Disjoint NP-Pairs

Christian GlaBer ! Alan L. Selman Samik Sengupta
Liyu Zhang

Department of Computer Science and Engineering,
University at Buffalo, Buffalo, NY 14260

Email: {cglasser,selman,samik,lzhang7}@cse.buffalo.edu

February 17, 2003

'Supported by a postdoctoral grant from the German Academic Exchange Service (Deutscher Akademis-
cher Austauschdienst — DAAD).

Abstract

We study the question of whether the class DisNP of disjoint pairs (A, B) of NP-sets contains a
complete pair. The question relates to the question of whether optimal proof systems exist, and we
relate it to the previously studied question of whether there exists a disjoint pair of NP-sets that is
NP-hard. We show under reasonable hypotheses that nonsymmetric disjoint NP-pairs exist, which
provides additional evidence for the existence of P-inseparable disjoint NP-pairs.

We construct an oracle relative to which the class of disjoint NP-pairs does not have a complete
pair, an oracle relative to which optimal proof systems exist, hence complete pairs exist, but no pair
is NP-hard, and an oracle relative to which complete pairs exist, but optimal proof systems do not
exist.

1 Introduction

We study the class DisNP of disjoint pairs (A, B), where A and B are nonempty, disjoint sets
belonging to NP. Such disjoint NP-pairs are interesting for at least two reasons. First, Grollmann
and Selman [GS88] showed that the question of whether DisNP contains P-inseparable disjoint
NP-pairs is related to the existence of public-key cryptosystems. Second, Razborov [Raz94] and
Pudlék [PudO1] demonstrated that these pairs are closely related to the theory of proof systems for
propositional calculus. Specifically, Razborov showed that existence of an optimal propositional
proof system implies existence of a complete pair for DisNP. Primarily in this paper we are
interested in the question raised by Razborov [Raz94] of whether DisNP contains a complete pair.
We show connections between this question and earlier work on disjoint NP-pairs, and we exhibit
an oracle relative to which DisNP does not contain any complete pair.

From a technical point of view, disjoint pairs are simply an equivalent formulation of promise
problems. There are natural notions of reducibilities between promise problems [ESY84, Sel88]
that disjoint pairs inherit easily [GS88]. Hence, completeness and hardness notions follow natu-
rally. We begin in the next section with these definitions, some easy observations, and a review of
the known results.

In Section 3 we observe that if DisNP does not contain a Turing-complete disjoint NP-pair,
then DisNP does not contain a disjoint NP-pair all of whose separators are Turing-hard for NP.
The latter is a conjecture formulated by Even, Selman, and Yacobi [ESY84] and it has several
known consequences: Public-key cryptosystems that are NP-hard to crack do not exist; NP # UP,
NP # coNP, and NPMV . NPSV. Our main result in this section is an oracle X relative to
which DisNP does not contain a Turing-complete disjoint NP-pair and relative to which P # UP.
Relative to X, by Razborov’s result [Raz94], optimal propositional proof systems do not exist.
P-inseparable disjoint NP-pairs exist relative to X, because P # UP [GS88]. Most researchers
believe that P-inseparable disjoint NP-pairs exist and we believe that no disjoint NP-pair has only
NP-hard separators. Both of these properties hold relative to X. This is the first oracle relative
to which both of these conditions hold simultaneously. Homer and Selman [HS92] obtained an
oracle relative to which all disjoint NP-pairs are P-separable, so the conjecture of Even, Sel-
man, and Yacobi holds relative to their oracle only for this trivial reason. Now let us say a few
things about the construction of oracle X. Previous researchers have obtained oracles relative to
which certain (promise) complexity classes do not have complete sets. However, the technique
of Gurevich [Gur83], who proved that NP N coNP has Turing-complete sets if and only if it has
many-one-complete sets, does not apply. Neither does the technique of Hemaspaandra, Jain, and
Vereshchagin [HJV93], who demonstrated, among other results, an oracle relative to which FewP
does not have a Turing-complete set.

In Section 4 we show that the question of whether DisNP contains a Turing-complete disjoint
NP-pair has an equivalent natural formulation as an hypothesis about classes of single-valued par-
tial functions. Section 5 studies symmetric disjoint NP-pairs. Pudlak [Pud01] defined a disjoint pair
(A, B) to be symmetric if (A, B) is many-one reducible to (B, A). P-separable easily implies sym-
metric. We give complexity-theoretic evidence of the existence of nonsymmetric disjoint NP-pairs.
As a consequence, we obtain new ways to demonstrate existence of P-inseparable sets. Also, we
use symmetry to show under reasonable hypotheses that many-one and Turing reducibilities dif-
fer for disjoint NP-pairs. (All reductions in this paper are polynomial-time-bounded.) Concrete

candidates for P-inseparable disjoint NP-pairs come from problems in UP or in NPNcoNP. Never-
theless, Grollmann and Selman [GS88] proved that the existence of P-inseparable disjoint NP-pairs
implies the existence of P-inseparable disjoint NP-pairs, where both sets are NP-complete. Here
we prove two analogous results. Existence of nonsymmetric disjoint NP-pairs implies existence
of nonsymmetric disjoint NP-pairs, where both sets are NP-complete. If there exists a many-one-
complete disjoint NP-pair, then there exist such a pair, where both sets are NP-complete. Natural
candidates for nonsymmetric or <PP-complete disjoint NP-pairs arise either from cryptography
or from proof systems [PudO1]. Our theorems show that the existence of such pairs will imply
that nonsymmetric (or <PP-complete) disjoint NP-pairs exist where both sets of the pair are <P -
complete for NP.

Section 6 constructs two oracles O; and O, that possess several interesting properties. First,
let us mention some properties that hold relative to both of these oracles. Relative to both oracles,
many-one-complete disjoint NP-pairs exist. Therefore, while we expect that complete disjoint NP-
pairs do not exist, this is not provable by relativizable techniques. P-inseparable disjoint NP-pairs
exist relative to these oracles, which we obtain by proving that nonsymmetric disjoint NP-pairs
exist. The conjecture of Even, Selman and Yacobi holds. Therefore, while nonexistence of Turing-
complete disjoint NP-pairs is a sufficient condition for this conjecture, the converse does not hold,
even in worlds in which P-inseparable pairs exist. Also, relative to these oracles, there exist P-
inseparable pairs that are symmetric. Whereas nonsymmetric implies P-inseparable, again, we see
that the converse does not hold.

In Section 6 we discuss the properties of these oracles in detail. Relative to Oy, optimal proof
systems exist, while relative to Oy, optimal proof systems do not exist. In particular, relative to Os,
the converse of Razborov’s result does not hold. (That is, relative to Oy, many-one complete pairs
exist.)

The construction of Oy involves some aspects that are unusual in complexity theory. We intro-
duce undecidable requirements, and as a consequence, the oracle is undecidable. In particular, we
need to define sets A and B, such that relative to Oy, the pair (A, B) is many-one complete. There-
fore, we need to show that for every two nondeterministic, polynomial-time-bounded oracle Turing
machines NM; and NM;, either L(NM??) and L(NM. jO ?) are not disjoint or there is a reduction
from the disjoint pair (L(NM?), L(NMJ-O ?)) to (A, B). We accomplish this as follows: Given
NM;, NM;, and a finite initial segment X of O, we prove that either there is a finite extension ¥’
of X such that for all oracles Z that extend Y,

L(NM7) N L(NM?) # 0
or there is a finite extension Y of X such that for all oracles Z that extend Y,
L(NM7?) N L(NM?) = 0.

Then, we select the extension Y that exists. In this manner we force one of these two conditions to
hold.

In the latter case, to obtain a reduction from the pair (L(NM??), L(NM jO %)) to (A, B) requires
encoding information into the oracle Os. The other conditions that we want O to satisfy require
diagonalizations. In order to prove that there is room to diagonalize, we need to carefully control

the number of words that must be reserved for encoding. This is a typical concern in oracle

2

constructions, but even more so here. We manage this part of the construction by inventing a
unique data structure that stores words reserved for the encoding, and then prove that we do not
store too many such words.

2 Preliminaries

We fix the alphabet ¥ = {0, 1} and we denote the length of a word w by |w|. The set of all (resp.,
nonempty) words is denoted by ¥* (resp., ©1). Let <" £{w € ¥*| |w| < n}, and define ¥=",
»2", and ¥.>" analogously. For a set of words X let X <" £ X N ¥ <", and define X=", X=", X",
and X" analogously. For sets of words we take the complement with respect to >*.

The set of (nonzero) natural numbers is denoted by N (by N*, respectively). We use polynomial-
time computable and polynomial-time invertible pairing functions (-,-) : N* x N* — N* and
(,+,-) : N x N* x N* — N*. For a function f, dom(f) denotes the domain of f.

Cook and Reckhow [CR79] defined a propositional proof system (proof system for short) to be
a function f : ¥* — TAUT such that f is onto and f € PF. (TAUT denotes the set of tautologies.)
Note that f is not necessarily honest; it is possible that a formula ¢ € TAUT has only exponentially
long proofs w, i.e., f(w) = ¢ and |w| = 200D,

Let f and f’ be two proof systems. We say that f simulates f' if there is a polynomial p and
a function h : ¥* — X* such that for every w € ¥*, f(h(w)) = f'(w) and |h(w)| < p(Jw]). If
additionally i € PF, then we say that f p-simulates f’.

A proof system is optimal (resp., p-optimal) if it simulates (resp., p-simulates) every other proof
system. The notion of simulation between proof systems is analogous to the notion of reducibility
between problems. Using that analogy, optimal proof systems correspond to complete problems.

2.1 Disjoint Pairs, Separators, and a Conjecture

Definition 2.1 A disjoint NP-pair (NP-pair for short) is a pair of nonempty sets A and B such
that A, B € NP and AN B = (). Let DisNP denote the class of all disjoint NP-pairs.

Given a disjoint NP-pair (A, B), a separator is a set S such that A C S and B C S; we say
that S separates (A, B). Let Sep(A, B) denote the class of all separators of (A, B). For disjoint
NP-pairs (A, B), the fundamental question is whether Sep(A, B) contains a set belonging to P. In
that case the pair is P-separable; otherwise, the pair is P-inseparable. The following proposition
summarizes the known results about P-separability.

Proposition 2.2 /. P # NP N co-NP implies NP contains P-inseparable sets.
2. P £ UP implies NP contains P-inseparable sets [GS8S].

3. If NP contains P-inseparable sets, then NP contains NP-complete P-inseparable sets
[GS88].

While it is probably the case that NP contains P-inseparable sets, there is an oracle relative to
which P # NP and P-inseparable sets in NP do not exist [HS92]. So P # NP probably is not a
sufficiently strong hypothesis to show existence of P-inseparable sets in NP.

3

Definition 2.3 Let (A, B) be a disjoint NP-pair.
1. X<PP(A, B) if, for every separator S of (A, B), X<P S.
2. X<!P(A, B) if, for every separator S of (A, B), X<1.S.
3. (A, B)

4. (A, B) is uniformly NP-hard if there is a deterministic polynomial-time oracle Turing ma-
chine M such that for every S € Sep(A, B), SAT<%.S via M.

is NP-hard if SAT<!?(A, B).

Grollmann and Selman [GS88] showed that NP-hard implies uniformly NP-hard, i.e., both state-
ments of the definition are equivalent. Even, Selman, and Yacobi [ESY84] conjectured that there
does not exist a disjoint NP-pair (A, B) such that all separators of (A, B) are </ hard for NP.

Conjecture 2.4 (([ESY84]) There do not exist disjoint NP-pairs that are NP-hard.

If Conjecture 2.4 holds, then no public-key cryptosystem is NP-hard to crack [ESY84]. This
conjecture is a strong hypothesis with the following known consequences. In Section 3 we show a
sufficient condition for Conjecture 2.4 to hold.

Proposition 2.5 (([ESY84, GS88, Sel94]) If Conjecture 2.4 holds, then NP # coNP, NP # UP,
and NPMV ¢ NPSV.

2.2 Reductions for Disjoint Pairs

We review the natural notions of reducibilities between disjoint pairs [GS88].

Definition 2.6 (non-uniform reductions for pairs) Ler (A, B) and (C, D) be disjoint pairs.

1. (A, B) is many-one reducible in polynomial-time to (C, D), (A, B)<P’(C, D), if for every
separator T € Sep(C, D), there exists a separator S € Sep(A, B) such that S<P.T.

2. (A, B) is Turing reducible in polynomial-time to (C, D), (A, B)<¥(C, D), if for every sep-
arator T' € Sep(C, D), there exists a separator S € Sep(A, B) such that S<%.T.

Definition 2.7 (uniform reductions for pairs) Let (A, B) and (C, D) be disjoint pairs.

1. (A, B) is uniformly many-one reducible in polynomial-time to (C, D), (A, B)<!? (C, D),
if there exists a polynomial-time computable function f such that for every separator T €
Sep(C, D), there exists a separator S € Sep(A, B) such that S<P.T via f.

2. (A, B) is uniformly Turing reducible in polynomial-time ro (C, D), (A, B)<'2.(C, D), if
there exists a polynomial-time oracle Turing machine M such that for every separator I’ €
Sep(C, D), there exists a separator S € Sep(A, B) such that S<}.T via M.

If f and M are as above, then we also say that (A, B)<!2 (C, D) via f and (A, B)<".(C, D) via
M. Observe that if (A, B)<PP(C, D) and (C, D) is P-separable, then so is (A, B) (and the same
holds for <??, <PP and <V.). We retain the promise problem notation in order to distinguish from
reducibilities between sets. Grollmann and Selman proved that Turing reductions and uniform
Turing reductions are equivalent.

Proposition 2.8 ([GS88]) (A4, B)<}(C,D) < (A, B)<'.(C, D) for all disjoint pairs (A, B)
and (C, D).

In order to obtain the corresponding theorem for <P’ _ we can adapt the proof of Proposi-
tion 2.8, but a separate argument is required.

Lemma 2.9 Let S and T be nonempty, disjoint sets. Let X and Y be nonempty, finite, disjoint
sets such that X N'T = and Y N S = 0. Then the disjoint pairs (S,T) and (SU X, T UY') are
equivalent by polynomial-time uniform reductions.

Proof First we show that (S U X, T UY)<PP (S, T). Choose a € S and b € T. Define the
polynomial-time computable function f by

a, ifreX
f(x)£S b, ifzeY
xr, otherwise.

Let A € Sep(S,T). We need to see that f~1(A) € Sep(SU X, TUY). So we show that
1. SUX C f71(A),and

2. TUY C f1(A).

Foritem 1,if z € X, then f(x) =a € S C A.So f(X) C A.Hence, X C f1(A).Ifr € S—X,
then f(z) =2 € S C A.So0,S — X C f}(A). Foritem 2,if x € Y, then f(z) =b €T C A. So
f(Y)NA=0.Thatis,Y C f~1(A).Ifx € T—Y,then f(z) =2z €T.So f(T-Y)NA=0.
Thatis, 7 —Y C f~1(A).

Every separator of (S U X, T UY) is a separator of (S,7T). Therefore, the identity function
provides a uniform reduction from (S, 7") to (SU X, T UY). O

Theorem 2.10 <P = <PP |

Proof Assume that (@), R) is not uniformly many-one reducible to (S,7"). That is, for every
polynomial-time computable function f, there exists a set A € Sep(S,T) such that f~1(A) &
Sep(Q, R). Then for every polynomial-time computable function f, there exists A € Sep(S,T)
and a string y that witnesses the fact that f~1(A) & Sep(Q, R). Namely, either

yeQANy & fH(A) (e, fly) gA)orye RAye f1(A) (ie., f(y) € A).

We will show from this assumption that (), R) is not many-one reducible to (S,7"). We
will construct a decidable separator A of (S, T") such that for every polynomial-time computable

5

function f, f~'(A) is not a separator of (@, R). Let {f;};>1 be an effective enumeration of the
polynomial-time computable functions with associated polynomial time-bounds {p; };>1.

The separator A of (S, T) will be constructed inductively to be of the form S U J{V; | i > 1},
where | {Y; ‘ i > 1}isasubset of T and Yy C Y; C ---. At stage i of the construction, we will
choose a finite subset Y; of T' such that f~1(.S U Y;) is not a separator of (Q, R).

Stage 0. Define Y, = {0} and ny = 1.

Stage i (1 > 1). By induction hypothesis, Y;_; is defined, n;_; > 0 is defined, and Y;_; C
T Nxsni-1,

Now we state a sequence of claims.

Claim 2.11 There exists a set X, X C T U X="-1, and a witness 1; demonstrating that f;l(S U
Yi_1 U X) is not a separator of (Q), R). That is,

G €EQAY & [T (SUYin UX) (ie fily) € SUYi UX)
or
yeRAy e [(SUY;,1UX) (ie, fily) € SUYi 1 UX).

If the claim is false, then for every X C TUX<ni-1, Q C f7*(SUY;_;UX) and R C

f71(SUY;_; UX). The set of all languages S U Y;_; U X, where X C T U X=mi-1 is exactly the
set of separators of the disjoint pair

(SUY;_,TU (X" — (SUY;))).

Thus, if the claim is false, then (@, R) is uniformly many-one reducible to (SUY; 1, TU(XSm-1 —
Yi_1)). However, by Lemma 2.9, this contradicts the assumption that (@, R) is not uniformly
reducible to (S, 7"). Hence the claim is true.

Claim 2.12 There exists a finite set X, X C T'U X="-1 and a witness y; that satisfy the condition
of Claim 2.11.

For X and witness y; whose existence Claim 2.11 guarantees, |f;(v;)| < pi(Jyi]). So X' =
X N 2=pillvil) and y; satisfy the condition as well.

Claim 2.13 There is an effective procedure that finds a finite set X C T U X<"i~1 and witness ;
to satisfy the condition of Claim 2.11.

This is trivial. Effectively enumerate pairs of finite sets and strings until a pair with the desired
property is found.

At Stage i, apply Claim 2.13; define Y; = Y;_; U X and define n; = 1 4+ max(2"-, p;(|y;|)).

Define A = S UJ{Y;|i > 1}. Since [J{Y;|i > 1} C T, A is a separator of (S, T). It is easy
to see that A is decidable. Finally, for every f;,i > 1, f; '(A) is not a separator of (@, R): Clearly
this holds for f;*(S U'Y;), and the construction preserves this property. O

We obtain the following useful characterization of many-one reductions. Observe that this is
the way Razborov [Raz94] defined reductions between disjoint pairs.

6

Theorem 2.14 (), R)<PP(S,T) if and only if there exists a polynomial-time computable function
f such that f(QQ) C Sand f(R) CT.

Proof By Theorem 2.10 there is a polynomial-time computable function f such for every A €
Sep(S,T), f~1(A) € Sep(Q, R). That is, if A € Sep(S,T),then Q C f~'(A) and R C f~1(A),
which implies that f(Q) C A and f(R)N A = 0. Well, S € Sep(S,T). So f(Q) C S. Also,
T € Sep(S,T).So f(R)NT = (). That is, f(R) C T. The converse is immediate. O

3 Complete Disjoint NP-Pairs

Keeping with common terminology, a disjoint pair (A, B) is <PP-complete (<}’-complete) for the
class DisNP if (A, B) € DisNP and for every disjoint pair (C, D) € DisNP, (C, D)<FP(A, B)
((C, D)<"(A, B), respectively).

Consider the following assertions:

1. DisNP does not have a <!”-complete disjoint pair.
2. DisNP does not have a <PP-complete disjoint pair.

3. DisNP does not contain a disjoint pair all of whose separators are <’.-hard for NP (i.e.,
Conjecture 2.4 holds).

4. DisNP does not contain a disjoint pair all of whose separators are <? -hard for NP.

Assertions 1 and 2 are possible answers to the question raised by Razborov [Raz94] of whether
DisNP contains complete disjoint pairs. Assertion 3 is Conjecture 2.4. Assertion 4 is the analog
of this conjecture using many-one reducibility.

We can dispense with assertion 4 immediately, for it is equivalent to NP # coNP.

Proposition 3.1 NP # coNP if and only if DisNP does not contain a disjoint pair all of whose
separators are <P -hard for NP.

Proof If NP = coNP, then (SAT,SAT) is a disjoint pair in DisNP all of whose separators are
<P -hard for NP.

To show the other direction, consider the disjoint pair (A, B) € DisNP and assume that all
of its separators are <P -hard for NP. Since B is a separator of (A, B), SAT <P B. Therefore,
SAT<? B,implying that SAT € NP. Thus, NP = coNP. O

Proposition 3.2 Assertion 1 implies assertions 2 and 3. Assertions 2 and 3 imply assertion 4.

This proposition states, in part, that assertion 1 is so strong as to imply Conjecture 2.4.

