Electronic Colloquium on Computational Complexity, Report No. 10 (2003) b rar

Improving a probabilistic 3-SAT Algorithm by
Dynamic Search and Independent Clause Pairs

Sven Baumer* and Rainer Schuler

Abt. Theoretische Informatik, Universitit Ulm, D-89069 Ulm, Germany

Abstract The satisfiability problem of Boolean Formulae in 3-CNF (3-SAT) is
a well known NP-complete problem and the development of faster (moderately
exponential time) algorithms has received much interest in recent years. We
show that the 3-SAT problem can be solved by a probabilistic algorithm in
expected time O(1,3290™). Our approach is based on Schoning’s random walk
algorithm for £-SAT, modified in two ways.

Keywords Probabilistic algorithm, Satisfiability, 3-SAT, Complexity.

1 Introduction

The satisfiability problem of Boolean formulae is one of the best known NP-complete
problems. The problem remains NP-complete if the formulae are restricted to conjunctive
normal form, where each clause contains exactly 3 literals (3-CNF). That is, polynomial
time algorithms to test whether a formula in 3-CNF is satisfiable do not exists, unless
P=NP.

In recent years, many algorithms have been developed which improve upon the trivial
2™ time complexity, where n is the number of variables in the formula. Milestones in the
search for better SAT-algorithms are [MS85,PPZ97,Sch92,Kul99,PPSZ98], with respective
run-times of O(1,6181™),0(1,588™),0(1,579™),O(1,505™) and O(1,447"). [PPSZ98] also
announces an improvement to O(1,362"). [Rod96] claims a run-time of O(1,476™).

In [Sch99] Schoning proposed a probabilistic algorithm to solve the 3-SAT problem. He
showed that the success probability of the algorithm is (2)" - zﬁ for some polynomial p(n)
in the worst-case, and accordingly has an expected run-time of O(1,3334"). The algorithm
consists of two basic steps:

An initial assignment is chosen randomly, where each variable is set to 0 or 1
independently with probability %

In each of following 3n steps the truth assignment of one of the variables is flipped
(changed). The variable is chosen randomly with probability % from a clause which
is not satisfied by the current assignment.

The algorithm succeeds if all clauses are satisfied.

Consider a (satisfiable) formula F' and let a* denote a fixed satisfying assignment. In
the first step of the algorithm, an initial assignment a is chosen randomly. In each iteration
of the algorithm, the Hamming distance d(a, a*) between the current assignment a and a*
decreases by 1 with probability at least % and increases by 1 with probability at most %

* supported by DFG-project Scho 302/5-2

ISSN 1433-8092

A careful analysis [Sch99] using Markov chains shows that the probability to reach

a satisfying assignment from an initial assignment a is at least (%)d(“’“*) . zﬁ for some

polynomial p(n). Hence the success probability of the algorithm is bounded by E[(%)d(”’“*)-
Iﬁ] = E[(%)d(a’“*)] .]ﬁ , where E[Y] is the expected value of a random variable Y. In
the following p(n) will always denote the polynomial factor obtained as in [Sch99]. Further

analysis then shows the overall success probability to find a satisfying assignment if one

exists to be at least Pr[Success] > (3)" - zﬁ in the case of formulae in 3-CNF, and more
generally (2£=2)n. Iﬁ for k-CNF.

One way to improve this algorithm is to use a more sophisticated strategy for choosing
the initial assighment. For example, it might be a good strategy to increase the probability
of choosing initial assignments a with small d(a,a*), i.e. assignments already close to the
satisfying assignment a*. However, observe that the aim is not just to improve the average
Hamming distance E[d(a,a*)], but instead the weighted average E[(1)%%%")]. To find such
initial assignments, we exploit properties of the structure of the formula F, which is not
done in the original algorithm [Sch99].

The first such approach to improve the success probability of Schéning’s random walk
algorithm was [HSSWO02] by identifying ’independent clauses’ in F, i.e. clauses that are
variable disjoint. Hofmeister et al [HSSW02] show that the success probability of the al-
gorithm can be improved if the initial assignment is chosen from assignments that satisfy
the independent clauses. Note that the assignment of the variables can be chosen indepen-
dently for each independent clause. Depending on the number of such clauses, one of two
different algorithms is more likely to find a satisfying assignment: in the case of 'many’ in-
dependent clauses the random walk algorithm will find a satisfying assignment, whereas in
the case of 'few’ independent clauses, a naive, brute-force search algorithm, which considers
all assignments that satisfy the independent clauses, will succeed. Using this strategy, the
expected run-time of the random walk algorithm is improved to O(1, 3302") [HSSW02].

