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Abstract
We study the question of whether the class DisNP of disjoint pairs (A,B) of NP-sets contains acomplete pair. The question relates to the question of whether optimal proof systems exist, and werelate it to the previously studied question of whether there exists a disjoint pair of NP-sets that isNP-hard. We show under reasonable hypotheses that nonsymmetric disjoint NP-pairs exist, whichprovides additional evidence for the existence of P-inseparable disjoint NP-pairs.We construct an oracle relative to which the class of disjoint NP-pairs does not have a completepair, an oracle relative to which optimal proof systems exist, hence complete pairs exist, but no pairis NP-hard, and an oracle relative to which complete pairs exist, but optimal proof systems do notexist.



       

1 Introduction
We study the class DisNP of disjoint pairs (A,B), where A and B are nonempty, disjoint setsbelonging to NP. Such disjoint NP-pairs are interesting for at least two reasons. First, Grollmannand Selman [GS88] showed that the question of whether DisNP contains P-inseparable disjointNP-pairs is related to the existence of public-key cryptosystems. Second, Razborov [Raz94] andPudlák [Pud01] demonstrated that these pairs are closely related to the theory of proof systems forpropositional calculus. Specifically, Razborov showed that existence of an optimal propositionalproof system implies existence of a complete pair for DisNP. Primarily in this paper we areinterested in the question raised by Razborov [Raz94] of whether DisNP contains a complete pair.We show connections between this question and earlier work on disjoint NP-pairs, and we exhibitan oracle relative to which DisNP does not contain any complete pair.From a technical point of view, disjoint pairs are simply an equivalent formulation of promiseproblems. There are natural notions of reducibilities between promise problems [ESY84, Sel88]that disjoint pairs inherit easily [GS88]. Hence, completeness and hardness notions follow natu-rally. We begin in the next section with these definitions, some easy observations, and a review ofthe known results.In Section 3 we observe that if DisNP does not contain a Turing-complete disjoint NP-pair,then DisNP does not contain a disjoint NP-pair all of whose separators are Turing-hard for NP.The latter is a conjecture formulated by Even, Selman, and Yacobi [ESY84] and it has severalknown consequences: Public-key cryptosystems that are NP-hard to crack do not exist; NP 6= UP,
NP 6= coNP, and NPMV 6⊆c NPSV. Our main result in this section is an oracle X relative towhich DisNP does not contain a Turing-complete disjoint NP-pair and relative to which P 6= UP.Relative to X , by Razborov’s result [Raz94], optimal propositional proof systems do not exist.P-inseparable disjoint NP-pairs exist relative to X , because P 6= UP [GS88]. Most researchersbelieve that P-inseparable disjoint NP-pairs exist and we believe that no disjoint NP-pair has onlyNP-hard separators. Both of these properties hold relative to X. This is the first oracle relativeto which both of these conditions hold simultaneously. Homer and Selman [HS92] obtained anoracle relative to which all disjoint NP-pairs are P-separable, so the conjecture of Even, Sel-man, and Yacobi holds relative to their oracle only for this trivial reason. Now let us say a fewthings about the construction of oracle X. Previous researchers have obtained oracles relative towhich certain (promise) complexity classes do not have complete sets. However, the techniqueof Gurevich [Gur83], who proved that NP ∩ coNP has Turing-complete sets if and only if it hasmany-one-complete sets, does not apply. Neither does the technique of Hemaspaandra, Jain, andVereshchagin [HJV93], who demonstrated, among other results, an oracle relative to which FewPdoes not have a Turing-complete set.In Section 4 we show that the question of whether DisNP contains a Turing-complete disjointNP-pair has an equivalent natural formulation as an hypothesis about classes of single-valued par-tial functions. Section 5 studies symmetric disjoint NP-pairs. Pudlák [Pud01] defined a disjoint pair
(A,B) to be symmetric if (A,B) is many-one reducible to (B,A). P-separable easily implies sym-metric. We give complexity-theoretic evidence of the existence of nonsymmetric disjoint NP-pairs.As a consequence, we obtain new ways to demonstrate existence of P-inseparable sets. Also, weuse symmetry to show under reasonable hypotheses that many-one and Turing reducibilities dif-fer for disjoint NP-pairs. (All reductions in this paper are polynomial-time-bounded.) Concrete
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candidates for P-inseparable disjoint NP-pairs come from problems in UP or in NP∩coNP. Never-theless, Grollmann and Selman [GS88] proved that the existence of P-inseparable disjoint NP-pairsimplies the existence of P-inseparable disjoint NP-pairs, where both sets are NP-complete. Herewe prove two analogous results. Existence of nonsymmetric disjoint NP-pairs implies existenceof nonsymmetric disjoint NP-pairs, where both sets are NP-complete. If there exists a many-one-complete disjoint NP-pair, then there exist such a pair, where both sets are NP-complete. Naturalcandidates for nonsymmetric or ≤ppm -complete disjoint NP-pairs arise either from cryptographyor from proof systems [Pud01]. Our theorems show that the existence of such pairs will implythat nonsymmetric (or ≤ppm -complete) disjoint NP-pairs exist where both sets of the pair are ≤pm-complete for NP.Section 6 constructs two oracles O1 and O2 that possess several interesting properties. First,let us mention some properties that hold relative to both of these oracles. Relative to both oracles,many-one-complete disjoint NP-pairs exist. Therefore, while we expect that complete disjoint NP-pairs do not exist, this is not provable by relativizable techniques. P-inseparable disjoint NP-pairsexist relative to these oracles, which we obtain by proving that nonsymmetric disjoint NP-pairsexist. The conjecture of Even, Selman and Yacobi holds. Therefore, while nonexistence of Turing-complete disjoint NP-pairs is a sufficient condition for this conjecture, the converse does not hold,even in worlds in which P-inseparable pairs exist. Also, relative to these oracles, there exist P-inseparable pairs that are symmetric. Whereas nonsymmetric implies P-inseparable, again, we seethat the converse does not hold.In Section 6 we discuss the properties of these oracles in detail. Relative to O1, optimal proofsystems exist, while relative to O2, optimal proof systems do not exist. In particular, relative to O2,the converse of Razborov’s result does not hold. (That is, relative to O2, many-one complete pairsexist.)The construction of O2 involves some aspects that are unusual in complexity theory. We intro-duce undecidable requirements, and as a consequence, the oracle is undecidable. In particular, weneed to define sets A and B, such that relative to O2, the pair (A,B) is many-one complete. There-fore, we need to show that for every two nondeterministic, polynomial-time-bounded oracle Turingmachines NMi and NMj , either L(NMO2
i ) and L(NMO2

j ) are not disjoint or there is a reductionfrom the disjoint pair (L(NMO2
i ), L(NMO2

j )) to (A,B). We accomplish this as follows: Given
NMi, NMj , and a finite initial segment X of O2, we prove that either there is a finite extension Yof X such that for all oracles Z that extend Y ,

L(NMZ
i ) ∩ L(NMZ

j ) 6= ∅

or there is a finite extension Y of X such that for all oracles Z that extend Y ,
L(NMZ

i ) ∩ L(NMZ
j ) = ∅.

Then, we select the extension Y that exists. In this manner we force one of these two conditions tohold.In the latter case, to obtain a reduction from the pair (L(NMO2
i ), L(NMO2

j )) to (A,B) requiresencoding information into the oracle O2. The other conditions that we want O2 to satisfy requirediagonalizations. In order to prove that there is room to diagonalize, we need to carefully controlthe number of words that must be reserved for encoding. This is a typical concern in oracle
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constructions, but even more so here. We manage this part of the construction by inventing aunique data structure that stores words reserved for the encoding, and then prove that we do notstore too many such words.
2 Preliminaries
We fix the alphabet Σ = {0, 1} and we denote the length of a word w by |w|. The set of all (resp.,nonempty) words is denoted by Σ∗ (resp., Σ+). Let Σ<n df={w ∈ Σ∗

∣∣ |w| < n}, and define Σ≤n,
Σ≥n, and Σ>n analogously. For a set of words X let X<n df=X ∩Σ<n, and define X≤n, X=n, X≥n,and X>n analogously. For sets of words we take the complement with respect to Σ∗.The set of (nonzero) natural numbers is denoted byN (byN+, respectively). We use polynomial-time computable and polynomial-time invertible pairing functions 〈·, ·〉 : N+× N+ → N+ and
〈·, ·, ·〉 : N+× N+× N+→ N+. For a function f , dom(f) denotes the domain of f .Cook and Reckhow [CR79] defined a propositional proof system (proof system for short) to bea function f : Σ∗ → TAUT such that f is onto and f ∈ PF. (TAUT denotes the set of tautologies.)Note that f is not necessarily honest; it is possible that a formula φ ∈ TAUT has only exponentiallylong proofs w, i.e., f(w) = φ and |w| = 2O(|φ|).Let f and f ′ be two proof systems. We say that f simulates f ′ if there is a polynomial p anda function h : Σ∗ → Σ∗ such that for every w ∈ Σ∗, f(h(w)) = f ′(w) and |h(w)| ≤ p(|w|). Ifadditionally h ∈ PF, then we say that f p-simulates f ′.A proof system is optimal (resp., p-optimal) if it simulates (resp., p-simulates) every other proofsystem. The notion of simulation between proof systems is analogous to the notion of reducibilitybetween problems. Using that analogy, optimal proof systems correspond to complete problems.
2.1 Disjoint Pairs, Separators, and a Conjecture
Definition 2.1 A disjoint NP-pair (NP-pair for short) is a pair of nonempty sets A and B suchthat A,B ∈ NP and A ∩B = ∅. Let DisNP denote the class of all disjoint NP-pairs.

Given a disjoint NP-pair (A,B), a separator is a set S such that A ⊆ S and B ⊆ S; we saythat S separates (A,B). Let Sep(A,B) denote the class of all separators of (A,B). For disjoint
NP-pairs (A,B), the fundamental question is whether Sep(A,B) contains a set belonging to P. Inthat case the pair is P-separable; otherwise, the pair is P-inseparable. The following propositionsummarizes the known results about P-separability.
Proposition 2.2 1. P 6= NP ∩ co-NP implies NP contains P-inseparable sets.

2. P 6= UP implies NP contains P-inseparable sets [GS88].
3. If NP contains P-inseparable sets, then NP contains NP-complete P-inseparable sets[GS88].
While it is probably the case that NP contains P-inseparable sets, there is an oracle relative towhich P 6= NP and P-inseparable sets in NP do not exist [HS92]. So P 6= NP probably is not asufficiently strong hypothesis to show existence of P-inseparable sets in NP.
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Definition 2.3 Let (A,B) be a disjoint NP-pair.
1. X≤ppm (A,B) if, for every separator S of (A,B), X≤pmS.
2. X≤ppT (A,B) if, for every separator S of (A,B), X≤pTS.
3. (A,B) is NP-hard if SAT≤ppT (A,B).
4. (A,B) is uniformly NP-hard if there is a deterministic polynomial-time oracle Turing ma-chine M such that for every S ∈ Sep(A,B), SAT≤pTS via M .

Grollmann and Selman [GS88] showed that NP-hard implies uniformly NP-hard, i.e., both state-ments of the definition are equivalent. Even, Selman, and Yacobi [ESY84] conjectured that theredoes not exist a disjoint NP-pair (A,B) such that all separators of (A,B) are ≤pT hard for NP.
Conjecture 2.4 ([ESY84]) There do not exist disjoint NP-pairs that are NP-hard.

If Conjecture 2.4 holds, then no public-key cryptosystem is NP-hard to crack [ESY84]. Thisconjecture is a strong hypothesis with the following known consequences. In Section 3 we show asufficient condition for Conjecture 2.4 to hold.
Proposition 2.5 ([ESY84, GS88, Sel94]) If Conjecture 2.4 holds, then NP 6= coNP, NP 6= UP,and NPMV 6⊆cNPSV.
2.2 Reductions for Disjoint Pairs
We review the natural notions of reducibilities between disjoint pairs [GS88].
Definition 2.6 (non-uniform reductions for pairs) Let (A,B) and (C,D) be disjoint pairs.

1. (A,B) is many-one reducible in polynomial-time to (C,D), (A,B)≤ppm (C,D), if for everyseparator T ∈ Sep(C,D), there exists a separator S ∈ Sep(A,B) such that S≤pmT .
2. (A,B) is Turing reducible in polynomial-time to (C,D), (A,B)≤ppT (C,D), if for every sep-arator T ∈ Sep(C,D), there exists a separator S ∈ Sep(A,B) such that S≤pTT .

Definition 2.7 (uniform reductions for pairs) Let (A,B) and (C,D) be disjoint pairs.
1. (A,B) is uniformly many-one reducible in polynomial-time to (C,D), (A,B)≤ppum(C,D),if there exists a polynomial-time computable function f such that for every separator T ∈
Sep(C,D), there exists a separator S ∈ Sep(A,B) such that S≤pmT via f .

2. (A,B) is uniformly Turing reducible in polynomial-time to (C,D), (A,B)≤ppuT (C,D), ifthere exists a polynomial-time oracle Turing machine M such that for every separator T ∈
Sep(C,D), there exists a separator S ∈ Sep(A,B) such that S≤pTT via M .
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If f and M are as above, then we also say that (A,B)≤ppum(C,D) via f and (A,B)≤ppuT (C,D) via
M . Observe that if (A,B)≤ppm (C,D) and (C,D) is P-separable, then so is (A,B) (and the sameholds for≤ppT ,≤ppum, and≤ppuT ). We retain the promise problem notation in order to distinguish fromreducibilities between sets. Grollmann and Selman proved that Turing reductions and uniformTuring reductions are equivalent.
Proposition 2.8 ([GS88]) (A,B)≤ppT (C,D) ⇔ (A,B)≤ppuT (C,D) for all disjoint pairs (A,B)and (C,D).

In order to obtain the corresponding theorem for ≤ppum, we can adapt the proof of Proposi-tion 2.8, but a separate argument is required.
Lemma 2.9 Let S and T be nonempty, disjoint sets. Let X and Y be nonempty, finite, disjointsets such that X ∩ T = ∅ and Y ∩ S = ∅. Then the disjoint pairs (S, T ) and (S ∪X, T ∪ Y ) areequivalent by polynomial-time uniform reductions.
Proof First we show that (S ∪ X, T ∪ Y )≤ppum(S, T ). Choose a ∈ S and b ∈ T . Define thepolynomial-time computable function f by

f(x) df=





a, if x ∈ X
b, if x ∈ Y
x, otherwise.

Let A ∈ Sep(S, T ). We need to see that f−1(A) ∈ Sep(S ∪X, T ∪ Y ). So we show that
1. S ∪X ⊆ f−1(A), and
2. T ∪ Y ⊆ f−1(A).

For item 1, if x ∈ X , then f(x) = a ∈ S ⊆ A. So f(X) ⊆ A. Hence, X ⊆ f−1(A). If x ∈ S−X ,then f(x) = x ∈ S ⊆ A. So, S −X ⊆ f−1(A). For item 2, if x ∈ Y , then f(x) = b ∈ T ⊆ A. So
f(Y ) ∩ A = ∅. That is, Y ⊆ f−1(A). If x ∈ T − Y , then f(x) = x ∈ T . So f(T − Y ) ∩ A = ∅.That is, T − Y ⊆ f−1(A).Every separator of (S ∪ X, T ∪ Y ) is a separator of (S, T ). Therefore, the identity functionprovides a uniform reduction from (S, T ) to (S ∪X, T ∪ Y ). 2

Theorem 2.10 ≤ppm = ≤ppum.
Proof Assume that (Q,R) is not uniformly many-one reducible to (S, T ). That is, for everypolynomial-time computable function f , there exists a set A ∈ Sep(S, T ) such that f−1(A) 6∈
Sep(Q,R). Then for every polynomial-time computable function f , there exists A ∈ Sep(S, T )and a string y that witnesses the fact that f−1(A) 6∈ Sep(Q,R). Namely, either

y ∈ Q ∧ y 6∈ f−1(A) (i.e., f(y) 6∈ A) or y ∈ R ∧ y ∈ f−1(A) (i.e., f(y) ∈ A).

We will show from this assumption that (Q,R) is not many-one reducible to (S, T ). Wewill construct a decidable separator A of (S, T ) such that for every polynomial-time computable
5



              

function f , f−1(A) is not a separator of (Q,R). Let {fi}i≥1 be an effective enumeration of thepolynomial-time computable functions with associated polynomial time-bounds {pi}i≥1.The separator A of (S, T ) will be constructed inductively to be of the form S ∪⋃{Yi
∣∣ i ≥ 1},where ⋃{Yi ∣∣ i ≥ 1} is a subset of T and Y0 ⊆ Y1 ⊆ · · · . At stage i of the construction, we willchoose a finite subset Yi of T such that f−1(S ∪ Yi) is not a separator of (Q,R).Stage 0. Define Y0 = {0} and n0 = 1.Stage i (i ≥ 1). By induction hypothesis, Yi−1 is defined, ni−1 ≥ 0 is defined, and Yi−1 ⊆

T ∩ Σ≤ni−1 .Now we state a sequence of claims.
Claim 2.11 There exists a set X , X ⊆ T ∪ Σ≤ni−1 , and a witness yi demonstrating that f−1

i (S ∪
Yi−1 ∪X) is not a separator of (Q,R). That is,

yi ∈ Q ∧ yi 6∈ f−1
i (S ∪ Yi−1 ∪X) (i.e., fi(y) 6∈ S ∪ Yi−1 ∪X)

or
y ∈ R ∧ y ∈ f−1

i (S ∪ Yi−1 ∪X) (i.e., fi(y) ∈ S ∪ Yi−1 ∪X).

If the claim is false, then for every X ⊆ T ∪ Σ≤ni−1 , Q ⊆ f−1
i (S ∪ Yi−1 ∪ X) and R ⊆

f−1
i (S ∪ Yi−1 ∪X). The set of all languages S ∪ Yi−1 ∪X , where X ⊆ T ∪ Σ≤ni−1 is exactly theset of separators of the disjoint pair

(S ∪ Yi−1, T ∪ (Σ≤ni−1 − (S ∪ Yi−1))).

Thus, if the claim is false, then (Q,R) is uniformly many-one reducible to (S∪Yi−1, T ∪(Σ≤ni−1−
Yi−1)). However, by Lemma 2.9, this contradicts the assumption that (Q,R) is not uniformlyreducible to (S, T ). Hence the claim is true.
Claim 2.12 There exists a finite setX ,X ⊆ T ∪ Σ≤ni−1 , and a witness yi that satisfy the conditionof Claim 2.11.

For X and witness yi whose existence Claim 2.11 guarantees, |fi(yi)| ≤ pi(|yi|). So X ′ =
X ∩ Σ≤pi(|yi|) and yi satisfy the condition as well.
Claim 2.13 There is an effective procedure that finds a finite set X ⊆ T ∪ Σ≤ni−1 and witness yito satisfy the condition of Claim 2.11.

This is trivial. Effectively enumerate pairs of finite sets and strings until a pair with the desiredproperty is found.At Stage i, apply Claim 2.13; define Yi = Yi−1 ∪X and define ni = 1 + max(2ni−1 , pi(|yi|)).Define A = S ∪⋃{Yi
∣∣ i ≥ 1}. Since ⋃{Yi ∣∣ i ≥ 1} ⊆ T , A is a separator of (S, T ). It is easyto see that A is decidable. Finally, for every fi, i ≥ 1, f−1

i (A) is not a separator of (Q,R): Clearlythis holds for f−1
i (S ∪ Yi), and the construction preserves this property. 2

We obtain the following useful characterization of many-one reductions. Observe that this isthe way Razborov [Raz94] defined reductions between disjoint pairs.
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Theorem 2.14 (Q,R)≤ppm (S, T ) if and only if there exists a polynomial-time computable function
f such that f(Q) ⊆ S and f(R) ⊆ T .
Proof By Theorem 2.10 there is a polynomial-time computable function f such for every A ∈
Sep(S, T ), f−1(A) ∈ Sep(Q,R). That is, if A ∈ Sep(S, T ), then Q ⊆ f−1(A) and R ⊆ f−1(A),which implies that f(Q) ⊆ A and f(R) ∩ A = ∅. Well, S ∈ Sep(S, T ). So f(Q) ⊆ S. Also,
T ∈ Sep(S, T ). So f(R) ∩ T = ∅. That is, f(R) ⊆ T . The converse is immediate. 2

3 Complete Disjoint NP-Pairs
Keeping with common terminology, a disjoint pair (A,B) is ≤ppm -complete (≤ppT -complete) for theclass DisNP if (A,B) ∈ DisNP and for every disjoint pair (C,D) ∈ DisNP, (C,D)≤ppm (A,B)((C,D)≤ppT (A,B), respectively).Consider the following assertions:

1. DisNP does not have a ≤ppT -complete disjoint pair.
2. DisNP does not have a ≤ppm -complete disjoint pair.
3. DisNP does not contain a disjoint pair all of whose separators are ≤pT -hard for NP (i.e.,Conjecture 2.4 holds).
4. DisNP does not contain a disjoint pair all of whose separators are ≤pm-hard for NP.
Assertions 1 and 2 are possible answers to the question raised by Razborov [Raz94] of whether

DisNP contains complete disjoint pairs. Assertion 3 is Conjecture 2.4. Assertion 4 is the analogof this conjecture using many-one reducibility.We can dispense with assertion 4 immediately, for it is equivalent to NP 6= coNP.
Proposition 3.1 NP 6= coNP if and only if DisNP does not contain a disjoint pair all of whoseseparators are ≤pm-hard for NP.
Proof If NP = coNP, then (SAT, SAT) is a disjoint pair in DisNP all of whose separators are
≤pm-hard for NP.To show the other direction, consider the disjoint pair (A,B) ∈ DisNP and assume that allof its separators are ≤pm-hard for NP. Since B is a separator of (A,B), SAT ≤pmB. Therefore,
SAT≤pmB, implying that SAT ∈ NP. Thus, NP = coNP. 2

Proposition 3.2 Assertion 1 implies assertions 2 and 3. Assertions 2 and 3 imply assertion 4.
This proposition states, in part, that assertion 1 is so strong as to imply Conjecture 2.4.
Proof It is trivial that assertion 1 implies assertion 2 and assertion 3 implies assertion 4.We prove that assertion 1 implies assertion 3. Assume assertion 3 is false and let (A,B) ∈
DisNP such that all separators are NP-hard. We claim that (A,B) is≤ppT -complete for DisNP. Let
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(C,D) belong to DisNP. Let S be an arbitrary separator of (A,B). Note that S is NP-hard and
C ∈ NP. So C≤pTS. Since C is a separator of (C,D), this demonstrates that (C,D)≤ppT (A,B).Similarly, we prove that assertion 2 implies assertion 4. In this case, every separator S of
(A,B) is ≤pm-hard for NP. So C≤pmS. Therefore, (C,D)≤ppm (A,B). 2

Homer and Selman [HS92] constructed an oracle relative to which P 6= NP and every disjointNP-pair is P-separable. Relative to this oracle, assertion 3 holds and assertions 1 and 2 are false.To see this, let (A,B) be an arbitrary disjoint NP-pair. We show that (A,B) is both ≤ppT -completeand ≤ppm -complete. For any other pair (C,D) ∈ DisNP, since (C,D) is P-separable, there is aseparator S of (C,D) that is in P. Therefore, for any separator L of (A,B), S trivially ≤pm-reducesand ≤pT -reduces to L. So (C,D)≤ppm (A,B) and (C,D)≤ppT (A,B).There exists an oracle relative to which UP = NP 6= coNP [GW99]. So, relative to this oracleassertion 4 holds, but assertion 3 is false. In Section 6 we will construct oracles relative to whichassertion 4 holds while assertions 1 and 2 fail.In Theorem 3.8 we construct an oracleX relative to which assertion 1 is true. In Corollary 3.11we observe that P 6= UP relative to X . Therefore, by Proposition 3.2, all of the following proper-ties hold relative to X:
1. DisNP does not have a ≤ppT -complete disjoint pair.
2. Conjecture 2.4 holds; so UP 6= NP,NP 6= coNP,NPMV 6⊆cNPSV and NP-hard public-keycryptosystems do not exist [ESY84, Sel94].
3. P 6= UP; therefore P-inseparable disjoint NP-pairs exist [GS88].
4. Optimal propositional proof systems do not exist [Raz94].
5. There is a tally set T ∈ coNP− NP and a tally set T ′ ∈ coNE− E [Pud86, KP89].
The following lemma is essential to the proofs of Theorems 3.8 and 6.1. Intuitively this lemmasays that, given two nondeterministic machines and some oracle, either we can force the languagesaccepted by these machines not disjoint, or we can ensure that one of the machines rejects a givenstring q by reserving only polynomially many strings.

