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Abstract

We introduce a “Statistical Query Sampling” model, in which the goal of an algorithm is to
produce an element in a hidden set S C {0, 1}" with reasonable probability. The algorithm gains
information about S through oracle calls (statistical queries), where the algorithm submits a
query function g(-) and receives an approximation to Pryes[g(z) = 1]. We show how this model
is related to NMR quantum computing, in which only statistical properties of an ensemble of
quantum systems can be measured, and in particular to the question of whether one can translate
standard quantum algorithms to the NMR setting without putting all of their classical post-
processing into the quantum system. Using Fourier analysis techniques developed in the related
context of statistical query learning, we prove a number of lower bounds (both information-
theoretic and cryptographic) on the ability of algorithms to produces an z € S, even when the
set S is fairly simple. These lower bounds point out a difficulty in efficiently applying NMR
quantum computing to algorithms such as Shor’s and Simon’s algorithm that involve significant
classical post-processing. We also explicitly relate the notion of statistical query sampling to
that of statistical query learning.

1 Introduction

Recent years have witnessed the development of a number of exciting quantum algorithms: Simon’s
algorithm for the hidden XOR secret problem [27], Shor’s algorithm for factoring and discrete
logarithms [25, 26], Boneh and Lipton’s algorithm for the hidden subgroup problem [3], and many
generalizations and extensions [20, 10, 11, 18, 14, 16]. At the same time, work has been ongoing on
. rious proposals for physically realizing quantum computers. Currently, one of the most promising
\ch proposals is based on Nuclear Magnetic Resonance (NMR) [9, 12, 6]. The NMR approach
works by manipulating a large ensemble of quantum systems in solution. One property of the
NMR method, which is the focus of this paper, is that unlike the “standard” quantum computing
model, one cannot directly measure any individual quantum system in the ensemble. Instead, a
measurement is limited to a single qubit, and when a measurement takes place, the device returns
(an approximation to) the expected value of this measurement, over the quantum systems in the
ensemble. For this reason, the model for NMR is sometimes called the “expected-value” (EV)
model [5]. In contrast, the measurement in the standard quantum model yields a random sample
state (which may consists of multiple qubits) according to a classical probability distribution.
Given the distinction between the standard model and the EV model, the first question that
arises is whether it is possible to translate algorithms working in the standard model to work in the
EV model. In fact, the answer is yes. Consider any BQP algorithm [23]. Recall from the definition
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that a BQP algorithm solves a decision problem, and such an algorithm has a special “target”
qubit to indicate acceptance. For a language L and an input z, if z € L, then the measurement
of the target qubit will produce a “1” with probability at least 3/4; if z ¢ L, the probability is
at most 1/4 when measured. Such an algorithm works naturally in the EV model, since one can
simply measure the target qubit, and even with significant measurement error, use the rule that if
the observed value v > 1/2, then z € L, and otherwise z ¢ L. For a search (as opposed to decision)
problem, we can perform the usual reduction to a series of decision problems, solving each one by
one. In fact, many researchers have used this approach [12, 23], which we call an “all-inclusive”
translation.

Unfortunately, the “all-inclusive” translation can greatly increase the amount of work that
must be done by the quantum system. Consider Shor’s algorithm, for instance (see Appendix A).
Shor’s algorithm (and others like it) consists of a quantum sampling circuit (), whose output is
measured and fed into a classical extraction circuit C. For the all-inclusive translation, the classical
extraction circuit C' needs to be “quantumized”, i.e., realized by a quantum circuit and appended
to the quantum sampling circuit (). This can cause a significant increase in the size of the quantum
circuit — in the case of Shor’s algorithm, the entire circuitry for computing continued fractions
needs to be realized in quantum — which is a rather undesirable consequence. Even in the most
optimistic scenarios, quantum computers will be orders of magnitude more difficult to manufacture
and maintain than classical computers, and thus we would like to put as little of the complexity as
possible in the quantum system. Even more serious problems emerge when more than one sample
is needed by the classical extraction circuit. For example, in Simon’s algorithm, Q(n) samples
are needed for Gaussian elimination (see Appendix A). Now the all-inclusive translation needs to
manufacture multiple copies of the quantum sampling circuit and then connect them together with
the “quantumized” classical extraction circuit. This can cause even more blowup in the size of the
quantum circuit in the EV model.

In this paper, we consider the question of whether there might be more efficient translations that
apply generally to algorithms consisting of a quantum sampling circuit ) followed by a classical
extraction circuit C, that work without having to put the classical part of the algorithm into the
quantum system. Our main contributions are results that answer this question in the negative, for
several natural notions of “general”. We achieve these results through a connection to the notion
of statistical query learning [21] studied in Computational Learning Theory, and in particular to
a related notion that we introduce of statistical query sampling. Using techniques from Fourier
analysis and cryptography, we show that even in cases where the distribution implied by @ is quite
simple, it can be hard to use the EV model to generate a sample that can be used by C. Note that
our results do not preclude the possibility of approaches tailored to specific quantum algorithms.
For example, Collins [5] demonstrates a modification to Grover’s algorithm that is more efficient
than the all-inclusive translation (see also footnote 1). However, as pointed out by the author, his
approach does not generalize to algorithms like Shor’s.