We improve on the success probability in two ways. The approach of Hofmeister et al
is extended in this paper by considering pairs of clauses which have (at least) one variable
in common. Every clause contains three literals, i.e. restricts the number of assignments
to the three variables that satisfy the clause to 7 (out of 8). If two clauses contain a
common variable, the fraction of possible assignments decreases further, e.g. only 24 out
of 32 assignments satisfy {z,y,z} and {—z,u,v}.

A further improvement can be achieved, if a different strategy is used to identify the set
of independent clause pairs. Instead of the greedy fashion of [HSSW02], we use a dynamic
approach: depending on a partial assignment to the clause pairs already selected, new
clause pairs are chosen. For example using this strategy only 6 (out of 8) assignments
have to be considered for each independent clause. Again we can use a trade off between
the success probability of the algorithm selecting the independent clause pairs (referred
to as BF in the following, which increases if only few clause pairs are detected) and
the success probability of the random walk algorithm (RW, which increases with the
number of independent clause pairs). Using the dynamic strategy, the expected run-time
to find a satisfying assignment is O(1,3300") if only independent clauses are considered
and improves to O(1,3293") if the approach is extended to independent clause pairs. We
also sketch a further improvement to O(1,3290™) by a more detailed case analysis.

2 An improvement of the brute force algorithm for independent clause
selection

In the following let F' denote a formula in 3-CNF, i.e. F is a conjunction of clauses where
every clause contains (at most) 3 literals. Two clauses are called independent if the variables
of the clauses are disjoint [ASTWO1]. A set of clauses is called independent if the clauses
are pairwise independent. A set of independent clauses is maximal, if every clause contains
at least one variable which also occurs in some independent clause.

As shown in [HSSW02] the success probability of the random walk algorithm is ()™ -
(%)"*3”‘ : ﬁ and increases with the number m of independent clauses if the initial assign-
ment is chosen randomly from assignments that satisfy the independent clauses. On the
other hand, a brute force algorithm can consider every possible assignment to the variables
of the independent clauses. If the set of independent clauses is maximal, the simplified for-
mula will be in 2-CNF and its satisfiability can be checked in polynomial time [APT79].
Hence using exhaustive search satisfiability can be checked in time 7. In the following, a
randomized variant of the exhaustive search algorithm is used: For each clause, one of the
7 possible assignments is chosen uniformly at random. This yields a success probability of
at least %m, and an expected run-time of E[7™].

That is, if the number of independent clauses is sufficiently small, the success proba-
bility of the brute force algorithm (we assume the assignments are chosen randomly) will
exceed the success probability of the random walk. The combined success probability will
be minimal if (1)™ = (2)™ . (3)n=3m. Iﬁ.

In this section we will show that the success probability can be improved further if the
independent clauses are selected more carefully. We show that it is sufficient to consider
only 6 assignments for each independent clause. This gives a success probability of a brute
force algorithm of (%)m, where m is the number of independent clauses identified on any
accepting path.

The algorithm is based on the following simple observation. Each variable x occurs
positive as well as negative (otherwise the truth assignment can be fixed to satisfy all
occurrences). Assume the truth value of z is chosen randomly. If we choose z = 0, only
3 assignments are possible to the remaining two literals of the clause where z occurs
positive (otherwise the clause would not be satisfied). Analogously, if we choose z = 1,
only 3 assignments are possible for the remaining two literals of the clause where z occurs
negative. The success probability (i.e. the probability that the correct assignment is chosen)
is % . % = % in both cases. Furthermore, in each case a clause can be selected as an
independent clause, since all occurrences of the three variables involved are eliminated by
fixing the truth values of the according literals.

While this observation is true if all clauses contain exactly three literals, we also need
to consider implications due to clauses in 2-CNF (referred to as chains in the following).
For example, the clauses {x,y, z},{—z,u}, {—u,v,w} are dependent on z in the same way
as {x,y, 2}, {-x,v,w} are. The procedure is shown in more detail in Figure 1.

Throughout, we assume that the truth values of literals in unit clauses (i.e. clauses
that only contain one literal) will be fixed accordingly. Furthermore, we assume that the
truth value of a variable = will be set to a € {0, 1}, if the partial assignment z = —a leads
to a contradiction (i.e. a clause will be empty /falsified).