Proof It is trivial that assertion 1 implies assertion 2 and assertion 3 implies assertion 4.
We prove that assertion 1 implies assertion 3. Assume assertion 3 is false and let (A, B) €
DisNP such that all separators are NP-hard. We claim that (A, B) is <}”-complete for DisNP. Let

7

(C, D) belong to DisNP. Let S be an arbitrary separator of (A, B). Note that S is NP-hard and

C € NP. So C<%.S. Since C is a separator of (C, D), this demonstrates that (C, D)</?(A, B).
Similarly, we prove that assertion 2 implies assertion 4. In this case, every separator S of

(A, B) is <P -hard for NP. So C'<? S. Therefore, (C, D)<PP(A, B). 0

Homer and Selman [HS92] constructed an oracle relative to which P # NP and every disjoint
NP-pair is P-separable. Relative to this oracle, assertion 3 holds and assertions 1 and 2 are false.
To see this, let (A, B) be an arbitrary disjoint NP-pair. We show that (A4, B) is both <}”-complete
and <PP-complete. For any other pair (C, D) € DisNP, since (C, D) is P-separable, there is a
separator S of (C, D) that is in P. Therefore, for any separator L of (A, B), S trivially <? -reduces
and <!.-reduces to L. So (C, D)<P*(A, B) and (C, D)<'?(A, B).

There exists an oracle relative to which UP = NP # coNP [GW99]. So, relative to this oracle
assertion 4 holds, but assertion 3 is false. In Section 6 we will construct oracles relative to which
assertion 4 holds while assertions 1 and 2 fail.

In Theorem 3.8 we construct an oracle X relative to which assertion 1 is true. In Corollary 3.11
we observe that P # UP relative to X . Therefore, by Proposition 3.2, all of the following proper-
ties hold relative to X:

1. DisNP does not have a <*”-complete disjoint pair.

2. Conjecture 2.4 holds; so UP # NP, NP # coNP,NPMV ¢ .NPSV and NP-hard public-key
cryptosystems do not exist [ESY84, Sel94].

3. P # UP; therefore P-inseparable disjoint NP-pairs exist [GS88].
4. Optimal propositional proof systems do not exist [Raz94].
5. There is a tally set 7" € coNP — NP and a tally set 77 € coNE — E [Pud86, KP89].

The following lemma is essential to the proofs of Theorems 3.8 and 6.1. Intuitively this lemma
says that, given two nondeterministic machines and some oracle, either we can force the languages
accepted by these machines not disjoint, or we can ensure that one of the machines rejects a given
string q by reserving only polynomially many strings.

Lemma 3.3 Let M and N be nondeterministic polynomial-time oracle Turing machines with poly-
nomial time bounds py; and py respectively. Let Y be an oracle and q € ¥*, |q| = n. Then, for
any set " at least one of the following holds.

o IS CT,||S|| < prm(n) + py(n), such that g € L(MYY%) N L(NYY9).

e 35" C T, |9 < pum(n) - (pn(n) + 1), such that either for any S C T, if SN S' = 0, then
MYY5(q) rejects, or for any S C T, if SN S" = (), then NY"5(q) rejects.

Proof Let us define the following languages:

o Ly = {(P,Q,,Qn) ‘ for some set Syy C T, P is an accepting path of MYY54(g) and Q,
(resp., @,) is the set of words in Sy, (resp., T — (Y U S)yy)) that are queried on P}

o Ly = {(P,Q,,Q,) | for some set Sy C T, P is an accepting path of NYY5~(¢) and Q,
(resp., (),,) is the set of words in Sy (resp., T — (Y U Sy)) that are queried on P}

We say that (P, Q,, Q) € Ly conflicts with (P, Q;, Q) € Ly if Q,NQ;, # 0 or Q, NQ, # 0.
In other words, there is a conflict if there exists at least one query that is in 7" and that is answered
differently on P and P’.

Case I There exist (P, Qy, Q) € Ly and (P',Q,,Q,,) € Ly that do not conflict.

Let S = Q, U Q). We claim in this case that ¢ € L(M""%) N L(N""%). Let S); and Sy be
the subsets of 7" that witness (P, Q,, Q,) € Ly and (P',Q;, Q) € Ly. So P is an accepting
path of MYV (q), and P’ is an accepting path of NYY5¥(q). Assume that on P there exists a
query r that is answered differently with respect to the oracles Y U Sy; and Y U S. Hence r ¢ Y.
Moreover, either r € Sy, — S orr € S — Sy;. However, r cannot belong to Sy, — S, since
otherwise r € (), and therefore 7 € S. Sor € S — Sy Hence r ¢ Q,, and therefore r € ;. On
the other hand, r € S — Sy, implies r € T'— (Y U Sy;). Therefore, r € Q,, N Q; which contradicts
the assumption in Case 1. This shows that P is an accepting path of MY"“%(g). Analogously we
show that P’ is an accepting path of NYY9(q). Hence ¢ € L(MY"9) N L(NY"S). Note that
1S = 11Qy U @yl < par(n) + pn(n).

Case I Every triple (P, Q,, Q,) € Ly conflicts with every triple (P', @, Q},) € L.

Note that in this case we cannot have both a triple (P, (), Q,,) in Lj; and a triple (P’,(), Q")
in Ly, simply because these two triples do not conflict with each other. We use the following
algorithm to create the set S’ as claimed in the statement of this lemma.

S'=10
while (Ly# 0 and Ly #0)
(1) Choose some (P*,Q},Q;) € Ly
(2) s'=8uUQ;uQ;
(3) For every t = (P,Q;,Q,) € Ly
(4) if @,N(Q;uUQ;) #0 then remove t
(5) For every t'= (P,Q},Q,) € Ly
(6) if Q,N(Q;UQ;) #0 then remove t'

end while

We claim that after k iterations of the while loop, for every triple (', Q;, Q;,) € Ly, Q|| > k. If
this claim is true, the while loop iterates at most py(n) + 1 times, since for any triple in Ly, || Q||
is bounded by the running time of N on ¢, i.e., py(n). On the other hand, during each iteration,
S’ is increased by at most pys(n) strings, since for any triple in Ly, ||Q, U Q.|| is bounded by the
running time of M on ¢, i.e., pps(n). Therefore, ||S'|| < par(n) - (py(n) + 1) when this algorithm
terminates.

Claim 34 After the k-th iteration of the while loop of the above algorithm, for every t' =
(P',Q,, Q) that remains in Ly, ||Q,|| > k.

Proof For every k, t), denotes the triple (P*, QF, Q}) € Ly that is chosen during the k-th iteration
in step (1). For every t' = (P, Q;, Q;,) that is in Ly at the beginning of this iteration, #;, conflicts

9

with #' (assumption of Case II). Therefore, there is a query in (Q} N Q;) U (QF N @Q;,). If this query
isin Q% N Q;, then ¢’ will be removed from Ly in step (6). Otherwise, i.e., if Q’; N Q. # 0, then
let ¢’ be the lexicographically smallest query in Q’y“ N Q). In this case, ¢’ will not be removed from
Ly; we say that t’ survives the k-th iteration due to query ¢'. Note that ¢’ can survive only due to a
query that is in /. We will use this fact to prove that ||Q)’,|| > k after k iterations.

We show now that any triple that is left in Ly after k iterations survives each iteration due to
a different query. This will complete the proof of the claim. Assume that ¢’ survives iteration % by
query ¢’ € Q’; N Q... If t’ had survived an earlier iteration | < k by the same query ¢, then ¢’ is
also in Q!, N Q). Therefore, Q' N QF # 0. So t; = (P*, QF, Q%) should have been removed in
step (4) during iteration [, and cannot be chosen at the beginning of iteration k, as claimed. Hence,
¢’ cannot be the query by which ¢’ had survived iteration [. This proves Claim 3 .4.]

Therefore, now we have a set S’ C T of the required size such that either Ly, or Ly is empty.
Assume that L, is empty, and for some set Sy, C T it holds that Sy; N .S" = () and M YV9M) (g)
accepts. Let P be an accepting path of M "V5M)(¢) and let Q, (resp., (),,) be the set of words in
Sy (resp., T — (Y U Sy)) that are queried on P. The triple (P, Q,, Q),) must have been in L,
and has been removed during some iteration. This implies that during that iteration, @, N .S" # 0
(step (4)). Since), C Sy, this contradicts the assumption that Sy, N S” = (.

A similar argument holds for L. Hence either L, = () and M ('Y9)(q) rejects for any S C T
such that SN S’ = (), or Ly = () and NOY%)(q) rejects for any S C T such that S N S" = (). This
ends the proof of Lemma 3.3. u

We define the following notions for reductions relative to oracles.

Definition 3.5 For any set X, a pair of disjoint sets (A, B) is polynomial-time Turing reducible
relative to X (<!) to a pair of disjoint sets (C, D) if for any separator S that separates (C, D),
there exists a polynomial-time deterministic oracle Turing Machine M such that M°®X accepts a
language that separates (A, B).

Definition 3.6 For any set X, let

DisNP* = {(A4, B) | A € NP*, B € NP¥, and AN B = (}.
(C,D) is g}?p’x-complete for DisNP~ if (C,D) € DisNP¥ and for all (A,B) € DisNP¥,
(A, B) <P (C, D). Similarly, (C, D) is <i-complete for DisNP~ if (C, D) € DisNP~ and for
all (A, B) € DisNP* (A, B)<?(C, D).

However, the following proposition shows that if there exists a disjoint pair that is Turing-
complete relative to X, then there is a pair that is Turing-complete such that the reduction between
the separators does not access the oracle.

Proposition 3.7 For any set X, DisNP~ has a < ’X—complete pair if and only if DisNP¥ has a
<-complete pair.

10

Proof The if direction is trivial. We only show the only if direction. Suppose (C, D) is <*¥ X
complete for DisNP* . We claim that (C® X, D& X) !is <'P-complete for DisNP-*. Observe that
(C® X,D @ X) € DisNP~. Consider any (A, B) € DisNP~. Let S’ separate (C © X, D & X).
Define S = {z |0z € S'}. Then S separates (C, D) and S’ = S & X. Since (C, D) is <bpX_
complete for DisNP-, there exists a polynomial-time oracle Turing machine M so that L(A/5%X)
separates (A, B). That is, L(M5") separates (A, B), which is what we needed to prove. O

Theorem 3.8 There exists an oracle X such that DisNP~ does not have a <P ’X—complete pair.

Proof By Proposition 3.7, it suffices to show that DisNP~ has no <'P-complete pair. Since
Proposition 2.8 relativizes to all oracles, it suffices to construct X such that for every (C, D) €
DisNP~ there exists a disjoint pair (A, B) € DisNP~ such that (4, B) £75.(C, D).

Suppose { M}, }x>1 (resp., { N; };>1) is an enumeration of deterministic (resp., non-deterministic)
polynomial-time oracle Turing machines. Let 7, and p; be the corresponding polynomial time
bounds for Mj, and N;. For any 7, s, d, let X4, = 0710°1%% and 19, = r + s + d + 2 (ie., [, is the
length of strings in Efs). For Z C ¥*,7 > 1,and j > 1, define

AZ ={0" |3z, |z| = n,0'10710z € Z}

and o
Bf ={0"| 3z, |z| = n, 010’11z € Z}.

We construct the oracle in stages. X, denotes the oracle before stage m. We define X =

U,,>1 Xm. Initially, let X = (. In stage m = (i, j, k), we choose some number n = n,, and add
strings from X5 to the oracle such that either LN L(N]‘-Xm“) # 0 or (A;-);m“, Bgm“) is
not uniformly Turing reducible to (L(N;“"*"), L(N]X ") via M, ,;X ™*1. This construction ensures
that for every i and j, (L(N;*), L(N;")) is not <?.-complete for DisNP~.

We describe the construction of X,,, 1. We choose some large enough n = n,,, and we will add
words from Z?jﬂ to the oracle. We need a sufficient number of words in ZZ»H for diagonalization.
Therefore, n has to be large enough such that

e (n)pi(r(n)) (p;(re(n)) + 1) < 2™

On the other hand, if m > 2, then we have to make sure that adding words of length
does not influence diagonalizations made in former steps. Therefore, if m > 2 and m — 1 =
(7,7, k'), then n > n,,_; and n has to be large enough such that l?jﬂ is greater than l;;fi_lﬂ,
max(pir (Mm—1), pj(Nm—-1)), and max(py (ry (nim-1)), Py (1 (Mm-1)))-

Suppose there exists an S C Xt such that L(N; %) 0 L(N;9%) 0 D<) o£ (. Let
Xmi1 = X, U S and go to the next stage m + 1.

Otherwise,

n+1

forall S C X5, L(N%) 0 L(N;%) n =t = g, (1)

1AEBBdéf{OzL'M6A}U{1y|y€B}

11

In this case, we consider the computation of M on 0". We determine some w &€ Z%H and let
Xmi1 = X U {w}. We construct a set Q C L(N]-X"”“). Hence L(N;“"*') U Q is a separator of
(L(N;“™+), L(N:*"*1)). The sets X, and @ satisfy either

? J

LN, ™uQ

0" € A" and 0" ¢ L(M,) 2)
or

NXm+1)uQ)

0" € By" and 0" € L(M; ™ 3)

This shows that (Af;m“, Bg’"“) does not < _reduce to (L(N; "), L(N]Xm“)) via Mj,.

The difficulty of finding w and () rises mainly from the following: If we want to preserve the
computation of M} on 0", then we have to ensure that all oracle queries are preserved. Since the
oracle is a separator of two NP languages, we have to maintain the acceptance behaviors of N;
and NNV, with respect to the queries made by M, (0™). This results in reserving too many strings. In
particular, this may leave no room for the diagonalization in E?j“. However, by Lemma 3.3, we
can do better.

Now we construct the set () and at the same time, we reserve strings for X,,, ;. The latter
makes sure that either N; or N; rejects on certain queries.

Initially we set Q = (). We run M, on 0" using oracle L(N;*") U @, until the first string
q is queried. We apply Lemma 3.3 with M = N;, N = N;, Y = X,,,and T = E?j“. By
Equation (1), the first statement of Lemma 3.3 cannot hold. Hence, there is a set S’ C E?j“,
15|l < pi(ri(n)) - (pj(ri(n)) + 1) such that either

(V5,5 C Bt SN S =0)[g & LN), €
or
(V8,8 C S SN S =0)[g & LN, %) (5)

We reserve all strings in S’ for X, . If Equation (4) is true, then we continue running M/, without

changing (). (Hence answer “no” to query ¢.) Otherwise, let Q = @) U {¢} and continue running

M, with oracle X, U (). (Hence answer “yes” to query g.) By the choice of ¢,) remains a

separator of (L(N;™), L(N JX’")) We continue running M, until the next string is queried and

then apply Lemma 3.3 again, obtain the set .S’ that satisfies Equation (4) or (5) for the new query

and update () accordingly. We do this repeatedly until the end of the computation of M on 0.
The number of strings in E?jﬂ that are reserved for X, is at most

re(n) - pi(re(n)) - (pi(re(n)) +1) < 2™

So there exist a string 010710z € ¥7;"" and a string 0110711y € ¥7;"" such that neither string

. ~ LIN*™UQ /1, i1nd .
is reserved for X, 1. If M, (0™) accepts, then let w = 0'10’11y. Otherwise, let w =

0°10’10z. We define X,,,, = X,, U {w}. This completes stage m and we can go to the next
stage m + 1.
The following two claims prove the correctness of the construction.

12

Claim 3.9 After every stage m = (i,j, k), either L(N;""*') N L(NX"‘“) N B=rem) £ () or
(Afj-m“, Bgm“) does not <"" -reduce to (L(N;""*"), L(N]-X"”“)) via Mj,.

Proof If L(N;""*') N L(N mH) N BSem) o4 () then we are done. Otherwise, it follows that
Equation (1) holds. In this case we constructed (). We know that every string that was added to ()
is enforced to be rejected by N; Xm Since w is not reserved and X,,, ., = X,, U{w}, Q is also in the

complement of L(N . Therefore L(N;"") U Q is a separator of (L(N;™+"), L(NJ.X"L“)).

All queries of Mj,(0™) under oracle L(N;"™*') U Q are answered the same way as in the
construction of (). The reason is as follows: For any query ¢, if we reserve strings from Z?jm“ for

X1 such that N; always rejects g (Equation (4)), then ¢ will not be put into (). Hence ¢ will get
the answer “no” from oracle L(N; ™" Xmt1) U @, which is the same as in the construction of Q. If we
reserve strings from E”m+1 for X,,,1 such that N; always rejects ¢ (Equation (5)), then ¢ will be

put into (). Hence ¢ gets the answer “yes” under oracle L(V; Xm+1) U Q, which is the same answer
as given in the construction of (). Therefore, by the choice of w, we obtain:

L(N; erl)UQ(L(N; m“)UQ

o If M, 0™m) accepts, then 0" +! € B,

L(N Xm I)UQ< N m+1)UQ

o If M, 0™) rejects, then 0" 1! € A

Km+1
Hence L(M kL (N UQ) does not separate (AX’"+1 BXm+1) O

Claim 3.10 For all (C,D) € DisNP¥, where C' = L(N;*) and D = L(N;"), it holds that
(A%, BY) € DisNP* and (A, BY) £%.(C, D).

177 17

Proof First, we claim that there is no stage m = (i, j, k) such that L(N;""*") N L(N N
N=rr(nm) - () Otherwise, since the number 7, ; is chosen large enough, all strings that are added
to the oracle in later stages will not change the computations of N; and /N; on inputs of lengths
< 74(n). Therefore, L(N;X) N L(N;X) #), which contradicts our assumption.

From Claim 3.9 it follows that for every stage m = (i, j, k), (Afj(-m“, Bgm“) does not <.

reduce to (L(N;™+), L(NjX’"“)) via Mj. Again, since n,,; is chosen large enough, all strings
added to the oracle in later stages will not change the following.

1. The membership of 0" in Afj.m“ and B;; Xom 1 . Strings of length l”m+1 are only added to the
oracle at stage m and not in any other stage

2. The computations of INV; and N; on inputs of lengths < 7, (n,,) (which is the maximal length
of strings that can be queried by M}, on 0"™).

Hence, (A)J(, Bi)f) does not <".-reduce to (C, D) via M. Since this holds for all k£, we obtain
(A7, Bj}) £w(C, D).

It remains to observe that (47}, B;}) € DisNP~: For each m = (i, j, k) we added exactly one

string from E”m+1 to the oracle. Moreover for any other m’ = (¢, j', k') we added only words

from an/+ to the oracle; this does not influence A5 and B;; . |

13

This completes the proof of the theorem. O

Corollary 3.11 For the oracle X from Theorem 3.8 it holds that PX # UPX.

Proof Choose i and j such that N;¥ (resp., N;¥) accepts X (resp., X). We show that A% €
UPX — p¥.

Note that L(N;¥) N L(N;X) = 0. By the construction in Theorem 3.11, for every length n, we
add at most one string of the form 010710z, |z| = n, to the oracle. So Afjf e UPX.

Assume Af](- = L(M{) for some deterministic polynomial-time oracle Turing machine
Mj,. Note that X is the only separator of (L(N;¥),L(N;*)). Therefore, it follows that
(AX, B)<UL(L(N;¥), L(N;X)) via Mj. This contradicts Claim 3.10. 0

4 Function Classes and Disjoint Pairs

We show that there exists a Turing-complete disjoint NP-pair if and only if NPSV contains a
Turing-complete partial function. We know already that there is a connection between disjoint NP-
pairs and NPSV. Namely, Selman [Sel94] proved that Conjecture 2.4 holds if and only if NPSV
does not contain an NP-hard partial function, and Kobler and MeBner [KMOO] proved that there
exists a many-one-complete disjoint NP-pair if and only if NPSV contains a many-one-complete
partial function. Recall [Sel94] that NPSV is the set of all partial, single-valued functions computed
by nondeterministic polynomial-time-bounded transducers.

If ¢ is a single-valued total function, then we define M|g|, the single-valued partial function
computed by M with oracle g as follows: x € dom(M|g]) if and only if M reaches an accepting
state on input x. In this case, M [g|(x) is the final value of M’s output tape. In the case that g is a
total function and f = M|[g], we write f<’.g.

The literature contains two different definitions of reductions between partial functions, be-
cause one must decide what to do in case a query is made to the oracle function when the query is
not in the domain of the oracle function. Fenner et al. [FHOS97] determined that in this case the
value returned should be a special symbol L. Selman [Sel94] permits the value returned in this
case to be arbitrary, which is the standard paradigm for promise problems. Here we use the promise
problem definition of Selman [Sel94]. Recall that for multivalued partial functions f and g, g is an
extension of f if dom(f) C dom(g), and for all x € dom(f) and for every y, if g(z) — y, then

f(z) —y.

Definition 4.1 For partial multivalued functions f and g, f is Turing reducible to g (as a promise
problem, so we write f<'*g) in polynomial time if for some deterministic polynomial-time-

bounded oracle transducer M, for every single-valued total extension g' of g, M [J'] is an extension

of f.

