Electronic Colloquium on Computational Complexity, Report No. 12 (2003)

*

Several notes on the power of Gomory-Chvatal cuts

Edward A. Hirsch' Arist Kojevnikov!

January 2003

Abstract

We prove that the Cutting Plane proof system based on Gomory-Chvital cuts
polynomially simulates the lift-and-project system with integer coefficients written in
unary. The restriction on coefficients can be omitted when using Krajitek’s cut-free
Gentzen-style extension of both systems. We also prove that Tseitin tautologies have
short proofs in this extension (of any of these systems and with any coefficients).

1 Introduction

A proof system [CRT9] for a language L is a polynomial-time computable function mapping
strings in some finite alphabet (proof candidates) onto L (whose elements are considered as
theorems). In this paper we are interested in a specific (yet very important) kind of proof
systems: proof systems for co-NP-complete languages, i.e., propositional proof systems. It
is well-known (and easy to see) that if there existed a propositional proof system having a
polynomial-size proof (i.e., inverse image) for every element of L, then NP would be equal
to co-NP.

The most natural (and historically first) propositional proof systems are proof systems
for languages of Boolean tautologies: for example, resolution (for tautologies in DNF), Frege
systems (for Boolean formulas either of constant or arbitrary depth). However, proof systems
for other co-NP-complete languagues are by no means worse (note that there is a polynomial-
time reduction between any two co-NP-complete languages). For example, recently there
was an increased interest in proof systems for systems of polynomial equations [BIK*96,
CEI96], linear inequalities [Gom63, Chv73, CCT87, CCH89|, and polynomial inequalities
[Lov94, LS91, Pud99, Das01, Das02, GHP02]. It is more natural to regard these systems as
“refutation systems”, because the “theorems” here are exactly the systems of (in)equalities
that have no appropriate (e.g., 0/1 or integer) solutions. The most part of known proof
systems uses DAG-like deduction: a proof consists of lines; the initial lines are axioms; in
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the course of deduction one derives more and more lines using certain derivation rules applied
to already obtained lines, until the goal (particularly, a contradiction) is derived. A system
is called tree-like if we put the following restriction: if we want to use again a line that was
already used, we must derive it again.

A proof system A polynomially simulates a proof system B if for every “theorem” x € L
the length of the shortest proof of z in A is bounded by a polynomial in the length of the
shortest proof of x in B. If, instead, there is an x € L that has exponentially shorter proof
in B than in A, we say that this x certifies an exponential separation of B from A. If, in
addition, B polynomially simulates A, then we say that B is erponentially stronger than
A. To compare proof systems for different (even co-NP-complete) languages, one has to fix
a particular reduction between the languages, which can influence the result of comparison
more than the systems themselves do. Therefore, it is more convenient to compare proof
systems as proof systems for the intersection of their languages (provided the intersection
is co-NP-complete). In particular, the Cutting Plane and lift-and-project systems that we
study are exponentially stronger than the resolution proof system, if all systems are viewed
as proof systems for Boolean tautologies in disjunctive normal form.

There were several attempts to combine reasoning about equations or inequalities with
“traditional logic” inference such as Frege systems or Gentzen-style systems [Pit97, Kra98,
GHO03, GHP02]. In this paper we consider the approach of Kraji¢ek [Kra98] that allows one
to reason about inequalities in a Gentzen-style proof system, or in a resolution proof system
where literals are replaced by inequalities (this approach generalizes earlier ideas of Chvétal
[unpublished, mentioned in [Pud99]]). Kraji¢ek considers a Gentzen-style extension of the
Cutting Plane proof system. Grigoriev et al. [GHP02] considered similar extension of the
Lovasz-Schrijver proof system. In this paper we consider Gentzen-style extensions of weaker
systems: the lift-and-project proof system and linear programming. These extensions can
be also considered as DAG-like extensions of tree-like branch-and-cut proofs (concerning lift-
and-project proof system and branch-and-cut proofs see, e.g., [Das01, Das02] and references
therein).