Repeat
choose a variable z
find a clause C = {l1,19,13} such that (z = 0) implies (I; = 0), i.e.
Iy = z or there exist clauses D; = {d;,~d;j11}, 1 <i <k, and
d1 =z and l1 = dk+1
if C' does not exist deterministically set x = 0, otherwise:
find a clause C' = {I{,15,15} such that (z = 1) implies (/] = 0), i.e.
1 = —x or there exist clauses D; = {—d;,d; }, 1 <4 <k, and
d} = -~z and I} = ~dj 41
if C' does not exist deterministically set z = 1, otherwise:
randomly guess truth assignment z from {0, 1}
if x = 0 then
randomly guess truth assignment of lo,l3 from {01, 10,11}
select C' as independent clause
if z =1 then
randomly guess truth assignment of I/, 1§ from {01, 10,11}
select C’ as independent clause

Figure 1. Improved brute force algorithm (BF) for independent clause selection.

Claim 1. Assume that a formula F' is satisfiable. Then the algorithm BF will find a
satisfying assignment with positive probability.

Observe that the following is true if x is set to 0 deterministically: =z does not appear
in any clause containing 3 literals. Furthermore, all clauses with 2 literals containing z
can be satisfied by assigning 1 to the second literal. Moreover, the literals whose truth
assignments are forced by a chain of such 2 literal-clauses do also not appear negatively
in any clause with 3 literals. That is, all clauses containing z (positive or negative) or
a forced variable are true under this assignment; either because the forced literal occurs
positively, or the second literal is also forced to 1 (also note that if this process leads
to a contradiction then z is forced to 1 by the simplification step). In particular, if F' is
satisfiable, then the formula with z set to 0 is also satisfiable.

Claim 2. Assume that a formula F is satisfiable and let a* denote a satisfying assign-
ment found on some path of the algorithm BF. The probability that a satisfying assignment
is found is at least 67, where m is the number of independent clauses detected on a path
corresponding to the assignment a*. Furthermore, the probability that [< m independent
clauses are detected is at least 6.

The Claim follows from the observation that in each step of the procedure the truth
assignment of C or C’ will be chosen correctly (according to a satisfying assignment a*)
with probability § = 5 - 3.

The brute force algorithm will be combined with the random walk RW [HSSW02] in
an obvious way.

Repeat
let D=10
run BF and
let C denote the set of indep. clauses detected during the computation

IF |D|| < ||C|| then D =C
run RW using D as the set of independent clauses.

Theorem. The algorithm has expected running time of O(1, 3300").

The success probability of RW depends on the number of independent clauses on a
path to a satisfying assignment. Let ¢ denote some constant. We distinguish two cases.

1. The number of independent clauses on some path of the algorithm BF is less than ¢-n.
In this case the algorithm BF will find a satisfying assignment in expected time 6".
2. The number of independent clauses is larger than ¢ - n.
In this case the algorithm BF will find > ¢ independent clauses in expected time

6. Afterwards the RW algorithm will find a satisfying assignment in expected time

(T/3)° - (/3% 7.

Choose ¢ such that 6 = (7/3)<" . (4/3)"—3¢n . zﬁ’ ie.

. log(4/3)
~ log6 — log(7/3) + 3log(4/3)

~ 0.1591, and 6" = 1.3300"

A further improvement on the number of independent clauses might be possible. We
note however, that in this way the success probability of the random walk algorithm cannot
be improved beyond 0.7539" which corresponds to an expected run-time of (7/3)"/3 ~
1,3264™.

In the next section we show how the bound in the theorem above can be further
improved if the notion of independent clauses is extended to clause pairs.

3 Independent clause pairs

We will show that it is possible to choose the initial assignment for the RW algorithm
from assignments that satisfy pairs of clauses which overlap with one or more variables.
We show that the success probability of the random walk algorithm improves further with
the number of such clause pairs detected.

Recall two clauses are independent if the variables of the clauses are disjoint [ASTWO1].
The notion of independent clauses can be extended to clause pairs, or in general to clause
tuples. Two clauses that share at least one variable are said to overlap. In the following
we use clause pair to refer to a pair of clauses that overlap. Two clause pairs are called
independent, if the sets of variables of the two clause pairs are disjoint. A set of clause
pairs is called independent if the clause pairs are mutually independent.

A clause pair can overlap with 1, 2 or 3 literals, where some of the literals may be
negated in one clause. Possible overlaps with a clause {z,y, z} are shown in the following
table, where u, v, w denote variables different from z,y, z. We use the following notation
to describe the type of overlap: — indicates a variable with negative overlap, + indicates a
positive overlap, and * indicates a new variable not contained in the first clause. Observe
that (* % *) corresponds to two independent clauses. Also note that the case (+ + +) is
not possible since two clauses that agree on all three literals would be identical.

(] E] (o) [E=N] o) (G| o)
{U:an}H{x:uyU}|{_'$auav}|{xay7v}|{ﬁx’ﬁyaU}Hx:_'y’U}H_'waﬁyaﬁz}|{$:y:_‘z}|{$aﬁyaﬁz}

Let r; denote the number of clauses and clause pairs of type i detected (e.g. by some
greedy method). In particular we assume that the set of independent clauses and clause
pairs is maximal, i.e. all other clauses share at least one variable with a selected clause or
clause pair. Let 72 :=n —), 7; denote the number of the remaining variables.