Here, if the query ¢ belongs to the domain of g, then the oracle returns a value of g(q). We will use
the result [Sel94] that f<'?g if and only if for every single-valued total extension ¢ of g, there is
a single-valued total extension f’ of f such that f'<".¢'.

A single-valued partial function g is </?-complete for NPSV if g belongs to NPSV and for all
f € NPSV, f<Pg.

14

Theorem 4.2 NPSV contains a <1?-complete partial function < DisNP contains a <'?-complete
pair.

Proof For any f € NPSV, define the following sets:

Ry ={{z,y) |x € dom(f),y < f()} (©)

and

Sy ={{w,y) [« € dom(f),y > f(w)}. ™)
Note that (R, Sy) is a disjoint NP-pair.

Claim 4.3 For every separator A of (Ry, Sy), there is a single-valued total extension f' of f such
that f'<hA.

Consider the following oracle transducer 7' that computes f’ with oracle A. On input z, if z €
dom(f), then 7" determines the value of f(z), using a binary search algorithm, by making repeated
queries to A. Note that for x € dom(f) and for any y, if y < f(x), then (z,y) € Ry, and if
y > f(z), then (x,y) € Sy. Clearly, T' computes some single-valued total extension of f. This
proves the claim.

Let f be a <!’-complete function for NPSV and assume that A separates R and S;. By Claim 4.3,
there is a single-valued total extension f’ of f such that f'</. A.
Let (U, V') € DisNP. We want to show that (U, V)<'*(Ry, S¢). Define

0, ifrelU
glxy=<¢ 1, ifxeV
T, otherwise.

Then g € NPSV, so g<}”f. Therefore, there is a single-valued total extension ¢’ of g such that
g/ SII} f,-

Define L = {z | ¢/(z) = 0}. It is easy to see that L<%.¢’. Also note that U C Land V C L,
and, therefore, L separates U and V. Then the following sequence of reductions show that L<}.A.

L<hg < f<hA

Thus, for every separator A of (Ry, Sy), there is a separator L of (U, V') such that L<7.A.
Therefore, (R, Sy) is <'F-complete for DisNP.

For the other direction, assume that (U, V') is <}”-complete for DisNP. Define the following
function:

0, ifxelU
fle)=4 1, ifzeV
T, otherwise.

Clearly, f € NPSV.

15

Let f’ be a single-valued total extension of f, and let L = {x | f(z) = 0}. Clearly, L<}.f".
Also,since U C Land V C L, L is a separator of (U, V).

We want to show that for any g € NPSV, g<!’ f. Consider the disjoint NP-pair (R, S,) for
the function ¢ as defined in Equations (6) and (7). There is a separator A of (R,, S,) such that
A<!.L,since L is a separator of the <}V-complete disjoint NP-pair (U, V'). As noted in Claim 4.3,
there is a single-valued total extension ¢’ of g such that ¢’<%. A. Therefore, the following sequence
of reductions shows that g<*? f.

g AL

Hence, f is complete for NPSV. |

Corollary 44 1. Let f € NPSV be <'-complete for NPSV. Then (R, Sy) is <'?-complete
for DisNP.

2. If (U, V) is <}’-complete for DisNP, then fy.y is complete for NPSV, where

0, ifzel

fuv(.’ll‘) = 1, leL‘ eV
1, otherwise.

3. Relative to the oracle in Theorem 3.8, NPSV does not have a <'?'-complete partial function.

S Nonsymmetric Pairs and Separation of Reducibilities

Pudlak [PudO1] defined a disjoint pair (A, B) to be symmetric if (B, A)<PP(A, B). Otherwise,
(A, B) is nonsymmetric. In this section we give complexity-theoretic evidence of the existence of
nonsymmetric disjoint NP-pairs. As a consequence, we obtain new ways to demonstrate existence
of P-inseparable sets and we show that <P? and <’ reducibilities differ for disjoint NP-pairs.

A set L is P-printable if there is & > 1 such that all elements of L up to length n can be printed
by a deterministic Turing machine in time n* + k [HY84, HIS85]. Every P-printable set is sparse
and belongs to P. A set A is P-printable-immune if no infinite subset of A is P-printable.

A set L is p-selective if there is a polynomial-time-bounded function f such that for every
z,y € ¥, f(z,y) € {z,y},and {z,y} N L # 0 = f(x,y) € L [Sel79].

A function f € PF is almost-always one-way [FPSO1] if no polynomial-time Turing machine
inverts f correctly on more than a finite subset of range(f).

Proposition 5.1 1. (A, B) is symmetric if and only if (B, A) is symmetric.
2. If (A, B) is P-separable, then (A, B) is symmetric.

Proof The proof of the first assertion is trivial. For the proof of the second assertion, let (A, B)
be a P-separable disjoint NP-pair. Fix a € A and b € B, and let the separator be S € P. Consider
the following polynomial-time computable function f. On input z, if z € S, then f outputs b;
otherwise, f outputs a. Therefore, x € A implies © € S, which implies f(z) = b € B, and

16

x € Bimplies ¢ S, which implies f(z) = a € A. Therefore, (A, B) <P (B, A),ie., (A, B) is
symmetric. O

We will show the existence of a nonsymmetric disjoint NP-pair under certain hypotheses. Due to
the following proposition, that will separates <F? and <! reducibilities.

Proposition 5.2 1. If (A, B) is a nonsymmetric disjoint NP-pair, then (B, A) £ (A, B).
2. For any disjoint NP-pair (A, B), (B, A) < (A, B).

Proof The first assertion follows from the definition of symmetric pairs. For the second assertion,
observe that for any S separating A and B, S separates B and A, while for any set 5, S </ S. O

We will use the following proposition in a crucial way to provide some evidence for the exis-
tence of nonsymmetric disjoint NP-pairs. In other words, we will seek to obtain a disjoint NP-pair
(A, B) such that either A or B is p-selective, but (A, B) is not P-separable.

Proposition 5.3 For any disjoint NP-pair (A, B), if either A or B is p-selective, then (A, B) is
symmetric if and only if (A, B) is P-separable.

Proof We know from Proposition 5.1 that if (A, B) is P-separable, then it is symmetric. Now
assume that (A, B) is symmetric via some function f and assume (without loss of generality) that
A is p-selective and the p-selector function is g. The following algorithm M separates A and B.
On input =, M runs g on the strings (z, f(x)), and accepts z if and only if g outputs z. If x € A,
then f(z) € B and therefore, g has to output . On the other hand, if z € B, then f(z) € A. So g
will output f(x) and M will reject 2. Therefore, A C L(M) C B. O

Now we give evidence for the existence of nonsymmetric disjoint NP-pairs.

Theorem 5.4 If E # NE N coNE, then there is a set A € NP N coNP such that (A, A) is not
symmetric.

Proof If E # NE N coNE, then there is a tally set 77 € (NP N coNP) — P. From Selman
[Sel79, Theorem 5], the existence of such a tally set implies that there is a p-selective set A €
(NP N coNP) — P. Clearly, (4, A) is not P-separable. Hence, by Proposition 5.3, (A4, A) is
nonsymmetric. O

As a corollary, if E # NE N coNE, then there is a set A € NP N coNP such that
(A, A)ZPP(A A), yetclearly (A, A)<PP(A, A).

We will show that the hypotheses in Theorem 5.5 imply the existence of a nonsymmetric dis-
joint NP-pair. Note that the hypotheses in this theorem are similar to those studied by Fortnow,
Pavan and Selman [FPSO1] and Pavan and Selman [PSO1]. However, our hypotheses are stronger
than the former and weaker than the latter.

Theorem 5.5 The following are equivalent.

1. There is a UP-machine N that accepts 0* such that no polynomial-time machine can output
infinitely many accepting computations of N .

17

2. There is a set S in UP accepted by a UP-machine M such that S has exactly one string of
every length and no polynomial-time machine can compute infinitely many accepting com-
putations of M .

3. There is an honest one-to-one, almost-always one-way function f such that range(f) = 0*.
4. There is a language L € P that has exactly one string of every length and L is P-printable
immune.

5. There is a language L € UP that has exactly one string of every length and L is P-printable
immune.

Proof We show the following cycles: 1 = 2 = 3 = l,and1 = 4 = 5 = 1.

Trivially, item 1 implies item 2. To prove that item 2 implies item 3, let M/ be a UP-machine
that satisfies the conditions of item 2 and let S = L(M). For any y that encodes an accepting com-
putation of M on some string x, define f(y) = 01#|. Since y also encodes =, f is polynomial-time
computable. Since M runs in polynomial time, f is honest. On the other hand, if any polynomial-
time computable machine can invert f on 0" for infinitely many n, then that machine actually
outputs infinitely many accepting computations of M .

We show that item 3 implies item 1. Given f as in item 3, we know that since f is honest,
Jk > 0 such that |z| < |f(x)|*. We describe a UP-machine N that accepts 0*. On input 0", N
guesses x, |x| < n*, and accepts 0" if and only if f(x) = 0". Since f is one-to-one, N has exactly
one accepting path for every input of the form 0", and since range(f) = 0*, L(N) = 0*. If there is
a polynomial-time machine M that outputs infinitely many accepting computations of M, then M
also inverts f on infinitely many strings.

To prove that item 1 implies item 4, let N be the UP machine in item 1. We can assume
without loss of generality that for all but finitely many n, on input 0", /V has exactly one accepting
computation of length n* for some k > 0. Let us define the following language.

L' = {210"10" | n > 0, is an accepting path of N(0"), and 0 <1 < (n+1)* — n"}

It is easy to see that L' is in P, and for all but finitely many n, L has exactly one string of length n.
Therefore, there exists a finite variation L € P such that L has exactly one string of every length.
If L has an infinite P-printable subset, then so has L'. Let M’ be a polynomial-time transducer that
prints the infinite subset of L’. It follows that M’ outputs infinitely many accepting computations
of N.

Item 4 trivially implies item 5. We show that item 5 implies item 1. Let L be such a language
in UP via a UP-machine N. Define a UP-machine M to accept 0* as follows. On input 0", M
guesses a string x of length n and a computation path w of N on x. M accepts 0" if and only if w
is an accepting computation. If a polynomial-time machine can output infinitely many accepting
computations of M, then the same machine also outputs infinitely many strings in L, and hence L
cannot be P-printable immune. O

Theorem 5.6 Each of the hypotheses stated in Theorem 5.5 implies the existence of nonsymmetric
disjoint NP-pairs.

18

Proof Let us define the following function:

1 ifi=0
dt) = t(i—1 .
Q { 22407 htherwise.

Let M be the UP-machine accepting 0%, as in the first hypothesis in Theorem 5.5. Let a,, be
the accepting computation of M on 0™. We can assume that |a,,| = p(n) where p(-) is some fixed
polynomial. We define the following sets:

Ly = {{0",w) | w < a,,n = dt(i) for some i > 0}

and
Ry = {{0",w) | w > a,,n = dt(i) for some i > 0}

Note that (Ly, Ry) is a disjoint NP-pair. We claim that L, is p-selective. The description of
a selector f for Ly, follows. Assume that (0%, w;) and (0!, ws) are input to f. If k = [, then f
outputs the lexicographically smaller one of w; and w,. Otherwise, assume that £ < [, and without
loss of generality, both k and [are in range(dt). In that case, | > 22" = 9laxl ., and therefore, f can
compute ay, the accepting computation of M on 0%, by checking all possible strings of length |ay|.
Therefore, in O(l) time, f outputs (0%, w;) if w; < ay, and outputs (0!, w,) otherwise. Similarly,
we can show that R, is p-selective.

We claim that (L,;, Ry) is a nonsymmetric disjoint NP-pair. Assume on the contrary that this
pair is symmetric. Therefore, by Proposition 5.3 (L, Ryy) is P-separable; i.e., there is S € P that
is a separator for (L, Rys). Using a standard binary search technique, a polynomial-time machine
can compute the accepting computation of M on any 0", where n = dt(¢) for some i > 0. Since
the length of the accepting computation of M on 0™ is p(n), this binary search algorithm takes
time O(p(n)) which is polynomial in n. This contradicts our hypothesis, since we assumed that no
polynomial-time machine can compute infinitely many accepting computations of M. Therefore,
(L, Ryy) is a nonsymmetric disjoint NP-pair. O

If the hypotheses stated in Theorem 5.5 hold, then there exists a disjoint NP-pair (A, B) so that
(A, B) £22(B, A) while (A, B)<??(B, A).

Grollmann and Selman [GS88] proved that the existence of P-inseparable disjoint NP-pairs
implies the existence of P-inseparable pairs where both sets of the pair are NP-complete. The
following results are in the same spirit. We note that natural candidates for nonsymmetric (or
<PP_.complete) disjoint NP-pairs arise either from cryptography or from proof systems [PudO1].
However, the following theorems show that the existence of such pairs will imply that nonsym-
metric (or <PP-complete) disjoint NP-pairs exist where both sets of the pair are <P -complete for
NP.

Theorem 5.7 There exists a nonsymmetric disjoint NP-pair (A, B) if and only if there exists a
nonsymmetric disjoint NP-pair (C, D) where both C' and D are <P -complete for NP.

Proof The if direction is trivial. We prove the only if direction. Let { NM;},>; be an enumeration
of polynomial-time-bounded nondeterministic Turing machines with associated polynomial time
bounds {p; };>1. It is known that the following set is NP-complete [BGS75]:

K = {(i,x,0") | NM; accepts z within n steps }.

19

Let (A, B) be a nonsymmetric disjoint NP-pair. There exists ¢ > 1 such that A = L(NM;), and
A<P K via f(z) = (i, z,07(7D) Note that f is honest and one-to-one.

Our first goal is to show that (K, f(B)) is nonsymmetric. Since f is a reduction from A to
Kand ANB =0, f(A) C K and f(B) C K, and so f(B) and K are disjoint sets. Observe
that f(B) is in NP because on any input y, we can guess z, and verify that x € B and f(x) = y.
Therefore, (K, f(B)) is a disjoint NP-pair, and K is <P -complete for NP.

In order to prove that this pair is nonsymmetric, assume otherwise. Then (K, f(B)) <P
(f(B), K) and, therefore, 3g € PF such that g(K) C f(B) and g(f(B)) € K. Consider the
following polynomial-time computable function h. On input x, h first computes y = g(f(x)). If
y = (i,2, 0pi(|x/‘)> for some ', then h outputs z’; otherwise, it returns a fixed string a € A. We
claim that h(A) C B and h(B) C A, thereby making (A, B) symmetric. For any x € A, we know
that f(z) € K. Hence g(f(x)) € f(B), since g(K) C f(B). So g(f(x)) = (i, 2, 0=} for
some 2’ € B,and so h(xz) =2’ € B. Forany x € B,y = g(f(z)) € K,since g(f(B)) C K. If
y = (i, 2, Opi(W')) for some 2/, then 2’ must be in A; else h will return @ € A, and so, in either case,
x € B will imply that h(z) € A. Therefore, h(A) C B and h(B) C A. Thus (A, B) <P (B, A),
contradicting the fact that (A, B) is nonsymmetric. Hence (K, f(B)) is a nonsymmetric disjoint
NP-pair.

To complete the proof of the theorem, apply the construction once again, this time with an
honest reduction f’ from f(B) to K. Namely, f'(f(B)) € K and f'(K) C K. Similar to the
above argument, it can be shown that f'(K’) and K are disjoint. Also, since f’ is one-to-one, we
claim that f'(K) is <P -complete for NP. Clearly, = € K implies f'(x) € f’(K). On the other
hand, for some = ¢ K, f'(z) cannot be in f'(K); otherwise, f'(x) = f'(y) for some ¢ € K,
contradicting the fact that f’ is one-to-one. Then, K and f’(K) are disjoint NP-complete sets, and
the argument already given shows that (f'(K), K') is nonsymmetric. O

Theorem 5.8 There exists a <PP-complete disjoint NP-pair (A, B) if and only if there exists a
<PP_complete disjoint NP-pair (C, D), where both C and D are <P -complete sets for NP.

Proof The proof idea is similar to the proof of Theorem 5.7. Consider the one-to-one function f
defined by f(z) = (i, z, 077D} that many-one reduces A to the canonical NP-complete set K.
Obviously (A, B) <FP (K, f(B)) via f,since f(A) C K,and K N f(B) = (), as shown in the
proof of Theorem 5.7. Similar to that theorem, we apply the one-to-one function f’ that many-one
reduces f(B) to K to obtain another disjoint pair (f'(K), K) where (K, f(B)) < (f'(K), K)
via f'. So (A, B) <PP (K, f(B)) <PP (f'(K), K). Therefore (f'(K), K) is also a <PP-complete
disjoint NP-pair, and both f’(K) and K are <P -complete sets for NP. O

6 Optimal Proof Systems Relative to an Oracle

The question of whether optimal propositional proof systems exist has been studied in detail.
Krajicek and Pudldk [Pud86, KP89] showed that NE = coNE implies the existence of opti-
mal proof systems. Ben-David and Gringauze [BDG98] and Kobler et al. [KMT] obtained the
same conclusion under weaker assumptions. On the other hand, Messner and Toran [MT98] and

20

H [O] O |
3 <PP -complete disjoint NP-pairs Yes | Yes

3 nonsymmetric disjoint NP-pairs Yes | Yes
Conjecture 2.4 holds Yes | Yes

E # NE Yes | Yes

NE = coNE Yes | No

3 optimal propositional proof systems | Yes | No
NP N SPARSE has <? -complete sets || Yes | No

Table 1: Comparison of Oracle Properties

Kobler et al. [KMT] proved that existence of optimal proof systems results in the existence of
<P -complete sets for the promise class NP N SPARSE. These results hold relative to all oracles.
Therefore, optimal proof systems exist relative to any oracle in which NE = coNE holds. Ben-
David and Gringauze [BDG98], and Buhrman et al. [BFFvMOO] constructed oracles relative to
which optimal proof systems do not exist. In addition, NP N SPARSE does not have complete sets
relative to the latter oracle.

The relationship between the existence of optimal proof systems and disjoint NP pairs was first
established by Razborov [Raz94], who showed that the existence of optimal proof systems implies
the existence of many-one-complete disjoint NP pairs. Kobler et al. [KMT] proved that this holds
even for a stronger form of many-one reductions. They defined strong many-one reduction (we
denote this by <?) between disjoint NP-pairs as follows: (A, B)<?? (C, D) if there is f € PF
such that f(A) C C, f(B) C D,and f(AUB) C CUD.

In this section, we construct two oracles O; and O,. Relative to O;, NE = coNE, and there-
fore [Pud86, KP89] optimal proof systems exist, implying the existence of <P -complete sets for
NP N SPARSE [MT98] as well as the existence of <? -complete disjoint NP-pairs [KMT]. On
the other hand, relative to this oracle, E # NENcoNE = NE, thus implying, by Theorem 5 4, that
nonsymmetric (and therefore, P-inseparable) pairs exist. Since nonexistence of <*-complete dis-
joint NP-pairs implies Conjecture 2.4, it is natural to ask whether the converse of this implication
holds. Relative to Oy, Conjecture 2.4 holds, and so the converse is false.

Ben-David and Gringauze [BDG98] asked whether the converse to Razborov’s result holds.
Relative to Oz, NP N SPARSE does not have a complete set, and so optimal proof systems do
not exist. On the other hand, <P -complete disjoint NP-pairs exist. This shows that the converse
to Razborov’s result does not hold (even for the stronger notion of many-one reduction) in a rel-
ativized setting. Relative to O, the existence of <?? -complete disjoint NP-pairs does not imply
the existence of <? -complete sets in NP N SPARSE. In addition, relative to Oy, NE # coNE
[Pud86, KP89] and nonsymmetric disjoint NP-pairs exist.

Since relative to both O; and O, Conjecture 2.4 holds, <P -complete disjoint NP-pairs ex-
ist and nonsymmetric pairs exist, it follows that these are “independent” of the assertion that
NE = coNE, the existence of optimal proof systems, and existence of <P -complete sets in
NP N SPARSE. In Table 1, we summarize the properties of both oracles; “Yes” denotes that a
particular property holds, while “No” means that the property does not hold.

21

6.1 Notation

We fix the following enumerations: {NM;}; is an effective enumeration of nondeterministic,
polynomial-time-bounded oracle Turing machines; {NE,}; is an effective enumeration of non-
deterministic, linear exponential-time-bounded oracle Turing machines; { M, }; is an effective enu-
meration of deterministic, polynomial-time-bounded oracle Turing machines; { E; }; is an effective
enumeration of deterministic, linear exponential-time-bounded oracle Turing machines; {7;}; is
an effective enumeration of deterministic, polynomial-time-bounded oracle Turing transducers.
Moreover, NM;, M; and T; have running time p; = n‘, and NE; and E; have running time 2
independent of the choice of the oracle. For any oracle Z, let fZ denote the function that 77
computes.