Lemma 3.3 LetM andN be nondeterministic polynomial-time oracle Turing machines with poly-nomial time bounds pM and pN respectively. Let Y be an oracle and q ∈ Σ∗, |q| = n. Then, forany set T at least one of the following holds.
• ∃S ⊆ T , ‖S‖ ≤ pM(n) + pN(n), such that q ∈ L(MY ∪S) ∩ L(NY ∪S).
• ∃S ′ ⊆ T, ‖S ′‖ ≤ pM(n) · (pN(n) + 1), such that either for any S ⊆ T , if S ∩ S ′ = ∅, then
MY ∪S(q) rejects, or for any S ⊆ T , if S ∩ S ′ = ∅, then NY ∪S(q) rejects.

Proof Let us define the following languages:
• LM = {〈P,Qy, Qn〉

∣∣ for some set SM ⊆ T , P is an accepting path of MY ∪SM (q) and Qy(resp., Qn) is the set of words in SM (resp., T − (Y ∪ SM)) that are queried on P}
8



             

• LN = {〈P,Qy, Qn〉
∣∣ for some set SN ⊆ T , P is an accepting path of NY ∪SN (q) and Qy(resp., Qn) is the set of words in SN (resp., T − (Y ∪ SN)) that are queried on P}

We say that 〈P,Qy, Qn〉 ∈ LM conflicts with 〈P ′, Q′y, Q′n〉 ∈ LN if Qy ∩Q′n 6= ∅ or Q′y ∩Qn 6= ∅.In other words, there is a conflict if there exists at least one query that is in T and that is answereddifferently on P and P ′.Case I There exist 〈P,Qy, Qn〉 ∈ LM and 〈P ′, Q′y, Q′n〉 ∈ LN that do not conflict.
Let S = Qy ∪ Q′y. We claim in this case that q ∈ L(MY ∪S) ∩ L(NY ∪S). Let SM and SN bethe subsets of T that witness 〈P,Qy, Qn〉 ∈ LM and 〈P ′, Q′y, Q′n〉 ∈ LN . So P is an acceptingpath of MY ∪SM (q), and P ′ is an accepting path of NY ∪SN (q). Assume that on P there exists aquery r that is answered differently with respect to the oracles Y ∪ SM and Y ∪ S. Hence r /∈ Y .Moreover, either r ∈ SM − S or r ∈ S − SM . However, r cannot belong to SM − S, sinceotherwise r ∈ Qy and therefore r ∈ S. So r ∈ S − SM . Hence r /∈ Qy and therefore r ∈ Q′y. Onthe other hand, r ∈ S−SM implies r ∈ T − (Y ∪SM). Therefore, r ∈ Qn∩Q′y which contradictsthe assumption in Case I. This shows that P is an accepting path of MY ∪S(q). Analogously weshow that P ′ is an accepting path of NY ∪S(q). Hence q ∈ L(MY ∪S) ∩ L(NY ∪S). Note that

‖S‖ = ‖Qy ∪Q′y‖ ≤ pM(n) + pN(n).Case II Every triple 〈P,Qy, Qn〉 ∈ LM conflicts with every triple 〈P ′, Q′y, Q′n〉 ∈ LN .
Note that in this case we cannot have both a triple 〈P, ∅, Qn〉 in LM and a triple 〈P ′, ∅, Q′n〉in LN , simply because these two triples do not conflict with each other. We use the followingalgorithm to create the set S ′ as claimed in the statement of this lemma.

S′ = ∅while (LM 6= ∅ and LN 6= ∅)(1) Choose some (P∗, Q∗y, Q
∗
n) ∈ LM(2) S′ = S′ ∪ Q∗y ∪ Q∗n(3) For every t = (P, Qy, Qn) ∈ LM(4) if Qy ∩ (Q∗y ∪ Q∗n) 6= ∅ then remove t(5) For every t′ = (P′, Q′y, Q
′
n) ∈ LN(6) if Q′y ∩ (Q∗y ∪ Q∗n) 6= ∅ then remove t′end while

We claim that after k iterations of the while loop, for every triple (P ′, Q′y, Q
′
n) ∈ LN , ‖Q′n‖ ≥ k. Ifthis claim is true, the while loop iterates at most pN(n) + 1 times, since for any triple in LN , ‖Q′n‖is bounded by the running time of N on q, i.e., pN(n). On the other hand, during each iteration,

S ′ is increased by at most pM(n) strings, since for any triple in LM , ‖Qy ∪Qn‖ is bounded by therunning time of M on q, i.e., pM(n). Therefore, ‖S ′‖ ≤ pM(n) · (pN(n) + 1) when this algorithmterminates.
Claim 3.4 After the k-th iteration of the while loop of the above algorithm, for every t′ =
〈P ′, Q′y, Q′n〉 that remains in LN , ‖Q′n‖ ≥ k.
Proof For every k, tk denotes the triple 〈P k, Qk

y, Q
k
n〉 ∈ LM that is chosen during the k-th iterationin step (1). For every t′ = 〈P ′, Q′y, Q′n〉 that is in LN at the beginning of this iteration, tk conflicts
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with t′ (assumption of Case II). Therefore, there is a query in (Qk
n∩Q′y)∪ (Qk

y ∩Q′n). If this queryis in Qk
n ∩ Q′y, then t′ will be removed from LN in step (6). Otherwise, i.e., if Qk

y ∩ Q′n 6= ∅, thenlet q′ be the lexicographically smallest query in Qk
y ∩Q′n. In this case, t′ will not be removed from

LN ; we say that t′ survives the k-th iteration due to query q′. Note that t′ can survive only due to aquery that is in Q′n. We will use this fact to prove that ‖Q′n‖ ≥ k after k iterations.We show now that any triple that is left in LN after k iterations survives each iteration due toa different query. This will complete the proof of the claim. Assume that t′ survives iteration k byquery q′ ∈ Qk
y ∩ Q′n. If t′ had survived an earlier iteration l < k by the same query q′, then q′ isalso in Ql

y ∩ Q′n. Therefore, Ql
y ∩ Qk

y 6= ∅. So tk = 〈P k, Qk
y, Q

k
n〉 should have been removed instep (4) during iteration l, and cannot be chosen at the beginning of iteration k, as claimed. Hence,

q′ cannot be the query by which t′ had survived iteration l. This proves Claim 3.4. 2

Therefore, now we have a set S ′ ⊆ T of the required size such that either LM or LN is empty.Assume that LM is empty, and for some set SM ⊆ T it holds that SM ∩ S ′ = ∅ and M (Y ∪SM )(q)accepts. Let P be an accepting path of M (Y ∪SM )(q) and let Qy (resp., Qn) be the set of words in
SM (resp., T − (Y ∪ SM)) that are queried on P . The triple 〈P,Qy, Qn〉 must have been in LMand has been removed during some iteration. This implies that during that iteration, Qy ∩ S ′ 6= ∅(step (4)). Since Qy ⊆ SM , this contradicts the assumption that SM ∩ S ′ = ∅.A similar argument holds for LN . Hence either LM = ∅ and M (Y ∪S)(q) rejects for any S ⊆ Tsuch that S ∩ S ′ = ∅, or LN = ∅ and N (Y ∪S)(q) rejects for any S ⊆ T such that S ∩ S ′ = ∅. Thisends the proof of Lemma 3.3. 2

We define the following notions for reductions relative to oracles.
Definition 3.5 For any set X , a pair of disjoint sets (A,B) is polynomial-time Turing reduciblerelative to X (≤pp,XT ) to a pair of disjoint sets (C,D) if for any separator S that separates (C,D),there exists a polynomial-time deterministic oracle Turing Machine M such that MS⊕X accepts alanguage that separates (A,B).
Definition 3.6 For any set X , let

DisNPX = {(A,B)
∣∣A ∈ NPX , B ∈ NPX , and A ∩ B = ∅}.

(C,D) is ≤pp,XT -complete for DisNPX if (C,D) ∈ DisNPX and for all (A,B) ∈ DisNPX ,
(A,B) ≤pp,XT (C,D). Similarly, (C,D) is≤ppT -complete for DisNPX if (C,D) ∈ DisNPX and forall (A,B) ∈ DisNPX , (A,B)≤ppT (C,D).

However, the following proposition shows that if there exists a disjoint pair that is Turing-complete relative to X , then there is a pair that is Turing-complete such that the reduction betweenthe separators does not access the oracle.
Proposition 3.7 For any set X , DisNPX has a ≤pp,XT -complete pair if and only if DisNPX has a
≤ppT -complete pair.
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Proof The if direction is trivial. We only show the only if direction. Suppose (C,D) is ≤pp,XT -complete for DisNPX . We claim that (C⊕X,D⊕X) 1 is≤ppT -complete for DisNPX . Observe that
(C ⊕X,D ⊕X) ∈ DisNPX . Consider any (A,B) ∈ DisNPX . Let S ′ separate (C ⊕X,D ⊕X).Define S = {x

∣∣ 0x ∈ S ′}. Then S separates (C,D) and S ′ = S ⊕ X . Since (C,D) is ≤pp,XT -complete for DisNPX , there exists a polynomial-time oracle Turing machine M so that L(MS⊕X)separates (A,B). That is, L(MS′) separates (A,B), which is what we needed to prove. 2

Theorem 3.8 There exists an oracle X such that DisNPX does not have a ≤pp,XT -complete pair.
Proof By Proposition 3.7, it suffices to show that DisNPX has no ≤ppT -complete pair. SinceProposition 2.8 relativizes to all oracles, it suffices to construct X such that for every (C,D) ∈
DisNPX there exists a disjoint pair (A,B) ∈ DisNPX such that (A,B) 6≤ppuT (C,D).Suppose {Mk}k≥1 (resp., {Ni}i≥1) is an enumeration of deterministic (resp., non-deterministic)polynomial-time oracle Turing machines. Let rk and pi be the corresponding polynomial timebounds for Mk and Ni. For any r, s, d, let Σd

rs = 0r10s1Σd and ldrs = r + s+ d+ 2 (i.e., ldrs is thelength of strings in Σd
rs). For Z ⊆ Σ∗, i ≥ 1, and j ≥ 1, define

AZij = {0n
∣∣ ∃x, |x| = n, 0i10j10x ∈ Z}

and
BZ
ij = {0n

∣∣ ∃x, |x| = n, 0i10j11x ∈ Z}.
We construct the oracle in stages. Xm denotes the oracle before stage m. We define X =⋃

m≥1 Xm. Initially, let X = ∅. In stage m = 〈i, j, k〉, we choose some number n = nm and add
strings from Σn+1

ij to the oracle such that either L(N
Xm+1

i )∩L(N
Xm+1

j ) 6= ∅ or (A
Xm+1

ij , B
Xm+1

ij ) is
not uniformly Turing reducible to (L(N

Xm+1

i ), L(N
Xm+1

j )) via MXm+1

k . This construction ensuresthat for every i and j, (L(NX
i ), L(NX

j )) is not ≤ppuT -complete for DisNPX .We describe the construction of Xm+1. We choose some large enough n = nm and we will addwords from Σn+1
ij to the oracle. We need a sufficient number of words in Σn+1

ij for diagonalization.Therefore, n has to be large enough such that
rk(n)pi(rk(n))(pj(rk(n)) + 1) < 2n.

On the other hand, if m ≥ 2, then we have to make sure that adding words of length ln+1
ijdoes not influence diagonalizations made in former steps. Therefore, if m ≥ 2 and m − 1 =

〈i′, j′, k′〉, then n > nm−1 and n has to be large enough such that ln+1
ij is greater than lnm−1+1

i′j′ ,
max(pi′(nm−1), pj′(nm−1)), and max(pi′(rk′(nm−1)), pj′(rk′(nm−1))).Suppose there exists an S ⊆ Σn+1

ij such that L(NXm∪S
i ) ∩ L(NXm∪S

j ) ∩ Σ≤rk(n) 6= ∅. Let
Xm+1 = Xm ∪ S and go to the next stage m+ 1.Otherwise,

for all S ⊆ Σn+1
ij , L(NXm∪S

i ) ∩ L(NXm∪S
j ) ∩ Σ≤rk(n) = ∅. (1)

1A⊕B def
= {0x

∣∣x ∈ A} ∪ {1y
∣∣ y ∈ B}
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In this case, we consider the computation of Mk on 0n. We determine some w ∈ Σn+1
ij and let

Xm+1 = Xm ∪ {w}. We construct a set Q ⊆ L(N
Xm+1

j ). Hence L(N
Xm+1

i ) ∪ Q is a separator of
(L(N

Xm+1

i ), L(N
Xm+1

j )). The sets Xm+1 and Q satisfy either
0n ∈ AXm+1

ij and 0n /∈ L(M
L(N

Xm+1
i )∪Q

k ) (2)
or

0n ∈ BXm+1

ij and 0n ∈ L(M
L(N

Xm+1
i )∪Q

k ). (3)
This shows that (A

Xm+1

ij , B
Xm+1

ij ) does not ≤ppuT -reduce to (L(N
Xm+1

i ), L(N
Xm+1

j )) via Mk.The difficulty of finding w and Q rises mainly from the following: If we want to preserve thecomputation of Mk on 0n, then we have to ensure that all oracle queries are preserved. Since theoracle is a separator of two NP languages, we have to maintain the acceptance behaviors of Niand Nj with respect to the queries made by Mk(0
n). This results in reserving too many strings. Inparticular, this may leave no room for the diagonalization in Σn+1

ij . However, by Lemma 3.3, wecan do better.Now we construct the set Q and at the same time, we reserve strings for Xm+1. The lattermakes sure that either Ni or Nj rejects on certain queries.Initially we set Q = ∅. We run Mk on 0n using oracle L(NXm
i ) ∪ Q, until the first string

q is queried. We apply Lemma 3.3 with M = Ni, N = Nj , Y = Xm, and T = Σn+1
ij . ByEquation (1), the first statement of Lemma 3.3 cannot hold. Hence, there is a set S ′ ⊆ Σn+1

ij ,
‖S ′‖ ≤ pi(rk(n)) · (pj(rk(n)) + 1) such that either

(∀S, S ⊆ Σn+1
ij , S ∩ S ′ = ∅)[q 6∈ L(NXm∪S

i )], (4)
or

(∀S, S ⊆ Σn+1
ij , S ∩ S ′ = ∅)[q 6∈ L(NXm∪S

j )]. (5)
We reserve all strings in S ′ forXm+1. If Equation (4) is true, then we continue runningMk withoutchanging Q. (Hence answer “no” to query q.) Otherwise, let Q = Q ∪ {q} and continue running
Mk with oracle Xm ∪ Q. (Hence answer “yes” to query q.) By the choice of q, Q remains aseparator of (L(NXm

i ), L(NXm
j )). We continue running Mk until the next string is queried andthen apply Lemma 3.3 again, obtain the set S ′ that satisfies Equation (4) or (5) for the new queryand update Q accordingly. We do this repeatedly until the end of the computation of Mk on 0n.The number of strings in Σn+1

ij that are reserved for Xm+1 is at most
rk(n) · pi(rk(n)) · (pj(rk(n)) + 1) < 2n.

So there exist a string 0i10j10x ∈ Σn+1
ij and a string 0i10j11y ∈ Σn+1

ij such that neither string
is reserved for Xm+1. If ML(NXm

i )∪Q
k (0n) accepts, then let w = 0i10j11y. Otherwise, let w =

0i10j10x. We define Xm+1 = Xm ∪ {w}. This completes stage m and we can go to the nextstage m+ 1.The following two claims prove the correctness of the construction.
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Claim 3.9 After every stage m = 〈i, j, k〉, either L(N
Xm+1

i ) ∩ L(N
Xm+1

j ) ∩ Σ≤rk(nm) 6= ∅ or
(A

Xm+1

ij , B
Xm+1

ij ) does not ≤ppuT -reduce to (L(N
Xm+1

i ), L(N
Xm+1

j )) via Mk.
Proof If L(N

Xm+1

i ) ∩ L(N
Xm+1

j ) ∩ Σ≤rk(nm) 6= ∅, then we are done. Otherwise, it follows thatEquation (1) holds. In this case we constructed Q. We know that every string that was added to Qis enforced to be rejected byNXm
j . Since w is not reserved andXm+1 = Xm∪{w}, Q is also in the

complement of L(N
Xm+1

j ). Therefore, L(N
Xm+1

i ) ∪Q is a separator of (L(N
Xm+1

i ), L(N
Xm+1

j )).
All queries of Mk(0

nm) under oracle L(N
Xm+1

i ) ∪ Q are answered the same way as in theconstruction of Q. The reason is as follows: For any query q, if we reserve strings from Σnm+1
ij for

Xm+1 such that Ni always rejects q (Equation (4)), then q will not be put into Q. Hence q will getthe answer “no” from oracle L(N
Xm+1

i ) ∪Q, which is the same as in the construction of Q. If wereserve strings from Σnm+1
ij for Xm+1 such that Nj always rejects q (Equation (5)), then q will be

put into Q. Hence q gets the answer “yes” under oracle L(N
Xm+1

i ) ∪Q, which is the same answeras given in the construction of Q. Therefore, by the choice of w, we obtain:
• If ML(N

Xm+1
i )∪Q

k (0nm) accepts, then 0nm+1 ∈ BL(N
Xm+1
i )∪Q

ij .
• If ML(N

Xm+1
i )∪Q

k (0nm) rejects, then 0nm+1 ∈ AL(N
Xm+1
i )∪Q

ij .
Hence L(M

L(N
Xm+1
i )∪Q

k ) does not separate (A
Xm+1

ij , B
Xm+1

ij ). 2

Claim 3.10 For all (C,D) ∈ DisNPX , where C = L(NX
i ) and D = L(NX

j ), it holds that
(AXij , B

X
ij ) ∈ DisNPX and (AXij , B

X
ij ) 6≤ppuT (C,D).

Proof First, we claim that there is no stage m = 〈i, j, k〉 such that L(N
Xm+1

i ) ∩ L(N
Xm+1

j ) ∩
Σ≤rk(nm) 6= ∅. Otherwise, since the number nm+1 is chosen large enough, all strings that are addedto the oracle in later stages will not change the computations of Ni and Nj on inputs of lengths
≤ rk(nm). Therefore, L(NX

i ) ∩ L(NX
j ) 6= ∅, which contradicts our assumption.

From Claim 3.9 it follows that for every stage m = 〈i, j, k〉, (A
Xm+1

ij , B
Xm+1

ij ) does not ≤ppuT -
reduce to (L(N

Xm+1

i ), L(N
Xm+1

j )) via Mk. Again, since nm+1 is chosen large enough, all stringsadded to the oracle in later stages will not change the following.
1. The membership of 0nm in AXm+1

ij and BXm+1

ij . Strings of length lnm+1
ij are only added to theoracle at stage m and not in any other stage.

2. The computations of Ni and Nj on inputs of lengths≤ rk(nm) (which is the maximal lengthof strings that can be queried by Mk on 0nm).
Hence, (AXij , B

X
ij ) does not ≤ppuT -reduce to (C,D) via Mk. Since this holds for all k, we obtain

(AXij , B
X
ij ) 6≤ppuT (C,D).It remains to observe that (AXij , B

X
ij ) ∈ DisNPX : For each m = 〈i, j, k〉 we added exactly onestring from Σnm+1

ij to the oracle. Moreover, for any other m′ = 〈i′, j′, k′〉 we added only words
from Σ

nm′+1
i′j′ to the oracle; this does not influence AXij and BX

ij . 2
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This completes the proof of the theorem. 2

Corollary 3.11 For the oracle X from Theorem 3.8 it holds that PX 6= UPX .
Proof Choose i and j such that NX

i (resp., NX
j ) accepts X (resp., X). We show that AXij ∈

UPX − PX .Note that L(NX
i ) ∩ L(NX

j ) = ∅. By the construction in Theorem 3.11, for every length n, weadd at most one string of the form 0i10j10x, |x| = n, to the oracle. So AXij ∈ UPX .Assume AXij = L(MX
k ) for some deterministic polynomial-time oracle Turing machine

Mk. Note that X is the only separator of (L(NX
i ), L(NX

j )). Therefore, it follows that
(AXij , B

X
ij )≤ppuT (L(NX

i ), L(NX
j )) via Mk. This contradicts Claim 3.10. 2

4 Function Classes and Disjoint Pairs
We show that there exists a Turing-complete disjoint NP-pair if and only if NPSV contains aTuring-complete partial function. We know already that there is a connection between disjoint NP-pairs and NPSV. Namely, Selman [Sel94] proved that Conjecture 2.4 holds if and only if NPSVdoes not contain an NP-hard partial function, and Köbler and Meßner [KM00] proved that thereexists a many-one-complete disjoint NP-pair if and only if NPSV contains a many-one-completepartial function. Recall [Sel94] that NPSV is the set of all partial, single-valued functions computedby nondeterministic polynomial-time-bounded transducers.If g is a single-valued total function, then we define M [g], the single-valued partial functioncomputed by M with oracle g as follows: x ∈ dom(M [g]) if and only if M reaches an acceptingstate on input x. In this case, M [g](x) is the final value of M ’s output tape. In the case that g is atotal function and f = M [g], we write f≤pT g.The literature contains two different definitions of reductions between partial functions, be-cause one must decide what to do in case a query is made to the oracle function when the query isnot in the domain of the oracle function. Fenner et al. [FHOS97] determined that in this case thevalue returned should be a special symbol ⊥. Selman [Sel94] permits the value returned in thiscase to be arbitrary, which is the standard paradigm for promise problems. Here we use the promiseproblem definition of Selman [Sel94]. Recall that for multivalued partial functions f and g, g is anextension of f if dom(f) ⊆ dom(g), and for all x ∈ dom(f) and for every y, if g(x) 7→ y, then
f(x) 7→ y.
Definition 4.1 For partial multivalued functions f and g, f is Turing reducible to g (as a promiseproblem, so we write f≤ppT g) in polynomial time if for some deterministic polynomial-time-bounded oracle transducerM , for every single-valued total extension g′ of g,M [g′] is an extensionof f .
Here, if the query q belongs to the domain of g, then the oracle returns a value of g(q). We will usethe result [Sel94] that f≤ppT g if and only if for every single-valued total extension g′ of g, there isa single-valued total extension f ′ of f such that f ′≤pT g′.A single-valued partial function g is ≤ppT -complete for NPSV if g belongs to NPSV and for all
f ∈ NPSV, f≤ppT g.
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Theorem 4.2 NPSV contains a≤ppT -complete partial function⇔ DisNP contains a≤ppT -completepair.
Proof For any f ∈ NPSV, define the following sets:

Rf = {〈x, y〉
∣∣ x ∈ dom(f), y ≤ f(x)} (6)

and
Sf = {〈x, y〉

∣∣ x ∈ dom(f), y > f(x)}. (7)
Note that (Rf , Sf ) is a disjoint NP-pair.
Claim 4.3 For every separator A of (Rf , Sf ), there is a single-valued total extension f ′ of f suchthat f ′≤pTA.
Consider the following oracle transducer T that computes f ′ with oracle A. On input x, if x ∈
dom(f), then T determines the value of f(x), using a binary search algorithm, by making repeatedqueries to A. Note that for x ∈ dom(f) and for any y, if y ≤ f(x), then 〈x, y〉 ∈ Rf , and if
y > f(x), then 〈x, y〉 ∈ Sf . Clearly, T computes some single-valued total extension of f . Thisproves the claim.
Let f be a≤ppT -complete function for NPSV and assume thatA separatesRf and Sf . By Claim 4.3,there is a single-valued total extension f ′ of f such that f ′≤pTA.Let (U, V ) ∈ DisNP. We want to show that (U, V )≤ppT (Rf , Sf ). Define

g(x) =





0, if x ∈ U
1, if x ∈ V
↑, otherwise.

