function of the input string z and the random tapes R.
Player Pi receives in round t ≤ T (A) the messages

Ct
i (z, R) := M t

i1
(z, R), . . . , M t

is(z, R) ,

where Pi1 , . . . , Pis are all the players incident to player Pi. We denote the sequence
C1

i (z, R), C2
i (z, R), . . . , C

T (A)
i (z, R) by Ci(z, R).

Now let k, I1, I2 fulfil the three conditions of the lemma and choose x, α, and β
such that

f(xdI1,I2←α,β) 6= f(xdI1,I2←α,β) = f(xdI1,I2←α,β) .

Keep R fixed. Then consider Ck(xdI1,I2←α,β, R), which is the sequence of messages
received by Pk during the computation on xdI1,I2←α,β with random bits R. Since the
protocol is private and k 6∈ I1 ∪ I2, there exists R′ = 〈R′1, . . . , R

′
n〉, with Rk = R′k,

such that
Ck(xdI1,I2←α,β, R

′) = Ck(xdI1,I2←α,β, R) . (4)

Let

Y := {` | there is a path W`,i from ` to a node i ∈ I1 such that k 6∈ W`,i } .

We have I1 ⊆ Y and I2 ∩ Y = ∅. Now let R′′ = 〈R′′1, . . . , R
′′
n〉 be a content of

the random tapes defined as follows: for every ` ∈ Y let R′′` := R` and for every
j ∈ [n] \ Y let R′′j := R′j . Note that R′′k = R′k = Rk. From (4), it follows that on input
xdI1,I2←α,β and with random tapes R′′ the protocol generates the following messages
for every player i ∈ [n] and every t ≥ 1:

M t
i (xdI1,I2←α,β, R′′) =

{

M t
i (xdI1,I2←α,β, R) if i ∈ Y ,

M t
i (xdI1,I2←α,β, R

′) if i ∈ [n] \ Y .

Hence, given the input string xdI1,I2←α,β the protocol computes the same value as on
the input string xdI1,I2←α,β and xdI1,I2←α,β — a contradiction. ut

Corollary 1 A non-dominated non-degenerate function cannot be computed by a pri-
vate protocol on a network that is not 2-connected.
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Examples of non-dominated non-degenerate functions are parity, majority, con-
junction, and disjunction. Hence, these functions cannot be computed by private pro-
tocols on networks that are not 2-connected.

In the remainder of this section, we show that for every `-dominated function f
with n − 1 > ` > 2, there is a non-2-connected network on which f can be computed
by a private protocol. For a subset I1 of input positions define the flip-witness-set for
I1 by

f-set(I1) := {(α, J1) | J1 ⊆ I1, α ∈ {0, 1}|J1|

and there exist J2 ⊆ [n] \ I1, β ∈ {0, 1}|J2|

such that α, β are flip-witnesses for J1, J2} .

We start with some technical lemmas.

Lemma 8 Let I1,1, I2,1 ⊆ [n] be nonempty and disjoint and let k /∈ I1,1 ∪ I2,1. If there
are strings w1, w2 ∈ {0, 1}n with w1[k] = w2[k], α1 ∈ {0, 1}|I1,1|, and β1 ∈ {0, 1}|I2,1|

such that

f(w1dI1,1←α1
) = f(w2dI2,1←β1

) 6= f(w1dI1,1←α1
) = f(w2dI2,1←β1

) ,

then every set I1 ⊇ I1,1 with I1 ∩ I2,1 = ∅ is not dominated by k.

Proof: Let I1 ⊇ I1,1 with I1 ∩ I2,1 = ∅ be given. If k /∈ I1, the claim is trivial.
Therefore, assume k ∈ I1. Define γ, δ ∈ {0, 1}∗ by

I1,2 := {i ∈ I1 | w1[i] 6= w2[i]} ,

γ := w2[I1,2] ,

I2,2 := {i ∈ [n] \ I1 | w1[i] 6= w2[i]} ,

δ := w2[I2,2] .

