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Abstract

In 1986, Fiat and Shamir suggested a general method for transforming secure 3-round
public-coin identification schemes into digital signature schemes. The significant contri-
bution of this method is a means for designing efficient digital signatures, while hopefully
achieving security against chosen message attacks. All other known constructions which
achieve such security are substantially more inefficient and complicated in design.

In 1996, Pointcheval and Stern proved that the signature schemes obtained by the
Fiat-Shamir transformation are secure in the so called ‘Random Oracle Model’. The
question is: does the proof of the security of the Fiat-Shamir transformation in the
Random Oracle Model, imply that the transformation yields secure signature schemes
in the “real-world”?

In this paper we answer this question negatively. We show that there exist secure
3-round public-coin identification schemes for which the Fiat-Shamir methodology pro-
duces insecure digital signature schemes for any implementation of the ‘Random Oracle
Model’ in the ‘real-world’ by a function ensemble.
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1 Introdcution

In their famous paper laying the foundations for modern cryptography, Diffie and Hellman
[DH76| proposed the goal of designing secure digital signatures. They also proposed a general
method for designing digital signatures. Their method uses trapdoor functions as its basic
primitive and is known as the trapdoor function signature method.

Several drawbacks of the trapdoor function approach have surfaced. In terms of security,
by its very definition, it is proned to ezistential forgery as defined in [GMRS8S8]. In terms of
efficiency, the time to sign and verify are proportional to the time to invert and compute the
underlying trapdoor function — a cost which for some trapdoor functions is prohibitive for
certain applications. Since the eighties, several signature schemes were proposed which were
proved existentially unforgeable against chosen message attacks under a variety of complexity
assumptions [GMRS88, NY89, GHR99, CS99].

An entirely different method for designing digital signature schemes was proposed by Fiat
and Shamir in 1986. They proposed a two step approach.

e First, design a “secure” 3-round public-coin identification scheme. That is, design a
“secure” 3-round identification scheme (a, §,7) where «,y are prover’s moves and £ is
a random string chosen by the verifier.

e Second, design a signature scheme as follows: let M be the message to be signed, then
the signing algorithm consists of outputting an accepting transcript of the interactive
identification protocol (o, 3,7), where 3 = h(a, M) and h a public function which is
part of the signer’s public-key. The intuition behind why such a signature scheme may
be secure is that it would be hard for a forger to find a message M and a transcript
(a, B,7) for which it is true both that 5 = h(a, M) and that (o, 3,7) is an accepting
transcript with respect to a public-key chosen by the real signer.

The resulting signature scheme is as efficient as the original identification scheme (which are
generally more efficient than known signature schemes) and the cost of evaluating the public
function h. Current proposals for a public (keyless) function h are very efficient [MD5].

Due to the efficiency and the ease of design, the Fiat-Shamir method shortly gained much
popularity both in theory and in practice. Several digital signature schemes, of which the best
known ones are [Sch91, GQ88, Ok92], were designed following this paradigm. The paradigm
has also been applied in other domains such as to achieve forward secure digital signature
schemes in [AABNO02] and to achieve better exact security in [MR02]. Both of the above
applications ([AABN02, MR02]) actually use a variation of the Fiat-Shamir paradigm. Still,
they all share the same basic structure: start with some secure 3-round identification scheme
and transform it into a digital signature scheme, eliminating the random move of the verifier



by an application of a fixed function A to different quantities determined by the protocol and
the public key.

The main question regarding any of these proposals is what can be proven about the
security of the resulting signature schemes.

In 1996 Pointcheval and Stern [PS96] made a significant step toward answering this ques-
tion. They proved that for every 3-round public-coin identification protocol, which is zero-
knowledge with respect to an honest verifier, the signature scheme obtained by applying the
Fiat-Shamir transformation is secure in the Random Oracle Model. This work was extended
by Abdalla et al. [AABNO02]| to show necessary and sufficient conditions on 3-round iden-
tification protocols for which the signature scheme, obtained by applying the Fiat-shamir
transformation, is secure in the Random Oracle Model.!

