
An ε-Biased Generator in NC0

Luca Trevisan
∗

Abstract

Cryan and Miltersen [CM01] recently considered the question of whether there can
be a pseudorandom generator in NC0, that is, a pseudorandom generator such that
every bit of the output depends on a constant number k of bits of the seed. They
show that for k = 3 there is always a distinguisher; in fact, they show that it is always
possible to break the generator with a linear test, that is, there is a subset of bits
of the output whose XOR has a noticeable bias. They leave the question open for
k ≥ 4, and conjecture that every NC0 generator can be broken by a statistical test
that simply XORs some bits of the input. Equivalently, they conjecture that no NC0

generator can sample an ε-biased space with negligible ε.
We refute the conjecture for k ≥ 5, and we give a generator that maps n bits into

cn bits, so that every bit of the output depends on 5 bits of the seed, and the XOR of
every subset of the bits of the output has bias 2−Ω(n/c4).

We also present a polynomial-time distinguisher for the case k = 4, having constant
distinguishing probability. We observe that constant distinguishing probability is not
achievable via linear tests.

It remains open whether noticeable distinguishing probability can be achieved with
linear tests for the case k = 4, and whether there is a polynomial time test that breaks
every generator (or even just our proposal) for k ≥ 5.

1 Introduction

A pseudorandom generator is an efficient deterministic procedure that maps a shorter
random input into a longer output that is indistinguishable from the uniform distribution
by resource-bounded observers.

A standard formalization of the above informal definition is to consider polynomial-
time procedures G mapping n bits into l(n) > n bits such that for every property P
computable by a family of polynomial-size circuits we have that the quantity

∣

∣

∣

∣

∣

Pr
z∈{0,1}l(n)

[P (z) = 1] − Pr
x∈{0,1}n

[P (G(x))]

∣

∣

∣

∣

∣

goes to zero faster than any inverse polynomial in n. The existence of such a procedure
G is equivalent to the existence of one-way functions [HILL99], pseudorandom functions
[GGM86] and pseudorandom permutations [LR88].

What are the minimal computational requirements needed to compute a pseudorandom
generator? Linial et al. [LMN93] prove that pseudorandom functions cannot be computed
in AC0 (constant-depth circuits with NOT gates and unbounded fan-in AND and OR

∗luca@cs.berkeley.edu. Computer Science Division, U.C. Berkeley.

1

Electronic Colloquium on Computational Complexity, Report No. 13 (2003)

ISSN 1433-8092

gates),1 but their result does not rule out the possibility that pseudorandom generators
could be computed in AC0, since the transformation of pseudorandom generators into
pseudorandom functions does not preserve bounded-depth. Impagliazzo and Naor [IN96],
in fact, present a candidate pseudorandom generator in AC0. Goldreich [Gol00] suggests
a candidate one-way function in NC0. Recall that NC0 is the class of functions computed
by bounded-depth circuits with NOT gates and bounded fan-in AND and OR gates. In
an NC0 function, every bit of the output depends on a constant number of bits of the
inputs. While it is easy to see that there can be no one-way function such that every bit
of the output depends on only two bits of the input,2 it still remains open whether there
can be a one-way function such that every bit of the output depends on only three bits of
the input.

Cryan and Miltersen [CM01] consider the question of whether there can be pseudo-
random generators in NC0, that is, whether there can be a pseudorandom generator such
that every bit of the output depends only on some a constant k number of bits of the
input.

They present a distinguisher for k = 3, and they observe that their distinguisher is a
linear distinguisher, that is, it simply XORs a subset of the bits of the output. Cryan and
Miltersen formulate a conjecture that implies that there is no pseudorandom generator
in NC0. Specifically, they conjecture that for every constant k and for every generator
such that every bit of the output depends on k bits of the input, a linear distinguisher
always exist. In order to formulate an equivalent version of the stronger conjecture, let us
introduce the notion of a ε-biased distribution. For ε > 0, we say that a random variable
X = (X1, . . . , Xm) ranging over {0, 1}m is ε-biased if for every subset S ⊆ [m] we have
1/2 − ε ≤ Pr[

⊕

i∈S Xi = 0] ≤ 1/2 + ε. It is known [NN93, AGHP92] that an ε-biased
distribution can be sampled by using only O(log(m/ε)) random bits, which is tight up to
the constant in the big-Oh. So the conjecture of [CM01] can be formulated as stating that
there is no ε-biased generator in NC0 that samples an m-bit ε-biased distribution starting
from, say, o(m) random bits and with a negligible ε.