Now we consider the random walk algorithm, where the initial assignment is chosen
randomly as follows. For each clause pair and each independent clause the truth assignment
to the variables is chosen independently from the set of assignments that satisfy the clause
pair and clause, respectively; the exact probabilities are given below. The truth values of
the remaining 7 variables are chosen independently from {0,1} with probability 1/2.

Let a* denote a fixed satisfying assignment of F' and a denote the randomly chosen
initial assignment. Define VVZ-(]) to be the random variable which is the Hamming distance
between a* and a on the variables of the j-th independent clause or clause pair of type
i. Similar, define V to be the random variable which is the Hamming distance of the
assignments a and a* on the variables which are not contained in an independent clause or
independent clause pair. The success probability of the algorithm can be calculated using
the inequality [Sch99,HSSW02]

P[success] > E[(%)d(a’a*)] “p(n)

The Hamming distance can be rewritten as: d(a,a*) =V +), Z;’Zl Wz-(j), where 7 ranges
over all types of overlaps (see table above). The random variables Wz-(j) are independent and

equally distributed for each 4. Since, as shown in section 3.3, E [(%)Wi(j)] does not depend on
a*, it follows that E’[(%)Wiw] =: E[(3)"4] is independent of j. Using E[(3)"] = (3)"- ﬁ
[Sch99], we get
1 . 1. 1 3.5 1 1
P > E[(3)"]- IO B[V —— =)" LB — (1
[success] > E[(5)"] - ILIT;L, E[(5)™] o) (7)" - IL(EL(5)™]) pr (1)

We note that for every partial truth assignment to the variables of the independent
clause pairs and independent clauses, the remaining formula will be in 2-CNF. The running
time (or success probability) of a brute force algorithm will depend on the number of
independent clauses and the number and type of the independent clause pairs. We consider
a generalization (see Figure 2) of the brute force algorithm which selects a maximal set of
independent clauses and clause pairs.

3.1 Clause pair selection

The idea is to extend the independent clause selection method (Figure 1) one step further.
Let F' be a satisfiable formula in 3-CNF. Each variable z occurs both positively and
negatively in some clauses (containing 3 literals). Let a* denote a satisfying assignment.
The truth assignment of z is either 0 and 1. In both cases the truth assignment of the
remaining two literals of one of the clauses is 01, 10, or 11. That is, at least one of the two
literals will be set to 1. Since this literal also occurs positively and negatively, we will find
some additional clause (containing 3 literals), where this literal occurs negatively. In this
clause, the negated literal is set to 0, and the truth assignment of the remaining literals
can be chosen randomly from assignments that satisfy the clause. In this way, the truth
assignment of independent clause pairs can be guessed correctly with high probability.

For example, if {z,u,v} and {-u, w,r} are the second and third clause, the assignment
to three variables x, u, v is correct with probability %% and the assignment to the remaining
two variables w,r is correct with probability % In this case a correct assignment to five
variables is chosen with probability % : % . % = %, while a pair of overlapping clauses is
selected.

On the other hand, we will show that choosing an initial assignment that satisfies
clause pairs will guarantee an improved success probability of the random walk algorithm.
The exact probabilities for the assignments are calculated in Section 3.3 We will need to
distinguish the different types of overlap, depending on the number of common variables,
and depending on their sign (which is called positive if the variable or the negated variable
occurs in both clauses, and called negative if the variable occurs in one clause and the
negated variable occurs in the other clause).

The careful reader will notice that the idea could be further extended to clause triplets
or clause n-tuples in general, but the calculations involved get rather complex while the

benefit seems only minimal.

Repeat
choose a variable x
find clauses C' = {ly,12,13} and C' = {l},1},1%} such that
(zx =0) implies (Il =0) and (z = 1) implies ({1 =0)
if C [respectively C'] does not exist set z = 0 [resp. z = 1], otherwise
find E = {ls,15,l}, F = {l7,1s,lo}, E' = {l}, 15,1}, F' = {l,1§,14} such that
(I =1) implies (I4 =0), and (I3 =1) implies (I =0), and
(I5 =1) implies (I =0), and (I5 = 1) implies (% = 0)
if E [F, E' or F'] does not exist set lo =1 [l3 =1, I, =1, or l§ = 1], otherwise
randomly guess truth assignment of = from {0,1}
if z = 0 then
randomly guess truth assignment of Iy, 3 from {01, 10,11}
if I = 1 then
randomly guess truth assignment of the remaining literals of £
select (C, E) as independent clause pair or independent clauses, resp.
else if [3 = 1 then
randomly guess truth assignment of the remaining literals of ¥
select (C, F) as independent clause pair or independent clauses, resp.
if z = 1 then ... (analogously) ...