In the following paragraphs we explain in more detail the proof systems we study, and
give an outline of our results. The proofs of these results are not hard. The main purpose
of the paper is to realize facts concerning polynomial simulations between systems based on
inequalities and between their extensions, and state the remaining open questions. The open
questions, conclusions implied by our results, and general discussion are given in Section 5.

Proof systems based on linear programming. We now describe several propositional
proof systems for the language of systems of linear inequalities that have no 0/1-solutions.
To see that this language is co-NP-complete, translate a clause I; V ...V [y of a Boolean
formula in CNF into the inequality {; + ...+l — 1 > 0 (in what follows we will omit
“>07); the obtained system of linear inequalities has the same 0/1-solutions as the original
set of clauses (where 1 corresponds to True, and 0 corresponds to False). In what follows we
describe proof systems that allow to derive a contradiction (i.e., the inequality —1) if and
only if the original set of inequalities has no 0/1-solutions.
We state the initial inequalities as axioms, and add also the axioms
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for every variable z. The main derivation rule is

Ji, oo fk

- (where ); are positive rational constants). (2)

iy Aifi
We call the above pre-proof system' LP (= Linear Programming). To design a (complete)
proof system, one needs to express the fact that the variables take values in {0,1}. There

are several ways to do it, and several corresponding systems.
The lift-and-project proof system (L&P) combines LP with the additional rule

1 g
(fz +9(1 —2)) mod (22 — )

(provided the result is linear). (3)

The Cutting Plane proof system (CP) combines LP with the Gomory-Chvétal cut rule:

- A
ffﬁ (provided the coefficients of f are integers). (4)
The completeness of L&P is proved in [BCC93]. The completeness® of CP is proved in
[Gom63].

Usually, the size of the proof is measured as the number of bits needed to write it. In
particular, all coefficients are written in binary. We also consider restrictions of our systems
LP,, CP,;, L&P,, etc. where the coefficients are integers® written in unary.

Remark 1. Note that polynomial-size (for example) CP; proofs correspond to polynomial-
size CP proofs with coefficients bounded by a polynomial in the length of input (and vice
versa). The latter system was considered, e.g., in [BPR95, GHP02].

Pudlék [Pud97] proved an exponential lower bound on the size of CP proofs. Dash
[Das01, Das02] proved an exponential lower bound on the size of L&P proofs. Grigoriev et
al. [GHPO02] proved that CP; proofs (see Remark 1) can be polynomially simulated in a
generalization of L&P;.

In Section 3 we prove that L&P; can be polynomially simulated in CP;. We do not know
whether the restriction on the coefficients can be removed. However, it can be removed for
a Gentzen-style extension of these systems described below.

Krajicek’s Gentzen-style extensions. Following Krajicek’s [Kra98| definition of R(CP),
we define an extension R(&) of any proof system & as follows. The lines of the new system
are sets of lines f; of &. We denote these sets by disjunctions*: e.g., fi \/ ...V fi- The
derivation rules are (we denote by I" an arbitrary disjunction of lines of &)

flvr7:fkvr
hYT

Tt is not yet a proof system for our language, because it is not complete: it does not have refutations for
some systems of inequalities that have no 0/1-solutions.

2Tf one omits the axioms (1), then the result extends to systems having no integer (and not just 0/1)
solutions.

3Except for \ in (4).

“To understand why this extension is called Gentzen-style, transform a disjunction into a sequent

—)fl,... 7ft-

(provided % is a valid derivation step of &), (5)
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Note that one can omit —1 from —1 \/ ... because the contradiction —1 is easily trans-

formable into any other inequality. If the lines of & are inequalities in 0/1-variables, we add
also the axiom

zr—1\ -z (for a variable x) (8)

(otherwise one needs another notion of the negation). Note that while LP is not a complete
refutation system for systems of inequalities in 0/1-variables, R(LP) is complete.

Krajicek [Kra98| proved an exponential lower bound on the size of R(CP;) proofs. Dash
[Das01, Das02] proved an exponential lower bound for branch-and-bound (a restricted case
of tree-like R(-)) L&P proofs.

In Section 2 we observe the relations between R(LP), R(L&P) and R(CP). In Section 4
we prove that Tseitin tautologies have short proofs in R(LP), the weakest of these systems.