Our Result

We first extend the result of Cryan and Miltersen by giving a (non linear) distinguisher
for the case k = 4. Our distinguisher has a constant distinguishing probability, which
we show to be impossible to achieve with linear distinguishers. Our distinguisher uses
semidefinite programming and uses an idea similar to the “correlation attacks” used in
practice against block cyphers.

Then we present an ε-biased generator mapping n bits into cn bits such that ε =
1/2Ω(n/c4) and every bit of the output depends only on k = 5 bits of the seed. The
parameter c can be chosen arbitrarily, and may depend on n. The constant in the Ω()
notation does not depend on c. The construction refutes the conjecture of Cryan and
Miltersen.

The main idea in the construction is to develop a generator with k = 3 that handles
well linear tests that XOR a small number of bits, and then develop a generator with
k = 2 that handles well linear tests that XOR a large number of bits. The final generator

1To be precise, the results in [LMN93] only rule out security against adversaries running in time

O(n(log n)O(1)

).
2Finding an inverse can be formulated as a 2SAT problem.

2

outputs the bitwise XOR of the outputs of the two generators, on two independent seeds.
The generator uses a kind of unique-neighbor expander graphs that are shown to exist

using the probabilistic method, but that are not known to be efficiently constructable, so
the generator is in NC0 but not in uniform NC0.

2 Preliminaries

Unless otherwise noted, when we give an expression for a function g : {0, 1}n → {0, 1},
additions and multiplications are done in GF (2). We use boldface letters to denote vectors,
as in x = (x1, . . . , xn).

We say that a function g : {0, 1}n → {0, 1} is balanced if Pr
x

[g(x) = 1] = 1/2. We say

that a function g : {0, 1}n → {0, 1} is unbiased towards a function f : {0, 1}n → {0, 1} if
Pr
x

[g(x) = f(x)] = 1/2.

Definition 1 (Affine function) A function g : {0, 1}n → {0, 1} is affine if there are
values a0, . . . , an ∈ {0, 1} such that g(x1, . . . , xn) = a0 + a1x1 + . . . + anxn.

The following result was proved by case analysis for k = 3 in [CM01], and the case
k = 4 could also be derived from a case analysis appearing in [CM01] (but it is not
explicitly stated). The proof for the general case is due to Mossell.

Lemma 2 (Mossell) Let g : {0, 1}n → {0, 1} be a non-affine function that depends on
only k variables and let l be the affine function that is biased towards g and that depends on
a minimal number of variables. That is, for some d, l depends on d variables, Pr

x
[g(x) =

l(x)] > 1/2, and g is unbiased towards affine functions that depend on less than d variables.
Then Pr

x
[g(x) = l(x)] ≥ 1/2 + 2d−k.

The Lemma can be stated in somewhat more natural terms in terms of the Fourier
spectrum of g, as follows. For a subset α ⊆ [n] define the Fourier coefficient ĝα as the bias
of g towards the linear function that XORs the bits in α, that is, define

ĝα = Pr
x

[

g(x) =
⊕

i∈α

xi

]

−Pr
x

[

g(x) 6=
⊕

i∈α

xi

]

Then the Lemma states that if g depends on k inputs and is not affine, and α is a smallest
set such that ĝα 6= 0, then |ĝα| ≥ 2|α|+1−k.

For example, for k = 3, a non-affine function g is either unbalanced, or it is biased
towards one of its inputs; in the latter case it agrees with an input bit (or with its com-
plement) with probability at least 3/4.

For k = 4, a function g either is affine, or it is unbalanced, or it has agreement at least
5/8 with an affine function that depends on only one input bit, or it has agreement at
least 3/4 with an affine functions that depends on only two input bits.

3 Review of the Case k = 3

In this section we summarize the main result of [CM01].