1.1 Owur model and results

Specifically, we view the quantum sampling circuit () as representing a hidden set S C {0,1}",
and we view the classical post-processing as a circuit C such that C(z) = 1 for all z € S. The
goal of the translation procedure is to produce some z € S. To find such an z, the algorithm
has the ability to perform a “statistical query” of ) by proposing a query function (a predicate)
g:{0,1}" — {0,1} and asking for E;cs[g(z)] up to some 1/poly accuracy. For example, measuring
the ith qubit corresponds to the query g(z) = z;. The algorithm may repeat this process multiple



(polynomially-many) times, with different query functions g, and in the end must (with noticeable
probability) produce an z € S. Note that this is easy to do if S is very large (a random z € {0,1}"
will do) or if S is very small (|S| = poly(n)).! However, we show this is hard in general. Specifically,
we give an information-theoretic hardness result if the query algorithm is not allowed to access C.
That is, the translator is allowed to use the fact that the classical extraction circuit C' is polynomial
in size (so the set of accepting strings cannot be totally arbitrary) but it is not allowed to examine
C — it can only gain information via the queries g. We also give a cryptographic hardness result if
we assume the translator is given C' as input, but that otherwise C is an arbitrary polynomial-size
circuit. We still do not know if efficient translation is possible for the specific circuit C used in
Shor’s algorithm.

We also consider a more general setting, in which S may be large (e.g., |S| = 2"~ 1) so a random
string has reasonable chance of belonging to S, but the goal of the translation is to produce a
string z € S with probability substantially greater than random guessing. This models situations
such as Simon’s algorithm, in which the quantum circuit produces a random y € {0,1}" such that
y - s = 0 for the hidden secret s. In this case, a random string has probability 1/2 of belonging to
S, but we need Q(n) correct samples in a row in order to perform Gaussian elimination. We give
an information-theoretic hardness result for this problem, that holds for the specific set S used by
Simon’s algorithm (Theorem 2).2

1.2 Techniques and relation to Statistical Query learning

Our results are based on a connection to the Statistical Query (SQ) learning model, first introduced
by Kearns [21] as a restricted version of the popular Probably Approximately Correct (PAC) model
of Valiant [28]. In these learning models, an algorithm tries to learn an approximation to a hidden
function f : {0,1}" — {0,1}. In the PAC model, the algorithm has access to an “example oracle”,
which produces a random labeled sample (z, f(z)) upon invocation. In the SQ model, however,
the algorithm does not see explicit examples or their labels. Instead, the algorithm queries an
“SQ-oracle” with predicates g(z,y), and receives an approximation to Prg[g(z, f(z)) = 1]. The
SQ model has proved to be very useful because (a) it is inherently tolerant to classification noise
(this is the reason the model was developed), and (b) nearly all machine learning algorithms can
be phrased as SQ algorithms. What makes the SQ model especially interesting is that one can
information-theoretically prove lower bounds on the ability of SQ algorithms to learn certain classes
of functions [21, 2, 19, 31, 32].

The relationship between the standard model and the EV model for quantum computation
is quite similar to that between the PAC model and the SQ model in machine learning, which
motivates our definition of the Statistical Query Sampling problem. In particular, the SQ sampling
problem can be viewed as the SQ learning problem with two key differences: first, the goal is not to
learn an approximation to f but is rather to produce a positive example, and second, the oracle for
SQ sampling returns approximations to Pr[g(z) = 1 | f(z) = 1] rather than to Pr[g(z, f(z)) = 1]
(a difference that matters when the set of positive examples is quite small).

We use techniques from Fourier analysis to prove the following lower bounds. First (Theorem 1)
we show there exist simple function classes such that no algorithm, using only a polynomial num-

n particular, if |S| = poly(n), then by asking for an accuracy of 1/(2|S|) one can distinguish the case that
Ezcs[g(z)] = 0 from the case that Ezcs[g(z)] > 0. This allows one to walk down the bits of z, fixing bits from left
to right, until a specific z € S is produced. This is the key idea of [5].

*Note, for Simon’s algorithm, we no longer want to think of there existing a known classical extraction circuit. If
we were given access to a circuit C such that C(z) = 1 iff z € S (e.g., the circuit with the hidden secret built in)
then the sampling goal would be easy. See Theorem 4 for more discussions.



ber of queries of 1/poly accuracy, can produce a positive instance with even 1/poly probability.
Second (Theorem 2), for the class of “negative parity” functions arising in Simon’s algorithm, no
algorithm using only a polynomial number of queries of 1/poly accuracy, can produce a nontrivial
positive instance with probability more than 1/2+1/poly. (Note that random guessing works with
probability 1/2). We also show that unlike the case of SQ learning, the SQ sampling problem
can be computationally hard even if f is explicitly given to the algorithm, based on cryptographic
assumptions (see Theorem 3).

Finally, we explicitly relate the notion of SQ sampling to that of SQ learning by proving that
if a function class is “dense”, meaning that a random element has non-negligible probability of
being positive, then strong SQ-learnability implies strong SQ-samplability (Theorem 4). We also
point out that there exists function classes that are perfectly SQ-samplable, yet not even weakly
SQ-learnable.

2 Preliminaries and Definitions

We are interested in predicates that map elements from a domain X (e.g., {0,1}") to {0,1}. For
a predicate f : X — {0,1}, an input z is a positive input to f if f(z) = 1, else it is a negative
input. All the positive inputs to f form the positive set of f, denoted by Sy. A predicate class,
often denoted by C,, is simply a collection of predicates over {0,1}". A predicate class family is an
infinite sequence of predicate classes C = (C1,Ca, ...), such that C, is a predicate class over {0,1}".

A parity function @4(x) is defined to be @4(z) = s-x mod 2. A negative parity function - @ ()
is the negation of the parity function @,(z).