2 R(LP), R(L&P), and R(CP)

R(L&P) vs R(LP). Trivially, R(LP) proofs form a subset of R(L&P) proofs. It is not hard
to see that also R(LP) polynomially simulates R(L&P), i.e., these systems are polynomially
equivalent.

Proposition 1. R(LP) polynomially simulates R(L&P),

Proof. The only difference between these two systems is the rule (3) of the basic system,
and the simulation of this rule (inside (5)) in R(LP) is quite simple®:

fVvr z-1\ -z
fr+g(l—2z)mod (z2—2z)\/ —z VT gV T
fr+g(1—x)mod (z?—z)\ fr+g(1 —z) mod (z> —z) VT
fr4+g(1—2x)mod (22 —2)\ T

The justification of the first step is as follows. We sum f with x—1 multiplied by a certain
coefficient (if the coefficient is negative, we use the axiom 1 — z instead of x — 1 \/ —z; then
we reach the goal already after the first step). Namely, let f =az+b+F,g=cx+d+ F
(we can write so because (fz + g(1 —x)) mod (22 — z) is linear). To get fx + g(1 — z) mod
(22 —z)=(a+b—d)x+d+ F from f and z — 1 (resp., 1 — z), we just add (b —d)(z — 1)
to f. The justification of the second step is similar. O

Here and in what follows, we do not mention rules (6) and (7) explicitly when using them.



R(CP) vs R(LP). Again, R(LP) proofs form a subset of R(CP) proofs. We do not
know whether R(CP) can be polynomially simulated in R(LP). However, proofs with integer
coefficients written in unary can be polynomially simulated as follows.

Lemma 1. Define [,,(Y) =Y —m \/ m —1—Y. If Y contains only integer coefficients,
then there is a derivation of I,,(Y") in R(LP;) of size polynomial in the absolute value of m,
the absolute values of the coefficients of Y, and the number n of variables appearing in Y.

Proof. The proof goes by induction on the number of monomials. The base follows directly
either from the axiom (8) or the axioms (1). We now suppose that there is a polynomial-size
derivation of I;(Z) for every [, and prove I}(Z+ax), where z is a variable and a is a constant.
Let a > 0 (the proof for the case a < 0 is similar) Then

Z—-k\VVk-1-2Z z —z\Vz-1
Z+ax—k\k—-1—-(Z+azx)\Jz -1 Z—(k—-a)\V(k—a)—-1-2Z2
Z+ar—k\k—-1—(Z+ax)\/ (k—a)—1—-2Z -z

Z+ax—k\ k—1—(Z+ax)

Note that the subscripts k& that we use in the whole induction fall into the interval [m +
mingg13» ¥ .. m 4 maxgg}» Y1 (except for the trivial cases). O

Remark 2. Note that in Lemma 1 we make essential use of DAG-likeness. For a tree-like
proof, we would not be able to bound the number of lines in our proof using the bounds
[m + ming 13 Y .. m + maxg 13~ Y] on k, because some lines would appear exponentially
many times.

Now the simulation of (4) (inside rule (5)) follows from Lemma 1:

f=AVE - f+ MV -TA
A =AVIEV f-[A]
IV f—1Al

since |A\| — A < 0. This implies the following proposition.

Proposition 2. If line P has a polynomial-size R(CP;) derivation from set of lines {Q; }icr,
then P \/ I' has a polynomial-size R(LP;) derivation from {Q; \/ I }cr.

3 Polynomial simulation of L&P in CP

Theorem 1. Every L&P proof whose lines contain only integer numbers can be transformed
into a correct CP proof of size bounded by a polynomial in the size of the original proof and
the absolute values of the coefficients.

Corollary 1. CP; polynomially simulates L&P;.

Proof of Theorem 1. We show how to replace an application of (3) by a CP derivation. Since
(fr+¢g(1 —z)) mod (22 — z) in (3) is linear, we can represent f and g as
A+c, 9)
A+ kx, (10)



respectively, where k and c are integers. Hence, (fz + ¢g(1 — z)) mod (z* — z) =
A+cx (11)

is what we have to derive.