Then g ∈ NPSV, so g≤ppT f . Therefore, there is a single-valued total extension g′ of g such that
g′≤pTf ′.Define L = {x

∣∣ g′(x) = 0}. It is easy to see that L≤pT g′. Also note that U ⊆ L and V ⊆ L,and, therefore, L separates U and V . Then the following sequence of reductions show that L≤pTA.
L ≤pT g′ ≤pT f ′ ≤pT A.

Thus, for every separator A of (Rf , Sf ), there is a separator L of (U, V ) such that L≤pTA.Therefore, (Rf , Sf ) is ≤ppT -complete for DisNP.For the other direction, assume that (U, V ) is ≤ppT -complete for DisNP. Define the followingfunction:
f(x) =





0, if x ∈ U
1, if x ∈ V
↑, otherwise.

Clearly, f ∈ NPSV.
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Let f ′ be a single-valued total extension of f , and let L = {x
∣∣ f ′(x) = 0}. Clearly, L≤pTf ′.Also, since U ⊆ L and V ⊆ L, L is a separator of (U, V ).We want to show that for any g ∈ NPSV, g≤ppT f . Consider the disjoint NP-pair (Rg, Sg) forthe function g as defined in Equations (6) and (7). There is a separator A of (Rg, Sg) such that

A≤pTL, since L is a separator of the ≤ppT -complete disjoint NP-pair (U, V ). As noted in Claim 4.3,there is a single-valued total extension g′ of g such that g′≤pTA. Therefore, the following sequenceof reductions shows that g≤ppT f .
g′ ≤pT A ≤pT L ≤pT f ′.

Hence, f is complete for NPSV. 2

Corollary 4.4 1. Let f ∈ NPSV be ≤ppT -complete for NPSV. Then (Rf , Sf ) is ≤ppT -completefor DisNP.
2. If (U, V ) is ≤ppT -complete for DisNP, then fU,V is complete for NPSV, where

fU,V (x) =





0, if x ∈ U
1, if x ∈ V
↑, otherwise.

3. Relative to the oracle in Theorem 3.8, NPSV does not have a≤ppT -complete partial function.
5 Nonsymmetric Pairs and Separation of Reducibilities
Pudlák [Pud01] defined a disjoint pair (A,B) to be symmetric if (B,A)≤ppm (A,B). Otherwise,
(A,B) is nonsymmetric. In this section we give complexity-theoretic evidence of the existence ofnonsymmetric disjoint NP-pairs. As a consequence, we obtain new ways to demonstrate existenceof P-inseparable sets and we show that ≤ppm and ≤ppT reducibilities differ for disjoint NP-pairs.A set L is P-printable if there is k ≥ 1 such that all elements of L up to length n can be printedby a deterministic Turing machine in time nk + k [HY84, HIS85]. Every P-printable set is sparseand belongs to P. A set A is P-printable-immune if no infinite subset of A is P-printable.A set L is p-selective if there is a polynomial-time-bounded function f such that for every
x, y ∈ Σ∗, f(x, y) ∈ {x, y}, and {x, y} ∩ L 6= ∅ ⇒ f(x, y) ∈ L [Sel79].A function f ∈ PF is almost-always one-way [FPS01] if no polynomial-time Turing machineinverts f correctly on more than a finite subset of range(f).
Proposition 5.1 1. (A,B) is symmetric if and only if (B,A) is symmetric.

2. If (A,B) is P-separable, then (A,B) is symmetric.
Proof The proof of the first assertion is trivial. For the proof of the second assertion, let (A,B)be a P-separable disjoint NP-pair. Fix a ∈ A and b ∈ B, and let the separator be S ∈ P. Considerthe following polynomial-time computable function f . On input x, if x ∈ S, then f outputs b;otherwise, f outputs a. Therefore, x ∈ A implies x ∈ S, which implies f(x) = b ∈ B, and
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x ∈ B implies x /∈ S, which implies f(x) = a ∈ A. Therefore, (A,B) ≤ppm (B,A), i.e., (A,B) issymmetric. 2

We will show the existence of a nonsymmetric disjoint NP-pair under certain hypotheses. Due tothe following proposition, that will separates ≤ppm and ≤ppT reducibilities.
Proposition 5.2 1. If (A,B) is a nonsymmetric disjoint NP-pair, then (B,A) 6≤ppm (A,B).

2. For any disjoint NP-pair (A,B), (B,A) ≤ppT (A,B).

Proof The first assertion follows from the definition of symmetric pairs. For the second assertion,observe that for any S separating A and B, S separates B and A, while for any set S, S ≤pT S. 2

We will use the following proposition in a crucial way to provide some evidence for the exis-tence of nonsymmetric disjoint NP-pairs. In other words, we will seek to obtain a disjoint NP-pair
(A,B) such that either A or B is p-selective, but (A,B) is not P-separable.
Proposition 5.3 For any disjoint NP-pair (A,B), if either A or B is p-selective, then (A,B) issymmetric if and only if (A,B) is P-separable.
Proof We know from Proposition 5.1 that if (A,B) is P-separable, then it is symmetric. Nowassume that (A,B) is symmetric via some function f and assume (without loss of generality) that
A is p-selective and the p-selector function is g. The following algorithm M separates A and B.On input x, M runs g on the strings (x, f(x)), and accepts x if and only if g outputs x. If x ∈ A,then f(x) ∈ B and therefore, g has to output x. On the other hand, if x ∈ B, then f(x) ∈ A. So gwill output f(x) and M will reject x. Therefore, A ⊆ L(M) ⊆ B. 2

Now we give evidence for the existence of nonsymmetric disjoint NP-pairs.
Theorem 5.4 If E 6= NE ∩ coNE, then there is a set A ∈ NP ∩ coNP such that (A,A) is notsymmetric.
Proof If E 6= NE ∩ coNE, then there is a tally set T ∈ (NP ∩ coNP) − P. From Selman[Sel79, Theorem 5], the existence of such a tally set implies that there is a p-selective set A ∈
(NP ∩ coNP) − P. Clearly, (A,A) is not P-separable. Hence, by Proposition 5.3, (A,A) isnonsymmetric. 2

As a corollary, if E 6= NE ∩ coNE, then there is a set A ∈ NP ∩ coNP such that
(A,A) 6≤ppm (A,A), yet clearly (A,A)≤ppT (A,A).We will show that the hypotheses in Theorem 5.5 imply the existence of a nonsymmetric dis-joint NP-pair. Note that the hypotheses in this theorem are similar to those studied by Fortnow,Pavan and Selman [FPS01] and Pavan and Selman [PS01]. However, our hypotheses are strongerthan the former and weaker than the latter.
Theorem 5.5 The following are equivalent.

1. There is a UP-machine N that accepts 0∗ such that no polynomial-time machine can outputinfinitely many accepting computations of N .
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2. There is a set S in UP accepted by a UP-machine M such that S has exactly one string ofevery length and no polynomial-time machine can compute infinitely many accepting com-putations of M .
3. There is an honest one-to-one, almost-always one-way function f such that range(f) = 0∗.
4. There is a language L ∈ P that has exactly one string of every length and L is P-printableimmune.
5. There is a language L ∈ UP that has exactly one string of every length and L is P-printableimmune.

Proof We show the following cycles: 1 ⇒ 2 ⇒ 3 ⇒ 1, and 1 ⇒ 4 ⇒ 5 ⇒ 1.Trivially, item 1 implies item 2. To prove that item 2 implies item 3, let M be a UP-machinethat satisfies the conditions of item 2 and let S = L(M). For any y that encodes an accepting com-putation of M on some string x, define f(y) = 0|x|. Since y also encodes x, f is polynomial-timecomputable. Since M runs in polynomial time, f is honest. On the other hand, if any polynomial-time computable machine can invert f on 0n for infinitely many n, then that machine actuallyoutputs infinitely many accepting computations of M .We show that item 3 implies item 1. Given f as in item 3, we know that since f is honest,
∃k > 0 such that |x| ≤ |f(x)|k. We describe a UP-machine N that accepts 0∗. On input 0n, Nguesses x, |x| ≤ nk, and accepts 0n if and only if f(x) = 0n. Since f is one-to-one, N has exactlyone accepting path for every input of the form 0n, and since range(f) = 0∗, L(N) = 0∗. If there isa polynomial-time machine M that outputs infinitely many accepting computations of M , then Malso inverts f on infinitely many strings.To prove that item 1 implies item 4, let N be the UP machine in item 1. We can assumewithout loss of generality that for all but finitely many n, on input 0n, N has exactly one acceptingcomputation of length nk for some k > 0. Let us define the following language.

L′ = {x10n10l
∣∣n ≥ 0, x is an accepting path of N(0n), and 0 ≤ l ≤ (n+ 1)k − nk}

It is easy to see that L′ is in P, and for all but finitely many n, L has exactly one string of length n.Therefore, there exists a finite variation L ∈ P such that L has exactly one string of every length.If L has an infinite P-printable subset, then so has L′. Let M ′ be a polynomial-time transducer thatprints the infinite subset of L′. It follows that M ′ outputs infinitely many accepting computationsof N .Item 4 trivially implies item 5. We show that item 5 implies item 1. Let L be such a languagein UP via a UP-machine N . Define a UP-machine M to accept 0∗ as follows. On input 0n, Mguesses a string x of length n and a computation path w of N on x. M accepts 0n if and only if wis an accepting computation. If a polynomial-time machine can output infinitely many acceptingcomputations of M , then the same machine also outputs infinitely many strings in L, and hence Lcannot be P-printable immune. 2

Theorem 5.6 Each of the hypotheses stated in Theorem 5.5 implies the existence of nonsymmetricdisjoint NP-pairs.
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Proof Let us define the following function:
dt(i) =

{
1 if i = 0

22dt(i−1) otherwise.
Let M be the UP-machine accepting 0∗, as in the first hypothesis in Theorem 5.5. Let an bethe accepting computation of M on 0n. We can assume that |an| = p(n) where p(·) is some fixedpolynomial. We define the following sets:

LM = {〈0n, w〉
∣∣w ≤ an, n = dt(i) for some i > 0}

and
RM = {〈0n, w〉

∣∣w > an, n = dt(i) for some i > 0}.
Note that (LM , RM) is a disjoint NP-pair. We claim that LM is p-selective. The description ofa selector f for LM follows. Assume that 〈0k, w1〉 and 〈0l, w2〉 are input to f . If k = l, then foutputs the lexicographically smaller one of w1 and w2. Otherwise, assume that k < l, and withoutloss of generality, both k and l are in range(dt). In that case, l ≥ 22k > 2|ak|., and therefore, f cancompute ak, the accepting computation ofM on 0K , by checking all possible strings of length |ak|.Therefore, in O(l) time, f outputs 〈0k, w1〉 if w1 ≤ ak, and outputs 〈0l, w2〉 otherwise. Similarly,we can show that RM is p-selective.We claim that (LM , RM) is a nonsymmetric disjoint NP-pair. Assume on the contrary that thispair is symmetric. Therefore, by Proposition 5.3 (LM , RM) is P-separable; i.e., there is S ∈ P thatis a separator for (LM , RM). Using a standard binary search technique, a polynomial-time machinecan compute the accepting computation of M on any 0n, where n = dt(i) for some i > 0. Sincethe length of the accepting computation of M on 0n is p(n), this binary search algorithm takestime O(p(n)) which is polynomial in n. This contradicts our hypothesis, since we assumed that nopolynomial-time machine can compute infinitely many accepting computations of M . Therefore,
(LM , RM) is a nonsymmetric disjoint NP-pair. 2

If the hypotheses stated in Theorem 5.5 hold, then there exists a disjoint NP-pair (A,B) so that
(A,B) 6≤ppm (B,A) while (A,B)≤ppT (B,A).

Grollmann and Selman [GS88] proved that the existence of P-inseparable disjoint NP-pairsimplies the existence of P-inseparable pairs where both sets of the pair are NP-complete. Thefollowing results are in the same spirit. We note that natural candidates for nonsymmetric (or
≤ppm -complete) disjoint NP-pairs arise either from cryptography or from proof systems [Pud01].However, the following theorems show that the existence of such pairs will imply that nonsym-metric (or ≤ppm -complete) disjoint NP-pairs exist where both sets of the pair are ≤pm-complete forNP.
Theorem 5.7 There exists a nonsymmetric disjoint NP-pair (A,B) if and only if there exists anonsymmetric disjoint NP-pair (C,D) where both C and D are ≤pm-complete for NP.
Proof The if direction is trivial. We prove the only if direction. Let {NMi}i≥1 be an enumerationof polynomial-time-bounded nondeterministic Turing machines with associated polynomial timebounds {pi}i≥1. It is known that the following set is NP-complete [BGS75]:

K = {〈i, x, 0n〉
∣∣NMi accepts x within n steps }.
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Let (A,B) be a nonsymmetric disjoint NP-pair. There exists i ≥ 1 such that A = L(NMi), and
A≤pmK via f(x) = 〈i, x, 0pi(|x|)〉. Note that f is honest and one-to-one.Our first goal is to show that (K, f(B)) is nonsymmetric. Since f is a reduction from A to
K and A ∩ B = ∅, f(A) ⊆ K and f(B) ⊆ K, and so f(B) and K are disjoint sets. Observethat f(B) is in NP because on any input y, we can guess x, and verify that x ∈ B and f(x) = y.Therefore, (K, f(B)) is a disjoint NP-pair, and K is ≤pm-complete for NP.In order to prove that this pair is nonsymmetric, assume otherwise. Then (K, f(B)) ≤ppm
(f(B), K) and, therefore, ∃g ∈ PF such that g(K) ⊆ f(B) and g(f(B)) ⊆ K. Consider thefollowing polynomial-time computable function h. On input x, h first computes y = g(f(x)). If
y = 〈i, x′, 0pi(|x′|)〉 for some x′, then h outputs x′; otherwise, it returns a fixed string a ∈ A. Weclaim that h(A) ⊆ B and h(B) ⊆ A, thereby making (A,B) symmetric. For any x ∈ A, we knowthat f(x) ∈ K. Hence g(f(x)) ∈ f(B), since g(K) ⊆ f(B). So g(f(x)) = 〈i, x′, 0pi(|x′|)〉 forsome x′ ∈ B, and so h(x) = x′ ∈ B. For any x ∈ B, y = g(f(x)) ∈ K, since g(f(B)) ⊆ K. If
y = 〈i, x′, 0pi(|x′|)〉 for some x′, then x′ must be inA; else hwill return a ∈ A, and so, in either case,
x ∈ B will imply that h(x) ∈ A. Therefore, h(A) ⊆ B and h(B) ⊆ A. Thus (A,B) ≤ppm (B,A),contradicting the fact that (A,B) is nonsymmetric. Hence (K, f(B)) is a nonsymmetric disjointNP-pair.To complete the proof of the theorem, apply the construction once again, this time with anhonest reduction f ′ from f(B) to K. Namely, f ′(f(B)) ⊆ K and f ′(K) ⊆ K. Similar to theabove argument, it can be shown that f ′(K) and K are disjoint. Also, since f ′ is one-to-one, weclaim that f ′(K) is ≤pm-complete for NP. Clearly, x ∈ K implies f ′(x) ∈ f ′(K). On the otherhand, for some x /∈ K, f ′(x) cannot be in f ′(K); otherwise, f ′(x) = f ′(y) for some y′ ∈ K,contradicting the fact that f ′ is one-to-one. Then, K and f ′(K) are disjoint NP-complete sets, andthe argument already given shows that (f ′(K), K) is nonsymmetric. 2

Theorem 5.8 There exists a ≤ppm -complete disjoint NP-pair (A,B) if and only if there exists a
≤ppm -complete disjoint NP-pair (C,D), where both C and D are ≤pm-complete sets for NP.
Proof The proof idea is similar to the proof of Theorem 5.7. Consider the one-to-one function fdefined by f(x) = 〈i, x, 0pi(|x|)〉 that many-one reduces A to the canonical NP-complete set K.Obviously (A,B) ≤ppm (K, f(B)) via f , since f(A) ⊆ K, and K ∩ f(B) = ∅, as shown in theproof of Theorem 5.7. Similar to that theorem, we apply the one-to-one function f ′ that many-onereduces f(B) to K to obtain another disjoint pair (f ′(K), K) where (K, f(B)) ≤ppm (f ′(K), K)via f ′. So (A,B) ≤ppm (K, f(B)) ≤ppm (f ′(K), K). Therefore (f ′(K), K) is also a ≤ppm -completedisjoint NP-pair, and both f ′(K) and K are ≤pm-complete sets for NP. 2

6 Optimal Proof Systems Relative to an Oracle
The question of whether optimal propositional proof systems exist has been studied in detail.Krajı́ček and Pudlák [Pud86, KP89] showed that NE = coNE implies the existence of opti-mal proof systems. Ben-David and Gringauze [BDG98] and Köbler et al. [KMT] obtained thesame conclusion under weaker assumptions. On the other hand, Messner and Torán [MT98] and
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O1 O2

∃ ≤ppsm-complete disjoint NP-pairs Yes Yes
∃ nonsymmetric disjoint NP-pairs Yes YesConjecture 2.4 holds Yes Yes

E 6= NE Yes Yes
NE = coNE Yes No

∃ optimal propositional proof systems Yes No
NP ∩ SPARSE has ≤pm-complete sets Yes No

Table 1: Comparison of Oracle Properties
Köbler et al. [KMT] proved that existence of optimal proof systems results in the existence of
≤pm-complete sets for the promise class NP ∩ SPARSE. These results hold relative to all oracles.Therefore, optimal proof systems exist relative to any oracle in which NE = coNE holds. Ben-David and Gringauze [BDG98], and Buhrman et al. [BFFvM00] constructed oracles relative towhich optimal proof systems do not exist. In addition, NP∩SPARSE does not have complete setsrelative to the latter oracle.The relationship between the existence of optimal proof systems and disjoint NP pairs was firstestablished by Razborov [Raz94], who showed that the existence of optimal proof systems impliesthe existence of many-one-complete disjoint NP pairs. Köbler et al. [KMT] proved that this holdseven for a stronger form of many-one reductions. They defined strong many-one reduction (wedenote this by ≤ppsm) between disjoint NP-pairs as follows: (A,B)≤ppsm(C,D) if there is f ∈ PFsuch that f(A) ⊆ C, f(B) ⊆ D, and f(A ∪ B) ⊆ C ∪D.In this section, we construct two oracles O1 and O2. Relative to O1, NE = coNE, and there-fore [Pud86, KP89] optimal proof systems exist, implying the existence of ≤pm-complete sets for
NP ∩ SPARSE [MT98] as well as the existence of ≤ppsm-complete disjoint NP-pairs [KMT]. Onthe other hand, relative to this oracle, E 6= NE∩ coNE = NE, thus implying, by Theorem 5.4, thatnonsymmetric (and therefore, P-inseparable) pairs exist. Since nonexistence of ≤ppT -complete dis-joint NP-pairs implies Conjecture 2.4, it is natural to ask whether the converse of this implicationholds. Relative to O1, Conjecture 2.4 holds, and so the converse is false.Ben-David and Gringauze [BDG98] asked whether the converse to Razborov’s result holds.Relative to O2, NP ∩ SPARSE does not have a complete set, and so optimal proof systems donot exist. On the other hand, ≤ppsm-complete disjoint NP-pairs exist. This shows that the converseto Razborov’s result does not hold (even for the stronger notion of many-one reduction) in a rel-ativized setting. Relative to O2, the existence of ≤ppsm-complete disjoint NP-pairs does not implythe existence of ≤pm-complete sets in NP ∩ SPARSE. In addition, relative to O2, NE 6= coNE[Pud86, KP89] and nonsymmetric disjoint NP-pairs exist.Since relative to both O1 and O2, Conjecture 2.4 holds, ≤ppsm-complete disjoint NP-pairs ex-ist and nonsymmetric pairs exist, it follows that these are “independent” of the assertion that
NE = coNE, the existence of optimal proof systems, and existence of ≤pm-complete sets in
NP ∩ SPARSE. In Table 1, we summarize the properties of both oracles; “Yes” denotes that aparticular property holds, while “No” means that the property does not hold.
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6.1 Notation
We fix the following enumerations: {NM i}i is an effective enumeration of nondeterministic,polynomial-time-bounded oracle Turing machines; {NEi}i is an effective enumeration of non-deterministic, linear exponential-time-bounded oracle Turing machines; {Mi}i is an effective enu-meration of deterministic, polynomial-time-bounded oracle Turing machines; {Ei}i is an effectiveenumeration of deterministic, linear exponential-time-bounded oracle Turing machines; {Ti}i isan effective enumeration of deterministic, polynomial-time-bounded oracle Turing transducers.Moreover, NM i, Mi and Ti have running time pi = ni, and NEi and Ei have running time 2inindependent of the choice of the oracle. For any oracle Z, let fZi denote the function that TZicomputes.We use the following model of nondeterministic polynomial-time oracle Turing machines. Onsome input the machine starts the first phase of its computation, during which it is allowed to makenondeterministic branches. In this phase the machine is not allowed to ask any queries. At the endof the first phase the machine has computed a list of queries q1, . . . , qn, a list of guessed answers
g1, . . . , gn, and a character, which is either + or −. Now the machine asks in parallel all queriesand gets the vector of answers a1, . . . , an. The machine accepts if the computed character is + and
(a1, . . . , an) = (g1, . . . , gn); otherwise the machine rejects. An easy observation shows that forevery nondeterministic polynomial-time oracle Turing machine M there exists a machine N thatworks in the described way such that for all oracles X , L(MX) = L(NX).2A computation path P of a nondeterministic polynomial-time oracle Turing machine N on aninput x contains all nondeterministic choices, all queries, and all guessed answers. A computationpath P that has the character + (resp., −) is called a positive (resp., negative) path. The set ofqueries that are guessed to be answered positively (resp., negatively) is denoted by P yes (resp.,
P no); the set of all queries is denoted by P all df=P yes ∪ P no. The length of P (i.e., the numberof computation steps) is denoted by |P |. Note that this description of paths makes it possibleto talk about paths of computations without specifying the oracle, i.e., we can say that N on xhas a positive path P such that P yes and P no satisfy certain conditions. However, when talkingabout accepting and rejecting paths we always have to specify the oracle. (A positive path can beaccepting for certain oracles, and it can be rejecting for other oracles.)For X, Y ⊆ Σ∗ we write Y⊇mX if X ⊆ Σ≤m and Y ≤m = X . We write Y⊆mX if andonly if X⊇mY . We need to consider injective, partial functions µ : N+ → N × N+ that have afinite domain. We do not distinguish between the function and the set of all (n, i, j) such that
µ(n) = (i, j). We denote both by µ. Let µ and µ′ be injective, partial functions N+→ N× N+ thathave a finite domain. If µ 6= ∅, then µmax

df= max(dom(µ)). We write µ ¹ µ′ if either µ = ∅, or
µ ⊆ µ′ and µmax < n for all n ∈ dom(µ′ − µ). We write µ ≺ µ′ if µ ¹ µ′ and µ 6= µ′.For j ≥ 1, SPARSEj denotes the class of all languages L such that ∀k ≥ 0, ‖L∩Σk‖ ≤ kj+j.
6.2 Existence of Optimal Proof Systems
Theorem 6.1 There exists an oracle relative to which the following holds:

(i) E 6= NE = coNE

2Note that for this property we need both, the character to be + and the gi to be guessed correctly. If the machineaccepts just when the answers are guessed correctly, then we miss the machine that accepts ∅ for every oracle.
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(ii) Conjecture 2.4 holds.
For a fixed set X , let us define the following set, which is complete for NEX :

CX df={〈i, x, l〉
∣∣NEX

i accepts x within l steps }.
We also define the following property:
P1: 〈i, x, l〉 ∈ CX ⇔ (∀y, |y| = 22|〈i,x,l〉|)[〈i, x, l〉y /∈ X].