The Random Oracle Model is an ideal model which assumes that all parties (including
the adversary) have oracle access to a truly random function. The so called random oracle
methodology is a popular methodology that uses the Random Oracle Model for designing
cryptographic schemes. It consists of the two steps. First, design a secure scheme in the
Random Oracle Model. Then, replace the random oracle with a function, chosen at random
from some function ensemble and provide all parties (including the adversary) with a succinct
description of this function. Thus, obtain an implementation of the ideal scheme in the real
world. This methodology introduced implicitly by [FS86], was formalized by Bellare and
Rogaway [BR93].

As attractive as the methodology is for obtaining security “proofs”, the obvious question
was whether it is indeed always possible to replace the random oracle with a ‘real world’
implementation. This question was answered negatively by Canetti, Goldreich and Halevi
[CGH98]. They showed that there exists a signature scheme and an encryption scheme which
are secure in the Random Oracle Model but are insecure with respect to any implementation of
the random oracle by a function ensemble. Thus, showing that the random oracle methodology
fails ‘in principle’.

The work of [CGHO98| left open the possibility that for particular “natural” cryptographic
practices, such as the Fiat-Shamir transformation, the random oracle methodolgy does work.

In this paper we show that this is not the case.

! The conditions are for the identification scheme to be secure against impersonation under passive attacks,
and that the first message sent by the sender is drawn at random from a large space. [AABN02] show that
the latter can be removed for a randomized version of the Fiat-Shamir transformation. For more details, see
section 7.2.



1.1 Our Results

We prove that the Fiat-Shamir general paradigm for designing digital signatures can lead
to universally forgeable digital signatures. We do so by demonstrating the existence of a
secure 3-round public-coin identification scheme for which the corresponding signature scheme,
obtained by applying the Fiat-Shamir transformation, is insecure with respect to any function
ensemble implementing the public function.

Our result is unconditional, and does not depend on any intractability assumptions. More-
over, the problems we demonstrate for the Fiat-Shamir transformation apply to all other
variations of the Fiat-Shamir transformation proposed in the literature [MR02, AABN02].

The central technique we employ is a new usage of Barak [Bar01]’s idea of taking advantage
of non black-box access to the program of the verifier.

Intuitively, the idea is to take any secure 3-round public-coin identification scheme (which is
not necessarily zero-knowledge) and extend its verdict function so that the receiver (verifier)
also accepts views which convince him that the sender (prover) knows the receiver’s next
message. Since the receiver chooses the next message at random, there is no way that the
sender can guess the receiver’s next message during a real interaction, except with negligible
probability, and therefore the scheme remains secure. However, when the identification scheme
is converted into a signature scheme by applying the Fiat-Shamir transform, the receiver is
replaced with a public function chosen at random from some function ensemble, which is
known in advance to everyone. A forger who will now know in advance the receiver’s next
message on any input, will be able to generate an accepting view for the receiver. This makes
the signature scheme insecure regardless of which function ensemble is used to replace the
receiver in the identification scheme.

The main technical challenge with implementing this approach is the following: How can
the sender convince the receiver that he knows the receiver’s ‘next message’ using a 3-round
protocol?

We make strong use of the non-interactive CS-proofs of Micali [Mi94] to overcome this
challenge. However, non-interactive CS-proofs themselves are only known to hold in the Ran-
dom Oracle Model and thus we first get the (somewhat odd-looking) conditional result that
if CS-proofs are realizable in the ‘real world’ by some function ensemble, then there exist se-
cure identification schemes for which the Fiat-Shamir transformation always fails in the ‘real
world’ for all function ensembles. Next, we show that even if CS-proofs are not realized in
the ‘real world’ by any function ensemble, the Fiat-Shamir paradigm is not secure. Perhaps,
surprisingly, this part of the proof contains the bulk of difficulty and technical complication.
This part again entails, showing different transformations on 3-round public-coin identifica-
tion schemes which preserve their security when used as interactive identification schemes
but make them completely insecure as signature schemes obtained by the the Fiat-Shamir



transformation.

1.2 Related Work

Following the work of [CGH98], Dwork, Naor, Reingold and Stockmeyer [DNRS99] inves-
tigated the security of the Fiat-Shamir Paradigm and showed that it is closely related to
previously studied problems: the the selective decommitment problem?, and the ezistence of
3-round public-coin weak zero-knowledge arguments for non BPP languages. We note that the
negative results presented in Section 1.1 regarding the insecurity of the Fiat-Shamir transfor-
mation have implications for these related problems.