We prove by induction on ¢ that we can derive it in CP in max{2¢, 1} steps.

First of all, if ¢ > k or ¢ < 0, then (11) is a nonnegative linear combination of either (9)
or (10) with axioms. Therefore, we can assume that 0 < ¢ < k; in particular, ¢ > 1, k > 2.
The induction base is thus ¢ < 0.

We now prove the induction step. First we make a linear combination

(1= (A+c)+ (A + kz) (12)
and round it to
A4+z+(c—1). (13)

If ¢ =1, we are done (we just modify the linear combination (12) by adding (k¥ — 1)z).
Otherwise, we can apply the induction hypothesis to (13) represented as (A+x)+ (c—1)
and (10) represented as (A + z) + (kK — 1)z. Then in max{2(c — 1),1} < 2(c — 1) steps we
can derive (A + ) + (¢ — 1)z, which is the desired inequality.
It is clear that the coefficients in the obtained proof are bounded by a polynomial in the
original coefficients. 0

4 Short proofs of Tseitin tautologies

This section resembles [GHP02, Section 6] (several sentences follow [GHP02] almost literally),
where short proofs of Tseitin tautologies for a different proof system are presented. The
difference is that [GHP02] does not use Gentzen-style extension, but generalizes L&P to
higher (yet constant) degree instead. To transform this proof into an R(LP) proof, we need
two lemmas. Then the proof goes along the same lines as in [GHP02] with evident changes
needed to get rid of high degree in favor of the case distinction arguments provided by R(LP)
(in fact, the proof in R(LP) is more natural, and the proof in [GHP02] is easier to understand
after reading the R(LP) proof below).

We recall the construction of Tseitin tautologies. Let G = (V, E) be a graph with an
odd number n of vertices. Attach to each edge e € E a 0/1-variable z.. The negation
T of Tseitin tautologies with respect to G (see, e.g., [Tse68, Urq87, BGIP01]) is a family
of formulas meaning that for each vertex v of G the sum ) __ x. ranging over the edges
incident to v is odd. Clearly, T is contradictory.

In recent applications to the proof theory [Urq87, BGIP01] the construction of G is
usually based on an expander. In particularly, G is d-regular, i.e., each vertex has degree d,
where d is a constant. Then 7 is given by the inequalities

> ome+ ) (1-z)—1 (14)

e€S,\S!, €S,

esv

for each vertex v and each subset S of even cardinality of the set .S, of edges incident to v.
There are 2¢7! inequalities for each vertex of G.
We first prove two lemmas.



Lemma 2. Denote Y7, = ) ... 2;—¢. Let ¢ > 1 be an integer. Then there is a CP derivation
of Yy cy1 from {Yyr . |U" C U, |U'| = |U|—1} of size and coefficients bounded by a polynomial
in ¢ and |U|. Hence, there is a CP derivation of Yy .4y from {Yy .| U’ C U, |U'| = |U| — k}
of size and coefficients bounded by a polynomial in ¢, &k, and |U].

Proof. Sum all the inequalities Y7, obtaining (U] — 1) .., x; — c[U|. Then divide the
obtained inequality by |U| — 1 and round it. O

Lemma 3. For every constant d > 1, odd constant ¢, d-regular graph G with an odd number
of vertices, and every vertex v there is a polynomial-size derivation of

oz —(t+2)Vi-> z (15)

esv esv
from (14) in R(LP) of size and (integer) coeflicients bounded by a polynomial in d and t.

Proof. Let 0 < ¢t < 451 = [ 2] (the opposite case d > ¢ > 44! = [2] is symmetrical, and the
cases t > d — 1 and t < —1 are trivial). We denote y, = Zeav Ze. By Lemma 1 we have
Yy — (t+1) V t — y,. For every S, C S, of cardinality ¢ + 1, let y, = ZeESU\S{, Ze, sum the
first inequality y, — (t 4+ 1) with (14), divide it by two, and round using Lemma 1 obtaining
yr —1\/ t—y,. Applying Lemma 2 (using Proposition 2) to the first inequality (for all sets

S! C S of cardinality ¢ + 1), we obtain the desired line. O

Theorem 2. For every constant d > 1 and every d-regular graph G with an odd number of
vertices, there is a polynomial-size refutation of (14) in R(LP).