Note that w1dI1,2,I2,2←γ,δ = w2.
Consider w1dI1,1,I2,2,I2,1←α1,δ,β

1

. The latter substitutions only change values of
w1dI1,1←α1

at positions in [n] \ I1. We distinguish the following two cases:

1. If f(w1dI1,1,I2,2,I2,1←α1,δ,β1

) = f(w1dI1,1←α1
), then by the assumption of the

lemma, we have

f(w1dI1,1,I2,2,I2,1←α1,δ,β1

) = f(w2dI2,1←β1
) 6= f(w2dI2,1←β1

) . (5)

Define J1 := {i ∈ I1 | w1dI1,1,I2,2,I2,1←α1,δ,β1

[i] 6= w2dI2,1←β1

[i] } and α2 :=

w2dI2,1←β1

[J1]. Note that k /∈ J1, since w1[k] = w2[k] and k /∈ I1,1 ∪ I2,1 ∪ I2,2.
Since I1,1 ⊆ I1 and I2,1 ∩ I1 = ∅,

w2dI2,1←β
1

= w2dJ1,I2,1←α2,β
1

,

w1dI1,1,I2,2,I2,1←α1,δ,β1

= w2dJ1,I2,1←α2,β1

,

w2dI2,1←β1
= w2dJ1,I2,1←α2,β1

.
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Thus, (5) can be rewritten as

f(w2dJ1,I2,1←α2,β1
) = f(w2dJ1,I2,1←α2,β1

) 6= f(w2dJ1,I2,1←α2,β1

) .

Therefore, (α2, J1) ∈ f-set(I1). But k /∈ J1. Thus, I1 is not dominated by k.

2. If f(w1dI1,1,I2,2,I2,1←α1,δ,β1

) 6= f(w1dI1,1←α1
), then

f(w1dI1,1,I2,2,I2,1←α1,δ,β1

) = f(w1dI1,1←α1
) 6= f(w1dI1,1←α1

) . (6)

Define J2 := {i ∈ [n] \ I1 | w1dI1,1,I2,2,I2,1←α1,δ,β1

[i] 6= w1dI1,1←α1
[i]} and

β2 := w1dI1,1←α1
[J2]. Thus,

w1dI1,1←α1
= w1dI1,1,J2←α1,β2

,
w1dI1,1,I2,2,I2,1←α1,δ,β1

= w1dI1,1,J2←α1,β2

,

w1dI1,1←α1
= w1dI1,1,J2←α1,β2

.

We rewrite (6) as follows:

f(w1dI1,1,J2←α1,β2

) = f(w1dI1,1,J2←α1,β2
) 6= f(w1dI1,1,J2←α1,β2

) .

Therefore (α1, I1,1) ∈ f-set(I1). Since k /∈ I1,1, I1 is not dominated by k.
ut

Lemma 9 Let I1 ⊆ [n] with n > |I1| ≥ 2, I1,1, I1,2 ⊆ I1, and I2,1, I2,2 ⊆ [n] \ I1, all
non-empty. Let k ∈ I1. If there are α1 ∈ {0, 1}|I1,1|, β1 ∈ {0, 1}|I2,1|, α2 ∈ {0, 1}|I1,2|,
β2 ∈ {0, 1}|I2,2|, and u1, u2 with u1dI1,1,I2,1←α1,β1

[k] 6= u2dI1,2,I2,2←α2,β2
[k] fulfilling

f(u1dI1,1,I2,1←α1,β1
) 6= f(u1dI1,1,I2,1←α1,β1

)

and
f(u2dI1,2,I2,2←α2,β2

) 6= f(u2dI1,2,I2,2←α2,β2
) ,

then I1 is not dominated by k.

Proof: Choose an input position ` ∈ I1 \ {k} and u3 ∈ {0, 1}n with

f(u3d{`}←0) 6= f(u3d{`}←1) . (7)

Such an ` exists, since |I1| ≥ 2. By assumption, either u1dI1,1,I2,1←α1,β1
[k] = u3[k]

or u2dI1,2,I2,2←α2,β2
[k] = u3[k]. W.l.o.g. assume that the first equation is true, i.e.,

u1dI1,1,I2,1←α1,β1
[k] = u3[k]. Let x = u1dI1,1←α1

. Then by assumption

f(xdI2,1←β1
) 6= f(xdI2,1←β1

) .