We call a set X ⊆ Σ≤k k-valid if the property P1 holds for all strings 〈i, x, l〉 such that |〈i, x, l〉|+
22|〈i,x,l〉| ≤ k. Note that ∅ is 0-valid and the validity of a set X only depends on the words in X thathave length 22n + n for some natural number n. We define the following sets:

AX df={0n
∣∣ (n is odd) ∧ (∃y, |y| = 2n)[y ∈ X]}

and
BX df={02nz

∣∣ (n is odd) ∧ |z| = 2n ∧ (∃y, |y| = 2n)[zy ∈ X]}.
Clearly, AX ∈ NEX and BX ∈ NPX . We require the following for O1:

1. CO1 ∈ coNEO1 (This implies NEO1 = coNEO1 , because CO1 is complete for NEO1 by areduction that is computable in linear-time.)
2. AO1 /∈ EO1 (which implies EO1 6= NEO1 , since AO1 ∈ NEO1).
3. For every i, j and r, BO1 does not ≤ppT -reduce to (L(NMO1

i ), L(NMO1
j )) via Mr. This willensure that Conjecture 2.4 holds relative to O1.

Proof [Theorem 6.1] We will begin by stating two lemmas that will be used in this proof.
Lemma 6.2 For every i and every k-valid X , there exists an l-valid Y⊇kX where l > k, such thatfor every Z⊇lY , AZ 6= L(EZ

i ).
Lemma 6.3 For every i, j, r, and every k-valid X , there exists an l-valid Y⊇kX , where l > k,such that for every Z⊇lY , BZ does not ≤ppT -reduce to (L(NMZ

i ), L(NMZ
j )) via Mr.

We define the following list T of requirements. At the beginning of the construction, T con-tains {i}i≥1 and {(i, j, r)}i,j,r≥1. These have the following interpretations:
• i ∈ T : ensure that AO1 6= L(EO1

i ).
• (i, j, r) ∈ T : ensure that BO1 does not ≤ppT -reduce to (L(NMO1

i ), L(NMO1
j ) via Mr.

The following algorithm is used to construct the oracle O1.
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1 O1 := ∅; k := 02 while {true} {3 Remove the next requirement t from T4 if t = i then5 apply Lemma 6.2 with X = O1 to get Y and l6 else // t = (i, j, r)7 apply Lemma 6.3 with X = O1 to get Y and l8 O1 := Y; k := l9 }

It is clear that the oracle constructed by this algorithm satisfies (i) and (ii). It remains to proveLemma 6.2 and Lemma 6.3.
Proof [Lemma 6.2]Fix an i and let X be any k-valid oracle. Let n be the smallest odd length such that k ≤ 2n− 1,
n− 1 < 2n−1, and 2in < 22n . Note first that we can assume that k = 2n − 1. Otherwise, we claimthat X can be extended to some (2n−1)-valid oracle X ′⊇kX . Assume that X is (m−1)-valid for
k < m ≤ 2n − 1; we will show how X can be extended to an m-valid oracle. This can be iteratedto extend X to be (2n − 1)-valid.Assume m = 22r + r and consider some 〈j, x, l〉 of length r. (If m is not of this form, then, byproperty P1, an (m− 1)-valid oracle is automatically an m-valid oracle.)Note that |x| ≤ r and |l| ≤ r. Hence, NEX

j (x) can ask only queries of length ≤ 2r < m − 1.The answers to these queries will not change during the later stages of the construction. So theresult of NEX
j (x) is fixed. If NEX

j (x) rejects within l steps, then choose some y of length 22r andput 〈j, x, l〉y in X . Otherwise, do not put any such string in X . After all strings 〈j, x, l〉 are treated,we obtain an oracle X that is m-valid. This shows that we can assume X to be (2n − 1)-valid.Also note that any string w = 〈j, x, l〉y cannot have length 2n. If |w| = 2n, then, since
|y| = 22|〈j,x,l〉|, |〈j, x, l〉| < n/2. Hence, the highest length possible for 〈j, x, l〉 is n/2−1, in whichcase |y| = 2n−2 and |w| = n/2 − 1 + 2n−2 < 2n. If |〈j, x, l〉| is even smaller, then y is of smallerlength as well, and so is |w|. This shows that |w| can never be 2n for any n. As a consequence, weknow that at stage k+ 1 we do not have to put any strings of the form 〈j, x, l〉y. Therefore, we canuse this stage for diagonalization.Now we want to show that there exists an l-valid Y , l ≥ 2n such that for every Z⊇lY , AZ 6=
L(EZ

i ). Consider the computation of EX
i on 0n. Since the running time of Ei is bounded aboveby 2in, the queries made by EX

i (0n) have length at most 2in. Let N be the set of queries of length
≥ 2n (these are answered “no” in this computation). Note that ‖N‖ ≤ 2in < 22n . We put some
v ∈ Σ2n − N in X if and only if EX

i (0n) rejects. By the above discussion, k = 2n 6= 22r + r forany r, and so v cannot be of the form 〈j, x, l〉y. Therefore, X is 2n-valid.
Claim 6.4 We can extend X to some 2in-valid Y⊇2nX such that N ⊆ Y .
Proof Fix some 〈j, x, l〉 such that 2n < |〈j, x, l〉y| ≤ 2in. First we show that there are at least 22n

different such y for this 〈j, x, l〉. We show this by proving that |y| ≥ 2n. If |y| < 2n, then, sincelength of y can only be a power of 2, let us assume that y = 2n−1. Then |〈j, x, l〉| = (n− 1)/2 andtherefore |〈j, x, l〉y| = (n− 1)/2 + 2n−1 < 2n, contradicting that |〈j, x, l〉y| > 2n.
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Now, simulate NEX
j (x) for l steps. If the simulation NEX

j (x) accepts within l steps, then donot update X . Otherwise, i.e., if the simulation rejects, then choose y′ such that |y′| = 22|〈j,x,l〉| and
〈j, x, l〉y′ /∈ N . Put 〈j, x, l〉y′ in X . Existence of such y′ is ensured, since the possible number ofthese words is 22n , whereas ‖N‖ ≤ 2in < 22n .So, if NEX

j accepts x within l steps, no extra string is put in X . On the other hand, if NEX
j (x)does not accept within l steps, then we put an appropriate 〈j, x, l〉y′ /∈ N inX . Once this procedureis completed for all 〈j, x, l〉, the oracle we obtain is 2in-valid. We call that oracle Y . This provesClaim 6.4. 2

The proof of the lemma is completed by noting that Y⊇2nX and Y ⊆ N . Hence, 0n ∈
AY ⇔ 0n /∈ L(EY

i ). Let l = 2in. Any Z⊇2inY differs from Y only by strings of lengths > 2in.This does not affect the computation of Ei(0n), and therefore, by our construction, it follows that
0n ∈ AZ ⇔ 0n /∈ L(EZ

i ). This proves Lemma 6.2. 2

Proof [Lemma 6.3]Similar to the proof of Lemma 6.2, we can assume that k = 2n+1 − 1, where n is odd. Let
c df=(2n+1)r(i+j). We choose n to be large enough so that the following hold:
• pr(2n+1)pi(pr(2

n+1))(pj(pr(2
n+1)) + 1) < 22n

• 2(2n+1)2r(i+j) < 22n , i.e., 2c2 < 22n

Claim 6.5 There exist Y ′ ⊆ Σ≤c, N ′ ⊆ Σ≤c such that ‖Y ′‖ ≤ c2, ‖N ′‖ ≤ c2, and for all
X ′ ⊆ Σ2n+1 , if N ′ ⊆ X ′, then X ∪ Y ′ ∪X ′ is c-valid.

We will prove this claim later.Choose some z such that |z| = 2n and ∀y, |y| = 2n, zy /∈ Y ′ and zy /∈ N ′. (Such z existsbecause both ‖Y ′‖, ‖N ′‖ ≤ c2, and 2c2 < 22n). We can assume that
(∀X ′ ⊆ zΣ2n)[L(NMX∪Y ′∪X′

i ) ∩ L(NMX∪Y ′∪X′
j ) = ∅]. (8)

Otherwise Y = X ∪ Y ′ ∪X ′ satisfies the requirement of Lemma 6.3.We will consider the computation of Mr on 02nz and construct sets Q and X ′ such that
L(NMX∪Y ′∪X′

i ) ∪Q is a separator of L(NMX∪Y ′∪X′
i ) and L(NMX∪Y ′∪X′

j ), and either
02nz ∈ BX∪Y ′∪X′ and 02nz /∈ L(M

L(NMX∪Y ′∪X′
i )∪Q

r )

or
02nz /∈ BX∪Y ′∪X′ and 02nz ∈ L(M

L(NMX∪Y ′∪X′
i )∪Q

r ).

This will imply BX∪Y ′∪X′ does not ≤ppT -reduce to (L(NMX∪Y ′∪X′
i ), L(NMX∪Y ′∪X′

j )) via Mr.The details follow.Initially we set Q = ∅. We run Mr on 02nz using oracle L(NMX∪Y ′
i ) ∪ Q. Note that thisoracle is a separator of (L(NMX∪Y ′

i ), L(NMX∪Y ′
j )). The simulation of Mr on 02nz is continueduntil it makes some query q. At this point, we apply Lemma 3.3 with M = NMi, N = NMj ,

Y = X ∪ Y ′, and T = zΣ2n . Note that on input 02nz, Mr can make queries up to length pr(2n+1)
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and we have ‖T‖ = 22n > pi(pr(2
n+1))(pj(pr(2

n+1) + 1). By Lemma 3.3 and Equation (8), thereis a set S ′ ⊆ zΣ2n such that either
(∀S ⊆ zΣ2n , S ∩ S ′ = ∅)[q /∈ L(NMX∪Y ′∪S

i )] (9)
or

(∀S ⊆ zΣ2n , S ∩ S ′ = ∅)[q /∈ L(NMX∪Y ′∪S
j )]. (10)

We know that ‖S ′‖ ≤ pi(pr(2
n+1))(pj(pr(2

n+1)) + 1). We reserve all strings in S ′ for X ′. IfEquation (9) is true, then we continue simulating Mr without modifying the oracle (hence answer“no” to query q.) Otherwise, if Equation (9) does not hold, we update Q = Q∪{q}, (hence answer“yes” to query q and add q to the oracle,) and continue the simulation of Mr on 02nz. We continuerunning Mr until the next query and then we apply Lemma 3.3 again, obtain the set S ′ that satisfiesabove Equation (9) or Equation (10) for the new query and update Q accordingly. We keep doingthis until the end of the computation of Mr on 02nz. The number of strings in zΣ2n we reservedfor X ′ during the above process is at most pr(2n+1)pi(pr(2
n+1))(pj(pr(2

n+1)) +1) < 22n since therunning time of Mr on 02nz is bounded by pr(2n+1).Since the number of strings reserved forX ′ in the above process is strictly less than the numberof strings of length 2n, there exists a string zy in zΣ2n that is not reserved forX ′. IfMr using oracle
L(NMX∪Y ′

i ) ∪ Q accepts 02nz, we define X ′ = ∅. In this case, 02nz /∈ BX∪Y ′∪X′ . Otherwise,define X ′ = {zy}, in which case 02nz ∈ BX∪Y ′∪X′ . Also observe that q is put in Q only when
q /∈ L(NMX∪Y ′∪X′

j ). Therefore, L(NMX∪Y ′∪X′
i ) ∪Q remains a separator of L(NMX∪Y ′∪X′

i ) and
L(NMX∪Y ′∪X′

j ).Let Y df=X ∪ Y ′ ∪ X ′. It is clear from the discussion above that BY does not ≤ppT -reduce to
L(NMY

i , NM
Y
j ) via Mr. Since X ′ ⊆ N ′, Y is c = (2n+1)r(i+j)–valid. Furthermore, any string qthat can be queried byMr on 02nz is of length≤ (2n+1)r. Therefore, the strings that are queried by

NMi and NMj on input q are of lengths at most (2n+1)r(i+j) = c. This implies that for all Z⊇cY ,
BZ does not ≤ppT -reduce to (L(NMZ

i ), L(NMZ
j )) via Mr, since any string of length more than cwill not affect the outcome of the computation. It remains to prove Claim 6.5.

Proof [Claim 6.5] We use the following algorithm to construct Y ′ and N ′. Recall that c =
(2n+1)r(i+j).
1. Y′ = ∅, N′ = ∅2. Treated = ∅3. L = {〈i, x, l〉

∣∣ 2n+1 < |〈i, x, l〉y| ≤ c where |y| = 22|〈i,x,l〉|}4. while L 6= ∅ {5. Remove the smallest 〈i, x, l〉 from L6. Treated = Treated ∪ 〈i, x, l〉7. if (∃X′ ⊆ Σ2n+1 such that X′ ⊆ N′ and
NEX∪Y

′∪X′
i (x) accepts within l steps)8. Choose an accepting path P9. Y′ = Y′ ∪ Pyes and N′ = N′ ∪ Pnoelse10. Choose some y ∈ Σ2|〈i,x,l〉| such that 〈i, x, l〉y 6∈ N′
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11. Y′ = Y′ ∪ {〈i, x, l〉y}12. } //end while.
We claim that after each iteration of the while loop, the following invariance holds: For every

X ′ ⊆ N ′ ∩ Σ2n+1 , the property P1 holds for each 〈i, x, l〉 in Treated with oracle X ∪ Y ′ ∪X ′.Initially, when Treated is empty, this holds trivially.Let us assume that 〈i, x, l〉 is put in Treated during iteration m ≥ 1 of the while loop. It isstraightforward to see that after this iteration, the statements in the loop ensure that the invarianceholds for 〈i, x, l〉, since 〈i, x, l〉y is put into the oracle if and only if NEi does not accept x within
l steps. We have to show that the invariance also holds for every such triple that had been putinto Treated in some iteration m′ < m. Let 〈j, u, t〉 be such a triple. It suffices to show thatfor t steps, NEj(u) behaves the same way after m-th iteration as it does after the m′-th iteration.Assume that during m′-th iteration NEj accepted u in t steps. All the queries that are made on thataccepting path are already in Y ′ or N ′ accordingly. Therefore, that path remains accepting evenduring m-th iteration.On the other hand, let us assume that for every X ′, NEj rejected u in t steps during m′-thiteration. We will show that it will still reject u after the m-th iteration. To see this, let us assumethat a previously rejecting path has become an accepting path after the m-th iteration. A querythat was answered “yes” at that point cannot be answered “no” now, since Y ′ now contains strictlymore strings. So assume that a query q was answered “no” during m′-th iteration with X ∪Y ′∪X ′as the oracle and is now answered “yes”. All strings that are added to Y ′ after iteration m′ areeither of lengths ≥ |〈j, u, t〉y| > t or are from some X ′ ⊆ Σ2n+1 . Hence q must be of length 2n+1.Note that q must have been in N ′ during m′-th iteration; otherwise NEj would accept u at thatpoint with oracle X ∪ Y ′ ∪ (X ′ ∪ {q}). But any string that was in N ′ during an earlier iterationis not put in X ′ or Y ′ in later iterations. Therefore, our assumption is false, and NEj will reject uduring the m-th iteration as well. This proves the invariance.What remains to show are the bounds on the sizes of Y ′ and N ′ and the maximum length ofstrings in Y ′ and N ′. For the size of Y ′ and N ′, note that if |〈i, x, l〉y| ≤ c, then, since |y| =
22|〈i,x,l〉|, |〈i, x, l〉| ≤ (log c)/2, and therefore, ‖L‖ ≤ 2(log c)/2+1 < c. On the other hand, duringevery iteration, at most l strings are added to Y ′ and N ′, and |l| < |〈i, x, l〉| ≤ (log c)/2, andtherefore, l < c as well. Since both Y ′ and N ′ are initially empty, they are at most c2 in size. Themaximum length of strings in Y ′ and N ′ is c since the longest string that is added to Y ′ or N ′ is
max〈i,x,l〉∈L |〈i, x, l〉y| ≤ c.This completes the proof of Claim 6.5. 2

This finishes the proof of Lemma 6.3. 2

This proves Theorem 6.1. 2

Corollary 6.6 The oracle O1 of Theorem 6.1 has the following additional properties:
(i) UPO1 6= NPO1 6= coNPO1 and NPMVO1 6⊆cNPSVO1 .

(ii) Relative to O1, optimal propositional proof systems exist.
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(iii) There exists a ≤pp,O1
sm -complete disjoint NPO1-pair (A,B) that is PO1-inseparable but sym-metric.

6.3 Non-existence of Optimal Proof Systems
In this section we construct an oracle relative to which there exist ≤ppsm-complete disjoint NP-pairs. For any oracle X , (A,B)≤pp,Xsm (C,D) if there is a function f ∈ PFX such that f(A) ⊆ C,
f(B) ⊆ D, and f(A ∪B) ⊆ C ∪D.3
Theorem 6.7 There exists an oracle O2 relative to which the following holds:

(i) There exist ≤ppsm-complete disjoint NP-pairs.
(ii) There exist nonsymmetric disjoint NP-pairs.

(iii) NP ∩ SPARSE does not have ≤pm-complete sets.
(iv) Conjecture 2.4 holds.

Proof In our construction we use the following witness languages, which depend on an oracle Z:
A(Z) df= {w

∣∣w = 0n10t1x for n, t ≥ 1, x ∈ Σ∗ and (∃y ∈ Σ3|w|+3)[0wy ∈ Z]}
B(Z) df= {w

∣∣w = 0n10t1x for n, t ≥ 1, x ∈ Σ∗ and (∃y ∈ Σ3|w|+3)[1wy ∈ Z]}
C(Z) df= {0k

∣∣ k ≡ 1(mod 4), (∃y ∈ Σk−1)[0y ∈ Z]}
D(Z) df= {0k

∣∣ k ≡ 1(mod 4), (∃y ∈ Σk−1)[1y ∈ Z]}
Ei(Z) df= {0i1x

∣∣ |0i1x| ≡ 1(mod 4) and (∃y ∈ Σ∗, |y| = |0i1x|)[0i1xy ∈ Z]} for i ≥ 1

F (Z) df= {0k
∣∣ k ≡ 3(mod 4), (∃y ∈ Σk)[y ∈ Z]}

These languages are in NPZ . By definition, A(Z) and B(Z) depend on oracle words of length
≡ 0(mod 4), C(Z) and D(Z) depend on oracle words of length ≡ 1(mod 4), all Ei(Z) dependon oracle words of length ≡ 2(mod 4), and F (Z) depends on oracle words of length ≡ 3(mod 4).We construct the oracle O2 such that A(O2) ∩ B(O2) = C(O2) ∩ D(O2) = ∅ and the followingholds.
• (A(O2), B(O2)) is ≤ppsm-complete. That is,

(∀(G,H)∈DisNPO2)(∃f ∈PF)

[f(G)⊆A(O2) ∧ f(H)⊆B(O2) ∧ f(G ∪H)⊆A(O2) ∪B(O2)]. (11)
• (C(O2), D(O2)) is nonsymmetric. That is,

(∀f ∈ PFO2)[f(C(O2)) 6⊆ D(O2) ∨ f(D(O2)) 6⊆ C(O2)]. (12)
3(A,B)≤pp,Xm (C,D) if for every separator T ∈ Sep(C,D), there exists a separator S ∈ Sep(A,B) such that

S≤p,Xm T . However, since Theorems 2.10 and 2.14 hold relative to all oracles, (A,B)≤pp,Xm (C,D) if and only if thereis a function f ∈ PFX such that f(A) ⊆ C and f(B) ⊆ D. It follows immediately that (A,B)≤pp,Xsm (C,D) implies
(A,B)≤pp,Xm (C,D).
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• NPO2 ∩ SPARSE does not have ≤p,O2
m -complete sets. That is,

(∀j, L(NMO2
j )∈SPARSEj)(∃n,En(O2) contains ≤ 2 words of every length)

(∀f ∈ PFO2)[En(O2) does not ≤p,O2
m -reduce to L(NMO2

j ) via f ]. (13)
• F (O2) 6≤pp,O2

T (A(O2), B(O2)). That is,
(∃S,A(O2) ⊆ S ⊆ B(O2))[F (O2) /∈ PS]. (14)

In (11) and (14) we really mean f ∈ PF and F (O2) /∈ PS; we explain why this is equivalent to
f ∈ PFO2 and F (O2) /∈ PS,O2 . We have to see that the expressions (11), (12), (13), and (14)imply the statements (i), (ii), (iii), and (iv) of Theorem 6.7. For (11) and (12) this follows fromthe fact that f ∈ PF implies f ∈ PFO2 . Each language in NP is accepted by infinitely manymachines NMj . Therefore, if there exists a sparse language L such that L is many-one-completefor NPO2 ∩ SPARSE, then there exists a j ≥ 1 such that L = L(NMO2

j ) and L ∈ SPARSEj .This shows that expression (13) implies (iii). In (14) we actually should have F (O2) /∈ PS,O2 sincethe reducing machine has access to the oracle O2. However, since (i) holds and since (O2, O2) ∈
DisNPO2 , there exists an f ∈ PF with f(O2) ⊆ A(O2) ⊆ S and f(O2) ⊆ B(O2) ⊆ S. Hence,
q ∈ O2 ⇔ f(q) ∈ S. So we can transform queries to O2 into queries to S, i.e., it suffices to show
F (O2) /∈ PS . By expression (14), the complete pair (A(O2), B(O2)) is not NPO2-hard; it followsthat no disjoint NPO2-pair is NPO2-hard.We define the following list T of requirements. At the beginning of the construction, T con-tains all pairs (i, n) with i ∈ {1, 2, 3, 4} and n ∈ N+. These pairs have the following interpretations,which correspond to the statements (i)–(iv) of Theorem 6.7.
• (1, 〈i, j〉): ensure L(NMO2

i )∩L(NMO2
j ) 6=∅ or (L(NMO2

i ), L(NMO2
j ))≤ppsm(A(O2), B(O2))