Proof. Denote Y; = y,, + ...+ y,,, where vy, ... ,v; are pairwise distinct vertices of G' and
Yo = D ey Te- For every ¢ € [0 .. i(d — 1)/2], we will prove inductively I.(Y;/2) for odd
i=mn,n—2,n—4,... and I.((Y;—1)/2) foreven i = n—1,n—3,.... Then I,((Yo—1)/2) gives
a contradlctlon The induction base (i = n) follows from Lemma 1, since ¥, = 2>
and therefore Y,,/2 is an integer linear combination of variables.

To proceed from step i+1 to step i of the refutation, denote Y = Y;,; and y = Zeavm Te.
We assume for definiteness that i is odd (the case of an even i is treated in a similar way).
We need to prove that I.((Y —y)/2) for all c € [0 .. i(d — 1)/2].

For every odd ¢, we can do the following. Let ¢ =c+ (t —1)/2 € [c..c+ (d—1)/2] C
0. (i+1)(d—1)/2]. We have I.((Y — 1)/2) by the induction hypothesis, and it can be
rewritten as

eGE‘

Y — —1 Y-y y—t
S S S ~1) - — . 1
e LS -y - - (16)

Note that using y = ¢t we could easily transform (16) into the desired line. To make this
substitution, we use Lemma 1 to obtain

y—t\Vt-1-y, y—(t+1)Vt—y (17)
which yields
L) Vy—(t+1)Vi-1—y. (18)



Then for ¢ = 1 we also use the original inequality y — 1 which yields

(5 Vy—2 (19)

It remains to obtaing a contradiction with (15). Starting with (19), for s = 1,3,... we will
take a sum first with (15):

L) Vy—(s+1)  y—(s+2)Vs—y
L5 Vy = (s+2)

and then with (18):

LG Vy—(s+2) LEFHVy-(+3)V(s+1)—y
LY Vy—(s+3)

until for s =d — 2 or s = d — 1 (whatever is odd) we arrive at

L) Vy—(d+1).

Adding d — y (which is a sum of axioms) we obtain I,(*5%).

5

Discussion

We first define one more proof system. The simplest of Lovdsz-Schrijver systems [LS91,
Lov94, Pud99], denoted LS, is the system LP augmented with the rules

f f
fxr mod (22 — x) f(1 —2x) mod (22 — x)

(where f is linear); (20)

now the rule (2) can be applied to quadratic inequalities too.

1.

To show an exponential lower bound for LS (see, e.g., [Pud99]) remains an open ques-
tion.

Does R(CP) polynomially simulate LS? A positive answer would solve the previous
open question for the case of unary coefficients.

Does LEP polynomially simulate LS? Dash [Das01, Das02] has partial results in this
direction. Again, a positive answer would give an exponential lower bound for LS.

Prove an exponential lower bound for Tseitin tautologies in CP or L&P. Such result
would show that R(LP) is exponentially stronger than CP or, respectively, L€P. Dash’s
polynomial simulation of branch-and-cut L&P proofs (which can be regarded as a tree-
like version of R(L&P)) in L&P [Das01, Das02] is a step in the opposite direction.

. The representation of the coefficients (essentially, the upper bound on the coefficients,

cf. Remark 1) is an important issue. We do not know an example showing that a
system with coefficients written in binary is exponentially stronger than the same sys-
tem with coefficients written in unary (on the other hand, the paper leaves unsolved
several questions concerning generalizations of our results to systems with coefficients
written in binary). Note that if the coefficients are written in binary, it is not impor-
tant® whether the coefficients are integer or rational. It can be, however, different if

61.e., polynomial-size proofs remain polynomial-size ones.



coefficients are written in unary.

Dash [Das01, Das02] shows an exponential lower bound for L&P (and even for slightly
more general systems combining L&P with CP and a certain restricted version of LS)
and generalizes it to branch-and-bound proofs. Note that an exponential lower bound
for R(L&P;) follows trivially from Kraji¢ek’s lower bound by Proposition 1.
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