Let γ ∈ {0, 1} such that f(u3d{`}←γ) = f(u1dI1,1,I2,1←α1,β1
). Such a γ exists by (7).

Now
f(xdI2,1←β1

) = f(u3d{`}←γ) 6= f(xdI2,1←β1

) = f(u3d{`}←γ).

By construction, ` /∈ I2,1. Therefore, we can apply Lemma 8. Thus, I1 is not domi-
nated by k. ut
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Lemma 10 Assume that a set I1 with n > |I1| ≥ 2 is dominated by an input position
k ∈ I1. Then every pair (α, J1) ∈ f-set(I1) assigns the same value to input position k.

Proof: The proof is by contradiction. Assume that there exist two pairs (α1, I1,1),
(α2, I1,2) ∈ f-set(I1) such that α1 and α2 assign different values to input position k ∈
I1, i.e. xdI1,1←α1

[k] 6= xdI1,2←α2
[k] for all x ∈ {0, 1}n. Furthermore, let (β1, I2,1)

and (β2, I2,2) be counterparts of (α1, I1,1) and (α2, I1,2), respectively, i.e. there are
w1, w2 ∈ {0, 1}n with

f(w1dI1,1,I2,1←α1,β1
) 6= f(w1dI1,1,I2,1←α1,β1

) = f(w1dI1,1,I2,1←α1,β1
)

and

f(w2dI1,2,I2,2←α2,β2
) 6= f(w2dI1,2,I2,2←α2,β2

) = f(w2dI1,2,I2,2←α2,β2
) .

Lemma 9 implies that I1 is not dominated by k — a contradiction. ut

For c ∈ {0, 1}, we call a set I1 (k, c)-dominated by input position k, if I1 is domi-
nated by k and for each pair (α, J1) ∈ f-set(I1), α assigns c to input position k.

Lemma 11 Assume that a set I1 with n > |I1| ≥ 2 is (k, c)-dominated with k ∈ I1 for
some c ∈ {0, 1}. Then for every α ∈ {0, 1}|I1| such that α assigns c̄ to the kth position,
for every w ∈ {0, 1}n, J2 ⊆ [n] \ I1, and β ∈ {0, 1}|J2| we have

f(wdI1,J2←α,β) = f(wdI1,J2←α,β) .

Proof: Proof by contradiction. Assume that there are a string α1 ∈ {0, 1}|I1| that
does not assign c to input position k as well as w1 ∈ {0, 1}n, I2,1 ⊆ [n] \ I1, and
β1 ∈ {0, 1}|I2,1| such that

f(w1dI1,I2,1←α1,β1
) 6= f(w1dI1,I2,1←α1,β1

) .

Choose (α2, I1,2) ∈ f-set(I1) and (β2, I2,2) as a counterpart of (α2, I1,2), i.e. there exists
w2 with

f(w2dI1,2,I2,2←α2,β2
) 6= f(w2dI1,2,I2,2←α2,β2

) = f(w2dI1,2,I2,2←α2,β2

) .

Since I1 is (k, c)-dominated, we have w1dI1,I2,1←α1,β1
[k] 6= c = w2dI1,2,I2,2←α2,β2

[k].
Lemma 9 implies that I1 is not dominated by k — a contradiction. ut

By the previous lemma, we can conclude that for each set I1 with n > |I1| ≥
2 that is (k, c)-dominated by an input position k ∈ I1, there exists a function f1 :
{0, 1}|I1|−1 → {0, 1} with

f(x) = ((x[k] = c) ∧ f(x)) ∨ ((x[k] 6= c) ∧ f1(x[I1 \ {k}])) .

This reduces the set of significant variables to I1 \{k} if x[k] 6= c. We next study what
happens on input strings with x[k] = c.
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Lemma 12 Assume that a set I1 with n > |I1| ≥ 2 is (k, c)-dominated with k ∈ I1 for
some c ∈ {0, 1}. Then for every pair w1, w2 ∈ {0, 1}n with w1[k] = w2[k] = c and
w1[i] = w2[i] for all i ∈ [n] \ I1 we have

f(w1) = f(w2) .