3

Let G : {0, 1}n → {0, 1}m be a generator and let gi : {0, 1}n → {0, 1} be the i-th bit
of the output of the generator. Suppose each gi depends on only three bits of the input.

Suppose that one of the gi is not a balanced function. Then we immediately have a
distinguisher.

Suppose that more than n of the gi are affine. Then one of them is linearly dependent
of the others, and we also have a distinguisher.

It remains to consider the case where at least m − n of the functions gi are balanced
and not affine. Let I be the set of i for which gi is as above. Then, by Lemma 2,
for each such gi there is a linear function li that depends on only one bit, such that gi

agrees with li on a 3/4 fraction of the inputs. In other words, each such gi has high
correlation with one of the bits of its input. By the pigeonhole principle, there is a bit xj

of the seed, and a set C, |C| ≥ 1 + (m − n − 1)/n, such that the output of gi(x1, . . . , xn)
is correlated to xj for every i ∈ C. Let c = |C|. We see that the average over x of
max{#i ∈ C : gi(x) = 0,#i ∈ C : gi(x) = 1} is at least 3c/4. If c is a sufficiently large
constant, then the restriction of the generator to C has constant statistical distance from
the uniform distribution over c bits, for which that average value is c/2 + O(

√
c). By the

Vazirani XOR Lemma [Vaz86], it also follows that the XOR of some subset of the bits of
C has constant bias.3

While the above analysis uses the same ideas as in [CM01], it is slightly better because
we achieve constant bias instead of inverse polynomial bias.

We state for future reference the following result that follows from the above analysis.

Lemma 3 For every δ > 0 there are constant cδ = O(1/δ2) and εδ = 2−O(1/δ2) such that
the following holds. Let G : {0, 1}n → {0, 1}m, and let G(x) = (g1(x), . . . , gm(x)). Suppose
that each function gi(x) agrees with a bit xj or with its complement with probability at least
1/2+ δ, and that m ≥ 1+ cδn; then there is a set C ⊆ [m] such that

∑

i∈C gi(x) (mod 2)
has bias at least εδ.

In particular, we can compute that when we flip 4 random coins, the average of the
maximum between the number of zeroes and ones is 2.75 < 3

4 · 4, so we can set c1/4 = 3.
Also, when we flip 10 random coins, the average of the maximum between the number of
zeroes and ones is 6.23 < 5

8 · 10, so we can set c1/8 = 9.

4 Distinguisher for the Case k = 4

4.1 Preliminaries

Let G : {0, 1}n → {0, 1}m be a generator and let gi : {0, 1}n → {0, 1} be the i-th bit of
the output of the generator. Suppose each gi depends on only four bits of the input.

Again, it is easy to construct a distinguisher if any of the gi is unbalanced, or if more
than n of the gi are linear.

If one of the gi is biased towards one of the bits of its input, then it follows from
Lemma 2 that it must agree with that bit or its complement with probability at least 5/8.
Then, if more than c1/8n = 9n of the functions gi have bias towards one bit, then we can
obtain a distinguisher from Lemma 3.

3The Vazirani XOR Lemma is the fact that if X1, . . . , Xt are 0/1 random variables, then they are uniform
and mutually independent if and only if for every non-empty S ⊆ [t] we have Pr[

⊕

i
Xi = 1] = 1/2.

4

It remains to consider the case where at least m − 10n of the functions are balanced,
non-linear, and unbiased towards single bits. Following [CM01], we call such functions
problematic. It follows from Lemma 2 that for each problematic g there is an affine
function l of two variables that agrees with g on a 3/4 fraction of the inputs.

Let P be the set of i such that gi is problematic. For each such i we denote by li the
affine function of two inputs that agrees with gi on a 3/4 fraction of the inputs.

4.2 The Distinguisher Based on Semidefinite Programming

Given a string r1, . . . , rm ∈ {0, 1}m, consider the following linear system over GF (2) with
two variables per equation.

∀i ∈ P.li(x) = ri (1)

We will argue that the largest fraction of satisfying assignments in the system (1) is
distributed differently if r1, . . . , rm is uniform or if it is the output of G.