We use the following model of nondeterministic polynomial-time oracle Turing machines. On
some input the machine starts the first phase of its computation, during which it is allowed to make
nondeterministic branches. In this phase the machine is not allowed to ask any queries. At the end
of the first phase the machine has computed a list of queries ¢y, ... , g5, a list of guessed answers
g1, - - - , gn, and a character, which is either + or —. Now the machine asks in parallel all queries
and gets the vector of answers ag, . .. , a,. The machine accepts if the computed character is + and
(a1,...,a,) = (g1,---,gn); otherwise the machine rejects. An easy observation shows that for
every nondeterministic polynomial-time oracle Turing machine M there exists a machine /N that
works in the described way such that for all oracles X, L(M*X) = L(N¥).2

A computation path P of a nondeterministic polynomial-time oracle Turing machine N on an
input x contains all nondeterministic choices, all queries, and all guessed answers. A computation
path P that has the character + (resp., —) is called a positive (resp., negative) path. The set of
queries that are guessed to be answered positively (resp., negatively) is denoted by P¥* (resp.,
Pr°); the set of all queries is denoted by P! < pyes (y P The length of P (i.e., the number
of computation steps) is denoted by |P|. Note that this description of paths makes it possible
to talk about paths of computations without specifying the oracle, i.e., we can say that N on z
has a positive path P such that P¥* and P"° satisfy certain conditions. However, when talking
about accepting and rejecting paths we always have to specify the oracle. (A positive path can be
accepting for certain oracles, and it can be rejecting for other oracles.)

For X, Y C ¥* we write Y2, X if X C 5™ and Y™ = X. We write YC,, X if and
only if X2,,Y. We need to consider injective, partial functions p : N* — N x N* that have a
finite domain. We do not distinguish between the function and the set of all (n,,j) such that
wu(n) = (i, 7). We denote both by p. Let i and i/ be injective, partial functions N* — N x N* that
have a finite domain. If ;1 # (), then piya < max(dom(p)). We write p < g/ if either u = (), or
1 <y and pax < nforalln € dom(p’ — p). We write < p/ if p < ¢/ and p # 10/

For j > 1,SPARSE; denotes the class of all languages L such that Vk > 0, || LNYF|| < k7 + 5.

6.2 Existence of Optimal Proof Systems
Theorem 6.1 There exists an oracle relative to which the following holds:

(i) E # NE = coNE

ZNote that for this property we need both, the character to be 4 and the g; to be guessed correctly. If the machine
accepts just when the answers are guessed correctly, then we miss the machine that accepts () for every oracle.

22

(ii) Conjecture 2.4 holds.
For a fixed set X, let us define the following set, which is complete for NE*:
CX L{(i,x,l) | NE accepts = within [steps }.
We also define the following property:
P1: (i,2,1) € CX < (Vy,|y| = 220N (i, 2, 1)y ¢ X].

We call a set X C X5k k-valid if the property P1 holds for all strings (4, «, 1) such that | (i, z,)| +
22120 < . Note that) is 0-valid and the validity of a set X only depends on the words in X that
have length 22" + n for some natural number n. We define the following sets:

AYLL0™ | (nisodd) A (Fy, Jy| = 2")[y € X]}

and
BX£{0%" 2| (nis odd) A || = 2" A (3y, [y| = 2")[zy € X]}.

Clearly, AX € NE* and BX € NP¥X. We require the following for O;:

1. C° € coNE?* (This implies NE?* = coNE®", because C'! is complete for NE°* by a
reduction that is computable in linear-time.)

2. A9 ¢ EO (which implies EO' # NE®*, since A* € NE*).

3. For every i, j and r, B' does not <?’-reduce to (L(NM"), L(NMJ.Ol)) via M,. This will
ensure that Conjecture 2.4 holds relative to O, .

Proof [Theorem 6.1] We will begin by stating two lemmas that will be used in this proof.

Lemma 6.2 For every i and every k-valid X, there exists an [-valid Y D, X where | > k, such that
for every Z2Y, AZ # L(E?).

Lemma 6.3 For every i, j,r, and every k-valid X, there exists an l-valid Y O, X, where | > k,
such that for every Z2Y, B? does not <!'-reduce to (L(NM?), L(NM?)) via M.

We define the following list 7 of requirements. At the beginning of the construction, 7 con-
tains {¢};>1 and {(7, j,7)}; ,>1. These have the following interpretations:

e i € T: ensure that A9 # L(E").
e (i,7,7) € T: ensure that B®' does not <}-reduce to (L(NMS"), L(NMle) via M,.

The following algorithm is used to construct the oracle O;.

23

0, :=0;k:=0
while {true} {
Remove the next requirement t from 7
if t=1 then
apply Lemma 6.2 with X=0; to get Y and 1
else // t=(i,j,r)
apply Lemma 6.3 with X=0; to get Y and 1
0, :=Y;k:=1

O 00 J O Ul WDN

}

It is clear that the oracle constructed by this algorithm satisfies (i) and (ii). It remains to prove
Lemma 6.2 and Lemma 6.3.

Proof [Lemma 6.2]

Fix an 7 and let X be any k-valid oracle. Let n be the smallest odd length such that £ < 2" —1,
n—1< 21 and 2" < 22" Note first that we can assume that k& = 2" — 1. Otherwise, we claim
that X can be extended to some (2" — 1)-valid oracle X' D, X . Assume that X is (m — 1)-valid for
k< m < 2" —1; we will show how X can be extended to an m-valid oracle. This can be iterated
to extend X to be (2" — 1)-valid.

Assume m = 2% + r and consider some (7, x,) of length r. (If m is not of this form, then, by
property P1, an (m — 1)-valid oracle is automatically an m-valid oracle.)

Note that [z| < 7 and |I| < r. Hence, NE*(z) can ask only queries of length < 2" < m — 1.
The answers to these queries will not change during the later stages of the construction. So the
result of NE* (x) is fixed. If NE*(x) rejects within [steps, then choose some y of length 2°" and
put (j, z, l)y in X . Otherwise, do not put any such string in X . After all strings (j, x,) are treated,
we obtain an oracle X that is m-valid. This shows that we can assume X to be (2" — 1)-valid.

Also note that any string w = (j,z,l)y cannot have length 2". If |w| = 27, then, since
ly| = 2210201 | (j, x,1)| < n/2. Hence, the highest length possible for (j, z,[) is n/2 — 1, in which
case ly| = 2" % and |w| = n/2 — 1 + 272 < 2", If |{j, z,1)| is even smaller, then y is of smaller
length as well, and so is |w|. This shows that |w| can never be 2" for any n. As a consequence, we
know that at stage k + 1 we do not have to put any strings of the form (j, z, [)y. Therefore, we can
use this stage for diagonalization.

Now we want to show that there exists an [-valid Y, [> 2" such that for every ZD,Y, AZ #
L(E?). Consider the computation of £ on 0". Since the running time of E; is bounded above
by 2", the queries made by E;* (0") have length at most 2. Let N be the set of queries of length
> 2" (these are answered “no” in this computation). Note that || N| < 2 < 2%". We put some
v € ¥2" — N in X if and only if E*(0") rejects. By the above discussion, k = 2" # 22" + r for
any r, and so v cannot be of the form (j, x,[)y. Therefore, X is 2"-valid.

Claim 6.4 We can extend X to some 2™-valid Y Don X such that N C Y.

Proof Fix some (j,x,[) such that 2" < |(j, z, [)y| < 2. First we show that there are at least 22"
different such y for this (j, x,[). We show this by proving that |y| > 2". If |y| < 2", then, since
length of y can only be a power of 2, let us assume that y = 2"~!. Then |(j, x,1)| = (n — 1)/2 and
therefore |(j, z,l)y| = (n — 1)/2 + 2"~! < 2", contradicting that |(j, z, [)y| > 2".

24

Now, simulate NE X (z) for I steps. If the simulation NE,*(z) accepts within [steps, then do
not update X . Otherwise, i.e., if the simulation rejects, then choose ¢’ such that || = 221Gzl and
(J,z,l)y ¢ N.Put (j,z,[)y in X. Existence of such ¢’ is ensured, since the possible number of
these words is 22", whereas || N|| < 2" < 22",

So, if NEJX accepts = within [steps, no extra string is put in X . On the other hand, if NEJX (x)
does not accept within [steps, then we put an appropriate (j, x,)y’ ¢ N in X . Once this procedure
is completed for all (j, z, 1), the oracle we obtain is 2*-valid. We call that oracle Y. This proves
Claim 6 4.]

The proof of the lemma is completed by noting that Y 25.X and Y C N. Hence, 0" €
AY & 0" ¢ L(EY). Letl = 2. Any Z D4 Y differs from Y only by strings of lengths > 2.
This does not affect the computation of £;(0"), and therefore, by our construction, it follows that
0" € AZ & (0" ¢ L(E?). This proves Lemma 6.2. 0

Proof [Lemma 6.3]
Similar to the proof of Lemma 6.2, we can assume that k = 27+l _ 1, where n is odd. Let

c L (271 () 'We choose n to be large enough so that the following hold:

o 5 (2D (pn (27 (s (pr(271) + 1) < 2

o 2(2n 1)) < 22" lje,, 2¢? < 22"

Claim 6.5 There exist Y' C ¥=¢, N' C X=¢ such that ||Y'|| < ¢, |[N'|| < ¢, and for all
X' Cx? ifN' C X7, then X UY' U X is c-valid.

We will prove this claim later.
Choose some z such that |z| = 2" and Yy, |y| = 2", zy ¢ Y’ and zy ¢ N’. (Such z exists
because both || Y]], || N'|| < ¢?, and 2¢? < 22"). We can assume that

(VX/ C zZQn)[L(NMiXUY/UXI) N L(NM]XUY’UX’) _ @] (8)

Otherwise Y = X U Y’ U X" satisfies the requirement of Lemma 6.3.
We will consider the computation of M, on 02"z and construct sets Q and X’ such that
L(NMXPY'9X") U Q is a separator of L(NM;*UY""*") and L(NM;*"¥""X") ‘and either

n / / n XUY/UX/
02"z € BXWY'UX and 02" 2 ¢ L(MF" e

or .,
L(NMz_XUY ux)UQ

0%z ¢ BXYY'YX and 02"z € L(M,).

This will imply BXYY"YX" does not <}F-reduce to (L(NM;*Y"UX") L(NMXPY'UX)) via M,
The details follow.

Initially we set @ = (). We run M, on 0%"z using oracle L(NM;*"Y") U). Note that this
oracle is a separator of (L(NM;*VY"), L(NM:X"*")). The simulation of M, on 0%"z is continued
until it makes some query ¢. At this point, we apply Lemma 3.3 with M = NM;, N = NM;,
Y = XUY’,and T = 2%?". Note that on input 0%" 2, M, can make queries up to length p,(2"!)

25

and we have ||T]| = 22" > p;(p-(2"™1))(p;(p-(2"*') 4+ 1). By Lemma 3.3 and Equation (8), there
is a set S” C 222" such that either

(VS C 2%, SN S" = 0)[q ¢ L(NMXY'V9)] 9)
or
(VS C 25", 8N S =0)[g ¢ L(NM;"U9)). (10)

We know that ||| < pi(p-(2""1))(p;(p,(2"F1)) + 1). We reserve all strings in S’ for X’. If
Equation (9) is true, then we continue simulating M, without modifying the oracle (hence answer
“no” to query ¢.) Otherwise, if Equation (9) does not hold, we update Q) = QU {q}, (hence answer
“yes” to query ¢ and add q to the oracle,) and continue the simulation of M, on 0*" 2. We continue
running M, until the next query and then we apply Lemma 3.3 again, obtain the set S’ that satisfies
above Equation (9) or Equation (10) for the new query and update () accordingly. We keep doing
this until the end of the computation of M, on 0*"z. The number of strings in 232" we reserved
for X’ during the above process is at most p, (2" 1)p; (p,(2"*1)) (p; (p-(271)) + 1) < 2%" since the
running time of M, on 02"z is bounded by p,(2").

Since the number of strings reserved for X’ in the above process is strictly less than the number
of strings of length 2", there exists a string zy in 222" that is not reserved for X. If M,. using oracle
L(NMXYY") U Q accepts 0%z, we define X’ = (). In this case, 02"z ¢ BXY'YX'_ Otherwise,
define X' = {zy}, in which case 0%z € BXYY'“X’ Also observe that ¢ is put in () only when
q & L(NM;X“Y"9X") Therefore, L(NM;*YY""*") U Q remains a separator of L(NM;*"¥"VX") and
L(NMXUY'OXT,

Let Y £X U Y’ U X'. Itis clear from the discussion above that BY does not <}!-reduce to
L(NM} ,NM)") via M,. Since X’ C N, Y is ¢ = (2""")""*/)—valid. Furthermore, any string ¢
that can be queried by M, on 02"z is of length < (2""1)". Therefore, the strings that are queried by
NM; and NM; on input q are of lengths at most (2"*+!)"(+/) = ¢. This implies that for all ZD.Y’,
B7 does not <!"-reduce to (L(NM/), L(NM7)) via M,, since any string of length more than ¢
will not affect the outcome of the computation. It remains to prove Claim 6.5.

Proof [Claim 6.5] We use the following algorithm to construct Y’ and N’. Recall that ¢ =
(2n+1>r(i+j).

1 Y =0,N=0
2 Treated = ()
3. L={(i,x1)|22" <|(i,x,1)y| < c where [y| =22E=1}
4. while L#0 {
5 Remove the smallest (i,x,1) from L
6 Treated = Treated U (i, x,1)
7 if (I C X2 such that X' CN and
NEXYUY(x) accepts within 1 steps)

8. Choose an accepting path P
9 Y =Y UPY® and N =N UP™
else
10. Choose some y € X2@*Ul guch that (i,x,1)y &N

26

11. Y =Y U{(ix 1)y}
12. } //end while.

We claim that after each iteration of the while loop, the following invariance holds: For every
X' € N'N¥*", the property P1 holds for each (i, z,1) in Treated with oracle X UY’ U X',
Initially, when Treated is empty, this holds trivially.

Let us assume that (i, z,[) is put in Treated during iteration m > 1 of the while loop. It is
straightforward to see that after this iteration, the statements in the loop ensure that the invariance
holds for (i, x, 1), since (i, x,)y is put into the oracle if and only if NE; does not accept x within
[steps. We have to show that the invariance also holds for every such triple that had been put
into Treated in some iteration m’ < m. Let (j, u,t) be such a triple. It suffices to show that
for t steps, NE;(u) behaves the same way after m-th iteration as it does after the m/-th iteration.
Assume that during m/-th iteration NE; accepted u in ¢ steps. All the queries that are made on that
accepting path are already in Y’ or N’ accordingly. Therefore, that path remains accepting even
during m-th iteration.

On the other hand, let us assume that for every X', NE; rejected u in ¢ steps during m/-th
iteration. We will show that it will still reject u after the m-th iteration. To see this, let us assume
that a previously rejecting path has become an accepting path after the m-th iteration. A query
that was answered “yes” at that point cannot be answered “no” now, since Y’ now contains strictly
more strings. So assume that a query ¢ was answered “no” during m/-th iteration with X UY" U X’
as the oracle and is now answered “yes”. All strings that are added to Y’ after iteration m’ are
either of lengths > |(j, u, t)y| > t or are from some X’ C %2""". Hence ¢ must be of length 2"+,
Note that ¢ must have been in N’ during m/'-th iteration; otherwise NE; would accept u at that
point with oracle X U Y’ U (X’ U {q}). But any string that was in N’ during an earlier iteration
is not put in X’ or Y” in later iterations. Therefore, our assumption is false, and NE; will reject u
during the m-th iteration as well. This proves the invariance.

What remains to show are the bounds on the sizes of Y’ and N’ and the maximum length of
strings in Y’ and N’. For the size of Y/ and N’, note that if |(i, z,l)y| < ¢, then, since |y| =
220Gl (3 2. 1) < (loge)/2, and therefore, ||£]| < 2U°8¢)/2+1 < ¢ On the other hand, during
every iteration, at most [strings are added to Y’ and N, and |I| < |{i,z,{)| < (logc)/2, and
therefore, [< c as well. Since both Y’ and N’ are initially empty, they are at most c? in size. The
maximum length of strings in Y/ and N’ is ¢ since the longest string that is added to Y/ or N’ is
MaX .z el ’<Za Z, l>y’ <c.

This completes the proof of Claim 6.5. O
This finishes the proof of Lemma 6.3. O
This proves Theorem 6.1. O

Corollary 6.6 The oracle O of Theorem 6.1 has the following additional properties:
(i) UP9' % NP9 = coNP" and NPMV? ¢ NPSV©:,

(ii) Relative to Oy, optimal propositional proof systems exist.

27

(iii) There exists a <P’:01-complete disjoint NP -pair (A, B) that is PO -inseparable but sym-
metric.

6.3 Non-existence of Optimal Proof Systems

In this section we construct an oracle relative to which there exist <?P -complete disjoint NP-
pairs. For any oracle X, (A, B)<P.:X(C, D) if there is a function f € PF*X such that f(A) C C,
f(B)C D,and f(AUB)CCUD?

Theorem 6.7 There exists an oracle O, relative to which the following holds:
(i) There exist <P -complete disjoint NP-pairs.
(ii) There exist nonsymmetric disjoint NP-pairs.
(iii) NP N SPARSE does not have <P -complete sets.

(iv) Conjecture 2.4 holds.

Proof In our construction we use the following witness languages, which depend on an oracle Z:

A(Z) £ {w|w=0"10"1zforn,t > 1,2 € £* and 3y € ¥ [0wy € Z]}

B(Z) £ {w|w=0"10"1zforn,t>1,z € Z*and (Jy € ") [1wy € Z]}

C(Z) £ {0*|k=1(mod4),(3y € "oy € Z]}

D(Z) £ {0*|k=1(mod4),(Jy € " ")[ly € Z]}

E(Z) £ {01z ||0"1z| = 1(mod 4) and (Fy € ¥*, |y| = [01z|)[0'1ay € Z]} fori > 1
F(Z) £ {0*|k=3(mod4),(3y € S¥)[y € 2]}

These languages are in NPZ. By definition, A(Z) and B(Z) depend on oracle words of length
= 0(mod 4), C(Z) and D(Z) depend on oracle words of length = 1(mod 4), all E;(Z) depend
on oracle words of length = 2(mod 4), and F(Z) depends on oracle words of length = 3(mod 4).
We construct the oracle O, such that A(Oz) N B(0y) = C(O2) N D(O2) = 0 and the following
holds.

o (A(O,), B(Oy)) is <PP -complete. That is,

—sm

(V(G, H) €DisNP??)(3f € PF)
[f(G)SA(O:2) A f(H) S B(O2) A f(GUH) S A(Oz) U B(O2)]. (11

e (C(0Oy), D(0Oy)) is nonsymmetric. That is,
(Vf € PE)[f(C(02)) € D(O2) V f(D(02)) £ C(02)). (12)

3(A, B)<PP:X(C, D) if for every separator T € Sep(C, D), there exists a separator S € Sep(A, B) such that
S<P.XT. However, since Theorems 2.10 and 2.14 hold relative to all oracles, (A, B)<PP»X(C, D) if and only if there
is a function f € PF~ such that f(A) C C and f(B) C D. It follows immediately that (A, B)<?2:X(C, D) implies
(A, B)<rr-X(C, D).

—m

28

e NP2 N SPARSE does not have S{’,;O? -complete sets. That is,

(W4, L(NM po) € SPARSE;)(3n, E,,(O5) contains < 2 words of every length)
(Vf € PF?)[E,(0O,) does not <P:2-reduce to L(NM]@) via f]. (13)

o F(Oy) £29*(A(O,), B(Oy)). That s,

(35, A(O,) € S C B(0,))[F(0,) ¢ P7]. (14)

In (11) and (14) we really mean f € PF and F(O,) ¢ P°; we explain why this is equivalent to
f € PF?2 and F(O,) ¢ P592. We have to see that the expressions (11), (12), (13), and (14)
imply the statements (i), (ii), (iii), and (iv) of Theorem 6.7. For (11) and (12) this follows from
the fact that f € PF implies f € PF2. Each language in NP is accepted by infinitely many
machines VM ;. Therefore, if there exists a sparse language L such that L is many-one-complete
for NP92 N SPARSE, then there exists a j > 1 such that I, = L(NM]QQ) and L € SPARSE;.
This shows that expression (13) implies (iii). In (14) we actually should have F'(O,) ¢ P92 since
the reducing machine has access to the oracle Oy. However, since (i) holds and since (O, 0_2) €
DisNP?2, there exists an f € PF with f(O,) € A(O,) C S and f(O;) C B(O,) C S. Hence,
q € Oy < f(q) € S. So we can transform queries to O, into queries to .S, i.e., it suffices to show
F(0O,) ¢ PS. By expression (14), the complete pair (A(O,), B(O3)) is not NP“2-hard; it follows
that no disjoint NP©2-pair is NP2-hard.