Figure 2. Brute force algorithm (BF) for independent clause pair selection.

The success probability of the brute force algorithm (Figure 2) depends on the number
and type of the independent clauses and independent clause pairs detected. We have to
distinguish between the cases that the clause pair (C, E) is selected via a direct overlap
(i.e. mlp € E) and via a chain of 2-CNF clauses. Observe that all types of direct overlap
require at least one negatively shared variable (denoted —). Also observe that all chain
cases contain at least one *, which denotes the literal which is forced to be 0 by the 2-CNF
chain. All other literals denoted by a * are free and can be set to either 0 or 1.

The different types detected are given in the table below. In the second row we give
the probability that the correct assignment is chosen by the BF algorithm, both for the
direct and chain case. In the third row we give the success probability of the random walk
algorithm RW, where the initial assignments are chosen optimally for each type of clause
pairs (exact probabilities are given in Section 3.3 below).

In the last row the expected running time of the combined methods is given, if all
variables are of the respective type. These running times are obtained by setting the
success probabilities of BF and RW to be equal and using E[time] = 1/Pr[success]:

Pr[BF success]™ = Pr[RW success|™ - (§)”_m'(# variables) 1 _
4 p(n)
where m is the total number of clause pairs of the respective type.

type F*H JEHEFHDNFEEHE-H | E-HDE-) |(F)| ()
variables 343 5 5 4 4 4 3 3 3
BF direct — — | 1/18 | — | 112 | 1/12 | 1/6 | 1/6 | 1/6
BF chain 1/18 112 | 1/12 | 1/6 | 1/6 | 1/6 — — —
RW (3/7) - (3/7)| 81/331 | 27/110 | 27/83 | 15/46 | 15/46 | 7/16 | 9/20 |45/104
time direct — — [1,8290"| — |1,3288"|1,3288" 1, 3258" |1, 3201"[1, 2941™
time chain | 1,3293" |1,3287"|1,3283" |1,3276"™|1,3271"|1,3271"| — — —

The run-time of our algorithm is bounded by the maximum of these run-times, 1, 3293".
The worst case is when all clause pairs identified by the BF algorithm are of the type chain
(% * %), i.e. the two selected clauses are two independent clauses for the RW algorithm.

Of course, in practice the BF algorithm will not only identify clause pairs of one single
type but a combination of different types. However, such 'mixed’ cases have higher success
probability and yield a better run-time than the worst case, where all clause pairs are of
the same type (also see equation 1).

3.2 Sketch of a further improvement

Furthermore, we will show that the algorithm BF can be modified to improve in the worst
case (* x*) by repeating the previous step once more; this way instead of two independent
clauses, either an independent clause and a pair or three independent clauses are selected.
This way, we obtain a slightly better run-time of 1,3290" (also highlighted in the above
table).

Assume that clauses C,E,F and C',E',F' are detected by the algorithm and that
C ={l,la,l3} and E = {l4,l5,ls} are independent, i.e. do not share a variable. W.l.o.g.
we assume that z = 0 and that [yl € {10,11} and hence (C, E) will be chosen as inde-
pendent clauses. Before choosing the assignment of I5, ls we test each of the three possible
assignments [5lg € {01,10,11}. If the assignment leads to a contradiction it is not con-
sidered any more. Otherwise we test whether the assignment is in fact admissible, that is
we test whether it does not change the satisfiability of F. We look for a clause G with 3
literals such that a implies that one of the literals of G is set to 0. If G does not exist,
then l4l5 is set to a.

We modify the algorithm to distinguish the three cases. (i) If all assignments lead to a
contradiction then the algorithm fails. (ii) If one of the assignments is admissible, we choose
C and E as independent clauses. The probability that the correct assignment is chosen

for the literals of C and F is ¢. (iii) Otherwise we extend the algorithm. The assignment
of I5lg is chosen randomly (from the assignments that do not lead to a contradiction).
The remaining literals of the resp. clause G are chosen randomly from assignments that
satisfy G. The clauses C, E and G are selected. C will be an independent clause, £ and
G will be an independent clause pair if £ and G overlap, otherwise £ and G will also be
independent clauses.

In the case of three independent clause pairs the probability to choose the correct
assignment to the 9 variables will be % . % . % = 5%1. Otherwise the probability for the
correct assignment will be % - p, where p denotes the probability that an independent
clause pair of the same type is chosen by the (original) algorithm directly.