Proof: Proof by contradiction. Assume that there exists a pair of strings w1, w2 ∈
{0, 1}n with w1[k] = w2[k] = c and w1[i] = w2[i] for all i ∈ [n] \ I1 such that

f(w1) 6= f(w2) .

Choose (α, J1) ∈ f-set(I1) and (β, J2) as a counterpart of (α, J1), i.e. there exists a w3

with
f(w3dJ1,J2←α,β) 6= f(w3dJ1,J2←α,β) = f(w3dJ1,J2←α,β) .

W.l.o.g. we may assume that f(w3dJ1,J2←α,β) = f(w1). Define β1 = β, I2,1 = J2,
I1,1 := {i ∈ [n] | w1[i] 6= w2[i]}, and α1 := w1[I1,1]. Then w1 = w1dI1,1←α1

and
w2 = w1dI1,1←α1

. Hence,

f(w1dI1,1←α1
) = f(w′3dI2,1←β1

) 6= f(w1dI1,1←α1
) = f(w′3dI2,1←β1

) ,

where w′3 = w3dJ1←α. By construction, k /∈ I1,1 and k /∈ I2,1. Moreover, I1,1 ⊆ I1.
Lemma 8 yields that I1 is not dominated by k — a constradiction. ut

Thus, we can conclude that for each set I1 with n > |I1| ≥ 2 that is (k, c)-
dominated with k ∈ I1, there exists a function f2 : {0, 1}|I2| → {0, 1} with

f(x) = ((x[k] = c) ∧ f2(x[I2])) ∨ ((x[k] 6= c) ∧ f1(x[I1 \ {k}])) .

Summarising the previous three lemmas we get the following result.

Theorem 4 Assume that a set I1 with n > |I1| ≥ 2 is (k, c)-dominated with k ∈ I1

for some c ∈ {0, 1}. Let I2 = [n] \ I1. Then there are two functions f1 : {0, 1}|I1|−1 →
{0, 1} and f2 : {0, 1}|I2| → {0, 1} such that

f(x) = ((x[k] 6= c) ∧ f1(x[I1 \ {k}])) ∨ ((x[k] = c) ∧ f2(x[I2])) .

Note, that k, I1, and I2 are uniquely determined by f in the following sense.

Lemma 13 Let f be dominated function and let I1 with n > |I1| ≥ 2 be (k, c)-
dominated. Then ` = k and J1 = I1 holds for every set J1 with n > |J1| ≥ 2 that is
(`, c)-dominated.

Proof: By Theorem 4, f can be written as

f(x) = ((x[k] 6= c) ∧ f1(x[I1 \ {k}])) ∨ ((x[k] = c) ∧ f2(x[I2])) (8)
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and
f(x) = ((x[`] 6= c) ∧ f1(x[J1 \ {`}])) ∨ ((x[`] = c) ∧ f2(x[J2])) , (9)

where I2 = [n] \ I1 and J2 = [n] \ J1. Assume on the contrary that k 6= `. W.l.o.g.,
` ∈ I1 \{k}. Choose strings a ∈ {0, 1}|J1|−1 and b ∈ {0, 1}|J2| such that f1(a) 6= f2(b)
and such that the value c is assigned to x[k]. (If k ∈ J1 \ {`}, choose a such that x[k]
gets the value c. Then choose b such that f1(a) 6= f2(b). This is possible, since f is
non-degenerate. The case k ∈ J2 is treated in the same manner.) Now (8) says that the
restriction of fdJ1,J2←a,b is a constant function whereas (9) tells us that it is not — a
contradiction. Thus, ` = k.

It follows that also J1 = I1 must hold. If there is, say, an m ∈ I1 \ J1, then from
(8) it follows that fd{k}←c depends on x[m] whereas (9) yields that is does not — a
contradiction. ut

The only degree of freedom in Theorem 4 is to replace I1 by I1 \ {k} and I2 by
I2 ∪ {k} and flip the value c. That does not change the expression for f . Hence, every
dominated function can be described by an if-then-else construction, i.e. it is of
the form if x[k] = c then f1(x[I1 \ {k}]) else f2(x[I2]).