• (2, i): ensure [0n ∈ C(O2) ∧ TO2
i (0n) /∈ D(O2)] or [0n ∈ D(O2) ∧ TO2

i (0n) /∈ C(O2)]

• (3, 〈i, j〉): ensure either L(NMO2
j ) /∈ SPARSEj or [for some n, En(O2) contains≤ 2 wordsof every length, and En(O2) does not ≤p,O2

m reduce to L(NMO2
j ) via fO2

i ]

• (4, i): ensure that (A(O2), B(O2)) has a separator S such that 0n ∈ F (O2) ⇔ 0n /∈ L(MS
i )

Once a requirement is satisfied, we delete it from the list. Conditions of the form (2, ·)and (4, ·) are reachable by the construction of one counter example. In contrast, if we can-not reach L(NMO2
i ) ∩ L(NMO2

j ) 6= ∅ for a condition of the first type, then we have to en-sure (L(NMO2
i ), L(NMO2

j ))≤ppsm(A(O2), B(O2)). Similarly, if we cannot reach L(NMO2
j ) /∈

SPARSEj for a condition of the third type, then, for a suitable n, we have to ensure that En(O2)contains ≤ 2 words of every length. But these conditions cannot be reached by a finite segmentof an oracle; instead they influence the whole remaining construction of the oracle. We have toencode answers to queries “does x belong to L(NMO2
i ) or to L(NMO2

j )” into the oracle O2, andwe have to keep an eye on the number of elements of En(O2). For this reason we introduce thenotion of (µ, k)-valid oracles. Here k is a natural number and µ is an injective, partial function
N+→ N×N+ that has a finite domain. Each (µ, k)-valid oracle is a subset of Σ≤k. If a pair (0, j),
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j ≥ 1, is in the range of µ, then this means that L(NMO2
j ) ∈ SPARSEj is forced, and therefore,we must construct O2 so that for a suitable n, En(O2) contains≤ 2 words of every length. If a pair

(i, j), i, j ≥ 1, is in the range of µ, then L(NMO2
i ) ∩ L(NMO2

j ) = ∅ is forced, and therefore, wemust construct O2 so that (L(NMO2
i ), L(NMO2

j ))≤ppsm(A(O2), B(O2)) holds. For the latter condi-tion we have to encode certain information into O2, and the number k says up to which level thisencoding has been done. So (µ, k)-valid oracles should be considered as finite prefixes of oraclesthat contain these encodings. For the moment we postpone the formal definition of (µ, k)-validoracles (Definition 6.9); instead we mention its essential properties, which we will prove later.
(a) The oracle ∅ is (∅, 0)-valid.
(b) If X is a finite oracle that is (µ, k)-valid, then for all µ′ ¹ µ, X is (µ′, k)-valid.
(c) If O2 is an oracle such that O2

≤k is (µ, k)-valid for infinitely many k, then the followingholds:
– A(O2) ∩B(O2) = C(O2) ∩D(O2) = ∅.
– For all (i, j) ∈ range(µ), if i > 0, then (L(NMO2

i ), L(NMO2
j ))≤ppsm(A(O2), B(O2))via some f ∈ PF.

– For all (n, 0, j) ∈ µ it holds that En(O2) contains ≤ 2 words of every length and
L(NMO2

j ) ∈ SPARSEj .
The properties (a), (b), and (c) will be proved later in the Propositions 6.10 and 6.11. Moreover, wewill prove the following for all i, j ≥ 1 and all (µ, k)-valid X . (Note that there is a correspondencebetween (i)–(iv) and P1–P4.)

P1: There exists an l > k and a (µ′, l)-valid Y⊇kX , µ ¹ µ′ such that
• either for all Z⊇lY , L(NMZ

i ) ∩ L(NMZ
j ) 6= ∅,

• or (i, j) ∈ range(µ′).4
P2: There exists an l > k and a (µ, l)-valid Y⊇kX such that for all Z⊇lY , if C(Z)∩D(Z) = ∅,then (C(Z), D(Z)) does not ≤pp,O2

m -reduce to (D(Z), C(Z)) via TZi .
P3: (a) There exists an l > k and a (µ′, l)-valid Y⊇kX , µ ¹ µ′ such that

• either for all Z⊇lY , L(NMZ
j ) /∈ SPARSEj ,

• or (0, j) ∈ range(µ′).
(b) For every n, if µ(n) = (0, j), then there exists an l > k and a (µ, l)-valid Y⊇kX suchthat for all Z⊇lY , En(Z) does not ≤p,Zm -reduce to L(NMZ

j ) via fZi .
P4: There exists an l > k and a (µ, l)-valid Y⊇kX such that for all Z⊇lY , if A(Z)∩B(Z) = ∅,then there exists a separator S of (A(Z), B(Z)) such that F (Z) 6= L(MS

i ).
4Proposition 6.21 says L(NMZ

i ) ∩ L(NMZ
j ) ∩ Σ≤l 6= ∅, which is a stronger statement.
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We will prove the properties P1, P2, P3a, P3b, and P4 in the Propositions 6.21, 6.22, 6.23, 6.25,and 6.32, respectively.We construct an ascending sequence of finite oracles X0⊆k0X1⊆k1X2⊆k2 · · · such that each
Xr is (µr, kr)-valid, k0 < k1 < k2 < · · · and µ0 ¹ µ1 ¹ µ2 ¹ · · · . By definition, O2 =

⋃
r≥0 Xr.By items (b) and (c), A(O2) ∩ B(O2) = C(O2) ∩D(O2) = ∅ follows immediately. We claim foreach r ≥ 0 and i ≥ 1, that Xr+i⊇krXr and µr ¹ µr+i.

1. r := 0, kr := 0, µr := ∅, and Xr := ∅. Then by (a), Xr is (µr, kr)-valid.
2. Let e be the next requirement on T .

(a) If e = (1, 〈i, j〉), then we apply property P1 to Xr. Define kr+1 = l, µr+1 = µ′ and
Xr+1 = Y . Then kr < kr+1, µr ¹ µr+1 and Xr+1⊇krXr is (µr+1, kr+1)-valid such that
• either for all Z⊇kr+1Xr+1, L(NMZ

i ) ∩ L(NMZ
j ) 6= ∅,

• or (i, j) ∈ range(µr+1).
Remove e from T and go to step 3.
Comment: If the former holds, then, since O2⊇kr+1Xr+1, it holds that L(NMO2

i ) ∩ L(NMO2
j ) 6= ∅,

and therefore, (L(NMO2
i ), L(NMO2

j )) /∈ DisNPO2 . Otherwise, (i, j) ∈ range(µr+1). By (b), for all
i ≥ 1, Xr+i is (µr+1, kr+i)-valid. Therefore, by (c), (L(NMO2

i ), L(NMO2
j ))≤ppsm(A(O2), B(O2)) via

some f ∈ PF.
(b) If e = (2, i), then µr+1

df=µr and apply property P2 to Xr. We define kr+1 = l and
Xr+1 = Y . Then kr+1 > kr and Xr+1⊇krXr is (µr+1, kr+1)-valid so that for all
Z⊇kr+1Xr+1, if C(Z) ∩ D(Z) = ∅, then (C(Z), D(Z)) does not ≤pp,O2

m -reduce to
(D(Z), C(Z)) via TZi . Remove e from T and go to step 3.
Comment: Since O2⊇kr+1Xr+1 and C(O2) ∩ D(O2) = ∅ this ensures that (C(O2), D(O2)) does not
≤pp,O2
m -reduce to (D(O2), C(O2)) via TO2

i .
(c) If e = (3, 〈i, j〉) and (0, j) /∈ range(µr), then we apply property P3a to Xr. Define

kr+1 = l, µr+1 = µ′ and Xr+1 = Y . Then kr < kr+1, µr ¹ µr+1 and Xr+1⊇krXr is
(µr+1, kr+1)-valid such that
• either for all Z⊇kr+1Xr+1, L(NMZ

j ) /∈ SPARSEj ,
• or (0, j) ∈ range(µr+1).

If the former holds, then remove e from T and go to step 3. Otherwise, do not remove
e from T (it will be removed in the next iteration) and go to step 3.
Comment: If the former of the two alternatives holds, then, since O2⊇kr+1Xr+1, it holds that
L(NMO2

j ) /∈ SPARSEj . Otherwise, for a suitable n, (n, 0, j) ∈ µr+1. By (b), for all i ≥ 1, Xr+iis (µr+1, kr+i)-valid. Therefore, by (c), it is enforced that En(O2) contains ≤ 2 words of every length
and L(NMO2

j ) ∈ SPARSEj . From now on, all requirements of the form (3, 〈·, j〉) are treated in step 2d.
These steps will make sure that En(O2) 6≤p,O2

m L(NMO2
j ).

(d) If e = (3, 〈i, j〉) and (0, j) ∈ range(µr), then choose n such that (n, 0, j) ∈ µr andapply property P3b toXr. Define kr+1 = l, µr+1 = µr andXr+1 = Y . Then kr < kr+1,
µr ¹ µr+1 and Xr+1⊇krXr is (µr+1, kr+1)-valid such that for all Z⊇kr+1Xr+1, En(Z)does not ≤p,Zm -reduce to L(NMZ

j ) via fZi . Remove e from T and go to step 3.
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Comment: In the comment of the previous step we have seen that (0, j) ∈ range(µr) implies that
En(O2) ∈ SPARSEj+1. Since O2⊇kr+1Xr+1 this step ensures that En(O2) does not ≤p,O2

m -reduce to
L(NMO2

j ) via fO2
i .

(e) If e = (4, i), then µr+1
df=µr and apply property P4 to Xr. We define kr+1 = l and

Xr+1 = Y . Then kr+1 > kr and Xr+1⊇krXr is (µr+1, kr+1)-valid such that for all
Z⊇kr+1Xr+1, if A(Z) ∩ B(Z) = ∅, then there exists a separator S of (A(Z), B(Z))such that F (Z) 6= L(MS

i ). Remove e from T and go to step 3.
Comment: Since O2⊇kr+1Xr+1 and A(O2) ∩B(O2) = ∅ this ensures that there exists a separator S of
(A(O2), B(O2)) such that F (O2) 6= L(MS

i ).
3. r := r + 1, go to step 2.

We see that this construction ensures (i), (ii), (iii), and (iv). This proves Theorem 6.7 except toshow that we can define an appropriate notation of a (µ, k)-valid oracle that has the properties (a),(b), (c), and P1, P2, P3, P4.
We want to construct our oracle such that (A(O2), B(O2)) is a ≤ppsm-complete disjoint NPO2-pair. So we have to make sure that pairs (L(NMi), L(NMj)) that are enforced to be disjoint (whichmeans that (i, j) ∈ range(µ)) can be ≤ppsm-reduced to (A(O2), B(O2)). Therefore, we put certaincode-words into O2 if and only if the computation NMO2

i (x) (resp., NMO2
j (x)) accepts within tsteps.

Definition 6.8 (µ-code-word) Let µ : N+→ N× N+ be an injective, partial function with a finitedomain. A word w is called µ-code-word if w = 00n10t1xy or w = 10n10t1xy such that n, t ≥ 1,
|y| = 3|00n10t1x| and µ(n) = (i, j) such that i, j ≥ 1. If w = 00n10t1xy, then we say that w is a
µ-code-word for (i, t, x); if w = 10n10t1xy, then we say it is a µ-code-word for (j, t, x).

Condition (i) of Theorem 6.7 opposes the conditions (ii), (iii), and (iv), because for (i) we haveto encode information about NPO2 computations into O2, and (ii), (iii), and (iv) say that we cannotencode too much information (e.g., enough information for UPO2 = NPO2). For this reason wehave to look at certain finite oracles that contain the needed information for (i) and that allow alldiagonalization needed to reach (ii), (iii), and (iv). We call such oracles (µ, k)-valid.
Definition 6.9 ((µ, k)-valid oracle) Let k ≥ 0 and let µ : N+→ N × N+ be an injective, partialfunction with a finite domain. We define a finite oracle X to be (µ, k)-valid by induction over thesize of the domain of µ.
(IB) If ‖µ‖ = 0, thenX is (µ, k)-valid df⇐⇒ X ⊆ Σ≤k and A(X)∩B(X) = C(X)∩D(X) = ∅.
(IS) If ‖µ‖ > 0, then µ = µ0 ∪ {(n0, i0, j0)} where n0 = µmax and µ0 ≺ µ. X is (µ, k)-valid

df⇐⇒ k ≥ n0, X is (µ0, k)-valid, and the following holds:
1. If i0 > 0, then we demand the following:

(a) For all t ≥ 1 and all x ∈ Σ∗, if 4 · |00n010t1x| ≤ k, then
i. (∃y, |y| = 3|00n010t1x|)[00n010t1xy ∈ X] ⇔ NMX

i0
(x) accepts within tsteps, and

32



             

ii. (∃y, |y| = 3|10n010t1x|)[10n010t1xy ∈ X] ⇔ NMX
j0

(x) accepts within tsteps.
(b) For all l≥n0 and all (µ0, l)-valid Y , if Y ≤n0 =X≤n0 , then L(NMY

i0
)∩L(NMY

j0
)∩

Σ≤l=∅.
2. If i0 = 0, then

(a) for every r ≥ 0, ‖En0(X) ∩ Σr‖ ≤ 2 and
(b) for all l ≥ n0 and all (µ0, l)-valid Y , if Y ≤n0 = X≤n0 , then L(NMY

j0
) ∩ Σ≤l ∈

SPARSEj0 .
Due to the conditions 1b and 2b, (µ, k)-valid oracles can be extended to (µ, k′)-valid oracleswith k′ > k (Lemma 6.17). There we really need the intersection with Σ≤l. Otherwise, for examplein 1b, it could be possible that for a small oracle Y ⊆ Σ≤l both machines accept the same word wthat is much longer than l, but there is no way to extend Y in a valid way to the level |w| such thatboth machines still accept w (the reason is that the reservations (Definition 6.12) become to large).

Proposition 6.10 (basic properties of validity) 1. The oracle ∅ is (∅, 0)-valid. (property (a))
2. For every (µ, k)-valid X and every µ′ ¹ µ, X is (µ′, k)-valid. (property (b))
3. For every (µ, k)-valid X and every (n, 0, j) ∈ µ it holds that

(a) for every r ≥ 0, ‖En(X) ∩ Σr‖ ≤ 2 and
(b) L(NMX

j ) ∩ Σ≤k ∈ SPARSEj .
4. Let X be (µ, k)-valid and S ⊆ Σk+1 such that k + 1 6≡ 0(mod 4), C(S) ∩D(S) = ∅, andfor all (n, 0, j) ∈ µ it holds that ‖En(S)‖ ≤ 2. Then X ∪ S is (µ, k + 1)-valid.
5. For every (µ, k)-valid X and every (i, j) ∈ range(µ), i > 0, it holds that L(NMX

i ) ∩
L(NMX

j ) ∩ Σ≤k = ∅.
6. If X is (µ, k)-valid, then for every k′, µmax ≤ k′ ≤ k (resp., 0 ≤ k′ ≤ k if µ = ∅), it holdsthat X≤k′ is (µ, k′)-valid.

Proof The statements 6.10.1 and 6.10.2 follow immediately from Definition 6.9.Let X be (µ, k)-valid and (n, 0, j) ∈ µ. Let n0
df=n, i0 df= 0, j0

df= j, and µ0
df={(n′, i′, j′) ∈

µ
∣∣n′ < n}. By 6.10.2, X is (µ0 ∪ {(n0, i0, j0)}, k)-valid and also (µ0, k)-valid. From 6.9.2a itfollows that 6.10.3a holds. From 6.9.2b (for l = k and Y = X) we obtain L(NMX

j0
) ∩ Σ≤k ∈

SPARSEj0 . This shows 6.10.3b.We prove statement 6.10.4 by induction on ‖µ‖. First of all we see that A(S) = B(S) = ∅,since S contains no words of length ≡ 0(mod 4). If ‖µ‖ = 0, then, by Definition 6.9, X ∪ S is
(µ, k + 1)-valid. So assume ‖µ‖ > 0 and choose µ0, n0, i0, j0 as in Definition 6.9. We assumeas induction hypothesis that if X is (µ0, k)-valid, then X ∪ S is (µ0, k + 1)-valid. We verifyDefinition 6.9 for X ∪ S and k + 1. Clearly, k + 1 > k ≥ n0. Since X is (µ, k)-valid it is also
(µ0, k)-valid. By induction hypothesis we obtain that X ∪ S is (µ0, k + 1)-valid.
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Assume that i0 > 0; we verify 6.9.1. Since k + 1 6≡ 0(mod 4), the condition 4 · |00n010t1x| ≤
k + 1 is equivalent to 4 · |00n010t1x| ≤ k. Since t < k, the computations mentioned in 6.9.1acannot ask queries longer than k. So nothing changes when these machines use oracle X insteadof X ∪ S. Moreover, at the left-hand sides in 6.9.1a, we can also use X instead of X ∪ S sincewe only test the membership for words of length ≡ 0(mod 4). This shows that in 6.9.1a we canreplace every occurrence ofX∪S withX and obtain an equivalent condition. This condition holdssince X is (µ, k)-valid. Therefore, 6.9.1a holds for X ∪ S and k + 1. Condition 6.9.1b holds for
X ∪ S and k + 1, since this condition does not depend on k and since (X ∪ S) ∩ Σ≤k = X≤k.Assume that i0 = 0; we verify 6.9.2. By assumption, ‖En0(S)‖ ≤ 2 and (since X is (µ, k)-valid) for all r ≥ 0 it holds that ‖En0(X) ∩ Σr‖ ≤ 2. Words in En0(X) are of length ≤ bk/2c.In contrast, words in En0(S) are of length d(k + 1)/2e. Hence, words in En0(X) are shorter thanwords in En0(S). So for all r ≥ 0,
‖En0(X∪S)∩Σr‖ = ‖(En0(X)∩Σr)∪(En0(S)∩Σr)‖ = ‖(En0(X)∩Σr)‖+‖(En0(S)∩Σr)‖ ≤ 2.

This shows 6.9.2a. Condition 6.9.2b holds for X ∪ S and k + 1, since this condition does notdepend on k, and since (X ∪ S) ∩ Σ≤k = X≤k. This proves statement 6.10.4.We prove statement 6.10.5 as follows. Assume that L(NMX
i0

)∩L(NMX
j0

)∩Σ≤k 6= ∅ for some
(i0, j0) ∈ range(µ) such that i0 > 0. Choose n0 such that (n0, i0, j0) ∈ µ. Let µ0

df={(n′, i′, j′) ∈
µ
∣∣n′ < n0}. By 6.10.2, X is (µ0 ∪ {(n0, i0, j0)}, k)-valid and also (µ0, k)-valid. Together with6.9.1b (for l = k and Y = X) this implies that L(NMX

i0
)∩L(NMX

j0
)∩Σ≤k = ∅, which contradictsour assumption.We prove statement 6.10.6 by induction on ‖µ‖. If ‖µ‖ = 0, then, by Definition 6.9, X≤k′ is

(µ, k′)-valid for 0 ≤ k′ ≤ k. So assume ‖µ‖ > 0 and choose µ0, n0, i0, j0 as in Definition 6.9. Weassume as induction hypothesis that if X is (µ0, k)-valid, then, for every k′, n0 ≤ k′ ≤ k, it holdsthat X≤k′ is (µ0, k
′)-valid. Choose k′ such that n0 ≤ k′ ≤ k; we show that X≤k′ is (µ, k′)-valid.Since X is (µ, k)-valid it is also (µ0, k)-valid. By induction hypothesis we obtain that X≤k′ is

(µ0, k
′)-valid.Assume that i0 > 0; we verify 6.9.1. Note that in 6.9.1a we have the condition 4·|00n010t1x| ≤

k′. Hence, t < k′ and therefore, the computations mentioned in 6.9.1a cannot ask queries longerthan k′. So nothing changes when these machines use oracle X instead of X≤k′ . Moreover, at theleft-hand sides in 6.9.1a, we can also use X instead of X≤k′ since we only test the membership forwords of length ≤ k′. This shows that in 6.9.1a we can replace every occurrence of X≤k′ with Xand obtain an equivalent condition. This condition holds since X is (µ, k)-valid. Therefore, 6.9.1aholds. Condition 6.9.1b holds, since X≤k′ ∩ Σ≤n0 = X≤n0 .Assume that i0 = 0; we verify 6.9.2. Condition 6.9.2a follows immediately, since X is (µ, k)-valid. Condition 6.9.2b holds, since X≤k′ ∩ Σ≤n0 = X≤n0 . This proves statement 6.10.6. 2

Proposition 6.11 Let O2 be an oracle such that for infinitely many k, O2
≤k is (µ, k)-valid. (prop-erty (c))

1. A(O2) ∩ B(O2) = C(O2) ∩D(O2) = ∅.
2. For all (i, j) ∈ range(µ), i > 0, it holds that L(NMO2

i ) ∩ L(NMO2
j ) = ∅ and there existssome f ∈ PF such that (L(NMO2

i ), L(NMO2
j ))≤ppsm(A(O2), B(O2)) via f .
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3. For all (n, 0, j) ∈ µ it holds that En(O2) contains ≤ 2 words of every length, and
L(NMO2

j ) ∈ SPARSEj .
Proof Assume that A(O2)∩B(O2) 6= ∅ and let w ∈ A(O2)∩B(O2). Then, for k = 4 · (|w|+ 1),
w is already in A(O2

≤k) ∩ B(O2
≤k). This contradicts the assumption that there exists a k′ ≥

k such that O2
≤k′ is (µ, k′)-valid. Therefore, A(O2) ∩ B(O2) = ∅. Analogously we see that

C(O2) ∩D(O2) = ∅. This shows 6.11.1.Let (i, j) ∈ range(µ), i > 0, and choose n such that (n, i, j) ∈ µ. Assume L(NMO2
i ) ∩

L(NMO2
j ) 6= ∅, and let w ∈ L(NMO2

i ) ∩ L(NMO2
j ). Then, for k = |w|i+j , w is already in

L(NMO2
′

i ) ∩ L(NMO2
′

j ) ∩ Σ≤k where O2
′ df=O2

≤k. By our assumption there exists a k′ ≥ k such
that O2

′′ df=O2
≤k′ is (µ, k′)-valid. It follows that w ∈ L(NMO2

′′
i ) ∩ L(NMO2

′′
j ) ∩ Σ≤k

′ . Thiscontradicts Proposition 6.10.5 and therefore, L(NMO2
i ) ∩ L(NMO2

j ) = ∅.Let µ0
df={(n′, i′, j′) ∈ µ

∣∣n′ < n}. From our assumption and 6.10.2 it follows that for infinitelymany k,O2
≤k is (µ0∪{(n, i, j)}, k)-valid. So by Definition 6.9, for infinitely many k the followingholds: For all t ≥ 1 and all x ∈ Σ∗, if 4 · |00n10t1x| ≤ k, then

• (∃y, |y| = 3|00n10t1x|)[00n10t1xy ∈ O2
≤k] ⇔ NMO2

≤k
i (x) accepts within t steps, and

• (∃y, |y| = 3|10n10t1x|)[10n10t1xy ∈ O2
≤k] ⇔ NMO2

≤k
j (x) accepts within t steps.