The success probability is minimal if 3 independent clauses are detected. Using (1/54)™ =
(3/7)3™ . (3/4)"%™ we obtain a run-time of 1,3289" for this case. Hence the case (- * *)
is now the worst case, with a corresponding run-time of O(1,3290™).

3.3 Calculation of RW success probabilities

First we consider the case that the two clauses (C, E) share exactly one variable.

1. Case (4 * *), i.e. the two clauses are of type {z,y, 2}, {z, u,v}.
The probability for the initial assignment should maximize the expected value E[(1/2)X]
where X is the Hamming distance between the initial assignment a and a satisfying as-
signment a*. Since the satisfying assignment a* is unknown, we choose the probabilities
that the expected value E[(1/2)%] is identical for all possible cases of a*.
To simplify the corresponding equation system, the 32 possible assignments to the
literals z,y, z,u,v can be grouped into 12 equivalence classes. All assignments of a
class have the same Hamming distances to assignments of the same and any other
class. !
In the following we will denote assignments to these five variables in the format yzzuv,
i.e. the middle bit represents the truth value of the common variable. E.g. 00100
represents the truth assignment that sets = to 1, and the other variables to 0.
Intuitively, all “mirror images” of an assignment are in the same class, e.g. assignments
00001, 00010, 01000 and 1000 all belong to the same class Ki1. Note that literal z has
a different status, therefore the assignment 00100 belongs to a different group (K7).
The 12 groups are as follows:

Ki Ky K3 Ky Ks K¢ K; Ks Ky |Kwo Ku K
00100 00101 00111 01001 01011 01101 01111 11011 1111100000 00001 00011

00110 11100 01010 10011 01110 10111 00010 11000
01100 10001 11001 10101 11101 01000
10100 10010 11010 10110 11110 10000

Observe that K; to Ky consist of assignments that satisfy both clauses, whereas as-
signments from Kig to Ko don’t.
The (fixed) satisfying assignment a* is from K; to Ky. Analyzing each case in the
same fashion as [HSSW02] yields one equation for every choice of a*. The fact that the
probabilities add up to one yields the 10th equation.

1 Observe that this classification is not a necessary step. We only choose to do so in order to simplify the

equation system for presentation. Instead a system with 32 equations could be solved, yielding the same
result.

Let p; denote the probabilities that the 5 literals are set according to group K;. For
every choice of a* the coefficients «; of p;, 1 < ¢ < 9 are given in the table below.
Assume a* is fixed. The coefficients are calculated as follows:

5 9
1 1
W, _ k . . *\ __
E[(3)] = (3)) “pi-|{a € K; | d(a,a*) = k}||
k=0 i=1
9 51 9
_ . k . *) — s
=Y pi-y (3) I{a € Ki | d(a,a®) =k} =) ai-pi
i=1 k=0 i=1
a” |p1 P2 P3 P4 P5 P6 P7 P8 P9 P1o P11 P12 =
32 64 16 16 8 32 16 1 2 16 32 8 LYW
Kl nsneeenis e » w3 Ll) &)
16 56 20 20 13 40 26 2 4 8 28 10 L\W4
Koo ereenn » 2 nLl3)7 ¢
8 40 34 16 20 32 40 4 8 4 20 17 LYWy
K335 32 52 32 32 32 32 32 32 33 32 a2 [BL(5))]
4 20 8 50 40 25 20 8 4 8 40 16 LYWy
Kim oo 2 e 2 ebla) &)
2 13 10 40 56 20 28 16 8 4 26 20 L\W4
Kslsmmennnne » n xBlz) ¢
8 40 16 25 20 50 40 4 8 4 20 8 L\W(
Kelsmme e ns 2 s bl3) ¢
4 26 20 20 28 40 56 8 16 2 13 10 LYW gux
Krlss 222222 3 2 5 Ll3) ¢
1l 8 8 32 64 16 32 32 16 2 16 16 LYW gu
Kems s 3230 0 30 32 32 32 |Blz))]
2 16 16 16 32 32 64 16 32 1 8 8 LYWy
Kisnonoeenn » p o BlE)7 ¢
11424444111 4 2 1

Note that this is an under-determined equation system, with 10 equations (K; to Ky
and }") and 13 variables (p; to p12 and E[(3)"V]).

Setting p19p = p11 = p12 = 0 and solving the corresponding determined system using a
computer algebra program (e.g. Maple 7) yields

1
E[(5)"] = 81/331,
where the probabilities are given by

y4! D2 p3 D4 Ds De br Ds D9
16/331 16/331 16/331 24/331 12/331 4/331 10/331 6/331 13/331

Solving the full, under-determined system proves the optimal value for p1g, p11,p12 to
be all 0, since positive values for these have a negative contribution to E[(3)"+=].