In particular, the result of [DNRS99|, that the existence of 3-round public-coin zero-
knowledge protocols for non BPP languages implies the insecurity of the Fiat-Shamir paradigm,
is worth elaborating on. It follows from the following simple observation. Suppose there
exists a 3-round public-coin zero-knowledge argument for some hard language. View this
zero-knowledge argument as a secure identification protocol®. The fact that the identification
protocol is zero-knowledge (and not only honest verifier zero-knowledge) means that for every
verifier there exists a simulator that can generate identical views to the ones produced dur-
ing the run of the identification protocol. As the Fiat-Shamir transformation applied to this
identification protocol, essentially fixes a public program for the verifier of the zero-knowledge
argument, any forger can now simply run the simulator for this fixed verifier to produce a
view of the identification protocol (i.e a valid digital signature).

This simple argument extends to any k-round public-coin zero-knowledge argument. Namely,
if such a k-round public-coin zero-knowledge argument exists, it can be viewed as an iden-
tification protocol. Now, extend the original Fiat-Shamir transformation to an Fztended-
Fiat-Shamir transformation which replaces each message of the verifier (round at a time)
by applying a fixed public function to previous messages in the protocol. Then the same
argument as above says, that the simulator for the k-round zero-knowledge protocol can be
used to produce forgeries in the signature scheme resulting from the Extended-Fiat-Shamir
transformation and thus the Extended-Fiat-Shamir transformation fails.

When [DNRS99] pointed the above connection, no constant-round zero-knowledge public-
coin protocol for non trivial languages was known. Since, Barak [Bar01] showed that under
the assumption that collision resistant function ensembles exist, every language in NP has

2In the selective decommitment problem, an adversary is given commitments to a collection of messages,
and the adversary can ask for some subset of the commitments to be opened. The question is whether seeing
the decommitments to these open plaintexts allows the adversary to learn something unexpected about the
plaintexts that are still hidden.

3Tt is not necessarily a proof of knowledge but it is certainly a proof of ability of proving membership in L
which is hard for polynomial time impersonating algorithms



a constant-round (for some constant k£ > 3) public-coin zero-knowledge argument. Thus, it
follows from [DNRS99] and [Bar0Ol] (as above) that the Extended-Fiat-Shamir Paradigm is
insecure.

The Fiat-Shamir paradigm was defined however, and has always been used only for 3-
round identification schemes. Barak’s work does not apply to this case. Moreover, his work
implies that the Fiat-Shamir Paradigm (extended and otherwise) fails on zero-knowledge
identification schemes (indeed it is the simulator for the zero-knowledge system which will
produce forgeries), and left open the possibility that the (extended and ordinary) Fiat-Shamir
paradigm works when the starting identification schemes are secure with respect to a less
strict security requirement and are not zero-knowledge.

2 Preliminaries

Notations: We use [GMRS88]|’s notations and conventions for probabilistic algorithms.

If A is a probabilistic algorithm then for any input = we let A(x) refer to the probability space
which assigns to any string o the probability that A(z) outputs o. If S is a probability space
then z < S denotes the algorithm which assigns to z an element randomly selected according
to S. For any probabilistic interactive Turing machines A and B, we let (A4, B)(x) refer to the
transcript of their interaction on input z. At the end of the interaction B will always either
accept or reject. We refer to this decision function of B as the verdict function of B. We
abuse notion by saying that (A, B)(z) = 1 if B accepts. we denote by VIEW (B(z)) the set
of all transcripts that B(x) accepts. We denote by A|,, machine A, restricted to sending « as
its first message. More generally, we denote by A|,, . .,, machine A, restricted to sending «;
as its ¢’th message, for 1 =1,... ¢

Definition 1. (Negligible): We say that a function g(-) is negligible if for every polynomial
p(-) there exists ng € N such that for every n > ny

For any function g(-), we let g(n) = negl(n) denote that g(-) is a negligible function.