We define the following list 7 of requirements. At the beginning of the construction, 7" con-
tains all pairs (¢, n) with ¢ € {1,2,3,4} and n € N*. These pairs have the following interpretations,
which correspond to the statements (i)—(iv) of Theorem 6.7.

e (1,(i,7)): ensure L(NMZ»OQ)HL(NM?Q)#@ or (L(NM??), L(NM].OQ))ggfn(A(Oz), B(0,))
e (2,9): ensure [0" € C(Oy) ATP2(0") ¢ D(Oy)] or [0" € D(O3) ATC2(0") ¢ C(Oy)]

e (3,(i,J)): ensure either L(NM?Q) ¢ SPARSE; or [for some n, E,(O,) contains < 2 words
of every length, and E,,(O,) does not <792 reduce to L(NM J-OQ) via fO?]

e (4,1): ensure that (A(Os), B(Os)) has a separator S such that 0" € F(O,) < 0" ¢ L(M?)

Once a requirement is satisfied, we delete it from the list. Conditions of the form (2,-)
and (4,-) are reachable by the construction of one counter example. In contrast, if we can-
not reach L(NM%?) N L(NM?Q) # () for a condition of the first type, then we have to en-

sure (L(NM??),L(NM??))ggg(A(Og),B(Og)). Similarly, if we cannot reach L(NM]Q2) ¢
SPARSE; for a condition of the third type, then, for a suitable 7, we have to ensure that E,,(O5)
contains < 2 words of every length. But these conditions cannot be reached by a finite segment
of an oracle; instead they influence the whole remaining construction of the oracle. We have to
encode answers to queries “does = belong to L(NM®?) or to L(NM ?2)” into the oracle O, and
we have to keep an eye on the number of elements of E,,(O). For this reason we introduce the
notion of (yu, k)-valid oracles. Here k is a natural number and p is an injective, partial function

N* — N x N* that has a finite domain. Each (1, k)-valid oracle is a subset of X=*_ If a pair (0, 5),

29

j > 1,is in the range of u, then this means that L(NM ?2) € SPARSE; is forced, and therefore,
we must construct O, so that for a suitable n, F,,(O3) contains < 2 words of every length. If a pair
(i,7),4,7 > 1,1s in the range of y, then L(NM?>) N L(NM?Q) = () is forced, and therefore, we
must construct Oy so that (L(NM9?), L(NM ?2))§§%(A(02), B(0,)) holds. For the latter condi-
tion we have to encode certain information into O, and the number £ says up to which level this
encoding has been done. So (1, k)-valid oracles should be considered as finite prefixes of oracles
that contain these encodings. For the moment we postpone the formal definition of (u, k)-valid
oracles (Definition 6.9); instead we mention its essential properties, which we will prove later.

(a) The oracle () is (0, 0)-valid.
(b) If X is a finite oracle that is (u, k)-valid, then for all ¢/ < p, X is (¢, k)-valid.

(c) If O, is an oracle such that O,=" is (p, k)-valid for infinitely many k, then the following
holds:
- A(O2) N B(O9) = C(O3) N D(O2) = 0.

— For all (i,5) € range(u), if i > 0, then (L(NM?), L(NM$?))<tF (A(O2), B(02))
via some f € PF.

— For all (n,0,7) € p it holds that E,(O5) contains < 2 words of every length and
L(NM{*) € SPARSE;.

The properties (a), (b), and (c) will be proved later in the Propositions 6.10 and 6.11. Moreover, we
will prove the following for all ¢, 7 > 1 and all (p, k)-valid X . (Note that there is a correspondence
between (i)—(iv) and P1-P4.)

P1: There exists an [> k and a (p/, [)-valid Y2, X, u < 1/ such that

o cither for all Z2,Y', L(NM7) N L(NM?) # 0,
e or (i,j) € range(y')*
P2: There exists an [> k and a (p, [)-valid Y 2, X such that for all Z2,Y,if C(Z)ND(Z) =0,
then (C(Z), D(Z)) does not <PP©2_reduce to (D(Z),C(Z)) via TZ.
P3: (a) Thereexistsan/ > k and a (¢/,1)-valid Y D, X, u < i/ such that
o cither for all Z2,Y, L(NMZ?) ¢ SPARSE;,
e or (0,7) € range(y).
(b) For every n, if u(n) = (0, j), then there exists an [> k and a (y, [)-valid YD, X such
that for all Z2,Y’, E,,(Z) does not <b,”-reduce to L(NM?) via f7.

P4: There exists an [> k and a (u, [)-valid Y D, X such that for all Z2,Y,if A(Z)NB(Z) =0,
then there exists a separator S of (A(Z), B(Z)) such that F(Z) # L(Mp).

4Proposition 6.21 says L(NMZ) N L(NMjZ) N %=l #£ (, which is a stronger statement.

30

We will prove the properties P1, P2, P3a, P3b, and P4 in the Propositions 6.21, 6.22, 6.23, 6.25,
and 6.32, respectively.

We construct an ascending sequence of finite oracles X(Cy, X1 Cy, XoCy, - - such that each
X is (pr, ky)-valid, kg < ky < ky < --- and po = g1 = po = ---. By definition, Oy = (J,~, X
By items (b) and (c), A(O) N B(Oq) = C(O3) N D(Oq) = § follows immediately. We claim for
eachr > 0and¢ > 1, that X, ;D X, and p, =< 4.

1. r:=

0,k :=0, i, :=0,and X, := (). Then by (a), X, is (u,, k,)-valid.

2. Let e be the next requirement on 7 .

(a)

(b)

(c)

(d)

If e = (1, (i, 7)), then we apply property P1 to X,. Define k.1 = [, pt,.1 = 1’ and
X1 =Y. Then k, < ki1, ptr = ppyq1 and X, 110, X, is (fty41, kry1)-valid such that

o cither for all ZDy, ., X1, LINM7) N L(NM7) # 0,
e or (i,j) € range(p,+1).
Remove e from 7 and go to step 3.

Comment: If the former holds, then, since 052, , Xy41. it holds that L(NM{?) N L(NM$?) # 0,
and therefore, (L(NM{?), L(NM?)) ¢ DisNP?2. Otherwise, (i,) € range(i,+1). By (b), for all
i > 1, X, 4 i (fir41, kris)-valid. Therefore, by (), (L(NM{?), L(NM$?))<PP (A(Os), B(02)) via
some f € PF.

If e = (2,1), then p, 41 £ i, and apply property P2 to X,.. We define k,,; = [and
X,11 = Y. Then ko1 > k, and X, 12k X, iS (f4y41, kry1)-valid so that for all
Z k1 Xri1, if C(Z) N D(Z) = 0, then (C(Z),D(Z)) does not <kP-“2-reduce to
(D(Z),C(Z)) viaTZ. Remove e from 7 and go to step 3.

Comment: Since 022y, ., X, 41 and C(O2) N D(O3) = (this ensures that (C(O2), D(O2)) does not
<PP:O2_reduce to (D(03), C(O3)) via T2,

If e = (3,(i,7)) and (0, j) ¢ range(u,), then we apply property P3a to X,. Define
krvi =1, ppyr = p/ and X1 =Y. Then k. < kpyq1, ptr =< pirr1 and X, 12p, X, is
(fy+41, kry1)-valid such that

e cither forall Z2;, . X, 4, L(NM]-Z) ¢ SPARSE;,,

 or (0,) € range(jir+).
If the former holds, then remove e from 7 and go to step 3. Otherwise, do not remove
e from 7 (it will be removed in the next iteration) and go to step 3.
Comment: If the former of the two alternatives holds, then, since 03Dy, 41 Xry1, it holds that
L(NMjOz) ¢ SPARSE;. Otherwise, for a suitable n, (n,0,j) € pry1. By (b), forall ¢ > 1, X, ;
is (fr+1, kryq)-valid. Therefore, by (c), it is enforced that E,,(O2) contains < 2 words of every length

and L(NM jO 2) € SPARSE;. From now on, all requirements of the form (3, (-, 7)) are treated in step 2d.
These steps will make sure that F,, (O2) %%OQL(NMJ-O2).

If e = (3,(i,7)) and (0,) € range(yu,), then choose n such that (n,0,j) € p, and
apply property P3bto X,.. Define k.1 = [, pt41 = prand X1 =Y. Then k, < k11,
por = piry1 and X1 g, X, S (ftr41, kry1)-valid such that for all Z2y, ,, X, 41, E,(Z)
does not <P?-reduce to L(NM/) via f7. Remove e from 7 and go to step 3.

31

Comment: In the comment of the previous step we have seen that (0,j) € range(u,) implies that
En(OQ) S SPARSEj+1. Since OQQk
L(NM?) via 2.

X4 1 this step ensures that F,,(O5) does not <?;2-reduce to

r1 =m

(e) If e = (4,1), then 1,1 £ p1, and apply property P4 to X,. We define k,.; = [and
X,41 = Y. Then k.1 > k, and X, 12k, X, is (fr41, kry1)-valid such that for all
Z2k Xrs1,if A(Z) N B(Z) = (0, then there exists a separator .S of (A(Z), B(Z))
such that F(Z) # L(M?). Remove e from 7 and go to step 3.

Comment: Since O3y, ., X,41 and A(Oz) N B(O3) = 0 this ensures that there exists a separator S of
(A(OQ), B(Og)) such that F(Og) 75 L(MZS)

3. r:=r+41,gotostep 2.

We see that this construction ensures (i), (ii), (iii), and (iv). This proves Theorem 6.7 except to
show that we can define an appropriate notation of a (i, k)-valid oracle that has the properties (a),
(b), (¢),and P1, P2, P3, P4.

We want to construct our oracle such that (A(O,), B(O,)) is a <P? -complete disjoint NP2-
pair. So we have to make sure that pairs (L(/NM,), L(INM,)) that are enforced to be disjoint (Which
means that (7, j) € range(u)) can be <! -reduced to (A(Oz), B(O2)). Therefore, we put certain

code-words into O, if and only if the computation NM?(z) (resp., NM JQ ?(x)) accepts within ¢
steps.

Definition 6.8 (yi-code-word) Let i1 : Nt — N x N*be an injective, partial function with a finite
domain. A word w is called ji-code-word if w = 00"10'1zy or w = 10"10'1zy such that n,t > 1,
ly| = 3|00"10" 12| and pu(n) = (i,7) such that i,j > 1. If w = 00"10"1xy, then we say that w is a
p-code-word for (i, t, x); if w = 10"10" 1zy, then we say it is a p-code-word for (j,t,x).

Condition (i) of Theorem 6.7 opposes the conditions (ii), (iii), and (iv), because for (i) we have
to encode information about NP92 computations into O, and (ii), (iii), and (iv) say that we cannot
encode too much information (e.g., enough information for UPY2 = NP?2). For this reason we
have to look at certain finite oracles that contain the needed information for (i) and that allow all
diagonalization needed to reach (ii), (iii), and (iv). We call such oracles (u, k)-valid.

Definition 6.9 ((u, k)-valid oracle) Let k > 0 and let ;o : N* — N x N* be an injective, partial
function with a finite domain. We define a finite oracle X to be (u, k)-valid by induction over the
size of the domain of .

(IB) If | u|| = 0, then X is (1, k)-valid <5 X C $=F and A(X)NB(X) = C(X)ND(X) = 0.

(IS) If ||| > 0, then = po U {(no, @0, Jo)} where ng = pimax and po < p. X is (u, k)-valid
&L > no, X is (1o, k)-valid, and the following holds:

1. Ifig > 0, then we demand the following:

(a) Forallt > 1 and all x € ¥*, if 4 - |00™ 10" 12| < k, then
i. (Jy,ly| = 3/00m10'12|)[00™10'1zy € X] < NM(x) accepts within t
steps, and

32

ii. (y, |yl = 3]10m10°12|)[10™10'1zy € X] < NM () accepts within t
steps.
(b) For all1>ng and all (po, 1)-valid Y, if Y<"0 = X< then L(NM))N L(NM})N
ysi=0.
2. Ifig =0, then
(a) foreveryr >0, | E,,(X)NY"|| <2and

(b) for all | > ng and all (po,1)-valid Y, if Y<"0 = X< then L(NM}) N L= €
SPARSE,,.

Due to the conditions 1b and 2b, (u, k)-valid oracles can be extended to (u, k’)-valid oracles
with ¥’ > k (Lemma 6.17). There we really need the intersection with ©=!. Otherwise, for example
in 1b, it could be possible that for a small oracle Y C Y =! both machines accept the same word w
that is much longer than [, but there is no way to extend Y in a valid way to the level |w| such that
both machines still accept w (the reason is that the reservations (Definition 6.12) become to large).

Proposition 6.10 (basic properties of validity) 1. The oracle () is (1), 0)-valid. (property (a))
2. For every (u, k)-valid X and every 1/ < u, X is (i, k)-valid. (property (b))
3. For every (u, k)-valid X and every (n,0, j) € it holds that

(a) for everyr >0, ||E,(X)NX"|| < 2and
(b) L(NMX)x=* ¢ SPARSE;.

4. Let X be (u, k)-valid and S C ¥* such that k + 1 # 0(mod 4), C(S) N D(S) = 0, and
for all (n,0,7) € pit holds that || E,(S)| < 2. Then X U S is (i, k + 1)-valid.

5. For every (i, k)-valid X and every (i,j) € range(y), i > 0, it holds that L(NM:") N
L(NMY)nxsk = 9.

6. If X is (u, k)-valid, then for every k', pimax < k' < k (resp., 0 < K < kif p = 0), it holds
that X=*"is (p, k')-valid.

Proof The statements 6.10.1 and 6.10.2 follow immediately from Definition 6.9.

Let X be (i, k)-valid and (n,0,5) € p. Let ng<n, ic <0, jo <74, and po Z{(n',7,5') €
p|n' < n}. By 6.10.2, X is (1o U {(no, 0, jo)}, k)-valid and also (uo, k)-valid. From 6.9.2a it
follows that 6.10.3a holds. From 6.9.2b (for I = k and Y = X) we obtain L(NM,\) N 558 €
SPARSEj, . This shows 6.10.3b.

We prove statement 6.10.4 by induction on ||x]|. First of all we see that A(S) = B(S) = 0,
since S contains no words of length = 0(mod 4). If ||u|| = 0, then, by Definition 6.9, X U S is
(p, k + 1)-valid. So assume ||u|| > 0 and choose g, 1o, g, jo as in Definition 6.9. We assume
as induction hypothesis that if X is (ug, k)-valid, then X U S is (uo, k + 1)-valid. We verify
Definition 6.9 for X U S and k + 1. Clearly, K + 1 > k > ng. Since X is (u, k)-valid it is also
(o, k)-valid. By induction hypothesis we obtain that X U S is (9, k + 1)-valid.

33

Assume that iq > 0; we verify 6.9.1. Since k 4+ 1 # 0(mod 4), the condition 4 - [00™ 10" 12| <
k + 1 is equivalent to 4 - |00"10"1z| < k. Since t < k, the computations mentioned in 6.9.1a
cannot ask queries longer than £. So nothing changes when these machines use oracle X instead
of X U S. Moreover, at the left-hand sides in 6.9.1a, we can also use X instead of X U S since
we only test the membership for words of length = 0(mod 4). This shows that in 6.9.1a we can
replace every occurrence of X US with X and obtain an equivalent condition. This condition holds
since X is (y, k)-valid. Therefore, 6.9.1a holds for X U S and k + 1. Condition 6.9.1b holds for
X U S and k + 1, since this condition does not depend on k and since (X U S) N Yk = X<k

Assume that ig = 0; we verify 6.9.2. By assumption, ||E£,,(S)|| < 2 and (since X is (u, k)-
valid) for all » > 0 it holds that || E,,(X) N X"|| < 2. Words in E,,,(X) are of length < |k/2].
In contrast, words in £, (S) are of length [(k + 1)/2]. Hence, words in E,,,(X) are shorter than
words in E,,,(S). So for all » > 0,

[B (XUS)OET]| = [[(Eny (X)NET)U(Eng (S)NE")|| = [[(Enp (X)OE)[4| (Eng (S)NET) | < 2.

This shows 6.9.2a. Condition 6.9.2b holds for X U S and k + 1, since this condition does not
depend on k, and since (X U S) N ¥=F = X =F, This proves statement 6.10.4.

We prove statement 6.10.5 as follows. Assume that L(NM ;) N L(NM jg)N Y=k £ () for some
(40, jo) € range(u) such that iy > 0. Choose ng such that (ng, g, jo) € p. Let po Z{(n',7,5') €
p|n' < me}. By 6102, X is (po U {(no, %0, o)}, k)-valid and also (o, k)-valid. Together with
6.9.1b (for | = k and Y = X)) this implies that L(NM;\)N L(NM)N X=F = (), which contradicts
our assumption.

We prove statement 6.10.6 by induction on ||u||. If ||| = 0, then, by Definition 6.9, X =¥ is
(i, k')-valid for 0 < k&’ < k. So assume ||| > 0 and choose 1, 10, %9, jo as in Definition 6.9. We
assume as induction hypothesis that if X is (u, k)-valid, then, for every k', ny < k' < k, it holds
that X =¥ is (o, k')-valid. Choose &’ such that ny < k' < k; we show that X=F is (1, k')-valid.
Since X is (u, k)-valid it is also (pq, k)-valid. By induction hypothesis we obtain that X =F' is
(o, k')-valid.

Assume that ig > 0; we verify 6.9.1. Note that in 6.9.1a we have the condition 4-|00™° 10" 12| <
k'. Hence, t < K’ and therefore, the computations mentioned in 6.9.1a cannot ask queries longer
than &’. So nothing changes when these machines use oracle X instead of X =", Moreover, at the
left-hand sides in 6.9.1a, we can also use X instead of X =*' since we only test the membership for
words of length < %’. This shows that in 6.9.1a we can replace every occurrence of X =¥ with X
and obtain an equivalent condition. This condition holds since X is (i, k)-valid. Therefore, 6.9.1a
holds. Condition 6.9.1b holds, since X =t N 3<m0 — X <no,

Assume that iy = 0; we verify 6.9.2. Condition 6.9.2a follows immediately, since X is (u, k)-
valid. Condition 6.9.2b holds, since X =¥ N £<" = X'<"0_This proves statement 6.10.6. O

Proposition 6.11 Let O, be an oracle such that for infinitely many k, O3= is (uu, k)-valid. (prop-
erty (c))

1. A(Og) N B(Og) == C(Og) N D(OQ) — @
2. For all (i,7) € range(p), i > 0, it holds that L(NM®?) N L(NMJ.OQ) = () and there exists
some f € PF such that (L(NM9?), L(NMJ-OZ))<”’ (A(Os), B(Oy)) via f.

—Ssm

34

3. For all (n,0,7) € p it holds that E,(Os) contains < 2 words of every length, and
L(NM{*) € SPARSE;.

Proof Assume that A(O;) N B(O3) # 0 and let w € A(O3) N B(O3). Then, for k = 4 - (Jw| + 1),
w is already in A(O,=%) N B(0O,="). This contradicts the assumption that there exists a k' >
k such that O,=*" is (u, k')-valid. Therefore, A(O,) N B(O,) = §. Analogously we see that
C(O2) N D(O3) = . This shows 6.11.1.

Let (i,5) € range(u), i > 0, and choose n such that (n,i,j) € p. Assume L(NM9?) N
L(NM$*) # 0, and let w € L(NM{*) N L(NM$?). Then, for k = |w[*/, w is already in
L(NM9) n L(NM?QI) N Y=k where Oy’ £ 0,=F. By our assumption there exists a k' > k such
that 0" £ 0,=" is (, k')-valid. It follows that w € L(NM{?") N L(NM") 0 £=¥. This
contradicts Proposition 6.10.5 and therefore, L(NM$?) N L(NM ?2) = 0.

Let o Z{(n',i',j') € p | n’ < n}. From our assumption and 6.10.2 it follows that for infinitely
many k, Oy=*is (uoU{(n, i,)}, k)-valid. So by Definition 6.9, for infinitely many & the following
holds: For all ¢ > 1 and all zz € 3*,if 4 - |00"10"1z| < k, then

e (Jy, |y| = 3/00"1012|)[00"10 1zy € O] < NMiO2§k(:1:) accepts within ¢ steps, and
e (Jy, |y| = 3]10"101z|)[10"10 12y € O] & NMJ-OQSk(x) accepts within ¢ steps.

During the first ¢ steps a machine can only ask queries of length < ¢ < k. Therefore, above we can
replace NM iOQSk(x) and NM jOQSk(x) by NM9*(x) and NM]-02 (x), respectively. Moreover, since
we have the condition 4-|00"10"1z| < k, we can replace 0,=F with O at the left-hand sides. Since
the resulting condition holds for infinitely many k, the following holds for all ¢ > 1 and x € >*:

e (3y, |y| = 3/00"1012])[00"10! 1zy € Os) < NM2(z) accepts within ¢ steps.
e (Fy,|y| = 3|10"10"1z|)[10"10" 12y € Oq] & NMjO2 (x) accepts within ¢ steps.