During the first t steps a machine can only ask queries of length≤ t < k. Therefore, above we canreplace NMO2
≤k

i (x) and NMO2
≤k

j (x) by NMO2
i (x) and NMO2

j (x), respectively. Moreover, sincewe have the condition 4·|00n10t1x| ≤ k, we can replaceO2
≤k withO2 at the left-hand sides. Sincethe resulting condition holds for infinitely many k, the following holds for all t ≥ 1 and x ∈ Σ∗:

• (∃y, |y| = 3|00n10t1x|)[00n10t1xy ∈ O2] ⇔ NMO2
i (x) accepts within t steps.

• (∃y, |y| = 3|10n10t1x|)[10n10t1xy ∈ O2] ⇔ NMO2
j (x) accepts within t steps.

The left-hand sides of these equivalences say 0n10t1x ∈ A(O2) and 0n10t1x ∈ B(O2), respec-tively. This shows that (L(NMO2
i ), L(NMO2

j ))≤ppsm(A(O2), B(O2)) via some f ∈ PF.5 Hence6.11.2 holds.Let (n, 0, j) ∈ µ. Assume that there exists an r ≥ 0 such that ‖En(O2) ∩ Σr‖ ≥ 3. Then thereexists some k such that ‖En(O2
′) ∩ Σr‖ ≥ 3 where O2

′ df=O2
≤k. By our assumption there existssome k′ ≥ k such that O2

′′ df=O2
≤k′ is (µ, k′)-valid. It follows that ‖En(O2

′′) ∩ Σr‖ ≥ 3. Thiscontradicts Proposition 6.10.3a and therefore, En(O2) contains at most two words of every length.Assume that L(NMO2
j ) /∈ SPARSEj . Then there exists some m such that L(NMO2

j ) ∩ Σm

contains more than mj + j words. Therefore, with k df=mj and O2
′ df=O2

≤k we obtain L(NMO2
′

j )∩
Σ≤k /∈ SPARSEj . By our assumption there exists some k′ ≥ k such that O2

′′ df=O2
≤k′ is (µ, k′)-valid. It follows that L(NMO2

′′
j ) ∩ Σ≤k

′
/∈ SPARSEj . This contradicts Proposition 6.10.3b andtherefore, L(NMO2

j ) ∈ SPARSEj . 2

Remember that our construction consists of a coding part to obtain condition (i) of Theorem 6.7and of separating parts to obtain conditions (ii), (iii), and (iv). In order to diagonalize, we will
5We can use f(x) df= 0n10|x|

i+j

1x, since NMi(x) and NMj(x) have computation times |x|i and |x|j , respectively.
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fix certain words that are needed for the coding part and we will change our oracle on nonfixedpositions to obtain the separation. For this we introduce the notion of a reservation for an oracle. Areservation consists of two sets Y and N where Y contains words that are reserved for the oraclewhile N contains words that are reserved for the complement of the oracle. This notion has twoimportant properties:
• Whenever an oracleX agrees with a reservation that is not too large, we can find an extensionof X that agrees with the reservation (Lemma 6.14).
• If we want to fix certain words to be in the oracle, then this is possible by a reservation ofsmall size. For this reason we can fix certain words to be in the oracle and still be able todiagonalize. (Lemma 6.18)

Definition 6.12 ((µ, k)-reservation) (Y,N) is a (µ, k)-reservation for X if X is (µ, k)-valid,
Y ∩N = ∅, Y ≤k ⊆ X , N≤k ⊆ X , A(Y )∩B(Y ) = ∅, all words in Y >k are of length≡ 0(mod 4),and ifw ∈ Y >k is a µ-code-word for (i, t, x), thenNM i(x) has a positive path P such that |P | ≤ t,
P yes ⊆ Y and P no ⊆ N .
Proposition 6.13 (basic properties of reservations) The following holds for every (µ, k)-valid
X .

1. (∅, ∅) is a (µ, k)-reservation for X .
2. If (Y,N) is a (µ, k)-reservation for X , then also (Y,N ∪N ′) for every N ′ ⊆ Y ∪X .
3. For every N ⊆ X , (∅, N) is a (µ, k)-reservation for X .
4. Let (Y,N) be a (µ, k)-reservation forX . For each (µ, k+1)-validZ⊇kX such that Y =k+1 ⊆
Z=k+1 ⊆ N

=k+1 it holds that (Y,N) is a (µ, k + 1)-reservation for Z.
5. Let (Y,N) be a (µ, k)-reservation for X . For every m ≥ 0, (Y ∩ Σ≤m, N ∩ Σ≤m) is a

(µ, k)-reservation for X .
Proof This follows immediately from Definition 6.12. 2

Whenever a (µ, k)-reservation of some oracle X is not too large, then X has a (µ,m)-validextension Z that agrees with the reservation.
Lemma 6.14 Let (Y,N) be a (µ, k)-reservation forX and letm df= max({|w|

∣∣w ∈ Y ∪N}∪{k}).If ‖N‖ ≤ 2k/2, then there exists a (µ,m)-valid Z⊇kX such that Y ⊆Z, N⊆Z, and (Z−Y )∩Σ>k

contains only µ-code-words.
Proof Assume ‖N‖ ≤ 2k/2. We show the lemma by induction on n df=m − k. If n = 0, then weare done.Now assume n > 0. First of all we show that it suffices to find a (µ, k + 1)-valid Z ′⊇kXsuch that Y =k+1 ⊆ Z ′=k+1 ⊆ N

=k+1 and (Z ′ − Y ) ∩ Σk+1 contains only µ-code-words. In thiscase, Proposition 6.13.4 implies that (Y,N) is a (µ, k+ 1)-reservation for Z ′. So we can apply the
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induction hypothesis to (Y,N) considered as a (µ, k + 1)-reservation for Z ′. We obtain a (µ,m)-valid Z⊇k+1Z
′ such that Y ⊆ Z, N ⊆ Z, and (Z − Y ) ∩ Σ>k+1 contains only µ-code-words.Together this yields Z⊇kX and (Z −Y )∩Σ>k contains only µ-code-words. It remains to find thementioned Z ′.If k+1 6≡ 0(mod 4), then Y =k+1 = ∅, since Y =k+1 contains only words of length≡ 0(mod 4).We apply Proposition 6.10.4 to S df= ∅, and obtain thatX is (µ, k+1)-valid. Therefore, with Z ′ df=Xwe found the desired Z ′.If k + 1 ≡ 0(mod 4), then, starting with the empty set, we construct a set S ⊆ Σk+1 bydoing the following for each (n, i, j) ∈ µ, each t ≥ 1 and each x ∈ Σ∗ such that i > 0 and

4 · |00n10t1x| = k + 1:
• If NMX

i (x) accepts within t steps, then choose some y ∈ Σ3|00n10t1x| such that 00n10t1xy /∈
N . Add 00n10t1xy to S.
• If NMX

j (x) accepts within t steps, then choose some y ∈ Σ3|10n10t1x| such that 10n10t1xy /∈
N . Add 10n10t1xy to S.

Observe that the choices of words y are possible since ‖N‖ ≤ 2k/2 < 23(k+1)/4 = ‖Σ3|00n10t1x|‖.Moreover, S contains only µ-code-words. For Z ′ df=X ∪S ∪Y =k+1 we have Z ′⊇kX and Y =k+1 ⊆
Z ′=k+1 ⊆ N

=k+1, since S ⊆ N
=k+1. In addition, (Z ′ − Y ) ∩ Σk+1 contains only µ-code-words,since this set is a subset of S. It remains to show that Z ′ is (µ, k + 1)-valid.

Claim 6.15 A(Z ′) ∩ B(Z ′) = C(Z ′) ∩D(Z ′) = ∅.
Proof Since X is (µ, k)-valid we have A(X)∩B(X) = C(X)∩D(X) = ∅. When we look at thedefinitions of A(X), B(X), C(X) and D(X) we see that in order to show Claim 6.15, it sufficesto show

A(Z ′) ∩ B(Z ′) ∩ Σ
(k+1)

4
−1 = C(Z ′) ∩D(Z ′) ∩ Σk+1 = ∅.

We immediately obtain C(Z ′)∩D(Z ′)∩Σk+1 = ∅, since by definition, C(Z ′) and D(Z ′) containonly words of lengths ≡ 1(mod 4). Assume that A(Z ′) ∩ B(Z ′) ∩ Σ(k+1)/4−1 6= ∅, and choosesome w ∈ A(Z ′) ∩ B(Z ′) ∩ Σ(k+1)/4−1. So there exist n, t ≥ 1, x ∈ Σ∗ and y0, y1 ∈ Σ3|w|+3

such that w = 0n10t1x and 0wy0, 1wy1 ∈ Z ′. Note that 0wy0, 1wy1 ∈ S ∪ Y =k+1, but both wordscannot be in Y =k+1, since otherwise we have A(Y )∩B(Y ) 6= ∅ which contradicts our assumptionthat (Y,N) is a (µ, k)-reservation. Therefore, either 0wy0 or 1wy1 belongs to S. Since all wordsin S are µ-code-words, there exist i, j ≥ 1 such that (n, i, j) ∈ µ. Hence 0wy0 and 1wy1 are
µ-code-words. We claim that NMX

i (x) accepts within t steps, regardless of whether 0wy0 belongsto S or to Y =k+1. This can be seen as follows:
• If 0wy0 ∈ S, then from the construction of S it follows that NMX

i (x) accepts within t steps.
• If 0wy0 ∈ Y =k+1, then, since 0wy0 is a µ-code-word of length > k, NM i(x) has a positivepath P with |P | ≤ t, P yes ⊆ Y and P no ⊆ N . Since t ≤ k it follows that P yes ∪ P no ⊆ Σ≤kand therefore, P yes ⊆ X and P no ⊆ Σ≤k − X . It follows that NMX

i (x) accepts within tsteps.
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Analogously we obtain that NMX
j (x) accepts within t steps. Since |x| ≤ k we have seen that

L(NMX
i ) ∩ L(NMX

j ) ∩ Σ≤k 6= ∅ and (i, j) ∈ range(µ) such that i > 0. This contradicts Proposi-tion 6.10.5 and finishes the proof of Claim 6.15. 2

Claim 6.16 Z ′ is (µ′, k + 1)-valid for every µ′ ¹ µ.
Proof We prove the claim by induction on ‖µ′‖. If ‖µ′‖ = 0, then Z ′ is (µ′, k + 1)-valid byClaim 6.15.Assume now ‖µ′‖ > 0, and choose suitable µ0, n0, i0, j0 such that n0 = µ′max, µ′ = µ0 ∪
{(n0, i0, j0)} and µ0 ≺ µ′. Clearly, n0 ≤ µmax ≤ k < k + 1. As induction hypothesis we assumethat Z ′ is (µ0, k + 1)-valid. We show that Z ′ is (µ′, k + 1)-valid.Assume i0 > 0. We claim that for all t ≥ 1 and all x ∈ Σ∗, if 4 · |00n010t1x| ≤ k + 1, then theequivalences in 6.9.1a hold for Z ′ instead of X . This is seen as follows:
• If 4 · |00n010t1x| ≤ k, then they hold since X is (µ′, k)-valid and Z ′⊇kX .
• If 4·|00n010t1x| = k+1, then the implications “⇐” in statement 6.9.1a hold, sinceNMZ′

i0
(x)and NMZ′

j0
(x) run at most t ≤ k steps and can therefore use oracle X instead of Z ′, andsince S ⊆ Z ′. For the other direction, let w = 0n010t1x and assume that there existssome y ∈ Σ3|w|+3 such that 0wy ∈ Z ′. If 0wy ∈ S, then we have put this word to S,because NMX
i (x) accepts within t steps. Since t < k, also NMZ′

i (x) accepts within t steps.So assume 0wy ∈ Y =k+1 and note that 0wy is a µ-code-word. Since (Y,N) is a (µ, k)-reservation for X , NM i(x) has a positive path P with |P | ≤ t, P yes ⊆ Y and P no ⊆ N .Since t < k, we have P yes ⊆ X and P no ⊆ Σ≤k − X . Hence, NMX
i (x) accepts within tsteps, and therefore, NMZ′

i (x) accepts within t steps. This shows the implication “⇒” in6.9.1(a)i. Analogously we see the implication “⇒” in 6.9.1(a)ii.
Condition 6.9.1b holds for Z ′ instead of X , since X is (µ′, k)-valid, n0 ≤ k and therefore Z ′≤n0 =
X≤n0 .Assume i0 = 0. Since X is (µ′, k)-valid, for all r ≥ 0 it holds that ‖En0(X) ∩ Σr‖ ≤ 2.Moreover, we have En0(Z ′ ∩ Σk+1) = ∅, since by definition, En0 depends only on oracle wordsof lengths ≡ 2(mod 4). Therefore, for all r ≥ 0, ‖En0(Z ′) ∩ Σr‖ ≤ 2. This shows 6.9.2a.Condition 6.9.2b holds for Z ′ instead ofX , sinceX is (µ′, k)-valid, n0 ≤ k and therefore, Z ′≤n0 =
X≤n0 . This proves Claim 6.16. 2

Claim 6.16 implies in particular that Z ′ is (µ, k+ 1)-valid. This completes the proof of the lemma.
2

One of the main consequences of this lemma is that (µ, k)-valid oracles can be extendedto (µ, k′)-valid oracles for larger k′. We needed to include the conditions 1b and 2b in Def-inition 6.9 in order to obtain this property. Otherwise it is possible that a certain way of ex-tending the finite oracle X to some oracle X ′ has no extension to an infinite oracle O2 so that
L(NMO2

i ) ∩ L(NMO2
j ) = ∅. If this happens, then by statement 6.9.1a, for all extensions to aninfinite oracle O2, A(O2) and B(O2) would not be disjoint.
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Lemma 6.17 If X is (µ, k)-valid, then for every m > k there exists a (µ,m)-valid Z⊇kX suchthat Z>k contains only µ-code-words.
Proof It suffices to show the lemma for m = k + 1. Let Y = ∅ and N = 0k+1. By Proposi-tion 6.13.3, (Y,N) is a (µ, k)-reservation forX . Since ‖N‖ = 1 ≤ 2k/2 we can apply Lemma 6.14and we obtain a (µ, k + 1)-valid Z⊇kX such that Z>k contains only µ-code-words. 2

For a finite X ⊆ Σ∗, let `(X) df=
∑

w∈X |w|.
Lemma 6.18 Let X be (µ, k)-valid and let Z⊇kX be (µ,m)-valid such that m ≥ k and Z>k

contains only words of length ≡ 0(mod 4). For every Y ⊆ Z and every N ⊆ Z there exists a
(µ, k)-reservation (Y ′, N ′) for X such that Y ⊆ Y ′, N ⊆ N ′, `(Y ′∪N ′) ≤ 2 · `(Y ∪N), Y ′ ⊆ Z,and N ′ ⊆ Z.
Proof For every Y ⊆ Z let

D(Y ) df={q
∣∣Y >k contains a µ-code-word for (i, t, x) and q ∈ P all

i,t,x},

where Pi,t,x is the lexicographically smallest path among all paths of NMZ
i (x) that are acceptingand that are of length ≤ t. Note that D(Y ) is well-defined: If Y >k ⊆ Z contains a µ-code-word, then this has the form 00n010t1xy (resp., 10n010t1xy), and there exist i0, j0 ≥ 1 such that

(n0, i0, j0) ∈ µ. Let µ0
df={(n′, i′, j′) ∈ µ

∣∣n′ < n0}. By 6.10.2, Z is (µ0 ∪ {(n0, i0, j0)},m)-valid.From 6.9.1a it follows that the path Pi0,t,x (resp., Pj0,t,x) exists.If w is a µ-code-word for (i, t, x), then |Pi,t,x| ≤ t < |w|/4. Therefore, when looking at thedefinition of D(Y ), we see that the sum of lengths of q’s that are induced by some µ-code-word wis at most |w|/4. This shows the following.
Claim 6.19 For all Y ⊆ Z, `(D(Y )) ≤ `(Y )/4 and words inD(Y ) are not longer than the longestword in Y .

Given Y and N , the procedure below computes the (µ, k)-reservation (Y ′, N ′).
1 Y0 := Y2 N0 := N3 c := 04 do5 c := c + 16 Yc := D(Yc−1) ∩ Z7 Nc := D(Yc−1) ∩ Z8 repeat until Yc = Nc = ∅9 Y′ := Y0 ∪ Y1 ∪ · · · ∪ Yc10 N′ := N0 ∪ N1 ∪ · · · ∪ Nc

Note that since all Yc are subsets of Z, the expressions D(Yc−1) in the lines 6 and 7 are defined.It is immediately clear that Y ⊆ Y ′ ⊆ Z, and N ⊆ N ′ ⊆ Z. Therefore Y ′ ∩ N ′ = ∅. FromClaim 6.19 we obtain `(Yi ∪ Ni) = `(D(Yi−1)) ≤ `(Yi−1)/4 for 1 ≤ i ≤ c. Therefore, theprocedure terminates and `(Y ′ ∪N ′) ≤ 2 · `(Y ∪N). It remains to show the following.
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Claim 6.20 (Y ′, N ′) is a (µ, k)-reservation for X .
Clearly, Y ′≤k ⊆ X and N ′≤k ⊆ X . Moreover, A(Y ′) ∩ B(Y ′) = ∅, since otherwise A(Z) ∩

B(Z) 6= ∅ which is not possible, since Z is (µ,m)-valid. All words in Y ′>k are of length ≡
0(mod 4), since Y ′ ⊆ Z. Let v ∈ Y ′>k be a µ-code-word for (i, t, x). More precisely, v ∈ Yi′ ⊆ Zfor a suitable i′ < c. Z is (µ,m)-valid and v is a µ-code-word that belongs to Z. Therefore, as seenat the beginning of this proof, it follows that NMZ

i (x) accepts within t steps. Thus the path Pi,t,xexists and we obtain P all
i,t,x ⊆ D(Yi′). It follows that P yes

i,t,x ⊆ Yi′+1 ⊆ Y ′ and P no
i,t,x ⊆ Ni′+1 ⊆ N ′.Therefore, NM i(x) has a positive path P with |P | ≤ t, P yes ⊆ Y ′ and P no ⊆ N ′. This provesClaim 6.20 and finishes the proof of Lemma 6.18. 2

For any (µ, k)-valid oracle either we can find a finite extension that makes the languages ac-cepted by NM i and NM j not disjoint, or we can force these languages to be disjoint for all validextensions.
Proposition 6.21 (Property P1) Let i, j ≥ 1 and let X be (µ, k)-valid. There exists an l > k anda (µ′, l)-valid Y⊇kX , µ ¹ µ′ such that
• either for all Z⊇lY , L(NMZ

i ) ∩ L(NMZ
j ) ∩ Σ≤l 6= ∅,

• or (i, j) ∈ range(µ′).
This proposition tells us that if the first property does not hold, then by Definition 6.9, since Yis (µ′, l)-valid, L(NMZ

i ) ∩ L(NMZ
j ) ∩ Σ≤m = ∅ for all (µ′,m)-valid extensions Z of Y , where

m ≥ l.Proof By Lemma 6.17, we can assume that k is large enough so that 2 · ki+j < 2k/2. If (i, j) ∈
range(µ), then we are done. Otherwise we distinguish two cases.Case 1: There exists an l′ > k and a (µ, l′)-valid Y ′⊇kX such that L(NMY ′

i ) ∩ L(NMY ′
j ) ∩

Σ≤l
′ 6= ∅. Choose some x ∈ L(NMY ′

i ) ∩ L(NMY ′
j ) ∩ Σ≤l

′ and let Pi, Pj be accepting pathsof the computations NMY ′
i (x), NMY ′

j (x), respectively. Note that (P yes
i ∪ P yes

j ) ∩ Σ>l′ = ∅ andlet N df=(P no
i ∪ P no

j ) ∩ Σ>l′ . By Proposition 6.13.3, (∅, N) is a (µ, l′)-reservation for Y ′. Since
‖N‖ ≤ 2 · |x|i+j ≤ 2 · l′i+j < 2l

′/2 we can apply Lemma 6.14. We obtain some l ≥ l′ > kand some (µ, l)-valid Y⊇l′Y ′⊇kX such that N ⊆ Σ≤l and N ⊆ Y . Therefore, for every Z⊇lYthe computations NMZ
i (x) and NMZ

j (x) will accept at the paths Pi and Pj , respectively. Hence
L(NMZ

i ) ∩ L(NMZ
j ) ∩ Σ≤l 6= ∅ for every Z⊇lY .Case 2: For every l′ > k and every (µ, l′)-valid Y ′⊇kX it holds that L(NMY ′

i ) ∩ L(NMY ′
j ) ∩

Σ≤l
′

= ∅. By Lemma 6.17, there exists a (µ, l)-valid Y⊇kX where l df= k + 1. Let n0
df= l, i0 df= i,

j0
df= j, µ0

df=µ, and µ′ df=µ0 ∪ {(n0, i0, j0)}. Observe that n0 > k ≥ µmax and therefore, µ ¹ µ′.We show that Y is (µ′, l)-valid.We already know that l ≥ n0 and that Y is (µ0, l)-valid. Since i0 > 0 we only have to verify6.9.1. When looking at 6.9.1a, we see that 4 · |00n010t1x| ≤ l is not possible, since n0 = l.Therefore, 6.9.1a holds. Condition 6.9.1b follows from our assumption in Case 2. Therefore, Y is
(µ′, l)-valid. 2

In order to show that (C(O2), D(O2)) is not symmetric we have to diagonalize against everypossible reducing function, i.e., against every deterministic polynomial-time oracle transducer. The
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following proposition makes sure that this diagonalization is compatible with the notion of validoracles.
Proposition 6.22 (Property P2) Let i ≥ 1 and let X be (µ, k)-valid. There exists an l > k anda (µ, l)-valid Y⊇kX such that for all Z⊇lY , if C(Z) ∩ D(Z) = ∅, then (C(Z), D(Z)) does not
≤pp,O2
m -reduce to (D(Z), C(Z)) via TZi .