2.1 Statistical Query Sampling

Definition 1 (Statistical Query Sampling Oracle) A statistical query sampling oracle (SQS-
oracle) for a predicate f is denoted by SQST. On input (g,¢), where g : {0,1}"* — {—1,+1} is
the query function and & € [0,1] is the tolerance, the oracle returns a real number y such that
ly — Eges,lg(z)]| < €.

Definition 2 (SQ-Samplability) A predicate class family C is SQ-samplable at rate s in time
t and tolerance &, if there exists a randomized oracle machine Z, such that for every n > 0 and
every f € Cn, Z with access to any SQS-oracle SQST, runs in at most t(n) steps, asks queries
with tolerance at least &, and outputs an x € Sy with probability at least s(n). We say C is strong
SQ-samplable if for every €, C is SQ-samplable at rate 1 — € in time t and tolerance & such that t
and £~1 are polynomial in n and 1/e. We say C is weak SQ-samplable if there exists a polynomial
p, such that C is SQ-samplable at rate 1/p(n) in time and inverse tolerance polynomial in n.

Definition 3 (Sampling Algorithms with Auxiliary Inputs) A predicate class family C is
SQ-samplable with auxiliary input ¢ if it is SQ-samplable by an algorithm Z which takes ¢(f)
as the auziliary input, where f is the predicate being sampled.

3 Lower Bounds Based on Fourier Analysis

We first prove two hardness results on SQ sampling, using Fourier analysis techniques developed
in the context of SQ learning.



3.1 A Lower Bound on Weak SQ-Sampling

We prove that there exist very simple families of predicate classes that are not weak SQ-samplable,
i.e., no efficient algorithm can produce a positive input at any non-negligible rate.

We introduce a bit more notation. We use boldface to denote a vector and index the entries
of an n-dimensional vector from 0 to (n — 1). We use x[i] to denote the i-th entry of x. x[a..b]
indicates the sub-vector formed by the entries of x between the a-th and the b-th, inclusive. Let
Xn,p be the set of all n-dimensional vectors over Z, (the Galois field modulo p) whose last n — 1
entries are not all-zero, i.e.,

A~

Xnp=A{x € Zy | x[1.n — 1] # (0,0, ...,0) }. (1)
Tt is easy to see that | X, ,| = p" — p.

Definition 4 (Booleanized Linear Functions) A booleanized linear function over X'n,p with
parameter a is denoted by La and defined as

_J1 ifa-x=1 (modp)
La(x) = { 0 otherwise (2)

We say L, is normalized if a[0] = 1. The normalized booleanized linear function class, denoted by

Ly p consists of all normalized booleanized linear functions over X, ,. In other words,
Lnp=1{La|a€Zy, al0] =1} (3)

Theorem 1 If a sampling algorithm for the normalized booleanized linear function class L, , makes

less than p™/3~* queries, each of tolerance 1/p"/3, then the probability it produces a positive input
x € X, p is at most 1/(p —1).

Notice that the requirement x € Xn,p is simply to rule out the trivial positive input 100...0,
and we could have equivalently just modified the definition of a “booleanized linear function” so
that this specific example is made negative. Also, notice that if we choose p to be much greater
than n, say picking p to be an n-bit prime number, then 1/(p — 1) is exponentially small, while the
size of the problem is still polynomial in n. Furthermore, if a completely random x is picked, the
probability it is a positive input is 1/p. Thus even exponentially many queries can only help the
sampling by an exponentially small margin.

Proof: Our proof strategy is similar to that used by Kearns [21] and Blum et. al. [2] in the
context of SQ learning. We describe an “adversarial” SQS-oracle S/(\Q/S that does not commit to any
particular predicate at the beginning. Rather, the oracle maintains a “candidate predicate set”
P, which initially includes all predicates in the class £, , (a total p" ! of them). Each time the
algorithm Z makes a query, SQS replies with an answer that yields very little information. Some
predicates in the candidate set P might not be consistent with the answer and will be removed
from set P. After all the queries are finished, SQS then commits to a random predicate remaining
in P. We shall prove that each query will only remove a small fraction of the predicates from P.
Thus if Z does not make enough queries, there would be enough predicates left in P such that no
input can be positive with high probability.

For a query function g : X'n,p — {—1,+1}, we say that a subset S C {0,1}" is a {-independent

subset for g, if |[Ezes[g(z)] — Ewean[g(x)]| < ¢, and we say a predicate f is {-independent from



g, if its positive set Sy is a {-independent set for g. Intuitively, if a predicate f is {-independent
from g, then the query (g, &) yields no information about f, since SQS can reply with E__ K [9(x)]
instead, which is completely independent from f. L

We describe the behavior of our SQS-oracle SQS in more detail. On query g, SQS replies with

E ., [g(z)], and removes all predicates that are not ¢-independent from g from the candidate

set P. We assume that all queries have tolerance ¢ = p~"/3. We shall prove that for any query
g, there are at most p?*/312 predicates not p~"/3-independent from ¢. This proof is by a Fourier
analysis technique and is given as Lemma 5 in Appendix D. Thus, if less than p"/3~* queries are
made, the candidate set still contains at least p"~2(p — 1) parity functions.

Now consider the domain )A(n,p. It is not hard to see that every x € X’n,p is positive for only
p"~2 predicates. So, if the oracle commits to a random predicate out of the set of p"~2(p — 1), the
probability that z is positive is at most 1/(p — 1). [ |

3.2 A Lower Bound on Sampling Negative Parity Predicates

We prove that a class of negative parity functions is not SQ-samplable in polynomial time at any
rate non-negligibly higher than 1/2.