The left-hand sides of these equivalences say 0”101z € A(O,) and 0"10'1x € B(O,), respec-
tively. This shows that (L(NM?Q),L(NMJ.OQ))ggfn(A(OQ),B(Og)) via some f € PF.° Hence
6.11.2 holds.

Let (n,0,7) € p. Assume that there exists an 7 > 0 such that || £,(O2) N X7|| > 3. Then there
exists some & such that ||E,(O,') N ¥7|| > 3 where Oy’ £ 0,=*. By our assumption there exists
some k' > k such that Oy" £ 0,5 is (u, k')-valid. Tt follows that || E,(Oy") N Y| > 3. This
contradicts Proposition 6.10.3a and therefore, £,,(O2) contains at most two words of every length.

Assume that L(NM®?) ¢ SPARSE;. Then there exists some m such that L(NM?) N £™

J J

contains more than m? + j words. Therefore, with k < m’ and O, £ 0,=F we obtain L(NM jO 2l) N
»<k ¢ SPARSE;. By our assumption there exists some &' > k such that Oy” £ 0,=*" is (u, k/)-
valid. It follows that L(NM jO?”) N ©=K ¢ SPARSE;. This contradicts Proposition 6.10.3b and

therefore, L(NM{*) € SPARSE;. O

Remember that our construction consists of a coding part to obtain condition (i) of Theorem 6.7
and of separating parts to obtain conditions (ii), (iii), and (iv). In order to diagonalize, we will

SWe can use f () £ 0"10/*I"" 12, since NM; () and NM;(x) have computation times |z|* and |z|7, respectively.

35

fix certain words that are needed for the coding part and we will change our oracle on nonfixed
positions to obtain the separation. For this we introduce the notion of a reservation for an oracle. A
reservation consists of two sets Y and N where Y contains words that are reserved for the oracle
while N contains words that are reserved for the complement of the oracle. This notion has two
important properties:

e Whenever an oracle X agrees with a reservation that is not too large, we can find an extension
of X that agrees with the reservation (Lemma 6.14).

e If we want to fix certain words to be in the oracle, then this is possible by a reservation of
small size. For this reason we can fix certain words to be in the oracle and still be able to
diagonalize. (Lemma 6.18)

Definition 6.12 ((, k)-reservation) (Y, N) is a (u, k)-reservation for X if X is (u, k)-valid,
YNN=0,YSFC X, N* C X, A(Y)NB(Y) = 0, all words in Y >* are of length = 0(mod 4),
and ifw € Y>* is a p-code-word for (i, t, z), then NM;(x) has a positive path P such that |P| < t,
PYs CY and P™ C N.

Proposition 6.13 (basic properties of reservations) The following holds for every (u,k)-valid
X.

1. (0,0) is a (u, k)-reservation for X .
If (Y,N) is a (u, k)-reservation for X, then also (Y, N U N') for every N' CY U X.

Forevery N C X, (0, N) is a (i, k)-reservation for X .

N

Let (Y, N) be a (11, k)-reservation for X . For each (u, k+1)-valid Z D X such that Y =*+1 C
7=k C N it holds that (Y,N) isa (u, k + 1)-reservation for Z.

5. Let (Y,N) be a (u, k)-reservation for X. For every m > 0, (Y N 2™ N N X=™) is a
(u, k)-reservation for X .

Proof This follows immediately from Definition 6.12.]

Whenever a (u, k)-reservation of some oracle X is not too large, then X has a (u, m)-valid
extension Z that agrees with the reservation.

Lemma 6.14 Let (Y, N) be a (u, k)-reservation for X and let m £ max({|w| | w € YUN}U{k}).
If||N|| < 2%/2, then there exists a (u, m)-valid Z 2 X suchthatY CZ, NCZ,and (Z —Y)NL>*
contains only pi-code-words.

Proof Assume || N|| < 2¥/2. We show the lemma by induction on n < m — k. If n = 0, then we

are done.
Now assume n > 0. First of all we show that it suffices to find a (u, k + 1)-valid Z'2; X
such that Y=k+1 C z/=F+1 C N and (Z' —Y) N Xk contains only p-code-words. In this

case, Proposition 6.13.4 implies that (Y, V) is a (u, k + 1)-reservation for Z’. So we can apply the

36

induction hypothesis to (Y, N) considered as a (u, k + 1)-reservation for Z’. We obtain a (p, m)-
valid ZDj,1Z' suchthat Y C Z, N C Z, and (Z — Y) N X>**! contains only ji-code-words.
Together this yields Z2; X and (Z — Y) N X contains only p-code-words. It remains to find the
mentioned Z’.

If k+1 2 0(mod 4), then Y=*! = (), since Y =**1 contains only words of length = 0(mod 4).
We apply Proposition 6.10.4 to S £ (), and obtain that X is (u, k+1)-valid. Therefore, with Z' £ X
we found the desired Z'.

If Kk + 1 = 0(mod 4), then, starting with the empty set, we construct a set S C X**! by
doing the following for each (n,i,j) € u, each ¢t > 1 and each z € ¥* such that i > 0 and
4-|00"10"1z| = k 4 1:

o If NM¥(z) accepts within ¢ steps, then choose some 3y € X:3100"1012] guch that 007101y ¢
N.Add 00"10*1zy to S.

o If NM(z) accepts within ¢ steps, then choose some y € £310"10"2l guch that 10"10*1zy ¢
N. Add 10"10'12y to S.

Observe that the choices of words ¥ are possible since || N| < 2F/2 < 23(+1)/4 — || 53l00"10% 1]
Moreover, S contains only ji-code-words. For Z' £ X USUY=*+! we have Z'D;, X and Y =F+1 C
7/=F c N since S € N, In addition, (Z' —Y) N T+ contains only p-code-words,
since this set is a subset of S. It remains to show that 7’ is (u, k + 1)-valid.

Claim 6.15 A(Z') N B(Z') = C(Z')n D(Z') = 0.

Proof Since X is (, k)-valid we have A(X)NB(X) = C(X)ND(X) = (). When we look at the
definitions of A(X), B(X), C(X) and D(X) we see that in order to show Claim 6.15, it suffices
to show
A(ZYNB(Z') NS 1 = ¢(2') N D(Z') n S+ = .

We immediately obtain C'(Z’) N D(Z') N $*1 = (), since by definition, C(Z’) and D(Z’) contain
only words of lengths = 1(mod 4). Assume that A(Z') N B(Z') N 2k+D/4=1 o£ () and choose
some w € A(Z') N B(Z') N Lk+D/4=1 o there exist n,t > 1,z € ¥* and yg,y; € B3WI+3
such that w = 0"10'12 and Owyy, 1wy, € Z’'. Note that Owyy, lwy,; € S UY=*+1 but both words
cannot be in Y= since otherwise we have A(Y) N B(Y') # () which contradicts our assumption
that (Y, N) is a (u, k)-reservation. Therefore, either Owy, or 1wy, belongs to S. Since all words
in S are p-code-words, there exist 7,5 > 1 such that (n,7,j) € u. Hence Owyy and 1wy, are
pi-code-words. We claim that NM:* () accepts within ¢ steps, regardless of whether 0wy, belongs
to S or to Y=F*1, This can be seen as follows:

e If Owy, € S, then from the construction of S it follows that NM;" (z) accepts within ¢ steps.

o If Owyy € Y=F, then, since Owyy is a p-code-word of length > k, NM;(x) has a positive
path P with |P| <t, PY* C Y and P*™ C N. Since t < k it follows that PY*s U P C L=+
and therefore, PY** C X and P™ C %=F — X It follows that NM:" (z) accepts within ¢
steps.

37

Analogously we obtain that NA jX (x) accepts within ¢ steps. Since |z| < k we have seen that
L(NM;*) N L(NM) NSk 2 @ and (i, j) € range(u) such thati > 0. This contradicts Proposi-
tion 6.10.5 and finishes the proof of Claim 6.15. O

Claim 6.16 7' is (1, k + 1)-valid for every i/ < pu.

Proof We prove the claim by induction on ||¢/[|. If ||/|| = 0, then Z’ is (¢/, k + 1)-valid by
Claim 6.15.

Assume now ||¢/|| > 0, and choose suitable i, ng, i, jo such that ng = pul .., ' = po U
{(no,10,70)} and py < . Clearly, ng < fimax < k < k + 1. As induction hypothesis we assume
that Z' is (1o, k + 1)-valid. We show that Z' is (¢/, k + 1)-valid.

Assume ig > 0. We claim that for all ¢ > 1 and all x € X*,if 4 - |00™10"1x| < k + 1, then the
equivalences in 6.9.1a hold for Z’ instead of X . This is seen as follows:

e If4-|00"10"1z| < k, then they hold since X is (1, k)-valid and Z'2, X .

e If4-{00™10"1z| = k+1, then the implications “<" in statement 6.9.1a hold, since NMZ' ()
and NM]%/(:E) run at most ¢ < k steps and can therefore use oracle X instead of Z’, and
since S C Z'. For the other direction, let w = 0™10%1x and assume that there exists
some y € Y33 quch that Owy € Z'. If Owy € S, then we have put this word to S,
because NM = (x) accepts within ¢ steps. Since t < k, also NMZ'(x) accepts within ¢ steps.
So assume Qwy € Y ="' and note that Owy is a u-code-word. Since (Y, N) is a (u, k)-
reservation for X, NM;(x) has a positive path P with |P| < ¢, PY*® C Y and P™ C N.
Since t < k, we have P¥® C X and P™ C X=F — X. Hence, NM;X(:E) accepts within ¢
steps, and therefore, NMZ '(x) accepts within ¢ steps. This shows the implication “=-"" in
6.9.1(a)i. Analogously we see the implication “="in 6.9.1(a)ii.

Condition 6.9.1b holds for Z’ instead of X, since X is (y/, k)-valid, ny < k and therefore Z’ sno —
Xsno,

Assume iy = 0. Since X is (y/, k)-valid, for all » > 0 it holds that || E,,(X) N X7|| < 2.
Moreover, we have E,,,(Z' N *t1) = (), since by definition, E,,, depends only on oracle words
of lengths = 2(mod 4). Therefore, for all » > 0, ||E,,(Z") N ¥7|| < 2. This shows 6.9.2a.
Condition 6.9.2b holds for Z’ instead of X, since X is (1, k)-valid, ny < k and therefore, Z’ sno —
X=™_ This proves Claim 6.16. O

Claim 6.16 implies in particular that Z’ is (p, k 4 1)-valid. This completes the proof of the lemma.
O

One of the main consequences of this lemma is that (u, k)-valid oracles can be extended
to (u, k')-valid oracles for larger k’. We needed to include the conditions 1b and 2b in Def-
inition 6.9 in order to obtain this property. Otherwise it is possible that a certain way of ex-
tending the finite oracle X to some oracle X’ has no extension to an infinite oracle O, so that
L(NM9*) n L(NM%) = (). If this happens, then by statement 6.9.1a, for all extensions to an
infinite oracle Oy, A(O3) and B(O,) would not be disjoint.

38

Lemma 6.17 If X is (u, k)-valid, then for every m > k there exists a (u, m)-valid Z 2O X such
that Z>* contains only ji-code-words.

Proof It suffices to show the lemma for m = k + 1. Let Y = () and N = 0**!. By Proposi-
tion 6.13.3, (Y, N) is a (j, k)-reservation for X . Since | N|| = 1 < 2¥/2 we can apply Lemma 6.14
and we obtain a (p, k + 1)-valid Z2, X such that Z>* contains only ji-code-words. O

For a finite X C ¥*,let (X) £ > [w].

Lemma 6.18 Let X be (yu, k)-valid and let Z2,X be (u, m)-valid such that m > k and Z>*
contains only words of length = 0(mod 4). For every Y C Z and every N C Z there exists a
(u, k)-reservation (Y', N') for X suchthatY CY', N C N {(Y'UN') <2-/(YUN),Y' C Z,
and N' C 7.

Proof Forevery Y C Z let
D(Y) £{q| Y~ contains a y-code-word for (i,t,z) and ¢ € P},

where P, , is the lexicographically smallest path among all paths of NM Z(z) that are accepting
and that are of length < t. Note that D(Y) is well-defined: If Y>* C Z contains a y-code-
word, then this has the form 00" 10!1xy (resp., 10" 10'1xy), and there exist ig, jo > 1 such that
(no, @0, jo) € p- Let o Z{(n', ', j') € p|n' < no}. By 6.10.2, Z is (1o U { (0, %0, jo) }, m)-valid.
From 6.9.1a it follows that the path P, ; , (resp., Pj, ;.) exists.

If w is a pu-code-word for (i,¢,), then |P,; | <t < |w|/4. Therefore, when looking at the
definition of D(Y"), we see that the sum of lengths of ¢’s that are induced by some y-code-word w
is at most |w|/4. This shows the following.

Claim 6.19 ForallY C Z,{(D(Y)) < ¢(Y) /4 and words in D(Y") are not longer than the longest
wordin'Y .

Given Y and N, the procedure below computes the (1, k)-reservation (Y, N’).

Yo:=Y
No :=N
c:=0
do
c:=c+1

Y, :=D(Y._1)NZ
N, :=D(Y.1)NZ
repeat until Y.=N. =0
Y =Y, UY,U---UY,
0 N :=NoUN; U---UN,

= W o0 JOoUl b WDN B

Note that since all Y. are subsets of Z, the expressions D(Y._;) in the lines 6 and 7 are defined.
It is immediately clear that Y C Y’ C Z,and N C N’ C Z. Therefore Y’ N N’ = (). From
Claim 6.19 we obtain /(Y; U N;) = {(D(Y;_1)) < £(Y;_1)/4 for 1 < ¢ < c. Therefore, the

procedure terminates and (Y’ U N') < 2- /(Y U N). It remains to show the following.

39

Claim 6.20 (Y', N') is a (p, k)-reservation for X .

Clearly, Y’ C X and N'=* C X. Moreover, A(Y’) N B(Y") = 0, since otherwise A(Z) N
B(Z) # () which is not possible, since Z is (u, m)-valid. All words in Y'”* are of length =
O(mod 4),since Y’ C Z. Letv € Y"”* be a p-code-word for (7, ¢,). More precisely,v € Yy C Z
for a suitable ¢’ < c. Z is (i, m)-valid and v is a p-code-word that belongs to Z. Therefore, as seen
at the beginning of this proof, it follows that NMZ(z) accepts within ¢ steps. Thus the path P,
exists and we obtain P7y', C D(Yy). It follows that P}, C Yy C Y/ and Py, C Nyyy © N'.
Therefore, NM ;(x) has a positive path P with |P| < ¢, P¥* C Y’ and P™ C N’. This proves
Claim 6.20 and finishes the proof of Lemma 6.18. O

For any (u, k)-valid oracle either we can find a finite extension that makes the languages ac-
cepted by NM,; and NM ; not disjoint, or we can force these languages to be disjoint for all valid
extensions.

Proposition 6.21 (Property P1) Let i,j > 1 and let X be (u, k)-valid. There exists an | > k and
a (' 1)-valid Y O, X, u = 1 such that

e cither for all Z2,Y, L(NMiZ) N L(N]\/[jZ) NXst £,

e or(i,7) € range(y).

This proposition tells us that if the first property does not hold, then by Definition 6.9, since Y
is (¢, 1)-valid, L(NM7) N L(NM?) N %=™ = { for all (', m)-valid extensions Z of Y, where
m > 1.

Proof By Lemma 6.17, we can assume that k is large enough so that 2 - k™7 < 28/2_If (i, j) €
range(), then we are done. Otherwise we distinguish two cases.

Case 1: There exists an I > k and a (u, [')-valid Y’ DX such that L(NMY") N L(NM}/') N
D= # (). Choose some z € L(NM}") N L(NM)') N S=" and let P;, P; be accepting paths
of the computations NM " (z), NM ;ﬂ (x), respectively. Note that (P’ U P*) N £>" = () and
let NL(Pr U Pr)N »>". By Proposition 6.13.3, (), N) is a (u,l')-reservation for Y’. Since
IN|| < 2-|z|t7 < 21" < 2/? we can apply Lemma 6.14. We obtain some | > I’ > k
and some (u,[)-valid Y2, Y'D, X such that N C Y=<l and N C Y. Therefore, for every Z Y
the computations NMZ (z) and NM JZ («) will accept at the paths P, and P;, respectively. Hence
L(NM?) N L(NM%) N $=! # () for every Z2,Y .

Case 2: For every I' > k and every (p1,')-valid Y’ 2, X it holds that L(NM)") N L(NM}//) N
Y= = (). By Lemma 6.17, there exists a (y,1)-valid Y O, X where [£k + 1. Let ng £1, iy £,
GoZ g, po L, and 1’ £ g U {(no, 40, j0)}. Observe that ng > k > pimay and therefore, u < 1.
We show that Y is (y/, [)-valid.

We already know that [> ng and that Y is (g, ()-valid. Since iy > 0 we only have to verify
6.9.1. When looking at 6.9.1a, we see that 4 - |00"°10"1z| < [is not possible, since ny = [.
Therefore, 6.9.1a holds. Condition 6.9.1b follows from our assumption in Case 2. Therefore, Y is
(i, 1)-valid. O

In order to show that (C'(Os), D(O2)) is not symmetric we have to diagonalize against every
possible reducing function, i.e., against every deterministic polynomial-time oracle transducer. The

40

following proposition makes sure that this diagonalization is compatible with the notion of valid
oracles.

Proposition 6.22 (Property P2) Let i > 1 and let X be (u, k)-valid. There exists an | > k and
a (u,1)-valid Y 2, X such that for all Z2,Y , if C(Z) N D(Z) = 0, then (C(Z), D(Z)) does not
<PP.O2_redyce to (D(Z),C(Z)) via TZ .

Proof By Lemma 6.17 we can assume that k¥ = 0(mod 4) and (k + 1)’ + 1 < 2 +1/2_ Consider
the computation 77X (0*1), let = be the output of this computation, and let N be the set of queries
that are of length greater than k. If || > k, then additionally we add the word 01*! to N. Note that
this yields an N such that X N N = () and || N|| < (k + 1) + 1 < 2(k+1D/2,

If z € C'(X) (note that this implies z = 0% for some k' < k), then choose some y € 0X% — N
and let S <£{y}. In this case it holds that 0**! € C(X U S) Az ¢ D(X U S). The right part of
the conjunction holds, since X is (i, k)-valid and therefore, C'(X) N D(X) = 0. Otherwise, if
x ¢ C(X),then choose some y € 1%*— N and let S £{y}. Here we obtain 0**1 € D(XUS)Ax ¢
C(X U S). Together this means that we find some y € X¥+* — NV such that with S £{y} it holds
that

e C(XUS)Az¢ D(XUS) v [0 eDXuS)AzgC(XUS). (15)

Note that S C ¥**! and £ + 1 # 0(mod 4). Moreover, C(S) N D(S) = @ and for every n,
E,(S) = 0, since by definition, £,, depends only on oracle words of length = 2(mod 4). From
Proposition 6.10.4 it follows that X U S is (u, k + 1)-valid. So by Proposition 6.13.3, (), N)
is a (u1, k + 1)-reservation for X U S. Since ||N|| < 2%*+1/2 we can apply Lemma 6.14. For
I£max({|w||w € N} U {k + 1}) we obtain a (u,!)-valid Y2, 1.X U S such that N C Y
and Y >**1 contains only words of length = 0(mod 0). Therefore, 7Y (0¥*1) computes z. Since
all queries asked at this computation are of length < [, we obtain that 77 (0¥*1) computes z for
every Z2;Y . Since Y>*! does not contain words of length = 1(mod 4) we have C(Z) N 25! =
C(XUS)and D(Z)N st = D(X U S) for each Z2;Y. Note that k + 1 < [and |z| < .
Therefore, by Equation (15), the following holds for every Z2O;Y .

0 e C(2) NTZ(0%) ¢ D(2)] v (0% € D(2) AT (0) ¢ C(2)] (16)

Hence, for every Z2,Y, if C(Z) N D(Z) = 0, then (C(Z), D(Z)) does not <PP©2_reduce to
(D(2),C(2)) via TZ. 0

For any (4, k)-valid oracle, either we can find a finite extension that destroys NM ;’s promise
to be sparse, or we can force NM ; to be sparse for all valid extensions.

Proposition 6.23 (Property P3a) Let j > 1 and let X be (1, k)-valid. There exists anl > k and a
(i, 1)-valid Y O, X, p < 1’ such that

e cither for all Z2,Y, L(NM7) ¢ SPARSE;,

e or (0,j) € range(y').

41

This proposition tells us that if the first property does not hold, then there exists some n such that
(n,0,7) € 1. In this case, from Definition 6.9 we obtain that for all (1, m)-valid extensions Z of
Y it holds that L(NM7) N £=™ € SPARSE; and E,(Z) contains at most 2 words of every length.
Proof By Lemma 6.17, we can assume that k is large enough so that (k7 + j 4+ 1) - k7 < 2F/2 If
(0, 7) € range(u), then we are done. Otherwise we distinguish two cases.