Proof By Lemma 6.17 we can assume that k ≡ 0(mod 4) and (k + 1)i + 1 < 2(k+1)/2. Considerthe computation TXi (0k+1), let x be the output of this computation, and let N be the set of queriesthat are of length greater than k. If |x| > k, then additionally we add the word 0|x| to N . Note thatthis yields an N such that X ∩N = ∅ and ‖N‖ ≤ (k + 1)i + 1 < 2(k+1)/2.If x ∈ C(X) (note that this implies x = 0k
′ for some k′ ≤ k), then choose some y ∈ 0Σk −Nand let S df={y}. In this case it holds that 0k+1 ∈ C(X ∪ S) ∧ x /∈ D(X ∪ S). The right part ofthe conjunction holds, since X is (µ, k)-valid and therefore, C(X) ∩ D(X) = ∅. Otherwise, if

x /∈ C(X), then choose some y ∈ 1Σk−N and let S df={y}. Here we obtain 0k+1 ∈ D(X∪S)∧x /∈
C(X ∪ S). Together this means that we find some y ∈ Σk+1 − N such that with S df={y} it holdsthat

[0k+1 ∈ C(X ∪ S) ∧ x /∈ D(X ∪ S)] ∨ [0k+1 ∈ D(X ∪ S) ∧ x /∈ C(X ∪ S)]. (15)
Note that S ⊆ Σk+1 and k + 1 6≡ 0(mod 4). Moreover, C(S) ∩ D(S) = ∅ and for every n,
En(S) = ∅, since by definition, En depends only on oracle words of length ≡ 2(mod 4). FromProposition 6.10.4 it follows that X ∪ S is (µ, k + 1)-valid. So by Proposition 6.13.3, (∅, N)is a (µ, k + 1)-reservation for X ∪ S. Since ‖N‖ < 2(k+1)/2 we can apply Lemma 6.14. For
l df= max({|w|

∣∣w ∈ N} ∪ {k + 1}) we obtain a (µ, l)-valid Y⊇k+1X ∪ S such that N ⊆ Yand Y >k+1 contains only words of length ≡ 0(mod 0). Therefore, T Yi (0k+1) computes x. Sinceall queries asked at this computation are of length ≤ l, we obtain that TZi (0k+1) computes x forevery Z⊇lY . Since Y >k+1 does not contain words of length ≡ 1(mod 4) we have C(Z) ∩ Σ≤l =
C(X ∪ S) and D(Z) ∩ Σ≤l = D(X ∪ S) for each Z⊇lY . Note that k + 1 ≤ l and |x| ≤ l.Therefore, by Equation (15), the following holds for every Z⊇lY .

[0k+1 ∈ C(Z) ∧ TZi (0k+1) /∈ D(Z)] ∨ [0k+1 ∈ D(Z) ∧ TZi (0k+1) /∈ C(Z)] (16)
Hence, for every Z⊇lY , if C(Z) ∩ D(Z) = ∅, then (C(Z), D(Z)) does not ≤pp,O2

m -reduce to
(D(Z), C(Z)) via TZi . 2

For any (µ, k)-valid oracle, either we can find a finite extension that destroys NM j’s promiseto be sparse, or we can force NM j to be sparse for all valid extensions.
Proposition 6.23 (Property P3a) Let j ≥ 1 and let X be (µ, k)-valid. There exists an l > k and a
(µ′, l)-valid Y⊇kX , µ ¹ µ′ such that
• either for all Z⊇lY , L(NMZ

j ) /∈ SPARSEj ,
• or (0, j) ∈ range(µ′).
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This proposition tells us that if the first property does not hold, then there exists some n such that
(n, 0, j) ∈ µ′. In this case, from Definition 6.9 we obtain that for all (µ′,m)-valid extensions Z of
Y it holds that L(NMZ

j )∩Σ≤m ∈ SPARSEj and En(Z) contains at most 2 words of every length.Proof By Lemma 6.17, we can assume that k is large enough so that (kj + j + 1) · kj < 2k/2. If
(0, j) ∈ range(µ), then we are done. Otherwise we distinguish two cases.Case 1: There exists an l′ > k and a (µ, l′)-valid Y ′⊇kX such that L(NMY ′

j ) ∩ Σ≤l
′
/∈

SPARSEj . More precisely, there exists an m ≤ l′ such that ‖L(NMY ′
j ) ∩ Σm‖ > mj + j. Wechoose mj + j + 1 different words x0, . . . , xmj+j from L(NMY ′

j ) ∩ Σm. For 0 ≤ i ≤ mj + j let
Pi be an accepting path of the computation NMY ′

j (xi). For all i, note that P yes
i ∩ Σ>l′ = ∅ and let

N be the union of all P no
i ∩ Σ>l′ . By Proposition 6.13, (∅, N) is a (µ, l′)-reservation for Y ′. Since

‖N‖ ≤ (mj + j + 1) · mj ≤ (l′j + j + 1) · l′j < 2l
′/2 we can apply Lemma 6.14. We obtainsome l ≥ l′ > k and some (µ, l)-valid Y⊇l′Y ′⊇kX such that N ⊆ Σ≤l and N ⊆ Y . Therefore,for every Z⊇lY and every i the computation NMZ

j (xi) will accept at path Pi. Hence, for every
Z⊇lY , L(NMZ

j ) /∈ SPARSEj .Case 2: For every l′ > k and every (µ, l′)-valid Y ′⊇kX it holds that L(NMY ′
j ) ∩ Σ≤l

′ ∈
SPARSEj . By Lemma 6.17, there exists a (µ, l)-valid Y⊇kX with l df= k + 1. Let n0

df= l, i0 df= 0,
j0

df= j, µ0
df=µ, and µ′ df=µ0 ∪ {(n0, i0, j0)}. Observe that n0 > k ≥ µmax and therefore, µ0 ¹ µ′.We will show that Y is (µ′, l)-valid.Since l = µ′max we have l ≥ µ′max. We already know l ≥ n0 and that Y is (µ0, l)-valid. Since

i0 = 0, we only have to verify 6.9.2. Since l = n0 and Y ⊆ Σ≤l we have En0(Y ) = ∅ which shows6.9.2a. Condition 6.9.2b follows from our assumption in Case 2. Therefore, Y is (µ′, l)-valid. 2

If NMj is forced to be sparse for all valid extensions (Proposition 6.23), then we have to makesure that L(NMj) is not many-one-complete for NP ∩ SPARSE. We show that a certain En issparse but is not many-one reducible to L(NMj). For this we have to diagonalize against everypossible reducing function, i.e., against every deterministic polynomial-time oracle transducer.Proposition 6.25 makes sure that this diagonalization is possible. Before we give this proposition,we prove the following argument, which is used in the proofs for Proposition 6.25 and Lemma 6.29.
Proposition 6.24 LetX be (µ, k)-valid. Let (Y1, N1) be a (µ, k+1)-reservation of some (µ, k+1)-valid Z1⊇kX , and let (Y2, N2) be a (µ, k + 1)-reservation of some (µ, k + 1)-valid Z2⊇kX suchthat Y1

>k+1 ∪ Y2
>k+1 contains only µ-code-words. If Y1 ∩ N2 = Y2 ∩ N1 = ∅ and X ′ df=X ∪

Y1
=k+1 ∪ Y2

=k+1 is (µ, k + 1)-valid, then A(Y1 ∪ Y2) ∩ B(Y1 ∪ Y2) = ∅.
Proof In order to see that (Y1, N1) is a (µ, k + 1)-reservation for X ′, it suffices to show that
Y1

=k+1 ⊆ X ′ and N1
=k+1 ⊆ X ′. The first inclusion holds by the definition of X ′. The second oneholds, since otherwise, either Y1 ∩N1 6= ∅ (not possible since (Y1, N1) is a (µ, k + 1)-reservation)or Y2 ∩ N1 6= ∅ (not possible by assumption). It follows that (Y1, N1) is a (µ, k + 1)-reservationfor X ′, and analogously, (Y2, N2) is a (µ, k + 1)-reservation for X ′.Assume that A(Y1 ∪ Y2) ∩ B(Y1 ∪ Y2) 6= ∅. Choose a shortest w ∈ A(Y1 ∪ Y2) ∩ B(Y1 ∪ Y2).Hence, there exist y0, y1 ∈ Σ3|w|+3 such that 0wy0, 1wy1 ∈ Y1 ∪ Y2. Let m df= |0wy0| − 1. We show

m ≥ k+ 1. Otherwise, if m ≤ k, then |0wy0| = |1wy1| ≤ k+ 1. It follows that 0wy0, 1wy1 ∈ X ′,since (Y1, N1) and (Y2, N2) are (µ, k + 1)-reservations for X ′. This implies w ∈ A(X ′) ∩ B(X ′),which is not possible. Therefore, m ≥ k + 1.
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By Proposition 6.13.5, (Y1
≤m, N1

≤m) and (Y2
≤m, N2

≤m) are (µ, k + 1)-reservations for X ′.Let Y df=Y1
≤m ∪ Y2

≤m and N df=N1
≤m ∪ N2

≤m. We show that (Y,N) is a (µ, k + 1)-reservationfor X ′. For this it suffices to verify Y ∩ N = ∅ and A(Y ) ∩ B(Y ) = ∅. The first equality holds,since otherwise either Y1 ∩ N2 6= ∅ or Y2 ∩ N1 6= ∅, which is not possible by assumption. If
A(Y ) ∩ B(Y ) 6= ∅, then there exists some w′ ∈ A(Y ) ∩ B(Y ) such that |w′| < |w|. This is notpossible, since A(Y ) ∩ B(Y ) ⊆ A(Y1 ∪ Y2) ∩ B(Y1 ∪ Y2) and since w was chosen as short aspossible. Therefore, (Y,N) is a (µ, k + 1)-reservation for X ′.By Lemmas 6.14 and 6.17, there exists a (µ,m)-valid Z⊇k+1X

′ such that Y ⊆ Z and N ⊆ Z.We know that |0wy0| > k+1 and 0wy0 ∈ Y1∪Y2. Without loss of generality we assume 0wy0 ∈ Y1.So by assumption, 0wy0 is a µ-code-word. Hence, w = 0n10t1x for suitable n, t, x such that n isin the domain of µ. Let µ(n) = (i, j) where i, j ≥ 1. From 0wy0 ∈ Y1 it follows that NMi(x)has a positive path P such that |P | ≤ t, P yes ⊆ Y1, and P no ⊆ N1. Since elements from P yes

and P no are of length ≤ t ≤ m, we obtain P yes ⊆ Y ⊆ Z, and P no ⊆ N ⊆ Z. It follows that
NMZ

i (x) accepts. Analogously (i.e., with help of 1wy1) we obtain that NMZ
j (x) accepts. Thisshows x ∈ L(NMZ

i ) ∩ L(NMZ
j ) ∩ Σ≤m, which contradicts Proposition 6.10.5. 2

Proposition 6.25 (Property P3b) Let i, j ≥ 1 and let X be (µ, k)-valid such that for a suitable n,
µ(n) = (0, j). There exists an l > k and a (µ, l)-valid Y⊇kX such that for all Z⊇lY , En(Z) doesnot ≤p,Zm -reduce to L(NMZ

j ) via fZi .
Proof Let α df=(k + 1)i, β df=(α+ 1) · (αj + j) + 1, and γ df= β · (2 · αj + 2). Note that if i and j areconsidered as constants, then the values of α, β and γ are polynomial in k + 1. By Lemma 6.17,we can assume that k ≡ 1(mod 4), and that k is large enough such that n+ 2 + log γ ≤ (k+ 1)/2and (2 · αj + 2) · γ < 2(k+1)/2.Let x1, . . . , xγ be the binary representations (possibly with leading zeros) of 1, . . . , γ, respec-tively, such that for all r, |0n1xr| = (k + 1)/2. For 1 ≤ r ≤ γ, let zr df= fXi (0n1xr) and note thatthe lengths of these words are bounded by α. We consider two cases.Case 1: There exist a, b such that 1 ≤ a < b ≤ γ and za = zb. Let N be the set of queries oflength > k that are asked during the computations fXi (0n1xa) and fXi (0n1xb). Note that these arenegative queries. Observe that ‖N‖ ≤ 2 · α < 2(k+1)/2 and choose a word ya of length (k + 1)/2such that 0n1xaya /∈ N . Let S df={0n1xaya}. It follows that C(S) ∩ D(S) = ∅. Moreover, forall n′ ≥ 1, ‖En′(S)‖ ≤ 1. From Proposition 6.10.4 it follows that X ′ df=X ∪ S is (µ, k + 1)-valid. By Proposition 6.13.3, N is a (µ, k + 1)-reservation for X ′. By Lemma 6.14, there existsa (µ, l)-valid Y⊇k+1X

′ such that N ⊆ Σ≤l and N ⊆ Y . Therefore, for all Z⊇lY it holds that
fZi (0n1xa) = fZi (0n1xb) = za. Moreover, 0n1xa ∈ En(Z) and 0n1xb /∈ En(Z). This shows thatfor all Z⊇lY , En(Z) does not ≤p,Zm -reduce to L(NMZ

j ) via fZi .Case 2: For 1 ≤ r ≤ γ, all zr are pairwise different. The remaining part of the proof deals withthis case. Until the end of the proof r will always be such that 1 ≤ r ≤ γ. For every r, define thefollowing set.
Lr

df={(Yr, Nr)
∣∣ (Yr, Nr) is a (µ, k + 1)-reservation for some (µ, k + 1)-valid Z⊇kX such that
Z=k+1 ⊆ 0n1Σ∗, ‖Z=k+1‖ ≤ 1, Yr>k+1 contains only µ-code-words, `(Yr ∪
Nr) ≤ 2 · αj , and NMj(zr) has a positive path Pr such that P yes

r ⊆ Yr and
P no
r ⊆ Nr}
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In the following we consider vectors v = ((Yr1 , Nr1), (Yr2 , Nr2), . . . , (Yrs , Nrs)) such that
1 ≤ s ≤ β, all ra are from [1, γ] and are pairwise different, and (Yra , Nra) ∈ Lra . Such vectors vare called vectors of reservations from L1, . . . , Lγ . We say that v has a conflict if there exist a, bsuch that 1 ≤ a < b ≤ s, and either Yra ∩Nrb 6= ∅ or Nra ∩ Yrb 6= ∅. In this case we also say thatthe reservations (Yra , Nra) and (Yrb , Nrb) conflict. Now we are going to prove three claims. Afterthis, with Claim 6.28 at hand, we are able to finish Case 2.
Claim 6.26 Let (Ya, Na) ∈ La and (Yb, Nb) ∈ Lb. If (Ya, Na) and (Yb, Nb) do not conflict, then
A(Ya ∪ Yb) ∩B(Ya ∪ Yb) = ∅.

Assume that (Ya, Na) and (Yb, Nb) do not conflict. Let S df=Ya
=k+1 ∪ Yb=k+1 and X ′ df=X ∪ S.From the definition of La and Lb it follows that ‖S‖ ≤ 2. Therefore, for all n′ ≥ 1, ‖En′(S)‖ ≤ 2.Moreover, C(S) = D(S) = ∅, since C and D depend only on oracle words of length≡ 1(mod 4).From Proposition 6.10.4, we obtain that X ′ is (µ, k + 1)-valid. Moreover, by assumption we have

Ya∩Nb = Yb∩Na = ∅. Therefore, from Proposition 6.24 it follows thatA(Ya∪Yb)∩B(Ya∪Yb) = ∅.This shows Claim 6.26.
Claim 6.27 Every β-dimensional vector of reservations has a conflict.
Proof Assume that there exists a vector of reservations

v = ((Yr1 , Nr1), (Yr2 , Nr2), . . . , (Yrβ , Nrβ))

such that v has no conflict. Let µ′ df={(n′, i′, j′) ∈ µ
∣∣n′ < n}. Note that X is (µ′, k)-validand also (µ′ ∪ {n, 0, j}, k)-valid (Proposition 6.10.2). Let Y df=

⋃
1≤a≤β Yra , N df=

⋃
1≤a≤β Nra , and

X ′ df=X ∪ Y =k+1. We show that X ′ is (µ′, k + 1)-valid. Since C and D depend only on oraclewords of length ≡ 1(mod 4), we have C(Y =k+1) = D(Y =k+1) = ∅. Moreover, since n is not inthe range of µ′ and since all words in Y =k+1 have the prefix 0n1, for all (n′, 0, j′) ∈ µ it holds that
En′(Y

=k+1) = ∅. Therefore, from Proposition 6.10.4 it follows that X ′ is (µ′, k + 1)-valid.Let us show that for 1 ≤ a ≤ β, (Yra , Nra) is a (µ′, k + 1)-reservation for X ′. By definition,
(Yra , Nra) is a (µ, k + 1)-reservation for some (µ, k + 1)-valid Z⊇kX . Since every µ′-code-wordis a µ-code-word, it suffices to verify Yra=k+1 ⊆ X ′ and Nra

=k+1 ⊆ X ′. The first inclusion holdsby the definition of X ′. If the latter inclusion does not hold, then Nra
=k+1 ∩ Y =k+1 6= ∅. Since

Nra ∩ Yra = ∅, it follows that Nra ∩ Yrb 6= ∅ for some b 6= a. This implies that v has a conflict,which is not possible by our assumption. This shows that for all a, if 1 ≤ a ≤ β, then (Yra , Nra) isa (µ′, k + 1)-reservation for X ′.We show that (Y,N) is a (µ′, k + 1)-reservation for X ′. All (Yra , Nra) are (µ′, k + 1)-reservations that do not conflict with each other. From this we immediately obtain that Y ∩N = ∅,
Y ≤k+1 ⊆ X ′, N≤k+1 ⊆ X ′, and all words in Y >k+1 are of length ≡ 0(mod 4). If A(Y )∩B(Y ) 6=
∅, then there exist a, b such that A(Yra ∪ Yrb) ∩ B(Yra ∪ Yrb) 6= ∅. This contradicts Claim 6.26.Therefore, A(Y ) ∩ B(Y ) = ∅. Finally, if w ∈ Y >k+1 is a µ′-code-word for (i′, t′, x′), then thereexists some a such that w ∈ Yra>k+1. Since (Yra , Nra) is a (µ′, k + 1)-reservation, NMi′(x

′) has apositive path P such that |P | ≤ t′, P yes ⊆ Yra ⊆ Y , and P no ⊆ Nra ⊆ N . This shows that (Y,N)is a (µ′, k + 1)-reservation for X ′.By definition, for all r and all (Yr, Nr) ∈ Lr it holds that `(Yr ∪ Nr) ≤ 2 · αj . Therefore,
‖Nr‖ ≤ 2 ·αj + 1 and it follows that ‖N‖ ≤ β · (2 ·αj + 1) ≤ 2(k+1)/2. By Lemmas 6.14 and 6.17
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there exists some (µ′,m)-valid Z⊇k+1X
′ such that Y ∪N ⊆ Σ≤m, Y ⊆ Z, N ⊆ Z, and m ≥ α.From the definition of the sets Lr it follows that for all a, if 1 ≤ a ≤ β, then NMZ

j (zra) accepts.The length of all zra is bounded by α. So there exists a length l such that 0 ≤ l ≤ α and at least
β/(α + 1) > (αj + j) ≥ lj + j of the words zra are of length l. Hence ‖L(NMZ

j ) ∩ Σl‖ > lj + jand therefore, L(NMZ
j ) ∩ Σ≤m /∈ SPARSEj .We know that X is (µ′ ∪{n, 0, j}, k)-valid. Moreover, m ≥ k ≥ n and Z is (µ′,m)-valid suchthat Z≤k = X≤k and therefore, Z≤n = X≤n. From Definition 6.9.2b it follows that L(NMZ

j ) ∩
Σ≤m ∈ SPARSEj . This contradicts our observation in the last paragraph and finishes the proof ofClaim 6.27. 2

Claim 6.28 There exist some r and an N ⊆ Σ>k such that ‖N‖ ≤ (2 · αj + 2) · γ and for every
(µ,m)-valid Z⊇kX , if m > k, N ⊆ Z ∩ Σ≤m, Z=k+1 ⊆ 0n1Σ∗, ‖Z ∩ Σk+1‖ ≤ 1, and Z>k+1

contains only µ-code-words, then NMZ
j (zr) rejects.

Proof We use the following algorithm to create the set N . Note that this algorithm modifies thesets Lr. This will decrease the number of possible vectors of reservations from L1, . . . , Lγ .
1 N(0) := ∅, R(0) := ∅, i := 02 while (all Lr 6= ∅)3 i := i + 14 choose the largest d such that there exists a

d-dimensional vector v = ((Yr1 , Nr1), . . . , (Yrd , Nrd)) ofreservations from L1, . . . , Lγ such that
v has no conflict5 R(i) := R(i− 1) ∪ {r1, r2, . . . , rd}6 N(i) := N(i− 1) ∪ Y>kr1

∪ N>kr1
∪ · · · ∪ Y>krd

∪ N>krd7 for every r and every (Yr, Nr) ∈ Lr:remove (Yr, Nr) if Yr ∩ N(i) 6= ∅8 end while9 N := N(i)

Let i ≥ 1 and consider the algorithm after the i-th iteration of the while loop. We claim that forevery r /∈ R(i) and every (Yr, Nr) that remains in Lr it holds that Nr ∩ (N(i) − N(i − 1)) 6= ∅.Otherwise, there exist r and (Yr, Nr) such that r /∈ R(i), (Yr, Nr) ∈ Lr, and Nr ∩ (N(i)−N(i−
1)) = ∅. Hence (Yr, Nr) has not been removed in step 7. Therefore, Yr ∩N(i) = ∅, which implies
Yr∩(N(i)−N(i−1)) = ∅. Together with our assumption we obtain (Yr∪Nr)∩(N(i)−N(i−1)) =
∅. By step 6 this means that (Yr, Nr) does not conflict with any reservation in v. Therefore, with
((Yr, Nr), (Yr1 , Nr1), . . . , (Yrd , Nrd)) we found a (d + 1)-dimensional vector of reservations thathas no conflict. This contradicts the choice of v in step 4. Therefore, for every r /∈ R(i) and every
(Yr, Nr) that remains in Lr it holds thatNr∩(N(i)−N(i−1)) 6= ∅. It follows that after l iterationsof the while loop, for every r /∈ R(l) and every (Yr, Nr) that remains in Lr it holds that ‖Nr‖ ≥ l.By Claim 6.27 and the choice of d in step 4 we have d < β. Therefore, after (2 · αj + 2)iterations, ‖R(i)‖ < (2 · αj + 2) · β = γ. So during the first (2 · αj + 2) iterations i there alwaysexists an r /∈ R(i). Moreover, for every r and every (Yr, Nr) ∈ Lr it holds that `(Yr∪Nr) ≤ 2 ·αj ,and therefore, ‖Nr‖ ≤ 2 ·αj + 1. From the conclusion of the previous paragraph it follows that the
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while loop iterates at most 2 ·αj + 2 times. This shows that the algorithm terminates. Since d < β,for all i ≥ 1 it holds that ‖N(i)−N(i−1)‖ < β ·(2 ·αj+1) ≤ γ. Therefore, ‖N‖ ≤ (2 ·αj+2) ·γand N ⊆ Σ>k when the algorithm terminates.So we have a set N of the required size and an r such that Lr = ∅. We show that N and rsatisfies Claim 6.28. Assume that for some m ≥ k + 1 there exists a (µ,m)-valid Z⊇kX suchthat N ⊆ Z ∩ Σ≤m, Z=k+1 ⊆ 0n1Σ∗, ‖Z ∩ Σk+1‖ ≤ 1, Z>k+1 contains only µ-code-words, and
NMZ

j (zr) accepts. Let Pr be an accepting path of NMZ
j (zr).Let Z ′ df=Z≤k+1. From Proposition 6.10.6 it follows that Z ′ is (µ, k + 1)-valid (since k + 1 >

k ≥ µmax). Z>k+1 contains only words of length≡ 0(mod 4), since it contains only µ-code-words.So we can apply Lemma 6.18 (for X = Z ′, Y = P yes
r and N = P no

r ). We obtain a (µ, k + 1)-reservation (Y ′, N ′) for Z ′ such that P yes
r ⊆ Y ′, P no

r ⊆ N ′, `(Y ′∪N ′) ≤ 2 ·`(P yes
r ∪P no

r ) ≤ 2 ·αj ,
Y ′ ⊆ Z, and N ′ ⊆ Z. Together with N ⊆ Z, this implies

Y ′ ∩N = ∅. (17)
We show that at the beginning of the algorithm, (Y ′, N ′) must have been in Lr . Since Z>k+1 con-tains only µ-code-words and since Y ′ ⊆ Z, also Y ′>k+1 contains only µ-code-words. Moreover,
Z ′=k+1 = Z=k+1 ⊆ 0n1Σ∗ and ‖Z ′ ∩ Σk+1‖ = ‖Z ∩ Σk+1‖ ≤ 1. By our assumption, Pr is apositive path of NMj(zr), and it holds that P yes

r ⊆ Y ′ and P no
r ⊆ N ′. It follows that (Y ′, N ′) musthave been in Lr.Since Lr = ∅ when the algorithm terminates, (Y ′, N ′) has been removed during some iteration

i. This implies that during that iteration, Y ′∩N(i) 6= ∅ (by line 7). Moreover, by line 9,N(i) ⊆ N .This implies Y ′ ∩N 6= ∅, which contradicts (17). This proves Claim 6.28. 2