Theorem 2 Let X,, = {0,1}"\{0"} and C,, be the class of negative parity functions over X,,. If a
sampling algorithm for C,, makes less than 2"/* queries, each of tolerance 2~™/*, then the probability
it produces a positive input is at most % + W%

Before proving the theorem, we point out how this result relates to the translation of Simon’s
algorithm to the EV model. In Simon’s algorithm, the quantum sampling circuit produces a
random y € {0,1}" such that y-s = 0, where s is the “hidden” secret (see Appendix A). Thus the
hidden set corresponds exactly to the negative parity function =®;. In the algorithm, the quantum
sampling circuit is invoked €(n) times and produces 2(n) samples for Gaussian elimination. Notice
that y = 0™ is useless. Therefore, a translation of the quantum sampling circuit will produce an
SQ-sampling algorithm Z to be executed Q(n) times and to produce Q(n) positive samples in
X, = {0,1}"\{0"}. However, Theorem 2 implies that it is not possible to sample efficiently at
any rate non-negligibly higher than 1/2 (notice that a random z € X, is positive with probability
almost 1/2). Our result suggests that it appears necessary to manufacture Q(n) copies of the
quantum sampling circuit and run them together in the EV model.

Proof sketch: The proof strategy is similar to that of Theorem 1. We assume that each query
has tolerance ¢ = 1/2"/ 4. We construct an SQS-oracle that on query function g, replies with
E;c{0,1)»[9(7)], and remove all predicates that are not {-independent from g from the candidate set
P (here the definition of “¢-independent” naturally changes to |Ezcs[9(z)] — Egeqo,13[9(2)]] < &)-
We shall prove in Lemma 7 (in Appendix D) that for any query g, there are at most on/2+2
predicates not 2-"/4-independent from g. Thus, if less than 2n/4 queries are made, the candidate
set still contains at least 2" — 23%/4+2 _ 1 parity functions.

Now consider the domain X,, = {0,1}™\{0"}. It is not hard to see that every =z € X, is positive
for 2" negative parity functions. Now if a random parity function is chosen from a set of size
on _ 23n/4+2 _ 1 the probability that z is positive is at most

ot 1 1
on _oanfita _ 1 =5 T gnji-a-

This is true for any x € X,,. Therefore, whatever Z outputs, the probability that it is positive is

at most %-I—W% ]



4 A Cryptographic Lower Bound

We next prove a cryptographic lower bound. Assuming that one-way functions exist, we show that
there exist predicate class families that are not weak SQ-samplable, even if the sampling algorithm
is given the complete description of the predicate as the auxiliary input. The technique we use here
is somewhat similar to that of Angluin and Kharitonov [1], who used signature schemes to prove
that membership queries do not help to learn DNF.

We briefly describe the ideas behind our proof. We will use a digital signature scheme secure
against adaptive chosen message attack [13], which exists if one-way functions exist [24]. Let the
predicate be the signature verification function very, (m,s), which returns 1 if s is a valid signature
to message m with respect to the verification key k,. The security of the signature scheme states
that no “breaker” B, given access to a signing oracle, can produce a new valid signature it has
not yet seen. We want to argue that this implies no sampling algorithm Z, given access to a SQ-
sampling oracle, can produce any valid signature. We will show that if such an algorithm Z exists,
we can construct a “breaker” B as follows. The breaker will have access to a signing oracle OSign
that signs any message given to it as input, and runs Z as a subroutine. The only non-trivial part
for B is to simulate an SQS-oracle used by Z without revealing to Z any information about which
signatures it has already seen (so that Z is not biased towards producing an already-seen signature).
Upon a query (g, £) from Z, B will produce a number of random messages, ask the signing oracle to
sign them, and use these samples to estimate Ezes,[g()]. Next, B “randomizes” this estimate by
adding an artificial noise to it. With properly chosen parameters, this “randomized” estimate will
still be a valid answer with very high probability, and yet almost independent from the messages
B produces. Finally, Z produces a positive input, which is a message/signature pair (m’,s’). The
distribution of the this pair (m/, s’) is also almost independent from the messages B produces, and if
Z only makes polynomially many queries, then only polynomially many messages will be produced
by B. Therefore the probability that m’ is one of the messages produced by B is very small, and
so B breaks the digital signature scheme.

Formally, a signature scheme SIG is a triple (sig_gen, sig_sign, sig_verify) of algorithms, the first
two being probabilistic, and all running in polynomial time. sig_gen takes as input 1" and outputs
a signing/verification key pair (ks, ky). sig_sign takes a message m and a signing key ks as input
and outputs a signature s for m. WLOG we assume that both m and s are n-bits long. sig_verify
takes a message m, a verification key k,, and a candidate signature s’ for m as input and returns
the bit b = 1 if s’ is a valid signature for m for the corresponding verification key k,,, and otherwise
returns the bit b = 0. Naturally, if s = sig_sign(ks, m), then sig_verify(k,,m,s) = 1. In an adaptive
chosen message attack [13], a forger is given k,, where (ks,ky) < sig_gen(1"), and tries to forge
signatures with respect to k,. It is allowed to query a signing oracle OSign, , which signs any
message with respect to k,, on messages of its choice. It succeeds in existential forgery if after this
it can output a pair (m, s), where sig_verify(k,, m, s) = 1, but m was not one of the messages signed
by the signature oracle. A signature scheme SIG is existentially unforgeable against adaptive chosen
message attacks if there is no forging algorithm that runs in time polynomial in n and succeeds
with probability 1/poly(n). Such schemes exist if one-way functions exist [24].

Theorem 3 Let SIG = (sig_gen,sig_sign,sig_verify) be a digital signature scheme secure against
adaptive chosen message attack. Then the predicate class family C, = {verg,} is not weakly SQ-
samplable, even if the sampling algorithm is given k, as the auziliary input. Here very, is defined
to be very, (m, s) = sig-verify(ky,, m, s), where (ks, k,) < sig_-gen(1"), and m,s € {0,1}".