Definition 2. (Non-negligible): We say that a function g(-) is non-negligible if it is not
negligible. That is, we say that g(-) is non-negligible if there exists a polynomial p(-) such that
for infinitely many n’s

1
g(n) > m

\]



For any function g(-), we let g(n) = non-negl(n) denote that g(-) is a non-negligible
function.

Definition 3. (One-Way): We say that a function ensemble F = {F, }nen is one-way if given
a uniformly chosen f €r F, and a uniformly chosen y in the image of f, it is hard to find x
such that f(x) =y. That is, F is one-way if for every polynomial-size circuit C = {Cp}nen,

Pr(Cu(f,y) =z : f(z) = y] = negl(n)
(where the probability is over uniformly chosen f €r F, and y < f(Uy)).

Throughout this paper we assume that one-way function ensembles exist. We stress that
if one-way function ensembles do not exist then secure identification schemes and secure
signature schemes do not exist, and thus the Fiat-Shamir Transform is trivially satisfied. The
existence of one-way function ensembles implies the existence of secure identification schemes
and secure signature schemes [NY89].

Definition 4. (Collision Resistence): We say that a function ensemble F = {F,}nen i
collision resistant if given a uniformly chosen f €gr F, it is hard to find x1,x5 such that
f(z1) = f(xe). That is, F is collision resistant if for every polynomial-size circuit C =

{Cn}nEN;
Pr(Cy(f) = (x1,22) : f(z1) = f(22)] = negl(n)

(where the probability is over a uniformly chosen f €r F,).

Hypothesis (Collision Resistance Hypothesis): There erists a collision resistance
function ensemble F = {F, }nen for which for every n € N,

frn:{0,1}*" — {0,1}".

We refer to this hypothesis as the C'R hypothesis. Throughout the paper (excluding Section
3), we assume the C'R hypothesis holds and we denote by F a collision resistance function
ensemble given by this hypothesis.

Definition 5. (Commitment Scheme): A commitment scheme is a function ensemble
COMMIT = {COMMIT,}en,

where
COMMIT, = {commity}rekEY,,



and there exist functions l(n) and t(n), which are polynomially-related to n, such that for
every n € N and every k € KEY,,

commity, : {0,1}" x {0, 1} — {0, 1},
and the following properties are satisfied.
e (Computationally-hiding): For every n € N, given any k € KEY, and any z € {0,1}",
commity (2; 1) = Uyny,

assuming
r = U

(where = denotes computational-indistinguishability).

e (Computationally-binding): For every n € N, given a random key k €p KEY,, it is hard
to find (z1,71) # (x2,72) Such that

commity(xy;71) = commity(xo; r2).
That is, for every polynomial-size circuit C = {Cp,}nen
PriC,(k) = ((z1,71), (z2,72)) : commity(xy;71) = commity(xq;r2)] = negl(n)
(where the probability is over a uniformly chosen k €gp KEY,,).

It was proven by Naor in [Na91] that commitment schemes exist, assuming the existence
of one-way function ensembles.

For the purposes of this paper, we need a special commitment scheme, which we denote
by COMM = {COMM,},en. For any polynomial m(-), COMM is a commitment scheme
that for every n € N and for every k € KLY,

COMM;, : {0,1}™™ x {0,1}" — {0,1}".4

In Appendix A we show that such a commitment scheme exists (for any polynomial m(-)),
under the C'R hypothesis.

4Note that COM M has the propety that the size of the randomness equals the size of the commitment.
We need this property since in the sequel we use one commitment as randomness for another commitment.



2.1 Identification Schemes

Definition 6. (Identification Scheme): An identification scheme (or ID scheme, for short)
consists of a triplet (G, S, R), where G is a key generation algorithm and S is the sender who
wishes to prove his identity to the Recewer R. More formally,

e (G is a probabilistic-polynomial-time Turing machine that, on input 1™, outputs a pair
(SK, PK), such that the sizes of SK and PK are polynomially related to n. (SK is
referred to as the secret-key and PK is referred to as the public-key).

e S and R are probabilistic-polynomial-time interactive Turing machines that are given a
public-key PK as input. The sender S is also given a corresponding secret-key SK. It
is required that for any pair (SK, PK) in the range of G(1™),

Pr[(S(SK),R)(PK)=1]=1
(where the probability is over the random coin tosses of S and R).