Case 1: There exists an I’ > k and a (u,!’)-valid Y'D, X such that L(NM}/') Ny’ ¢
SPARSE;. More precisely, there exists an m < [’ such that ||L(NM}//) NX™|| > m/ + 5. We
choose m’ + j + 1 different words g, . . .) Tppiy; from L(NM;/') NY™. For0 <i<m!+jlet
P, be an accepting path of the computation NM }/l (z;). For all 4, note that P?** N ¥>" =) and let
N be the union of all P° N X>". By Proposition 6.13, (), N) is a (u, I')-reservation for Y”. Since
IN|| < (m?+54+1)-mi < (17 +j+1)-17 < 2'/? we can apply Lemma 6.14. We obtain
some [> [> k and some (y,[)-valid YD, Y'D; X such that N C ¥=! and N C Y. Therefore,
for every Z2O,Y and every ¢ the computation NM JZ (x;) will accept at path P,. Hence, for every
Z2Y,L(NM?) ¢ SPARSE;.

Case 2: For every I’ > k and every (p,!’)-valid Y'D, X it holds that L(NM}/,) NYst ¢
SPARSE;. By Lemma 6.17, there exists a (y,{)-valid Y O, X with [LkE+1. Letng2l,i0£0,
JoZ g, o<y, and i’ £ g U {(no, io, jo)}. Observe that ng > k > fimay and therefore, g < 4.
We will show that Y is (¢, [)-valid.

Since | = ! .. wehave l > p! . We already know [> ng and that Y is (pug, [)-valid. Since
io = 0, we only have to verify 6.9.2. Since [= ngand Y C 3=! we have E,,,(Y) = () which shows
6.9.2a. Condition 6.9.2b follows from our assumption in Case 2. Therefore, Y is (¢, [)-valid. O

If NM; is forced to be sparse for all valid extensions (Proposition 6.23), then we have to make
sure that L(NM;) is not many-one-complete for NP N SPARSE. We show that a certain £, is
sparse but is not many-one reducible to L(/NA/;). For this we have to diagonalize against every
possible reducing function, i.e., against every deterministic polynomial-time oracle transducer.
Proposition 6.25 makes sure that this diagonalization is possible. Before we give this proposition,
we prove the following argument, which is used in the proofs for Proposition 6.25 and Lemma 6.29.

Proposition 6.24 Let X be (u, k)-valid. Let (Y1, N1) be a (u, k+1)-reservation of some (u, k+1)-
valid Z, 24X, and let (Y2, Ny) be a (u, k + 1)-reservation of some (pu, k + 1)-valid Z; 2, X such
that Y171 U Yo" contains only p-code-words. If Y1 NNy = Yo NNy = 0 and X' £ X U
Vi U Yo R s (u, k + 1)-valid, then A(Y1 UY,) N B(Y, UYs) = 0.

Proof In order to see that (Y3, Ny) is a (i, k + 1)-reservation for X', it suffices to show that
Y, =5 C X7 and N; =% C X7, The first inclusion holds by the definition of X’. The second one
holds, since otherwise, either Y3 N N7 # () (not possible since (Y7, N1) is a (u, k + 1)-reservation)
or Yo N Ny #) (not possible by assumption). It follows that (Y;, Ny) is a (i, k + 1)-reservation
for X', and analogously, (Y2, NV5) is a (i, k + 1)-reservation for X”.

Assume that A(Y; UY3) N B(Y; UY3) # (. Choose a shortest w € A(Y; UY;) N B(Y; UY3).
Hence, there exist o, y1 € 23%I3 such that Owyo, 1wy, € Y; UYa. Let m £ |0wyg| — 1. We show
m > k+ 1. Otherwise, if m < k, then |Qwyg| = |[1wy;| < k + 1. It follows that Owyg, lwy; € X',
since (Y7, N1) and (Ya, Ny) are (i, k + 1)-reservations for X'. This implies w € A(X’) N B(X’),
which is not possible. Therefore, m > k + 1.

42

By Proposition 6.13.5, (Y;="™, N;=™) and (Y2=™, No="™) are (u, k + 1)-reservations for X,
Let Y ZYV;=" U Y55 and N £ N,=" U N,=™. We show that (Y, N) is a (i1, k + 1)-reservation
for X’. For this it suffices to verify Y N N = () and A(Y') N B(Y') = (). The first equality holds,
since otherwise either Y; N Ny # () or Yo N N; # (), which is not possible by assumption. If
A(Y)N B(Y) # 0, then there exists some w’ € A(Y) N B(Y') such that |w’| < |w|. This is not
possible, since A(Y) N B(Y) C A(Y; UY;) N B(Y; UY;) and since w was chosen as short as
possible. Therefore, (Y, V) is a (i, k + 1)-reservation for X".

By Lemmas 6.14 and 6.17, there exists a (11, m)-valid ZD; 1 X’ suchthatY € Zand N C Z.
We know that |Qwyg| > k+1 and Qwy, € Y;UY,. Without loss of generality we assume Owyg € Y;.
So by assumption, Qw1 is a p-code-word. Hence, w = 0"10%1x for suitable n, ¢, x such that n is
in the domain of u. Let pu(n) = (i,4) where 4,7 > 1. From OQwy, € Y it follows that NM;(x)
has a positive path P such that |P| < ¢, P¥* C Y}, and P™ C N;. Since elements from PY*
and P"° are of length < ¢ < m, we obtain P* C Y C Z,and P™ C N C 7. Tt follows that
NMP7 (z) accepts. Analogously (i.e., with help of 1wy;) we obtain that NM”(x) accepts. This
shows = € L(NM7) N L(NM/) N ¥=™, which contradicts Proposition 6.10.5. O

Proposition 6.25 (Property P3b) Let i,j > 1 and let X be (i, k)-valid such that for a suitable n,
wu(n) = (0,7). There exists an | > k and a (u,1)-valid Y 2. X such that for all Z2,Y , E,(Z) does
not <b?-reduce to L(NM7) via f7.

Proof LetaZ(k+1)",3%(a+1)-(a/ +j)+1,andvyZ 3- (2’ +2). Note that if i and j are
considered as constants, then the values of «, # and v are polynomial in k£ + 1. By Lemma 6.17,
we can assume that & = 1(mod 4), and that & is large enough such that n +2 +logy < (k+1)/2
and (2- a7 +2) -y < 2(-+1)/2,

Let x1,... , 7, be the binary representations (possibly with leading zeros) of 1, ... ,~, respec-
tively, such that for all r, [0"1z,| = (k + 1)/2. For 1 < r < v, let 2, £ £X(0"1z,) and note that
the lengths of these words are bounded by «. We consider two cases.

Case 1: There exist a,bsuch that 1 < a < b < ~vand 2z, = 2,. Let NV be the set of queries of
length > k that are asked during the computations f;* (0"1z,) and f;*(0"1z;). Note that these are
negative queries. Observe that || N|| < 2 - a < 2(+1)/2 and choose a word y, of length (k + 1)/2
such that 0"12,y, ¢ N. Let SZ{0"1z,y,}. It follows that C'(S) N D(S) = (). Moreover, for
all n’ > 1, ||E(S)|| < 1. From Proposition 6.10.4 it follows that X' £ X U S is (u, k + 1)-
valid. By Proposition 6.13.3, N is a (u, k + 1)-reservation for X’. By Lemma 6.14, there exists
a (p,1)-valid YD1 X’ such that N C X</ and N C Y. Therefore, for all Z2,Y it holds that
fZ(0"z,) = fZ(0"lxy,) = 2,. Moreover, 0”1z, € E,(Z) and 0"z, ¢ E,(Z). This shows that
forall Z2,Y, E,(Z) does not <»:?-reduce to L(NM/) via f7.

Case 2: For 1 < r < 7, all 2z, are pairwise different. The remaining part of the proof deals with
this case. Until the end of the proof r will always be such that 1 < r < ~. For every r, define the
following set.

Ly Z{(Y,,N,) | (Y, N,) is a (u, k + 1)-reservation for some (i, k + 1)-valid Z2, X such that
Z=k+1 C 0mM1%r, || 275 < 1, Y,”**! contains only p-code-words, £(Y, U
N,) < 2-a?, and NM;(z,) has a positive path P, such that P¥* C Y, and
P C N}

43

In the following we consider vectors v = ((Y;,, Niy), (Yey, Niy), ..., (Ye,, N,.,)) such that
1 < s < g, all r, are from [1,~] and are pairwise different, and (Y,.,, N,,,) € L,,. Such vectors v
are called vectors of reservations from Ly, ... , L,. We say that v has a conflict if there exist a, b
such that 1 < a < b < s, and either Y;, N N,, # 0 or N,, NY,, # 0. In this case we also say that
the reservations (Y,,, N,,) and (Y,,, N,,) conflict. Now we are going to prove three claims. After
this, with Claim 6.28 at hand, we are able to finish Case 2.

Claim 6.26 Ler (Y,,N,) € L, and (Yy, Ny) € Ly. If (Y,, N,) and (Yy, Ny) do not conflict, then
AY,UY,) N B(Y,UY,) = 0.

Assume that (Y, N,) and (Y, N}) do not conflict. Let S£ Y, Uy, and X’ £ X U S.
From the definition of L, and L it follows that ||.S|| < 2. Therefore, for all n’ > 1, || E,/(5)| < 2.
Moreover, C'(S) = D(S) = (), since C' and D depend only on oracle words of length = 1(mod 4).
From Proposition 6.10.4, we obtain that X' is (i, k + 1)-valid. Moreover, by assumption we have
Y,NN, = Y,NN, = (. Therefore, from Proposition 6.24 it follows that A(Y,UY;)NB(Y,UY;) = 0.
This shows Claim 6.26.

Claim 6.27 Every [3-dimensional vector of reservations has a conflict.

Proof Assume that there exists a vector of reservations

U:((YTNNH)?(YT‘WNTQ)V"7(Y N))

T3 T3

such that v has no conflict. Let y/ £{(r’,#,5') € p|n’ < n}. Note that X is (), k)-valid
and also (y' U {n, 0, j}, k)-valid (Proposition 6.10.2). Let Y £ Uicacs Yrar N L Ui<a<p Nro» and
X'L£ X UY~+1 We show that X' is (¢, k + 1)-valid. Since C' and D depend only on oracle
words of length = 1(mod 4), we have C(Y=*!) = D(Y=F*!) = (). Moreover, since n is not in
the range of ;i and since all words in Y =**! have the prefix 01, for all (r’, 0, j') € p it holds that
E,,(Y=F1) = (). Therefore, from Proposition 6.10.4 it follows that X' is (z//, k + 1)-valid.

Let us show that for 1 < a < 3, (Y,,,N,,) is a (¢, k + 1)-reservation for X’. By definition,
(Y., Ny,) is a (u, k + 1)-reservation for some (u, k + 1)-valid Z2, X . Since every p'-code-word
is a yi-code-word, it suffices to verify Y, =¥ C X’ and N,, ="' C X’. The first inclusion holds
by the definition of X’. If the latter inclusion does not hold, then N,, ="' 0 Y=F+1 -£ (). Since
N,, NY,, = 0,it follows that N,, NY;, # () for some b # a. This implies that v has a conflict,
which is not possible by our assumption. This shows that for all a,if 1 < a < g, then (Y;,, N,,) is
a (¢, k + 1)-reservation for X'.

We show that (Y, N) is a (¢/, k + 1)-reservation for X'. All (Y, N,,) are (¢, k + 1)-
reservations that do not conflict with each other. From this we immediately obtain that Y "N = (),
Yshtl C X', NSk C X7, and all words in Y>**1 are of length = O(mod 4). If A(Y)N B(Y) #
(), then there exist a, b such that A(Y, K UY,,) N B(Y,, UY,,) # (. This contradicts Claim 6.26.
Therefore, A(Y) N B(Y) = (). Finally, if w € Y>**! is a y/-code-word for (¢, ', 2’), then there
exists some a such that w € Y, ~**'. Since (Y,,, N,,) is a (1/, k + 1)-reservation, NM; (') has a
positive path P such that |P| < ¢/, P¥* C Y, CY,and P*™ C N,, C N. This shows that (Y, N)
isa (u/, k + 1)-reservation for X".

By definition, for all r and all (Y,, N,) € L, it holds that £(Y, U N,) < 2 - a’. Therefore,
N, || €2-a? 41 and it follows that | N|| < 3-(2-a7 +1) < 2-+1/2 By Lemmas 6.14 and 6.17

44

there exists some (p/, m)-valid ZD, 1 X' suchthat Y UN C ™Y C Z,N C Z,and m > «.
From the definition of the sets L, it follows that for all a,if 1 < a < 3, then NM jZ (z,) accepts.
The length of all z,, is bounded by «. So there exists a length [such that 0 < [< « and at least
B/(a+1) > (a7 + j) > I + j of the words z,, are of length [. Hence ||L(NM7) N ! > 7 + j
and therefore, L(NM7) N X=" ¢ SPARSE;.

We know that X is (1 U {n,0, j}, k)-valid. Moreover, m > k > n and Z is (y/, m)-valid such
that Z=* = X=* and therefore, Z=" = X =". From Definition 6.9.2b it follows that L(NM/) N
¥=m € SPARSE;,. This contradicts our observation in the last paragraph and finishes the proof of
Claim 6.27. O

Claim 6.28 There exist some r and an N C X7* such that |N|| < (2 - o/ + 2) -y and for every
(n,m)-valid Z2, X, if m > k, N C ZNxsm, Z=F1 C 0"1%*, |Z N Xk < 1, and Z7F1
contains only u-code-words, then NM jZ (z) rejects.

Proof We use the following algorithm to create the set /NV. Note that this algorithm modifies the

sets L,.. This will decrease the number of possible vectors of reservations from L1, ... , L,.

1 N():=0, RO):=0, i:=0

2 while (all L. #0)

3 i=1i+1

4 choose the largest d such that there exists a
d-dimensional vector v = ((Y.,N,),...,(Ys,Ns,)) of
reservations from L;,...,L, such that
v has no conflict

5 R(i) :==R(1—1)U{ry,rs,... , x4}

6 N(i) :==N{E —1)UYZFUNZEU--- U YR UNZE

7 for every r and every (Y, N;)€L,:

remove (Y., N;) if Y. NN(i) #0
8 end while
N = N(1i)

N}

Let? > 1 and consider the algorithm after the ¢-th iteration of the while loop. We claim that for
every r ¢ R(i) and every (Y, N,.) that remains in L, it holds that N, N (N (i) — N(i — 1)) # 0.
Otherwise, there exist 7 and (Y;., N,.) such that r ¢ R(i), (Y;, N,) € L,,and N, N (N (i) — N(i —
1)) =). Hence (Y;, N,.) has not been removed in step 7. Therefore, Y, N N (i) = (), which implies
Y,N(N(i)—N(i—1)) = 0. Together with our assumption we obtain (Y,UN,)N(N(i)—N(i—1)) =
(). By step 6 this means that (Y}, V,.) does not conflict with any reservation in v. Therefore, with
(Yo, N, (Yo, Ny)y oo, (Ye,, Ny,)) we found a (d + 1)-dimensional vector of reservations that
has no conflict. This contradicts the choice of v in step 4. Therefore, for every r ¢ R(i) and every
(Y, N,) that remains in L, it holds that N, N (N (i)— N(i—1)) # 0. It follows that after [iterations
of the while loop, for every r ¢ R(l) and every (Y,., N,) that remains in L, it holds that || N,|| > [.

By Claim 6.27 and the choice of d in step 4 we have d < 3. Therefore, after (2 - o/ + 2)
iterations, | R(7)|| < (2o +2) - 3 = 7. So during the first (2 - o/ + 2) iterations ¢ there always
exists an 7 ¢ R(i). Moreover, for every r and every (Y, N,.) € L, itholds that /(Y,UN,) < 2-a7,
and therefore, || N,|| < 2-a’ + 1. From the conclusion of the previous paragraph it follows that the

45

while loop iterates at most 2 - o/ + 2 times. This shows that the algorithm terminates. Since d < 3,
forall 7 > 1itholds that || N(i) — N(i—1)|| < 8-(2-a? +1) < 7. Therefore, | N|| < (2-a/ +2) -y
and N C X>* when the algorithm terminates.

So we have a set N of the required size and an r such that L, = (). We show that N and r
satisfies Claim 6.28. Assume that for some m > k + 1 there exists a (u, m)-valid Z2, X such
that N C Z N ¥sm, Z=k+1 C 0715, || Z N XFL| < 1, Z>F*1 contains only p-code-words, and
NM? (z,) accepts. Let P, be an accepting path of NM7(z,).

Let Z' £ Z=<k+1 From Proposition 6.10.6 it follows that Z’ is (u, k + 1)-valid (since k& + 1 >
k > fimax). Z~**1 contains only words of length = 0(mod 4), since it contains only p-code-words.
So we can apply Lemma 6.18 (for X = 7', Y = P¥ and N = P"). We obtain a (u, k + 1)-
reservation (Y, N') for Z’ such that P¥* C Y/, P* C N, /(Y'UN') < 2-4(P¥UP™) < 2.,
Y’ C Z,and N’ C Z. Together with N C Z, this implies

Y' AN = 0. (17)

We show that at the beginning of the algorithm, (Y”, N’) must have been in L, . Since Z>**! con-
tains only ji-code-words and since Y’ C Z, also Y'”*! contains only ji-code-words. Moreover,
Z'=F = z=k1 C 0712 and ||Z' N R = || Z N £FY| < 1. By our assumption, P, is a
positive path of NM;(z,), and it holds that P¥** C Y’ and P> C N'. It follows that (Y, N') must
have beenin L,.

Since L, = () when the algorithm terminates, (Y’, N’) has been removed during some iteration
i. This implies that during that iteration, YN N (i) # 0 (by line 7). Moreover, by line 9, N (i) C N.
This implies Y/ N N = (), which contradicts (17). This proves Claim 6.28. O

Now we finish Case 2. Choose a word y, of length (k + 1)/2 such that 0"1x,y,. ¢ N. Let
SZL{0"12,y,}. It follows that C(S) = D(S) =). Moreover, for all n’ > 1, || E,/(S)|| < 1. From
Proposition 6.10.4 it follows that X’ £ X U S'is (u, k + 1)-valid. By Proposition 6.13.3, (), N) is
a (i, k + 1)-reservation for X’. Note that | N|| < (2-a +2) -y < 2(-+1)/2_ Therefore, by the
Lemmas 6.14 and 6.17 there exists an [> o/ and a (y,[)-valid Y D, X’ such that N C Y N X<
and Y>**! contains only ji-code-words. From Claim 6.28 it follows that NM)(z,) rejects. The
computation times of f (0"1x,) and NM) (z,) are bounded by o/ < I. Therefore, for all Z2,Y
it holds that f7(0"1z,) = z,,0"1z, € E,(Z) and NM7 (z,) rejects. This shows that E,,(Z) does
not <P»”-reduce to L(NM7?) via f7. This finishes the proof of Proposition 6.25.]

Recall that we want to construct the oracle in a way such that (A(0,), B(O,)) is not <#92-
hard for NP2, We have seen that it suffices to construct '(Os) such that it does not <}’-reduce
to (A(O,), B(Os)). We prevent F(Oq)<™(A(O2), B(O3)) via M; as follows: We consider the
computation M;(0") where the machine can ask queries to the pair (A(X), B(X)). In Lemma 6.29
we show that each query to this pair can be forced either to be in the complement of A(X) or to be
in the complement of B(X). For this forcing it is enough to reserve polynomially many words for
the complement of X. If we forced the query to be in the complement of A(X), then the oracle
can safely answer that the query belongs to B(X). Otherwise it can safely answer that the query
belongs to A(X). After forcing all queries of the computation, we add an unreserved word to
F(X) if and only if the computation rejects. This will show that F'(X) does not <*"-reduce to
(A(X), B(X)) via M; (Proposition 6.32).

46

Lemma 6.29 Let k = 2(mod 4) and let X be (u, k)-valid. For every q € X*, |q| < 2F/?27% — 2,
there exists an N C ¥>F such that || N|| < (8- |q| + 10)? and one of the following properties holds.

1. For all (1, m)-valid Z2, X, if m >k, N C Z and Z>*+1 contains only pi-code-words, then

q ¢ AZ).

2. For all (u,m)-valid Z 2O X, if m >k, N C Z and Z>*t contains only p-code-words, then

q ¢ B(Z).

Proof We can assume that ¢ = 0"10"1z for suitable n, ¢, z. Otherwise, ¢ cannot belong to A(Z) U
B(Z) for all oracles Z, and we are done. Define the following sets:

Ly L {(Ya,Na)|(Ya,Nya) is a (u, k + 1)-reservation for some (u,k + 1)-valid Z2,X,
Y,4~**! contains only p-code-words, /(Y4 U N4) < 8(|g| + 1), and (Jy €
y3la+3)[0qy € Ya)}.