Proof: Assume to the contrary that there exists an algorithm Z that weak SQ-samples the



function class C, = {very,}. More precisely, we assume that Z produces a positive input with
probability € by making ¢ queries, where both 1/¢ and ¢ are bounded by a polynomial in n. We
shall construct a polynomial-time algorithm B that breaks the signature scheme SIG with probability
€/2, causing a contradiction.

We now describe the behavior of B. B has access to a signing oracle OSign, and interacts
with the sampling algorithm Z as the SQS-oracle. When Z makes a query (g,&), B does the

% and M = —2—21“(';0‘1/ <. Then B draws M random messages
0

mi,ma,...,mpy € {0,1}", and asks the signing oracle to sign all of them. Assume the signatures
are i, 82, ...,Sp- Next, B uses these message/signature pairs to estimate the expected value of g
by computing z = % Z,@il g(myg, sk). Then B “randomizes” z by drawing a y uniformly randomly
from the interval [z — %,x + %], and sending y to Z as the answer to the query (g,£). B also
maintains a “history set” set H of all the messages it has generated, which is initially (. After a
query from Z is answered, B adds the messages mq, ma, ..., mas to set H.

After all the ¢ queries are made, Z produces a pair (m',s'). If verg, (m',s') =1 and m' ¢ H,
then B outputs (m',s’) and successfully forges a signature. Otherwise B aborts and announces
failure.

It is clear that B runs in polynomial time. Intuitively, we can show that after the randomization,
with high probability the sample (m’, s’) produced by Z is almost independent from the history set
H. Therefore, with high probability, m’ ¢ H, and so B will succeed. More precisely, we prove that
B will succeed with probabilit at least €/2.

We use S, to denote the positive set for predicate very, . In other words, Sy, consists of valid
message/signature pairs with respect to the verification key k.

following. First, B computes & =

Claim 1 For a query function g, if we define 0 = E(y, 5)es, [9(m, s)], then with probability at least
1 — €/5q, we have |z — o| < & (all quantities are as defined in the proof sketch of Theorem 3).

Proof: This is due to a straightforward application of the Hoeffding Bound. Each sample (my, si)
is an independent random element from Sy, and thus E(,, 5cs, [9(m,s) = 1] = 0. So the expected
value of z is 0. Now, the probability that M independent samples yields an average below o — &
is at most e—M& /2 (notice that the range of g is {—1,+1}). Also the probability that the average
is above ¢ + & is at most e~ME&/2, Therefore with probability at least 1 — 2e~Mé&3/2 > 1—¢€/5q,
we have |z — o < &. |

We fix a set consisting of M message/signature pairs generated by B in response to a query
(g,€), and denote this by U: U = {(my, Sk)}l]c\/il' We call this set a sample set. We say U is typical,
if the average g(my, sx) is indeed &p-close to o. By Claim 1, at most €/5¢ fraction of the sample
sets are not typical.

Notice that a typical sample set will yield an average that is &p-close to o, which is a much
higher accuracy than required by the Z, which has a tolerance of ¢&. However, B needs this accuracy
to perform the randomization.

Claim 2 If U is a typical set, then the answer from B for this query is valid.

Proof: Notice that if U is typical, then the average x is £y-close to the true value o. After the
randomization, it is (§o + £/2)-close to o. This is less than &. [ ]

We consider the distribution of the answer produced by B for a particular query (g,£). We
denote this distribution by Dy, where U is the sample set used by B.



Claim 3 If both Uy and Uy are typical sets, then the statistical distance between Dy, and Dy, is
at most €/5q.

Proof: We use xp and z; to denote the averages obtained from Uy and Uq, respectively. If both
Up and U; are typical, we have |29 — | < & and |z1 — 0| < &. Thus we have |zg — z1| < 2&p.
Notice that Dy, is a uniform distribution over the interval of length £ centered at zo, and Dy, a
uniform distribution of same length centered at z1. The claim follows from Lemma 4. [

Notice the history set H consists of ¢ sample sets. We say a history set H is typical, if all its
sample sets are typical. Then at most €¢/5 fraction of the history sets are not typical. We denote
the distribution of all answers produced by B using history set H by T}.

Claim 4 If both Hy and H; are typical, then the statistical distance between Tw, and Tw, is at
most €/5.

Proof: This directly follow the sub-additivity of statistical distance (see Appendix C). |

Now we fix an arbitrary typical set H and denote its corresponding distribution of the answers
by T. Then we know the distribution from any typical set is at most /5 away from T.

The only information Z receives from B is represented by the distribution of the answers pro-
duced by B, which is in turn determined by the history set B uses. Thus, the distribution of the
pair (m/, s") is completely determined by the history set H, and we denote this distribution by Op.
We know that if H is typical, then Pr(,, sco,, [verk,(m,s) = 1] > e. We fix the distribution O that

corresponds to the history set H. Then we have

Pr [verg,(m,s) =1] >e. (4)
(m,s)€0

Furthermore, we know that for any typical history set H, its corresponding distribution of Oy is
¢/5-close to O.

Consider a new experiment (a new execution of the breaker B) that is identical to the original
one, except when Z outputs a pair (m/,s’), it does so according to the fixed distribution 0.

Claim 5 Let M be the magimum size of the sample sets in H. Then the probability of the new
experiment is at least e — M - q/2™.