Lemma 4 If r1, . . . , rm is the output of G, then, for every ε > 0, there is a probability at
least ε that at least at 3/4 − ε fraction of the equations in (1) are satisfiable.

Proof: Pick a random z ∈ {0, 1}n and consider the agreement between G(z)|P and li(z)
for i ∈ P . This agreement is the sum of |P | random variables each of whom has average
at least 3/4. therefore the average agreement is at least 3|P |/4. By Markov inequality,
there is a probability at least ε that the agreement is at least (3/4− ε)|P |. Whenever this
happens, z is a witness of the fact that at least a 3/4 − ε fraction of the equations can be
satisfied. 2

Lemma 5 If r1, . . . , rm is chosen uniformly at random from {0, 1}m, and |P | >
(1/2δ2)(ln 2)(n + c), then the probability that there is an assignment that satisfies more
than a 1/2 + δ fraction of the equations of (1) is at most 2−c.

Proof: Fix an assignment z; then the probability that a fraction at least 1/2 + δ of the
ri agree with li(z) is at most e−2δ2m ≤ 2−c−n. By a union bound, there is at most a
probability 2−c that such a z exists. 2

Given a system of linear equations over GF (2) with two variables per equation, it
is NP-hard to determine the largest number of equations that can be satisfied, but the
problem can be approximated to within a .878 factor using semidefinite programming
[GW95].

We can then fix ε and δ small enough so that .878(3/4 − ε) > 1/2 + δ, and we get
a polynomial time algorithm that distinguishes between the two cases. For example, we
can fix δ = .158 and ε = 10−4; then, if there are at least 14n problematic functions in
the output of G and n is large enough, the above procedure has constant distinguishing
probability.

This means that if m > 24n we always have a distinguisher.

4.3 Correlation Attacks

In this section we discuss how our distinguisher for the case k = 4 can be seen as a
“correlation attack.”

5

Correlation attacks are a class of attacks that are often attempted in practice against
candidate pseudorandom generators,4 see e.g. the introduction of [JJ99] for an overview.

The basic idea is as follows. Given a candidate generator G : {0, 1}n → {0, 1}m, where
G(x) = g1(x), . . . , gm(x), we first try and find linear relations between input bits and
output bits that are satisfied with non-trivial probability. For example, suppose we find
coefficients ai,j, bi,j and cj such that each of the equations

∑n
i=1 ai,1xi +

∑m
i=1 bi,1gi(x) = c1 (mod 2)

∑n
i=1 ai,2xi +

∑m
i=1 bi,2gi(x) = c2 (mod 2)

. . .
∑n

i=1 ai,txi +
∑m

i=1 bi,tgi(x) = ct (mod 2)

(2)

is satisfied with probability bounded away from 1/2.
Now we want to use this system of equations in order to build a distinguisher. The

distinguisher is given a sample z = (z1, . . . , zm) and has to decide whether z is uniform
or is the output of G. The distinguisher substitutes zi in place of gi(x) in (2) and then
tries to find an x that maximizes the number of satisfied equations. The hope is that, if
z = G(x), then we will find x as a solution of the optimization problem.

Unfortunately, maximizing the number of satisfied equations in a linear system over
GF (2) is an NP-hard problem, and, in fact, it is NP-hard to achieve an approximation
factor better than 1/2 [H̊as97]. In practice, one uses belief-propagation algorithms that
often work, although the method is typically not amenable to a formal analysis.

In the previous section, we were able to derive a formal analysis of a related method
because we ended up with a system of equations having only two variables per equation, a
class of instances for which good approximation algorithms are known. Furthermore, we
did not try to argue that, when the method is applied to the output of the generator, we
are likely to recover the seed; instead, we argued that just being able to approximate the
largest fraction of satisfiable equations gives a way to distinguish samples of the generators
from random strings.

5 Constructions for the Case k = 5

5.1 Preliminaries

We will construct a generator mapping 2n bits into cn bits; we think of c as an arbitrarily
large constant (for every c, the construction is possible for every large enough n), although
super-constant c is also achievable.