. Case (— * *), i.e. the two clauses are of type {z,y, z}, {—z,u,v}.
Observe that “mirror images” are also obtained by swapping the two left and right
bits (y,z with u,v) and inverting z. Groups are as follows:
K Ky K3 K4 Ks Ko | Ki Kg Ko
01000 01001 01011 00111 11001 11011{00000 00001 00011
10000 01010 10011 11000 11010 11111{00100 00010 11100

00101 10001 11101 01111 01100
00110 10010 11110 10111 10100
01101
01110
10101

10110

Solving the equation system

yields

*

Q" |p1 P2 P3 P4 P5 P6 P7 P8 P9 =

K, 48 60 18 18 21 6 24 36 12 12[

Ko 30 75 30 12 30 12 12 30 12 l;[

K4E§%§%QQEEE[
K52®E§4_8%£§2E[

3

*
*
~

/—\S
*
*

~

(
(
R|18 60 48 12 36 24 6 21 18\ pr(
(
(
(

NI N[N[N[N[N[

3
|

*

*

<

Ko|12 48 48 12 48 48 3 13 12| py

S48 4242242

—_

1
B|(5)"=9] = 27/110 > 81/331,

where the probabilities are given by

3. Case (+ + *)

PL_ P2 p3 Pi D5 P PrPsPy
4/552/55 3/55 2/55 1/553/110 0 0 0

K, K K3 Ky Ks K¢ Kr| Kz Ko
0100 1001 0011 0110 1110 1101 1111|0000 0001
0010 0101 0111 1011 1000
1100
1010

Q" |P1 P2 P3 P4 P5 P6 P7 P8 P9 =

1214122122 1
1 W,
E[(E) (++9] = 27/83

b1 D2 P3 Pa Ps DPe Pr P8 P9

8/83 12/83 8/83 4/83 4/832/837/83 0 0

4. Case (+ — *)
Observe that there is no grouping possible. The sixteen possible assignments fall into
16 groups. For simplicity, Ky = 0000, K; = 0001, K, = 0010, ... , K35 = 1111. Also
note that Ky, K1, Ko and Kjy correspond to the non-satisfying assignments (0000,
0001, 0010, 1010).

a* |po p1 P2 P3 P4 P5 P6 PT P8 P9 P10 P11 P12 P13 P14 P15 =

K3 |5 16 15 18 16 16 16 16 16 16 16 15 16 16 5 16 [El(3)")
Ki|fs 616 5196616761 15 16 16 16 16 15 [EI(3)")
Ks |15 16 15 16 16 16 16 16 16 16 16 16 16 15 16 16 |EUZ)")]
Kolk fh gk b Y Kady
KA ARG BB g b bk & B
Ks |15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 |EL)")]
Ko |15 16 15 16 15 16 16 16 16 16 16 15 16 15 15 16 |EL)")]
Kol 6156 5161616616 18 6 16 1 15 16|E1(3)"+)]
K11\75 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 |ELZ)")
Ku3|% 16 16 16 16 16 15 16 16 16 16 16 15 16 16 16 [Bl(5)")
K% 15 16 15 16 16 16 16 16 16 16 16 15 16 16 16 [El(5)")
Ki5\36 76 7 16 5 16 16 16 16 16 16 6 16 16 15 18 |B1(3)" +)]
21111111111111111 1

B[(5)"-] = 15/46

bopP1pP2 D3 bs ps pPe Pr P8 P9 Pio P11 P12 P13 P14 Pis
00O 10/69 8/69 2/23 2/23 2/69 8/69 2/23 2/23 2/69 0 5/69 5/69 5/69

5. Case (— — *)
Grouping is possible, similar to the (+ + *) case:

Ki Ky K3 Ky Ks Kg K7|K8 Ky Kio Kin
0100 1000 0011 1001 0111 1101 1111({0000 0001 0110 1110

0010 0101 1011
1100
1010
a® |p1 P2 P3 P4 P5 Pe P7 P8 P9 P10 P11 =
20 4 20 2 4 5 2 8 4 8 4 IN\W__,
K1|15 76 16 76 16 16 16 16 16 16 16 [Zlz)]
8 16 20 8 1 8 2 8 4 2 4 I\Wi__,
Ko|16 76 16 16 16 16 16 16 16 16 16 [Zlz)]
10 2 25 4 8 10 4 4 8 4 2 I\Wi__.
K3|15 16 16 16 16 16 16 16 16 16 16 [Zl(z)]
4 8 16 16 2 16 4 4 8 1 2 I\W__,
K4|16 16 76 16 16 76 16 16 16 16 16 [LU3) 7]
8 1 20 2 16 8 8 2 4 8 4 IN\W__,
Ks|16 16 16 16 16 16 16 16 16 16 16 [Zlz)]
5 4 20 8 4 20 8 2 4 2 4 IN\W__.
Ko|15 76 16 16 16 16 16 16 16 16 16 [Zlz)]
4 2 16 4 8 16 16 1 2 4 8 I\W__,
K7|15 76 16 16 16 16 16 16 16 16 16 [Zl(z)]
2141121111 1 1