Proof: Notice that the output of Z is independent from the history set H. Moreover, the history
set contains at most M - ¢ messages. So the probability that a particular m is in H is at most
M - q/2™. This fact, along with (4), proves the claim. [

Now putting things together, with probability at most €/5, the history set H is not typical; if
H is typical, the difference between the probabilities of the two experiments is at most €¢/5; the
probability of success of the new experiment is at least € — M - ¢ /2™. Therefore the probability of
success of the original experiment is at least (for n large enough) € — M - ¢/2" — ¢/5 — €/5 > €/2.

This finishes the proof. [



5 SQ sampling and SQ learning

We now point out relationships between our SQ sampling model and the SQ learning model of
Kearns [21]. We begin with definitions of SQ learning. (In these definitions, we assume learning is
with respect to the uniform distribution over examples.)

Definition 5 (Statistical Query Learning Oracle) A statistical query learning oracle (SQL-
oracle) for a predicate f is denoted by SQLY. On an input (g,€), where g : {0,1}™ x {0,1} —
{=1,+1} is the query function and £ € [0,1] is the tolerance, the oracle returns a real number y
such that ly — Byefo,1yn[g(z, f(2))]] < €

Definition 6 (Strong SQ-Learnability) A predicate class family C is Strong SQ-learnable if
there exists a randomized oracle machine Z, such that for every n > 0, every f € C, and for
every € > 0, 6 > 0, Z with access to any SQL-oracle sqQLf outputs a hypothesis f such that
Prycqo,1)n [f( ) = f(z)] > 1 — € with probability at least 1 — §, and furthermore, both the running
time of Z and the inverse of the tolerance of each query made by it are bounded by a polynomial in
n, 1/e and 1/6. Here € is called the accuracy and ¢ the confidence.

Definition 7 (Weak SQ-Learnability) A predicate class family C is weak SQ-learnable if there
exists a randomized oracle machines Z and a polynomial p(-), such that for every n and for every
f € Cy, Z with access to any SQL-oracle SQLY, outputs a hypothesis f such that Prycqo,1)n [f( ) =
f(z)] >1/241/p(n), and furthermore, both the running time of Z and the inverse of the tolerance
of each query made by Z are bounded by a polynomial in n.

The first observation to make is that a predicate class can be strongly SQ-learnable and yet
not even weakly SQ-samplable. In particular, any class with a sufficiently low density of positive
examples can be trivially learned by producing the “all zero” hypothesis. (Formally, if we wish be
correct even for values of € that are exponentially small, it suffices to have the density less than
1/ 2/2 30 that if necessary we can use the SQL oracle to identify all positive examples.) In the other
direction, a class can be strongly SQ-samplable and yet not even weakly SQ-learnable. Indeed, the
family of negative parity functions taken over the domain {0, 1}" is trivially SQ-samplable (because
f(0™) =1 for any such f), but such functions are not even weakly SQ-learnable [21]. It is interesting
to compare this to Theorem 2, since the predicate class families in these two theorems are very
similar (one can think of the difference either as removing 0" from the domain, or simply as changing
the values of the functions at this one point), yet they have completely different SQ-samplability.

However, we show there is a relationship between these notions when the set of positive examples
is sufficiently dense.

5.1 SQ-learnability sometimes implies SQ-samplability

We prove that under certain circumstances, SQ-learnability implies SQ-samplability.

Definition 8 (Density of Predicates) The density of a predicate f : {0,1}™ — {0,1}, denoted
by p(f), is the fraction of its inputs that are positive. In other words, p(f) = Pryefo,1y»[f(7) = 1].

Definition 9 (Dense Predicates) A predicate class family C is dense if there exists a polynomial
p(:) such that for every n and for every f € Cpn, p(f) > 1/p(n).

Theorem 4 If a dense predicate class family is strong SQ-learnable, then it is also strong SQ-
samplable with the auziliary input p.
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Proof: Let Z be the algorithm that strongly SQ-learns dense predicate family C. We construct
a new algorithm A that strong SQ-samples C using the density p of the predicate f as auxiliary
input. A runs a copy of Z, whose accuracy and confidence are set to be € = p- €' /4 ln(é) and
d = €' /4, and simulates the SQL-oracle used by Z. We shall prove that A produces a positive input
with probability at least 1 — €.

We now describe the behavior of A. A works in two phases. In this first phase, it simulates the
SQL-oracle SQL/. When Z submits a query (g, &) to A, A does the following.

1. Set M = 91“;?3/5), draw M independent samples z1, z9, ...,y from {0,1}", and compute

1 M
=

2. Construct two query functions go(z) = g(z,0) and ¢1(z) = g(z,1). Submit queries (go,&/3)
and (g1,&/3) to the SQS-oracle SQS’ and receive y and y; as answers.

3. Compute y = s+ (y1 — yo) - p and send y to Z as the answer to the query (g, £).

The algorithm A enters the second phase when Z produces a hypothesis f . Then A repeats the
following procedure. It draws a random z € {0,1}", and check if f(z) = 1. If so it stops and output
x; otherwise it continues. The procedure is repeated In (%) /p times and if A still hasn’t stopped,
it produces a random z € {0,1}" and outputs it.

It is clear that A runs in polynomial time. Now, we prove that A produces a positive sample
with probability at least 1 — €.

First, we prove that with probability at least 1 — §, all answers provided by A are valid in the
first phase. Consider an average s as an approximation of Eycq13[g(z,0)]. We say s is “bad”, if
|s — Egeqo,1319(, 0)]] > £/3. Then a simple application of the Hoeffding Bound (see Appendix B)
proves that the probability that s is bad is at most ¢/q.

Next, notice that

g(z, f(z)) = g(2,0) + [g(=,1) — g(2,0)] - f ().