Theorem 4 immediately implies that dominated functions can be computed on net-
works that are not 2-connected.

Theorem 5 If f is `-dominated with n − 1 > ` > 2, then f can be computed by a
private protocol on a network that consists of two 2-connected components with one
node in common. One of the components has size ` and the other one size n − ` + 1.
If f is 2-dominated, then f cannot be computed by a private protocol.

Proof: The corresponding protocol works as the one presented in Section 1.2. Any
Boolean function can privately be evaluated, if at least three players are involved.

It remains to show that if f is 2-dominated, then f cannot be computed by a pri-
vate protocol. We show that if this would be the case, then two players can privately
compute x ∧ y. This is a contradiction.

Assume that f can be computed by a private protocol on a non-2-connected net-
work G. By Theorem 3 and Lemma 13, G can be decomposed into two networks G1

and G2 such that G1 and G2 have sizes 2 and n−1, respectively, and share exactly one
player. From the proof of Theorem 3, it also follows that f is dominated by the set of
indices corresponding to the two players in G1. Let {`, k} be the indices of these two
players and let Pk be the bridge node.

By Theorem 4, f is of the form (x ∧ y)∨ (x ∧ f2(z)). Here x is the input bit of Pk

or its negation, depending on the value of c in Theorem 4. Furthermore y is the input
of P` or its negation, depending on f1. (There are only two non-degenerate boolean
functions of one variable.) z is a vector of size n−2. From a private protocol for f , we
construct a private protocol for x ∧ y that can be executed by only two players. Player
Pk chooses a vector ζ such that f(ζ) = 0. Now P` and Pk simulate the protocol for
f . Pk simulates all other players in G2 presuming that their input is ζ . This protocol
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is still private, since P` can only communicate with Pk in G. This contradicts the fact
that there is no private protocol for x ∧ y. ut

Theorem 5 can be generalised to the case where we allow teams of players to work
together. Assume that all members of a team belong to the component that computes,
say, f1. Then f is t-private if f1 is t-private. If the members are distributed among both
components, then this virtually decreases the team sizes for both components. Thus, f
is t-private if both f1 and f2 are t-private.

6 Conclusions and Open Problems

We have investigated the relation between the connectivity of networks and the possi-
bility of computing functions by private protocols on these networks. Special emphasis
has been put on the amount of randomness needed.

We have presented a general simulation technique that allows us to transfer every
oblivious private protocol on an arbitrary network into an oblivious private protocol
on a given k-connected network of the same size, where k ≥ 2. The new protocol
needs (1− k

n−1
) ·min{L, k−2

k−1
· (n2 − n) + L

k−1
} additional random bits, where L is the

total number of bits sent in the original protocol. The obvious open question here is
either to further reduce the number of additional random bits or to prove general lower
bounds.

The parity function can be computed on a cycle using only one random bit and only
one message per link. (Strictly speaking, an additional message per link is necessary
to broadcast the result in the end. But we do not need to use any random bits to
encode this broadcast, hence we can assume that n bits are sent altogether.) Thus,
1 + n − kn

n−1
≤ n − k + 1 random bits are sufficient to compute the parity function

on an arbitrary k-connected graph by a private protocol using our simulation. We
have strengthened this bound by showing that on every k-connected graph, parity can
be computed by an oblivious private protocol using at most d n−2

k−1
e − 1 random bits.

Furthermore, there exist k-connected networks for which this bound is tight. The latter
bound even holds for non-oblivious protocols.

While every Boolean function can be computed on a 2-connected network by a
private protocol, this is no longer true for 1-connected networks. Starting from this
observation, we have completely characterised the functions that can be computed by
a private protocol on non-2-connected networks.

Our simulation results focus on the extra amount of randomness needed. It would
also be interesting to bound the number of rounds of the simulation in terms of the
number of rounds of the original protocol and, say, the diameter of the new network.
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