In fact, we will construct two generators: one will be good against linear tests that
involve a small number of output bits (we call them small tests), and another is good
against linear tests that involve a large number of output bits (we call them large tests).
The final generator will be obtained by computing the two generators on independent
seeds, and then XOR-ing their output bit by bit. In this way, we fool every possible test.

The generator that is good against large tests is such that every bit of the output is
just the product of two bits of the seed. We argue that the sum (modulo 2) of t output
bits of the generator has bias exponentially small in t/c2, where c, as above, is the stretch
of the generator.

4Pseudorandom generators are called “block ciphers” in the applied cryptography literature.

6

Then we describe a generator that completely fools linear tests of size up to about
n/c2, and such that every bit of the output is the sum of three bits of the seed. Combined
with the generator for large tests, we get a generator in NC0

5 such that every linear test
has bias 2−O(n/c4).

5.2 The Generator for Large Tests

Let us call the bits of the seed y1, . . . , yn.
Let K be an undirected graph formed by n/(2c + 1) disjoint cliques each with 2c + 1

vertices. Then K has n vertices, that we identify with the elements of [n], and cn = m
edges. Fix some ordering of the edges of K, and let (aj , bj) be the j-th edge of K. Define
the functions q1, . . . , qm as qj(y1, . . . , yn) = yaj

ybj
.

Claim 1 For every subset S ≤ [m], the function qS(y) =
∑

j∈S qj(y) is such that

1

2
−
(

1

2

)1+|S|/(2c2+c)

≤ Pr
y

[qS(y) = 0] ≤ 1

2
+

(

1

2

)1+|S|/(2c2+c)

The proof relies on the following two lemmas. The first one is from [CM01], and it is
easy to prove it by induction on the number of variables, and the second one is standard
and it is easy to prove it by replacing {0, 1} with {−1, 1} and ⊕ with multiplication.

Lemma 6 ([CM01]) Let p be a non-constant degree-2 multilinear polynomial over
GF (2). Then 1/4 ≤ Pr[p(x) = 0] ≤ 3/4.

Lemma 7 Let X1, . . . , Xt be independent 0/1 random variables, and suppose that for
every i we have δ ≤ Pr[Xi = 0] ≤ 1 − δ. Then

1

2
+

1

2
(1 − 2δ)t ≤ Pr

[

⊕

i

Xi = 0

]

≤ 1

2
+

1

2
(1 − 2δ)t

We can now prove Claim 1.

Proof: [Of Claim 1] We can see S as a subset of the edges of K. Each connected
component of K has 2c2 + c edges, so S contains edges coming from at least |S|/(2c2 + c)
different connected components, let us call t this number. If we decompose the summation
∑

j∈S qj(y1, . . . , yn) into terms depending on each of the connected components, then each
term is a non-trivial degree-2 polynomial, and the t terms are independent random vari-
ables when y1, . . . , yn are picked at random. We can then apply Lemma 7, where the Xi are
the values taken by each of the t terms in the summation, δ = 1/4, and t = |S|/(2c2 + c).

2

5.3 The Generator for Small Tests

Let A ∈ {0, 1}n×m be a matrix such that every row is a vector in {0, 1}n with exactly
three non-zero entries, and let also A be such that every subset of σ rows are linearly
independent. Let A1, . . . , Am be the rows of A.

We define the linear functions l1, . . . , lm as li(x) = Ai ·x. Note that each of these linear
functions depends on only three bits of the input.

7

Claim 2 For every subset S ≤ [m], |S| < σ, the function lS(x) =
∑

j∈S lj(x) is balanced.

Proof: We have lS(x) = (
∑

j∈S Aj) · x, and since
∑

j∈S Aj is a non-zero element of
{0, 1}n, it follows that lS() is a non-trivial linear function, and therefore it is balanced. 2

There are matrices with linear σ.

Lemma 8 For every c = c(n) = o(
√

n/(log n)3/4) and for sufficiently large n there is a
0/1 matrix A with cn rows and n columns such that every row has exactly three non-zero
entries and such that every subset of n/(4e2c2(n)) rows are linearly independent.

This is a standard probabilistic construction Similar calculations have been done sev-
eral times, for example in [BKPS98, BSW01, BOT02]. We give the calculation in the
Appendix for the sake of self-containment.