Therefore we have

ExE{O,l}" l9(z, f(z))] = EzE{O,l}" l9(z,0)] + EzE{O,l}"[(g(xa 1) —g(z,0)) - f(=z)]
= Euepo1yn[9(2,0)] + (Bses,[9(2,1)] - Eges,g(2,0)]) - p

Therefore, if s is not bad, then the y computed by A is a valid reply to query (g,&). Since Z
makes a total of ¢ queries, with probability at least 1 — §, all the replies by A are valid and Z
should perform well.

Next, consider the second phase of A. With probability at least 1 — d, Z should produce a
hypothesis f that agrees with f with probability at least 1 — e. Let us assume th Z does produce
such a f . Now since a p fraction of the inputs are positive, the probability that A doesn’t draw a
positive input in In (%) /p rounds is at most 6. The probability that f makes a mistake in any of
the rounds is at most In (%) -e/p. If f doesn’t make any mistakes and at least one positive input
is drawn, then A will correctly output it.

Putting everything together, we know that with probability at least 1 —3§ —In (%) efp=1-—¢,
A will output a positive input. [ |

It is interesting to compare this result to Theorem 3, which shows a predicate class family that is
perfectly SQ-learnable, but not even weakly SQ-samplable. Nevertheless, there is no contradiction
since the predicate class family in Theorem 3 is not dense.
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A Shor’s Algorithm and Simon’s Algorithm

We briefly summarize Shor’s algorithm for factoring and Simon’s algorithm for the hidden XOR-
secret problem.

A.1 Shor’s Algorithm for Factoring

Standard number theory reduces factoring N to finding the order of a random element a modulo
N, ie., r > 0 such that ¢" = 1 (mod N) but ¢®* # 1 (mod N) for any 0 < s < r. Suppose
2"~1 < N < 2", Shor’s algorithm uses 2n qubits, separated into two n-qubit registers. Initially
the state is initialized to |$9) = |0™)|0™). By applying the Fourier transformation followed by
the modulo exponentiation, this state is converted to |¢1) = Qn% >, |z)|a® mod N). Then one
measures the second register and discard it, leading to a state | ¢2) = >, |t-7+ ¢) for some random
¢ € [r], where t ranges from 0 to | (2" — 1 —¢)/r]| (we ignore the scalar factor). Finally, one applies
the inverse Fourier transform to the first register followed by a measurement. The distribution of
the measurement result is approximately uniform over {[t-2"/r] : 0 <t < [(2" —1—¢)/r]|}. One
can then solve r from one instance of [t - 2" /r] using continued fraction.
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A.2 Simon’s Problem and Algorithm

A function f : {0,1}" — {0,1}" is given as an oracle, with the promise that there exists an
s € {0,1}" (known as the “hidden secret”) such that f(z) = f(y) iff x ® y = s. Notice that if
s = 0™, then f is a permutation, and otherwise f is a 2-to-1 function. The problem is to tell if
s =0"

Simon’s algorithm works as follows. One starts with 2n qubits, separated into two m-qubit
registers. Originally one initializes the state to | #g) = |0™)| 0™). Next, one applies the Hadamard
operator to the first register and then the oracle operator | z)| y) — | z)| f(z)®y). The state becomes
| 41) = Qn% >z |2)| f(z)). Next, the second register is measured and discarded. If s = 0", then
the measurement result is | ¢2) = | z) for a random z € {0,1}". If s # 0", then the measurement
is | ¢h) = \%2(| z) + |z & s)) for a random z. Next, a Hadamard operator is applied to the first
register. In the case s = 0", the result is | ¢3) = |y) for a random y; in the case s # 0", the result
is | ¢4) = |y) for a random y such that y-s = 0. Finally one measures the first register and obtains
y. Repeating the experiment O(n) times, one can solve for s by using Gaussian elimination and
distinguish the case s = 0" from the case s # 0.

B The Hoeffding Bound

We state the Hoeffding Bound, a classical result in estimating tail probabilities.

Lemma 1 (Hoeffding Bound [15]) Let kK = (p — €)n, where € is a real number between 0 and
1/2, and p is a real number between 0 and 1. We have

k
@p" (1—p)" < e
=0 M

C Statistical Distance

We define the statistical distance and state some of its properties. The definitions and the results
are standard. A good reference to the statistical distance is Vadhan’s thesis [29].

Definition 10 (Statistical Distance) The statistical distance between two probability distribu-
tions A and B, denoted as SD(A, B), is defined to be

SD(4,B) = 3 3" |A(z) ~ B(a) (6)

where the summation is taken over the support of A and B. If SD(A, B) <€, we say A is e-close
to B.

This definition can be easily extended to the continuous case with the summation being replaced
by integral and the distributions replaced by density functions.

Lemma 2 Let T(z) be a probabilistic event with x as input. Let A and B be two distributions. We
have

Pu[T(2)] - Pr[T(z)]} < SD(4, B) (7)
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Lemma 3 (Sub-additivity) Let Ay, As, Bi, By be distributions, then we have
SD(A1 By, A2By) < SD(A;, A2) + SD(By, By) (8)
where AB denotes the tensor product of the distributions A and B, i.e., AB(a,b) = A(a) - B(b). m

Lemma 4 Let Dy be a uniform distribution over an interval [a, a+l] and Dy a uniform distributions
over [b,b+1]. Then SD(D1,D2) is at most |a — b|/l.