Now we finish Case 2. Choose a word yr of length (k + 1)/2 such that 0n1xryr /∈ N . Let
S df={0n1xryr}. It follows that C(S) = D(S) = ∅. Moreover, for all n′ ≥ 1, ‖En′(S)‖ ≤ 1. FromProposition 6.10.4 it follows that X ′ df=X ∪ S is (µ, k + 1)-valid. By Proposition 6.13.3, (∅, N) isa (µ, k + 1)-reservation for X ′. Note that ‖N‖ ≤ (2 · αj + 2) · γ < 2(k+1)/2. Therefore, by theLemmas 6.14 and 6.17 there exists an l ≥ αj and a (µ, l)-valid Y⊇k+1X

′ such that N ⊆ Y ∩ Σ≤land Y >k+1 contains only µ-code-words. From Claim 6.28 it follows that NMY
j (zr) rejects. Thecomputation times of fYi (0n1xr) and NMY

j (zr) are bounded by αj ≤ l. Therefore, for all Z⊇lYit holds that fZi (0n1xr) = zr, 0n1xr ∈ En(Z) and NMZ
j (zr) rejects. This shows that En(Z) doesnot ≤p,Zm -reduce to L(NMZ

j ) via fZi . This finishes the proof of Proposition 6.25. 2

Recall that we want to construct the oracle in a way such that (A(O2), B(O2)) is not ≤pp,O2

T -hard for NPO2 . We have seen that it suffices to construct F (O2) such that it does not ≤ppT -reduceto (A(O2), B(O2)). We prevent F (O2)≤ppT (A(O2), B(O2)) via Mi as follows: We consider thecomputationMi(0
n) where the machine can ask queries to the pair (A(X), B(X)). In Lemma 6.29we show that each query to this pair can be forced either to be in the complement of A(X) or to bein the complement of B(X). For this forcing it is enough to reserve polynomially many words forthe complement of X . If we forced the query to be in the complement of A(X), then the oraclecan safely answer that the query belongs to B(X). Otherwise it can safely answer that the querybelongs to A(X). After forcing all queries of the computation, we add an unreserved word to

F (X) if and only if the computation rejects. This will show that F (X) does not ≤ppT -reduce to
(A(X), B(X)) via Mi (Proposition 6.32).

46



                

Lemma 6.29 Let k ≡ 2(mod 4) and let X be (µ, k)-valid. For every q ∈ Σ∗, |q| ≤ 2k/2−4 − 2,there exists an N ⊆ Σ>k such that ‖N‖ ≤ (8 · |q|+ 10)2 and one of the following properties holds.
1. For all (µ,m)-valid Z⊇kX , if m>k, N ⊆Z and Z>k+1 contains only µ-code-words, then
q /∈ A(Z).

2. For all (µ,m)-valid Z⊇kX , if m>k, N ⊆Z and Z>k+1 contains only µ-code-words, then
q /∈ B(Z).

Proof We can assume that q = 0n10t1x for suitable n, t, x. Otherwise, q cannot belong to A(Z)∪
B(Z) for all oracles Z, and we are done. Define the following sets:
LA

df= {(YA, NA)
∣∣ (YA, NA) is a (µ, k + 1)-reservation for some (µ, k + 1)-valid Z⊇kX ,
YA

>k+1 contains only µ-code-words, `(YA ∪ NA) ≤ 8(|q| + 1), and (∃y ∈
Σ3|q|+3)[0qy ∈ YA]}.

LB
df= {(YB, NB)

∣∣ (YB, NB) is a (µ, k + 1)-reservation for some (µ, k + 1)-valid Z⊇kX ,
YB

>k+1 contains only µ-code-words, `(YB ∪ NB) ≤ 8(|q| + 1), and (∃y ∈
Σ3|q|+3)[1qy ∈ YB]}.

We say that (YA, NA) ∈ LA and (YB, NB) ∈ LB conflict if and only if YA∩NB 6= ∅ orNA∩YB 6= ∅.Note that if (YA, NA) and (YB, NB) conflict, then even YA∩NB ∩Σ>k 6= ∅ or NA∩YB ∩Σ>k 6= ∅.
Claim 6.30 Every (YA, NA) ∈ LA conflicts with every (YB, NB) ∈ LB.
Proof Assume that there exist (YA, NA) ∈ LA and (YB, NB) ∈ LB that do not conflict. Let
Y ′ df=YA ∪ YB, N ′ df=NA ∪NB and S df=YA

=k+1 ∪ YB=k+1.We show that (Y ′, N ′) is a (µ, k+1)-reservation forX ′ df=X∪S. Since k ≡ 2(mod 4) and S ⊆
Σk+1 it holds that C(S) = D(S) = ∅ and for all n′ ≥ 1, En′(S) = ∅. From Proposition 6.10.4, itfollows that X ′ is (µ, k + 1)-valid. Moreover, by assumption, YA ∩ NB = YB ∩ NA = ∅. FromProposition 6.24 it follows that A(YA ∪ YB) ∩ B(YA ∪ YB) = ∅. Therefore, it remains to verify
Y ′ ∩ N ′ = ∅, Y ′=k+1 ⊆ X ′, and N ′=k+1 ⊆ X ′. The first condition holds, since (YA, NA) and
(YB, NB) do not conflict. The second one holds by the definition of X ′. Finally, N ′=k+1 ⊆ X ′holds, since otherwiseN ′=k+1∩S 6= ∅, and therefore, either Y ′∩N ′ 6= ∅. This shows that (Y ′, N ′)is a (µ, k + 1)-reservation for X ′.From the definition of LA and LB it follows that ‖N ′‖ ≤ 16 · |q|+ 18 ≤ 2k/2. By Lemma 6.14,there exist an m ≥ k + 1 and a (µ,m)-valid Z⊇k+1X

′ such that Y ′ ⊆ Z. Since (YA, NA) ∈ LAand (YB, NB) ∈ LB, there exist y0, y1 ∈ Σ3|q|+3 such that 0qy0 ∈ YA ⊆ Y ′ ⊆ Z and 1qy1 ∈ YB ⊆
Y ′ ⊆ Z. Therefore, q ∈ A(Z) ∩ B(Z), which contradicts the fact that Z is (µ,m)-valid. Thisproves Claim 6.30. 2

We use the following algorithm to create the set N as claimed in the statement of this lemma.
1 N := ∅2 while (LA 6= ∅ and LB 6= ∅)3 choose some (Y′A, N

′
A) ∈ LA4 N := N ∪ Y′A>k ∪ N′A>k
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5 for every (YA, NA) ∈ LA6 remove (YA, NA) if YA ∩ (Y′A
>k ∪ N′A>k) 6= ∅7 for every (YB, NB) ∈ LB8 remove (YB, NB) if YB ∩ (Y′A
>k ∪ N′A>k) 6= ∅9 end while

We claim that after l iterations of the while loop, for every (YB, NB) ∈ LB, ‖NB‖ ≥ l. Ifthis claim is true, the while loop iterates at most 8 · |q| + 10 times, since for any (YB, NB) ∈ LB,
`(NB) ≤ 8 · |q| + 8, and therefore, ‖NB‖ ≤ 8 · |q| + 9. On the other hand, during each iteration,
N is increased by at most 8 · |q|+ 9 strings. Therefore, ‖N‖ ≤ (8 · |q|+ 10)2 and N ⊆ Σ>k whenthis algorithm terminates.
Claim 6.31 After l iterations of the while loop, for every (YB, NB) that remains in LB, ‖NB‖ ≥ l.
Proof For every l, let us denote the pair that is chosen during the l-th iteration in step 3 by
(Y l

A, N
l
A). By Claim 6.30, every (YB, NB) that belongs to LB at the beginning of this iterationconflicts with (Y l

A, N
l
A), i.e., N l

A ∩ YB ∩Σ>k 6= ∅ or Y l
A ∩NB ∩Σ>k 6= ∅. If N l

A ∩ YB ∩Σ>k 6= ∅,then (YB, NB) will be removed from LB in step 8. Otherwise, Y l
A ∩ NB ∩ Σ>k is not empty, andtherefore, there exists a lexicographically smallest word wl in this set. In this case, (YB, NB) willnot be removed from LB; we say that (YB, NB) survives the l-th iteration due to the word wl. Notethat (YB, NB) can survive only due to a word that belongs to NB. We will use this fact to provethat ‖NB‖ ≥ l after l iterations.We show now that any pair (YB, NB) that is left in LB after l iterations survives each of theseiteration due to a different word. Since these words all belong to NB, this will complete the proofof the claim. Assume that there exist iterations l and l′ with l < l′ such that wl = wl′ . Then

wl ∈ Y l
A ∩ NB ∩ Σ>k and wl′ ∈ Y l′

A ∩ NB ∩ Σ>k. Therefore, Y l
A ∩ Y l′

A ∩ Σ>k 6= ∅. So the pair
(Y l′

A , N
l′
A) should have been removed in iteration l (step 6), and cannot be chosen at the beginningof iteration l′, as claimed. Hence, wl 6= wl′ . This proves Claim 6.31. 2

Therefore, we now have a set N of the required size such that either LA or LB will be empty.Assume that LA is empty; we will show that 6.29.1 holds. Analogously we show that if LB isempty, then 6.29.2. Assume that for some m ≥ k + 1 there exists a (µ,m)-valid Z⊇kX such that
q ∈ A(Z), N ⊆ Z and Z>k+1 contains only µ-code-words. Hence, there exists some y ∈ Σ3|q|+3

such that 0qy ∈ Z.6Let Z ′ df=Z≤k+1. From Proposition 6.10.6 it follows that Z ′ is (µ, k + 1)-valid. Since Z>k+1

contains only µ-code-words, we can apply Lemma 6.18 for ({0qy}, ∅). We obtain a (µ, k + 1)-reservation (Y ′, N ′) for Z ′ such that 0qy ∈ Y ′, `(Y ′ ∪ N ′) ≤ 2 · |0qy| = 8 · (|q| + 1) and
Y ′ ⊆ Z ⊆ N ′. Together with N ⊆ Z, this implies

Y ′ ∩N = ∅. (18)
6Actually, it even holds that 0qy ∈ Z − X , but we do not need this explicitly in our argumentation. In order tosee this, we assume that 0qy is in X . Then q is in A(X) and ({0qy}, ∅) is a (µ, k)-reservation for X . Therefore,

({0qy}, ∅) is a (µ, k + 1)-reservation for every (µ, k + 1)-valid Z⊇kX . Hence, ({0qy}, ∅) is in LA at the beginningof the algorithm. So it has been removed during the algorithm. But this is not possible since elements in LA can onlybe removed in step 6, and there we remove only (YA, NA) with YA ∩ Σ>k 6= ∅. This shows 0qy ∈ Z −X .
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Moreover, since Y ′ ⊆ Z it holds that Y ′>k+1 contains only µ-code-words. It follows that (Y ′, N ′)must have been in LA and has been removed during some iteration. This implies that during thatiteration, Y ′ ∩ (Y ′A
>k ∪ N ′A>k) 6= ∅ (by line 6). Moreover, by line 4, Y ′A>k ∪ N ′A>k is a subset of

N when the algorithms stops. This implies Y ′ ∩ N 6= ∅, which contradicts Equation (18). Thisproves Lemma 6.29. 2

Proposition 6.32 (Property P4) Let i ≥ 1 and let X be (µ, k)-valid. There exists an l > k and a
(µ, l)-valid Y⊇kX such that for all Z⊇lY , if A(Z) ∩ B(Z) = ∅, then there exists a separator Sof (A(Z), B(Z)) such that F (Z) 6= L(MS

i ).
Proof By Lemma 6.17, we can assume that k ≡ 2(mod 4) and 64(k + 10)3i < 2k/2.We describe the construction of SA and SB, which are sets of queries we reserve for B(Y ) and
A(Y ), respectively. Let SA := A(X) and SB := B(X). We simulate the computation MSA

i (0k+1)until we reach a query q1 that neither belongs to SA nor belongs to SB. Note that |q1| ≤ (k+ 1)i ≤
2k/2−4 − 2. From Lemma 6.29 we obtain some N1 ⊆ Σ>k such that ‖N1‖ ≤ (8 · |q1| + 10)2 andeither 6.29.1 or 6.29.2 holds. If 6.29.1, then add q1 to SB, otherwise add q1 to SA. Now return theanswer of “q1 ∈ SA?” to the computation. We continue the simulation until we reach a query q2that neither belongs to SA nor belongs to SB. Again we apply Lemma 6.29, obtain the set N2, andadd q2 either to SA or to SB. We continue the simulation until the computation stops. Let n bethe number of queries that were added to SA or SB. Observe that SA ∩ SB = ∅ at the end of oursimulation.Let N df=N1 ∪ · · · ∪Nn ∪ {04(k+1)i+4}. Then ‖N‖ ≤ (k+ 1)i · (8 · (k+ 1)i + 10)2 + 1 ≤ 2k/2.Hence there exists some w ∈ Σk+1 − N . If the simulation accepts, then let S ′ = ∅, otherwiselet S ′ df={w}. Since S ⊆ Σk+1 and k + 1 ≡ 3(mod 4), we have C(S ′) = D(S ′) = ∅ and forall n ≥ 1, En(S ′) = ∅. From Proposition 6.10.4, it follows that Y ′ df=X ∪ S ′ is (µ, k + 1)-valid.Since N ⊆ Σ>k and N ∩ S ′ = ∅ we have N ⊆ Y ′. Therefore, by Proposition 6.13.3, (∅, N) is a
(µ, k + 1)-reservation for Y ′. By Lemma 6.14, there exist an l ≥ 4(k + 1)i + 4 and a (µ, l)-valid
Y⊇k+1Y

′ such that N ⊆ Y and Y >k+1 contains only µ-code-words. In particular, it holds that
l > k and Y⊇kX .
Claim 6.33 For every Z⊇lY it holds that SA ⊆ B(Z) and SB ⊆ A(Z).
Assume that SA ∩ B(Z) 6= ∅ for some Z⊇lY , and choose a v ∈ SA ∩ B(Z). Since SA containsonly words of length ≤ (k + 1)i we obtain v ∈ SA ∩ B(Z≤4(k+1)i+4) = SA ∩ B(Y ). So v cannotbelong to A(Y ) since A(Y ) ∩ B(Y ) = ∅. In particular this means v ∈ SA − A(X), i.e., v = qjfor a suitable j with 1 ≤ j ≤ n. By our construction qj was only added to SA when 6.29.2holds. Remember that Y is (µ, l)-valid with l > k, Y⊇kX , Nj ⊆ N ⊆ Y and Y >k+1 containsonly µ-code-words. Therefore, from 6.29.2 it follows that v = qj /∈ B(Y ), which contradicts
v ∈ SA ∩ B(Y ). This shows SA ⊆ B(Z). By the symmetric argument we obtain SB ⊆ A(Z).This proves Claim 6.33.Consider any Z⊇lY with A(Z) ∩ B(Z) = ∅. Let S df=A(Z) ∪ SA. Assume that S is not aseparator of (A(Z), B(Z)). Since A(Z) ⊆ S, we must have S∩B(Z) 6= ∅. Since A(Z)∩B(Z) =
∅, this implies SA ∩B(Z) 6= ∅. This contradicts Claim 6.33. So S is a separator of (A(Z), B(Z)).It remains to show F (Z) 6= L(MS

i ).
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By our construction, 0k+1 ∈ F (Y ′) if and only if MSA
i (0k+1) rejects. Since Z⊇k+1Y

′ it holdsthat 0k+1 ∈ F (Z) if and only if MSA
i (0k+1) rejects. Assume that there exists a query q thatis answered differently in the computations MSA

i (0k+1) and MS
i (0k+1) (take the first such query).Since SA ⊆ S we obtain q ∈ S−SA, i.e., q ∈ A(Z). If q is inB(X), then q is inB(Z) ⊆ S, whichis not possible. So q is neither in SA nor in B(X), but q is asked in the computation MSA

i (0k+1).It follows that q = qj for some j with 1 ≤ j ≤ n, and during the construction we added qj to
SB. So we have q ∈ SB ∩ A(Z), which contradicts Claim 6.33. Therefore, MSA

i (0k+1) acceptsif and only if MS
i (0k+1) accepts. This shows 0k+1 ∈ F (Z) if and only if MS

i (0k+1) rejects, i.e.,
F (Z) 6= L(MS

i ). 2

This finishes the proof of Theorem 6.7. 2

Corollary 6.34 The oracle O2 of Theorem 6.7 has the following additional properties:
(i) UPO2 6= NPO2 6= coNPO2 and NPMVO2 6⊆cNPSVO2 .

(ii) Relative to O2, no optimal propositional proof systems exist.
(iii) There exists a≤ppsm-complete disjoint NPO2-pair (A,B) that is PO2-inseparable but symmet-ric.

Proof It is known that Conjecture 2.4 implies item (i) [ESY84, GS88, Sel94]. Relative to O2,
NP ∩ SPARSE does not have ≤p,O2

m -complete sets. Meßner and Toran [MT98] proved that thisimplies that there are no optimal propositional proof systems. This shows (ii).Since (A,B) is ≤ppsm-complete, it is symmetric. If (A,B) is PO2-separable, then every disjoint
NPO2-pair is PO2-separable, and therefore symmetric. This contradicts item (ii) of Theorem 6.7.So (A,B) is PO2-inseparable. 2

7 Relationship to Optimal Propositional Proof Systems
It is known that existence of optimal propositional proof systems implies existence of ≤ppm -complete disjoint NP-pairs. Messner and Torán [MT98] state that this result was communicated tothem by Impagliazzo and Pitassi. Ben-David and Gringauze [BDG98] cite Razborov [Raz94] forthis result. Köbler et al. [KMT] cite Razborov, and they prove the stronger result that existence ofoptimal propositional proof systems implies existence of ≤ppsm-complete disjoint NP-pairs. For thesake of completeness, we provide here a straightforward proof of the weaker result.
Theorem 7.1 If optimal propositional proof systems exist, then there is a ≤ppm -complete disjointNP-pair.
Proof Let f be an optimal propositional proof system. We define the canonical pair [Raz94,Pud01] for this proof system, (SAT∗,REFf ), where

SAT∗ = {(x, 0n)
∣∣ x ∈ SAT}
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and
REFf = {(x, 0n)

∣∣¬x ∈ TAUT and ∃y[|y| ≤ n and f(y) = ¬x]}.
Note that since f is polynomial-time computable, both SAT∗ and REFf are in NP. Also, forany n, if (x, 0n) ∈ SAT∗, then x ∈ SAT, and if (x, 0n) ∈ REFf , then x /∈ SAT. Therefore,these sets are disjoint, and so (SAT∗,REFf ) is a disjoint NP-pair. We will prove that this pair is

≤ppm -complete.Consider any other disjoint NP-pair (A,B). We will define a proof system fA,B using thispair. Assume that A ≤pm SAT via g ∈ PF and there is a polynomial p(·) and a polynomial-timepredicate R(·, ·) such that z ∈ B ⇔ ∃w, |w| ≤ p(|z|), R(z, w).

fA,B(y) =





¬g(z) if y = (z, w), where |w| ≤ p(|z|) and R(z, w)

z if y = (z, w), where |w| > 2|z| and z ∈ TAUT

z ∨ ¬z otherwise
(19)

We claim that fA,B is a proof system. First, note that for every z ∈ TAUT, fA,B(z, w), forsome w, |w| > 2|z|, will output z in time polynomial in |(z, w)|. Also, since A ∩ B = ∅ and greduces A to SAT, g(B) ⊂ SAT. Therefore, for every z ∈ B (i.e., for every z such that R(z, w)for some w, |w| ≤ p(|z|)), g(z) /∈ SAT. Therefore, fA,B outputs all possible tautologies and doesnot output anything that is not in TAUT. Also, since g is polynomial-time computable, so is fA,B.It is therefore clear that fA,B is a proof system; since f is an optimal proof system, there is apolynomial q(·) such that for every tautology φ, and for every w such that fA,B(w) = φ, there is a
w′, |w′| ≤ q(|w|) and f(w′) = φ.Now we define h ∈ PF such that (A,B)≤ppm (SAT∗,REFf ) via h. On input x, h outputs
(g(x), 0r(|x|)) where r(·) is some polynomial that we will fix later. If x ∈ A, then g(x) ∈ SAT andtherefore, h(x) ∈ SAT∗.On the other hand, ∀x ∈ B, g(x) /∈ SAT, i.e., ¬g(x) ∈ TAUT. Since x ∈ B, there exists
y = (x, w), where |w| ≤ p(|x|) such that fA,B(y) = g(x). So, there is some y′, |y′| ≤ q(|y|),such that f(y′) = g(x). We choose r to be large enough so that r(|x|) > |y′|, and since q and
p are polynomial, r can be chosen to be a polynomial as well. This shows that x ∈ B implies
h(x) ∈ REFf . Therefore, (A,B)≤ppm (SAT∗,REFf ); i.e., (SAT∗,REFf ) is ≤ppm -complete. 2

8 Conclusions
We partially summarize the import of the oracle results we obtained in this paper. Various implica-tions have been known and/or are observed here for the first time. For several of these, our oraclesdemonstrate that the converses do not hold robustly. The following are convenient lists of theseinstances:

1. Nonexistence of ≤ppT -complete NP-pairs implies Conjecture 2.4 (observed in Section 3).Relative to oracle O1, the converse is false.
2. Existence of optimal proof systems implies existence of ≤ppsm-complete NP-pairs [Raz94,KMT]. Relative to oracle O2, the converse is false.
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Relative to both oracles O1 and O2, the converse of the following implications are false:
1. Nonsymmetric implies P-inseparable (observed in Section 5).
2. Nonexistence of ≤ppT -complete NP-pairs implies NP 6= coNP (observed in Section 3).
3. Nonexistence of ≤ppm -complete NP-pairs implies NP 6= coNP (observed in Section 3).
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