5.4 Putting Everything Together

Theorem 9 For every c and sufficiently large n, there is a generator in NC0
5 mapping n

bits into cn bits and sampling an ε-biased distribution, where ε = 2−n/O(c4).

6 Generator for the case k = 4

In this section we give a construction (that is essentially from [CM01]) of a generator for
small tests and with k = 2. Together with results from the previous section, this will give
an ε-biased generator with inverse-polynomial ε in ncz4.

Let H be an undirected graph with n vertices, that we identify with [n], having cn
edges and girth γ. Fix some ordering of the edges of H, and let (aj , bj) be the j-th edge
of H. We define the linear functions l1, . . . , lm as li(x1, . . . , xn) = xaj

+ xbj
.

Claim 3 For every subset S ≤ [m], |S| < γ, the function lS(x) =
∑

j∈S lj(x) is balanced.

Proof: We can see S as a set of edges in H, and lS as the function that sums xi for each
vertex i that is incident on an odd number of edges in S. Since |S| < g, the subgraph of
H induced by the edges of S is a forest, and so some vertex must have odd degree (in fact,
some vertex must have degree one). It follows that lS is the sum of a non-empty subset
of its inputs, and so it is balanced.5 2

We can let γ be as large as about logc n.

Lemma 10 ([LPS88]) For every c and for sufficiently large n there are explicitely con-
structible graphs H with n vertices, cn edges, and girth Ω((log n)/(log c)).

Theorem 11 For every c and sufficiently large n, there is a generator in uniform NC0
4

mapping n bits into cn bits and sampling an ε-biased distribution, where ε = n−1/O(c2 log c).

5Equivalently, we proved that every subset of < γ of the functions li are linearly independent.

8

7 Conclusions

Several questions remain open.
Even for the case k = 3, we only know how to break the generator assuming that the

output length is a sufficiently large constant multiple than the seed length. It is not clear
whether there is a linear test, or even a polynomial time algorithm, that breaks the case
k = 3 when, say, m = n + 1.

It is still open whether there can be an ε-biased generator with negligible ε in the case
k = 4. We conjecture that this is not the case for sufficiently large linear stretch, but we
do not have a strong feeling about what happens for very small stretch.

The main open question is whether our generator for the case k = 5 can be broken
by a polynomial time algorithm and, in general, whether polynomial time algorithms can
break all NC0 generators.

Mossel and Shpilka [MS03] give a construction of an ε-biased generator mapping n

bits into nÕ(
√

k) bits such that ε is negligible and every bit of the output depends on
k bits of the seed. They also show that a generator mapping n bits into nk/2 bits and
such that every bit of the output depends on k bits of the seed can be broken by a linear
test. It remains an interesting question to characterize the largest stretch achievable by
an ε-biased generator in NC0

k with negligible ε.

Acknowledgements

I wish to thank David Wagner suggesting the relevance of correlation attacks. Thanks to
Elchanan Mossel for helpful discussions and for the proof of Lemma 2.

References

[AGHP92] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple constructions of
almost k-wise independent random variables. Random Structures and Algo-
rithms, 3(3):289–304, 1992.

[BKPS98] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. On the com-
plexity of unsatisfiability proofs for random k-cnf formulas. In Proceedings of
the 30th ACM Symposium on Theory of Computing, 1998.

[BOT02] Andrej Bogdanov, Kenji Obata, and Luca Trevisan. A lower bound for testing
3-colorability in bounded degree graphs. In Proceedings of the 43rd IEEE
Symposium on Foundations of Computer Science, pages 93–102, 2002.

[BSW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow: Resolution made
simple. Journal of the ACM, 48(2), 2001.

[CM01] Mary Cryan and Peter B. Miltersen. On pseudorandom generators in NC0. In
Proceedings of MFCS’01, 2001.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random func-
tions. Journal of the ACM, 33(4):792–807, 1986.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Tech-
nical Report TR00-090, ECCC, 2000.

9

[GW95] M.X. Goemans and D.P. Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM, 42(6):1115–1145, 1995. Preliminary version in Proc. of
STOC’94.