Bl(3)V--"] = 15/46

bt P2 PpP3 P4 P5 Pe Pt P8 P9 Pilo P11
8/695/692/235/465/692/695/46 000 O

Note that this the only case where assigning a positive probability to a non-satisfying
assignment (Ko = 0001) would further improve the expectancy E[(2)"(--"] = 15/46+

3
368~ P9-

. Cases (——), (+ —-), (+ + —) and (x %)

For the sake of brevity, these cases are solved simultaneously. Observe that (* * %)
corresponds to independent clauses, while the other cases correspond to clause pairs.
The eight possible assignments fall into 8 groups. For simplicity, Ko = 000, K; = 001,
..., K7 =111. Also observe that Ky always corresponds to a non-satisfying assignment,
and depending on the sub-case, so does some other group.

a® |po p1 p2 P3 P4 P5 P6 P1 =

K3t 4212 HEd™]
Kb 34 gL Ed e
Kolk 384344 3B e
Kold 43422 dBd)"on)
Kif$ 3254 E 3B
Kold 443418 dEd" e
Kold 4434218 4Ed" e
Kik 22424 ¢ 3B
11111111 1

— Case (——-)
Solving the above equation system without equations Ky and K7 (000, 111) yields

Bl(5)V—] = 7/16

— Case (+ —-)
Solving without equations K and Kg (000,110) yields

E[(%)WH——)] = 45/104

— Case (++)
Solving without equations Ky and K, (000,100) yields

B[(5)Vi++] = 9/20

— Case (% *), i.e. an independent clause
Solving the above system without Ky yields

Bl(5)"e] =377

This corresponds to the strategy used in [HSSW02], which is improved upon in this
paper.

Probabilities for the four cases are given below.

Case po p1 p2 P3s P+ D5 Ps D1
(-—-) 0 1/6 1/6 1/6 1/6 1/6 1/6 0
(+—-) 05/263/135/263/131/13 0 5/26
(++-) 0 1/5 1/51/10 0 1/5 1/5 1/10
(+x%) 0 4/214/212/214/212/212/21 1/7

References

[APTT79] B. Aspvall, M.F. Plass, and R.E. Tarjan. A linear-time algorithm for testing the truth of certain
quantified boolean formulas. IPL, 8(3):121-123, 1979.

[ASTWO1] S. Aida, R. Schuler, Tatsukiji, and O. Watanabe. On the difference between polynomial-time
many-one and truth-table reducibilities on distributional problems. In Proceedings of the 18th
Annual Symposium on Theoretical Aspects of Computer Science, 2001.

[HSSWO02] T. Hofmeister, U. Schoning, R. Schuler, and O. Watanabe. A probabilistic 3-SAT algorithm
further improved. In Proceedings 19th Symposium on Theoretical Aspects of Computer Science,
volume 2285 of LNCS, pages 192-203. Springer-Verlag, 2002.

[Kul99] O. Kullmann. New methods for 3-sat decision and worst-case analysis. Theoretical Computer
Science, 223:1-72, 1999.

[MS85] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2" steps. Discrete Applied
Mathematics, 10:287-295, 1985.

[PPZ97] R. Paturi, P. Pudldk and F. Zane. Satisfiability coding lemma. In 38th Ann. IEEE Sympos. on
Foundations of Comp. Sci. (FOCS’97), pages 566-574, 1997.

[PPSZ98] R. Paturi, P. Pudldk, M.E. Saks, and F. Zane. An improved exponential-time algorithm for
k-sat. In 39th Ann. IEEE Sympos. on Foundations of Comp. Sci. (FOCS’98), pages 410-414,
1998.

[Rod96] R. Rodosek. A new approach on solving 3-satisfiability. In Proceedings 3rd Intern. Conf. on AI
and Symbolic Math. Computation, volume 1138 of LNCS, pages 197-212. Springer, 1996.

[Sch92] I. Schiermeyer. Solving 3-satisfiability in less than o(1,579") steps. In Computer Science Logic
(CSL), volume 702 of LNCS, pages 379-394. Springer, 1992.

[Sch99] Uwe Schoning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In
Proc. 40th FOCS, pages 410-414. ACM, 1999.

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