Proof: Notice that both D and D3 are uniform distributions of same length, and thus their den-
sity functions have value 1/1 over their supports and 0 elsewhere. Consider the absolute difference
between the two density functions, |D;(z) — Da(z)|. The size of its support is at most 2|a — b|.
Thus SD(D1, Ds) < |a — b|/I. [

D Proofs

Lemma 5 Let an be the domain defined in (1) and Ly, be the class of normalized booleanized
linear functions over an For any query function g : an — {0,1}, there are at most p2n/3+2
predicates in L, , that are not 1/p”/3—zndependent from g.

For the proof we will need:

Lemma 6 ([31]) Let Q = {fi} be a set of function of range {—1,+1} and d be its cardinality. If
(fi, f5) = X for all i # j, then the set {f;} forms an orthonormal basis for the linear space spanned
by 2, where

~ 1 1 1
Jilw) = l_sz-(sc)—g-(ﬂ_A ¢1+ ) > fit@) )

Proof of Lemma 5: We first slightly modify the class £, , so that its range becomes {—1, +1}.
We define La(x) = 2- La(x) — 1. Tt is not hard to see that each of the p"~! normalized booleanized
linear functions maps a 1/p fraction of the elements in X’n,p to +1, and a straightforward but
tedious analysis (see [31] for a detailed account) shows that any two normalized booleanized linear
functions agree at exactly (p? —2p+2)p™ 2 —p places in X’n,p. We define an inner product between

functions over X, , as
Z e (10)

zEan

<f7

With this inner product, any query function has norm 1, and any pair of distinct functions L, and
Ly, have the same inner product. This will allow us to “extract” an orthonormal basis from the
class £, ;, using Lemma 6.

Now we fix a query function g and relate predicates that are not ¢é-independent from g to the
Fourier coefficients of g. Consider a booleanized linear function L,, and we denote its positive set

by S. We have that |S| = p"~! — 1. Suppose g maps a elements in Xnp to +1, and b elements in
S to +1. Then if L, is not £-independent from g, we have

2a—p"+p 26—p"' 41
p"—p prl—1

> ¢, (11)
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or la —bp| > 2 E-P¢. We write b= a/p + 4, and we have [d] > P 1{
Next we compute the inner product of g and L. Stralghtforward computation shows that

<g’ia>:2.(2b—a+(pn—1)(pn1_1))_1:(1_ nza )(1_g)+ n46 (12)

p"—p pr—=p p p"—p

On the other hand, the inner product of ¢ with an average over booleanized linear functions is

o O (o T) = PP

n— 1 _
b[O]:l P p p J)Ean
1 -
= i —p) E 9(z) Z fo(z)
we)’\(n,p b[O]:l

()6

2_ n—2__ . .
Now we apply Lemma 6, setting d = p"~! and )\ = %. We will obtain an or-

thonormal basis, which we denote by {L,}.
Putting things together, we can compute that Fourier coefficient of g over the component L,.

) 1 . 1 1 1 -
9.La) = = <g’La>_<\/1—A_\/1+(d—1)>\)'8 2 (o L)

b[0]=1

= |05) - 5) s
(ﬂl— VIt (1d— 1))\) ' (1 - %) ' (1 - p"2ip)

- e () (RS s

- ()t \/ﬂ

S 20 _ 1
= \/I_?(p”_l - 1) p(n—l)/2

>

Now we substitute in ¢ = 1/p"/%, and we have

(g, Ea)] > L, 1
—\/_ p(n 1)/2 —pn/3+1

(13)

Thus g can have at most p2?/3+2

such Fourier coefficients, and so there can be at most p2n/3+2
predicates that are not 1/ /3

-independent from g. [
Lemma 7 Let X, = {0,1}"\{0"} and C,, be the class of negative parity functions over X,. For

any query function g : {0,1}" — {—1,+1}, there are at most 2"/>*? predicates in C, that are not
2-"/4 _independent from g.
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Proof: We fix a negative parity function f. Let a denote the number of z € {0,1}" such that
g(z) = 1, and let b denote the number of € Sy such that g(z) = 1. Notice that since all parity
functions are balanced, we have |Sy| = 27! — 1 (since f(0") = 1 but 0" ¢ Sy). Then if f is not
¢-independent from g, we have

‘2b—2"1+1 2a — 2"

] 5| > ¢ (14)

or
a—2b

T ]

a

oy T T o (15)

Next we perform Fourier analysis. We first define an inner product of real functions over {0, 1}"™:

(f0) =5 > @) (16)

z€{0,1}"

We define a set of “modified parity functions” as ®s(z) = (—1)*?, which map elements in {0,1}"
to {—1,+1}. Tt is clear that the set of all parity functions {®;(z)}s form an orthonormal basis,
and @,(z) = 1 — 2- @, (z). If a parity function - @, (z) is not &-independent from g, then (14)
holds (by setting f = —=@®;). Let t = g(0"). Within the subset where &;(z) = —1, which includes
0™ and the positive set of ~®@;, g maps b + ¢ inputs to +1. Outside this subset, g maps a — b — ¢
inputs to +1, and 2" ! — a4 b+t input to —1. Thus, we can compute the Fourier coefficient of ¢
on @s.

<6~95>g) = 1-2- Pr [@5(33):9(33)]

ze{0,1}"
—b— n—1 _
_ 1_2-((1 b t+2 a—l—b—l—t)
2n 2n
_ 2a-—4b—4t
= —
Substituting in (15), we have
[(Ds,9)] > € —6/2". (17)

However, notice that the query function g(z) has norm 1 and thus it can have at most 1/(¢£ —6/2")?
Fourier coefficients such that (17) holds. Now plugging in & = 2~™/4, we have 1/(£—6/2")% < 2n/2+2]
and the Lemma is proved.

|
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