Ly £ {(Ys,Np)|(Ys,Ng) is a (u,k + 1)-reservation for some (u,k + 1)-valid Z2;X,
Y5~ " contains only p-code-words, (Y U Np) < 8(|q| + 1), and (Jy €
Y33 [1qy € Y3]}.

We say that (Y4, Na) € Laand (Y, Ng) € Lg conflictif and only if YANNp # D or NyNYpy # 0.
Note that if (Y4, N4) and (Y, N) conflict, then even Y, N Np N>k £ Qor NyNYpNE>k £ (.

Claim 6.30 Every (Ya, Na) € Ly conflicts with every (Y, Ng) € Lp.

Proof Assume that there exist (Y4, N4) € L4 and (Y, Ng) € Lpg that do not conflict. Let
VLY, UYs, NN4£N,UNgand S LY, yyz=F+t,

We show that (Y’, N') is a (i1, k+1)-reservation for X’ £ X US. Since k = 2(mod 4) and S C
Yk+1 it holds that C(S) = D(S) = 0 and for all n’ > 1, E,,(S) = (). From Proposition 6.10.4, it
follows that X’ is (u, k + 1)-valid. Moreover, by assumption, Y4 N Ng = Yz N N4 = (). From
Proposition 6.24 it follows that A(Y, U Yg) N B(Y4 U Yg) = 0. Therefore, it remains to verify
Y' AN =0,V C X’ and N'*"' C X’. The first condition holds, since (Ya, N4) and
(Y, Np) do not conflict. The second one holds by the definition of X’. Finally, N’ =kl c X7
holds, since otherwise N'=*"' NS £ (), and therefore, either Y’ NN’ # (). This shows that (Y',N')
is a (u, k + 1)-reservation for X'.

From the definition of L 4 and L3 it follows that | N’|| < 16 -|q| + 18 < 2%/2, By Lemma 6.14,
there exist an m > k + 1 and a (u, m)-valid Z2;,1 X’ such that Y’ C Z. Since (Y4, Na) € La
and (Y, Np) € Lp, there exist yo, y; € X319+3 such that Oqyy € Y4 C Y’ C Z and 1qy, € Y C
Y’ C Z. Therefore, ¢ € A(Z) N B(Z), which contradicts the fact that Z is (u, m)-valid. This
proves Claim 6.30. O

We use the following algorithm to create the set N as claimed in the statement of this lemma.

N:=10
while (L, #0 and Lg #0)
choose some (Y),N,) € L,
k k
N:=NUY,” UN,”

=W N

47

5 for every () €L

6 remove () 1f Y, N (YFUNTE) £ 0
7 for every (Yp,Ng) € Lg

8 remove (Yg,Ng) if Yz N (Y,"SUN,”*) # ()
9 end while

We claim that after [iterations of the while loop, for every (Yp, Ng) € Lp, ||[Ng| > . If
this claim is true, the while loop iterates at most 8 - |¢| 4+ 10 times, since for any (Y5, Ng) € Lp,
¢(Np) < 8-|q| + 8, and therefore, || Ng|| < 8- |g| + 9. On the other hand, during each iteration,
N is increased by at most 8 - |g| + 9 strings. Therefore, | N|| < (8 - |¢g| + 10)?> and N C ¥>* when
this algorithm terminates.

Claim 6.31 After | iterations of the while loop, for every (Y, Ng) that remains in L, |Ng|| > L.
Proof For every [, let us denote the pair that is chosen during the [-th iteration in step 3 by
(Yi, NY). By Claim 6.30, every (Y, Np) that belongs to Ly at the beginning of this iteration
conflicts with (Y4, N%,),ie., Ny NYpNE**F £ Por YiNNpgNE>k £ (). If N\ NYp N>k £ (),
then (Y3, Np) will be removed from Lp in step 8. Otherwise, Y} N Nz N ¥>* is not empty, and
therefore, there exists a lexicographically smallest word wy in this set. In this case, (Y5, Ng) will
not be removed from Lg; we say that (Yz, Ng) survives the [-th iteration due to the word w,. Note
that (Y, Np) can survive only due to a word that belongs to Ng. We will use this fact to prove
that | Ng|| > [after [iterations.

We show now that any pair (Y, Np) that is left in Lp after [iterations survives each of these
iteration due to a different word. Since these words all belong to N, this will complete the proof
of the claim. Assume that there exist iterations [and !’ with [< [’ such that w; = wy. Then
w; € Yi N NN Y2k and wy € Y§ N Np N X>F. Therefore, Y} N YL N ¥~ # (). So the pair
(Y}, N%) should have been removed in iteration [(step 6), and cannot be chosen at the beginning
of iteration [, as claimed. Hence, w; # wy . This proves Claim 6.31. O

Therefore, we now have a set IV of the required size such that either L4 or Lp will be empty.
Assume that L, is empty; we will show that 6.29.1 holds. Analogously we show that if Lp is
empty, then 6.29.2. Assume that for some m > k + 1 there exists a (u, m)-valid Z 2, X such that
q € A(Z), N C Z and Z>**! contains only p-code-words. Hence, there exists some y € %341+3
such that Oqy € Z.5

Let Z' £ Z=k+1 From Proposition 6.10.6 it follows that Z’ is (u, k + 1)-valid. Since Z>*+!
contains only u-code-words, we can apply Lemma 6.18 for ({Ogy},). We obtain a (u, k + 1)-
reservation (Y’, N’) for Z’ such that Ogy € Y', {(Y' UN') < 2-|0qy| = 8- (]¢| + 1) and
Y’ C Z C N'. Together with N C Z, this implies

Y'NN = 0. (18)

®Actually, it even holds that Ogy € Z — X, but we do not need this explicitly in our argumentation. In order to
see this, we assume that Ogy is in X. Then ¢ is in A(X) and ({Ogy},) is a (u, k)-reservation for X. Therefore,
({Oqy},0) is a (u, k + 1)-reservation for every (u, k + 1)-valid Z2; X . Hence, ({Ogy},) is in L 4 at the beginning
of the algorithm. So it has been removed during the algorithm. But this is not possible since elements in L 4 can only
be removed in step 6, and there we remove only (Y, N4) with Y4 N $>* 2 (). This shows Oqy € Z — X.

48

Moreover, since Y’ C Z it holds that Y’>**! contains only y-code-words. It follows that (Y’, N')
must have been in L4 and has been removed during some iteration. This implies that during that
iteration, Y’ N (Y4~ U N,”*) # () (by line 6). Moreover, by line 4, Y;”" U N’;”" is a subset of
N when the algorithms stops. This implies Y/ N N # (), which contradicts Equation (18). This
proves Lemma 6.29. O

Proposition 6.32 (Property P4) Let i > 1 and let X be (p,
(u, 1)-valid Y O, X such that for all Z2,Y , if A(Z) N B(Z)
of (A(Z), B(Z)) such that F(Z) # L(M?).

k)-valid. There exists an | > k and a
= (), then there exists a separator S

Proof By Lemma 6.17, we can assume that & = 2(mod 4) and 64(k + 10)% < 2+/2,

_ We describe the construction of S4 and Sp, which are sets of queries we reserve for B(Y) and
A(Y), respectively. Let S, := A(X) and Sp := B(X). We simulate the computation M4 (0*+1)
until we reach a query ¢; that neither belongs to S4 nor belongs to Sp. Note that |¢;| < (k+1)" <
2k/2=4 _ 2 From Lemma 6.29 we obtain some N; C ¥>* such that | N;| < (8 - |q;| + 10)? and
either 6.29.1 or 6.29.2 holds. If 6.29.1, then add ¢, to Sg, otherwise add ¢; to S4. Now return the
answer of “q; € S47” to the computation. We continue the simulation until we reach a query ¢
that neither belongs to S 4 nor belongs to Sg. Again we apply Lemma 6.29, obtain the set N5, and
add ¢, either to S4 or to Sp. We continue the simulation until the computation stops. Let n be
the number of queries that were added to S, or Sp. Observe that S, N Sp =) at the end of our
simulation. _

Let NEN,U---UN, U{0** 4 Then |N|| < (k+1)"- (8- (k+1)" +10)2 + 1 < 2k/2,
Hence there exists some w € Y*1 — N. If the simulation accepts, then let S’ = (), otherwise
let S’ £{w}. Since S C ¥**!and k + 1 = 3(mod 4), we have C(S') = D(S’) = () and for
alln > 1, E,(S") = 0. From Proposition 6.10.4, it follows that Y’ £ X U S" is (u, k + 1)-valid.
Since N C ¥>* and N NS’ =) we have N C Y”. Therefore, by Proposition 6.13.3, (0, V) is a
(i, k + 1)-reservation for Y’. By Lemma 6.14, there exist an [> 4(k + 1)" 4+ 4 and a (u, [)-valid
Y Dp41Y’ such that N C Y and Y>**! contains only p-code-words. In particular, it holds that
I >kand YO, X.

Claim 6.33 For every Z2,Y it holds that S, C B(Z) and Sp C A(Z).

Assume that S4 N B(Z) # () for some Z2,;Y, and choose av € Sy N B(Z). Since S4 contains
only words of length < (k + 1)" we obtain v € S, N B(Z=**++1'+4) = &, N B(Y). So v cannot
belong to A(Y') since A(Y) N B(Y) = (. In particular this means v € Sy — A(X),ie.,v = g
for a suitable j with 1 < j < n. By our construction ¢; was only added to S4 when 6.29.2
holds. Remember that Y is (p,[)-valid with [> k, Y2, X, N; C N C Y and Y>**! contains
only p-code-words. Therefore, from 6.29.2 it follows that v = ¢; ¢ B(Y'), which contradicts
v € Sy N B(Y). This shows S4, C B(Z). By the symmetric argument we obtain Sp C A(Z).
This proves Claim 6.33.

Consider any Z2,Y with A(Z) N B(Z) = (). Let S£ A(Z) U S,4. Assume that S is not a
separator of (A(Z), B(Z)). Since A(Z) C S, we must have SN B(Z) # 0. Since A(Z)NB(Z) =
(), this implies S4 N B(Z) # (). This contradicts Claim 6.33. So S is a separator of (A(Z), B(Z)).
It remains to show F'(Z) # L(M?).

49

By our construction, 01 € F(Y”) if and only if M4 (0**1) rejects. Since ZD;1Y” it holds
that 01 € F(Z) if and only if M 4(0*') rejects. Assume that there exists a query ¢ that
is answered differently in the computations M4 (0%*1) and M2 (0*+1) (take the first such query).
Since S4 C S weobtaing € S—S4,ie.,q € A(Z).If ¢isin B(X),then gisin B(Z) C S, which
is not possible. So ¢ is neither in S4 nor in B(X), but ¢ is asked in the computation M4 (0*+1).
It follows that ¢ = ¢; for some j with 1 < j < n, and during the construction we added g; to
Sp. So we have ¢ € Sp N A(Z), which contradicts Claim 6.33. Therefore, M 4 (0¥+1) accepts
if and only if M} (0**1) accepts. This shows 0¥ € F(Z) if and only if M (0**1) rejects, i.e.,
F(Z) # L(M?). O

This finishes the proof of Theorem 6.7. O

Corollary 6.34 The oracle O, of Theorem 6.7 has the following additional properties:
(i) UP92 £ NP2 £ coNP?2 and NPMV©2 ¢ NPSV©2,
(ii) Relative to O, no optimal propositional proof systems exist.

(iii) There exists a <FP -complete disjoint NP pair (A, B) that is PO*-inseparable but symmet-
ric.

Proof It is known that Conjecture 2.4 implies item (i) [ESY84, GS88, Sel94]. Relative to O,,
NP N SPARSE does not have gfﬁOQ-complete sets. MeBner and Toran [MT98] proved that this
implies that there are no optimal propositional proof systems. This shows (ii).

Since (A, B) is <P -complete, it is symmetric. If (A, B) is P92-separable, then every disjoint
NP®2-pair is P?2-separable, and therefore symmetric. This contradicts item (ii) of Theorem 6.7.
So (A, B) is P©2-inseparable. 0

7 Relationship to Optimal Propositional Proof Systems

It is known that existence of optimal propositional proof systems implies existence of <PP-
complete disjoint NP-pairs. Messner and Toran [MT98] state that this result was communicated to
them by Impagliazzo and Pitassi. Ben-David and Gringauze [BDG98] cite Razborov [Raz94] for
this result. Kobler et al. [KMT] cite Razborov, and they prove the stronger result that existence of
optimal propositional proof systems implies existence of <? -complete disjoint NP-pairs. For the

—sm

sake of completeness, we provide here a straightforward proof of the weaker result.

Theorem 7.1 If optimal propositional proof systems exist, then there is a <PP-complete disjoint
NP-pair.

Proof Let f be an optimal propositional proof system. We define the canonical pair [Raz94,
Pud01] for this proof system, (SAT*, REF), where

SAT* = {(z,0") |z € SAT}

50

and
REF; = {(2,0") |~z € TAUT and 3y[|y| < nand f(y) = ~z]}.

Note that since f is polynomial-time computable, both SAT* and REF are in NP. Also, for
any n, if (z,0") € SAT", then © € SAT, and if (z,0") € REFy, then x ¢ SAT. Therefore,
these sets are disjoint, and so (SAT*, REF) is a disjoint NP-pair. We will prove that this pair is
<PP_complete.

Consider any other disjoint NP-pair (A, B). We will define a proof system f4 p using this
pair. Assume that A <P SAT via g € PF and there is a polynomial p(-) and a polynomial-time
predicate R(-,-) such that z € B < Jw, |w| < p(|z]), R(z, w).

—g(z) ify=(z,w), where |w| < p(|z|) and R(z,w)
fasly) =1z if y = (z,w), where |w| > 2/#l and z € TAUT (19)

zV =z otherwise

We claim that f4 g is a proof system. First, note that for every z € TAUT, f4 5(z,w), for
some w, |w| > 2I*|, will output z in time polynomial in |(z,w)|. Also, since AN B = () and g
reduces A to SAT, g(B) C SAT. Therefore, for every z € B (i.e., for every z such that R(z,w)
for some w, |w| < p(|z])), g(2) ¢ SAT. Therefore, f4 5 outputs all possible tautologies and does
not output anything that is not in TAUT. Also, since g is polynomial-time computable, so is f4 z.
It is therefore clear that f4 p is a proof system; since f is an optimal proof system, there is a
polynomial ¢(-) such that for every tautology ¢, and for every w such that f4 g(w) = ¢, there is a
w!, Jw'| < q(jw)) and f(w') = 6.

Now we define h € PF such that (A, B)<PP(SAT*, REF;) via h. On input z, h outputs
(g(x),071=D) where r(-) is some polynomial that we will fix later. If z € A, then g(x) € SAT and
therefore, h(x) € SAT”.

On the other hand, Vx € B, g(z) ¢ SAT, ie., 7g(x) € TAUT. Since = € B, there exists
y = (z,w), where |w| < p(|z|) such that f4 5(y) = g(z). So, there is some ¢/, |v/| < q(|y]),
such that f(y') = g(x). We choose 7 to be large enough so that r(|z|) > |¢/|, and since ¢ and
p are polynomial, r can be chosen to be a polynomial as well. This shows that x € B implies
h(xz) € REF . Therefore, (A, B)<PP(SAT*,REF); ie., (SAT", REF) is <PP-complete. O

8 Conclusions

We partially summarize the import of the oracle results we obtained in this paper. Various implica-
tions have been known and/or are observed here for the first time. For several of these, our oracles
demonstrate that the converses do not hold robustly. The following are convenient lists of these
instances:

1. Nonexistence of <!”-complete NP-pairs implies Conjecture 2.4 (observed in Section 3).
Relative to oracle Oq, the converse is false.

2. Existence of optimal proof systems implies existence of <PP -complete NP-pairs [Raz94,
KMT]. Relative to oracle O, the converse is false.

51

Relative to both oracles O; and O, the converse of the following implications are false:

1. Nonsymmetric implies P-inseparable (observed in Section 5).

2. Nonexistence of <’’-complete NP-pairs implies NP # coNP (observed in Section 3).

3. Nonexistence of <P’-complete NP-pairs implies NP # coNP (observed in Section 3).

Acknowledgements. The authors thank Avi Wigderson for informing them of the paper by Ben-
David and Gringauze [BDG98].

References

[BDGY8]

[BFFVMOO0]

[BGS75]

[CR79]

[ESY84]

[FHOS97]

[FPSO1]

[GS88]

[Gur83]

[GW99]

S.Ben-David and A. Gringauze. On the existence of propositional proof systems and
oracle-relativized propositional logic. Technical Report 5, Electronic Colloquium on
Computational Complexity, 1998.

H. Buhrman, S. Fenner, L. Fortnow, and D. van Melkebeek. Optimal proof systems
and sparse sets. In Proceedings 17th Symposium on Theoretical Aspects of Com-
puter Science, volume 1770 of Lecture Notes in Computer Science, pages 407-418.
Springer Verlag, 2000.

T. Baker, J. Gill, and R. Solovay. Relativizations of the P=NP problem. SIAM Journal
on Computing,4:431-442,1975.

S. Cook and R. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44:36-50, 1979.

S. Even, A. Selman, and J. Yacobi. The complexity of promise problems with appli-
cations to public-key cryptography. Information and Control, 61:159-173,1984.

S. Fenner, S. Homer, M. Ogihara, and A. Selman. Oracles that compute values. SIAM
Journal on Computing,?26:1043-1065, 1997.

L. Fortnow, A. Pavan, and A. Selman. Distributionally hard languages. Theory of
Computing Systems, 34:245-261,2001.

J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems.
SIAM Journal on Computing, 17(2):309-335, 1988.

Y. Gurevich. Algebras of feasible functions. In Proceedings of the 24th Annual
Symposium on Foundations of Computer Science, pages 210-214. IEEE Computer
Society Press, 1983.

C. GlaBer and G. Wechsung. Relativizing function classes. Technical Report
219, Institut fiir Informatik, Universitat Wiirzburg, 1999. Available via ftp from
http://www.informatik .uni-wuerzburg .de/reports/tr.html.

52

[HIS85]

[HIV93]

[HS92]

[HY84]

[KMOO]

[KMT]

[KP89]

[MT98]

[PSO1]

[Pud86]

[PudO1]

[Raz94]

[Sel79]

[Sel88]

J. Hartmanis, N. Immerman, and V. Sewelson. Sparse sets in NP - P: EXPTIME
versus NEXPTIME. Information and Control, 65:158—181, 1985.

L. Hemaspaandra, S. Jain, and N. Vereshchagin. Banishing robust Turing complete-
ness. International Journal of Foundations of Computer Science, 3-4:245-265, 1993.

S. Homer and A. Selman. Oracles for structural properties: The isomorphism
problem and public-key cryptography. Journal of Computer and System Sciences,
44(2):287-301, 1992.

J. Hartmanis and Y. Yesha. Computation times of NP sets of different densities.
Theoretical Computer Science, 34:17-32, 1984.

Johannes Kobler and Jochen Messner. Is the standard proof system for sat p-optimal?
In Proceedings of the 20th Conference on the Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), volume 1974 of Lecture Notes in Com-
puter Science, pages 361-372. Springer Verlag, 2000.

J. Kobler, J. Messner, and J. Toran. Optimal proof systems imply complete sets for
promise classes. Information and Computation. To appear.

J. Krajicek and P. Pudlak. Propositional proof systems, the consistency of first order
theories and the complexity of computations. Journal of Symbolic Logic, 54:1063—
1079, 1989.

J. MeBner and J. Toran. Optimal proof systems for propositional logic and complete
sets. In Proceedings 15th Symposium on Theoretical Aspects of Computer Science,
Lecture Notes in Computer Science, pages 477—487. Springer Verlag, 1998.

A. Pavan and A. Selman. Separation of NP-completeness notions. In Proceedings
16th IEEE Conference on Computational Complexity. IEEE Computer Society, 2001.

P. Pudlak. On the length of proofs of finitistic consistency statements in first order
theories. In J. B. Paris et al., editor, Logic Colloquium *84, pages 165—-196. North-
Holland Amsterdam, 1986.

P. Pudlak. On reducibility and symmetry of disjoint NP-pairs. In Proceedings 26th
International Symposium on Mathematical Foundations of Computer Science, vol-
ume 2136 of Lecture Notes in Computer Science, pages 621-632. Springer-Verlag,
Berlin, 2001.

A. Razborov. On provably disjoint NP-pairs. Technical Report TR94-006, Electronic
Colloquium on Computational Complexity, 1994.

A. Selman. P-selective sets, tally languages, and the behavior of polynomial-time
reducibilities on NP. Mathematical Systems Theory, 13:55-65, 1979.

A. Selman. Promise problems complete for complexity classes. Information and
Computation, 78:87-98, 1988.

53

[Sel94] A. Selman. A taxonomy on complexity classes of functions. Journal of Computer
and System Sciences, 48:357-381, 1994,

54