[H̊as97] J. H̊astad. Some optimal inapproximability results. In Proceedings of the 29th
ACM Symposium on Theory of Computing, pages 1–10, 1997.

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396,
1999.

[IN96] R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as
secure as subset sum. Journal of Cryptology, 9(4):199–216, 1996.

[JJ99] T. Johansson and F. Jonsson. Improved fast correlation attacks on stream
ciphers via convolutional codes. In Proceedings of EUROCRYPT’99, 1999.

[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform
and learnability. Journal of the ACM, 40(3):607–620, 1993.

[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8:261–277, 1988.

[LR88] M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 2(17):373–386, 1988.

[MS03] E. Mossel and A. Shpilka. Personal communication, 2003.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: efficient constructions
and applications, 1993.

[Vaz86] U. Vazirani. Randomness, Adversaries and Computation. PhD thesis, Univer-
sity of California, Berkeley, 1986.

10

A Appendix

A.1 Proof of Lemma 8

Definition 12 We say that a bipartite graph (L,R,E) is (σ, α)-expanding if for every
subset S ⊆ L of vertices on the left, if |S| ≤ σ then |Γ(S)| > α · |S|, where Γ(S), defined
as

Γ(S) = {v ∈ R : ∃u ∈ S.(u, v) ∈ E}
is the neighborhood of S.

Lemma 13 For every c(n) = o(
√

n/(log n)3/4) and sufficiently large n there is a (σ, 3/2)-
expanding graph ([c(n) ·n], [n], E) with σ = n/(4e4c2(n)) such that every vertex on the left
has degree 3.

Proof: We construct the graph at random by connecting each vertex on the left to three
distinct randomly chosen vertices on the right. (For different left vertices the random
choices are independent.)

Fix a size s, 3 ≤ s ≤ n/(2e2c), and consider the probability that there is a subset
S ⊆ [cn] of s vertices on the right whose neighborhood is contained into a set T ⊆ [n]
of 3s/2 vertices on the left. This probability is less than (3s

2n)3s. The number of possible
choices for S is

(cn
s

)

and the number of possible choices for T is
(n
3s/2

)

, and, by a union
bound, the probability that the construction fails to satisfy the required property is at
most

σ
∑

s=3

(

cn

s

)

·
(

n

3s/2

)

(

3s

2n

)3s

(3)

and using the inequality
(n
k

)

≤
(ne

k

)k
we can see that Expression (3) is at most

σ
∑

s=3

(

ecn

s

)s

·
(

2en

3s

)3s/2

·
(

3s

2n

)3s

(4)

≤
σ
∑

s=3

(

2e2c
√

s√
n

)s

(5)

= O

(

(

c√
n

)3

+

(

c√
n

)4

· (log n)3
)

= o(1) (6)

Where the last line can be verifier by breaking the sum in Expression (5) up into the
the term s = 3, which is O((c/

√
n)3), the terms s = 4, . . . , 2 log n, each of which is at most

O(c
√

log n/
√

n)4, and the remaining terms, each of which is at most 1/n2. 2

Now let us pick a (σ, 1.5)-expanding graph G = ([cn], [n], E), with σ = n/(4e4c2), as
in the above lemma.

Then for every subset S ⊆ [cn] of left vertices, with |S| ≤ σ we not there is an element
j ∈ Γ(S) such that j has a unique neighbor in S. This is because there are only 3|S| edges
going between S and Γ(S), and |Γ(S)| > 3|S|/2, and so it is not possible for all vertices
in Γ(S) to have two neighbors or more.

11

Consider the cn × n adjacency matrix A of G, defined so that for i ∈ [cn] and j ∈ [n]
we have Ai,j = 1 if (i, j) ∈ E and Ai,j = 0 otherwise. Then every row has precisely three
non-zero entries.

We want to argue that every subset of ≤ σ rows are linearly independent.
Consider then a subset {Ai}i∈S of at most σ rows of A. If we think of S as a set of

left vertices in G, then there is a right vertex j ∈ [n] that has precisely one neighbor in S,
that is, there is a j ∈ [n] for which there is exactly one i ∈ S such that Ai,j = 1. It then
follows that the row Ai cannot be obtained as a linear combination of the other rows in
S.

12

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