In this paper we are interested in a special type of ID scheme, which we refer to as a
canonical ID scheme.

Definition 7. (Canonical ID Scheme): A canonical ID scheme is a 3-round ID scheme, in
which the first message « is sent by the sender S, the second message [3 is sent by the receiver
R and consists of R’s random coins, and the third message v is sent by the sender S.

For a sender S, with keys (SK, PK) and randomness r, we denote
o o= S(SK,PK)(T)

& = S(SK,PK)(a: B;r).

2.1.1 Security of ID Schemes

As with any cryptographic primitive, the notion of security considers adversary goals (what
it has to do to win) and adversary capability (what attacks it is allowed). Naturally, for an
ID scheme, the adversary’s goal is impersonation: it wins if it can interact with the receiver
(in the role of a sender), and convince the latter to accept. There are two natural attacks
to consider: passive and active. Passive attacks correspond to eavesdropping, meaning the
adversary is in possession of transcripts of conversations between the real sender and the
receiver. Active attacks means that it gets to play the role of a receiver, interacting with
the real sender in an effort to extract information. We note that assuming the existence of

10



one-way function ensembles, there exist ID schemes which are secure against active attacks.®
Throughout this paper, security of an ID scheme should be interpreted as security against
active attacks.

2.2 Signature Schemes

Definition 8. (Signature Scheme): A signature scheme consists of a triplet
(GEN,SIGN,VERIFY)

of probabilistic-polynomial-time Turing machines, where

e GEN, on input 1", outputs a pair (SK,VK), such that the sizes of SK,V K are poly-
nomially related to n. (SK is referred to as the signing-key and VK is referred to as
the verification-key).

e SIGN gets as input a pair (SK,VK) and a message M, and outputs a signature of M
with respect to (SK,VK).

e VERIFY gets as input a verification-key VK, a message M and a string S (which is
supposedly a signature of M with respect to VK ), and outputs 0 or 1.

It is required that for any pair (SK,V K) in the range of GEN(1™) and for any message M,
Pr[VERIFY (VK, M,SIGN((SK,VK),M)) =1] = 1

(where the probability is over the random coin tosses of SIGN and VERIFY ).

2.2.1 Security of Signature Schemes

Several types of security requirements were considered in the literature. In this paper we say
that a signature scheme is secure if it is existentially secure against adaptive chosen message
attacks.

Definition 9. (Security against adaptive chosen message attacks): We say that a signature
scheme SS = (GEN,SIGN,VERIFY) is secure if for every polynomial-size circuit family

5This is the case since the existence of one-way function ensembles imply the existence of secure signature
schemes [NY89], which in turn imply the existence of ID schemes which are secure against active attacks (see
Section 3).

11



F = {F.}nen, with oracle access to SIGN, the probability that, on input a uniformly chosen
verification-key VK < GEN(1"), F,, outputs a pair (My, SIG ) such that

VERIFY (VK, My, SIGy,) = 1

and such that My was not sent by F,, as an oracle query to SIGN, is negligible (where the
probability is over VK and over the randomness of the oracle SIGN).

2.3 The Fiat-Shamir Transform

Definition 10. (The Fiat-Shamir Transform): Given any canonical ID scheme (G, S, R) and
any function ensemble H = {Hy, }nen, the Fiat-Shamir transform transforms (G, S, R) and ‘H
into a signature scheme

(GENy, SIGNy, VERIFYy),

defined as follows.

e The key generation algorithm GE Ny, on input 1™:

1. Emulates algorithm G on input 1™ to generate (SK, PK) < G(1").

2.

Chooses at random a function h*S € H,,.

Outputs SK as the signing-key and VK = (PK, ht®) as the verification-key.

e The signing algorithm SIG Ny, on input a signing-key SK , a corresponding verification-
key VK = (PK,h¥S), and a message M :

1.
2.
3.
/.
5.

Tosses coins r (for S).

Computes o = S(sk,pk)(T)-

Computes B = h"5(a, M).

Computes v = Ssk,pr)(e, B;7).
Outputs (o, B,7) as a signature of M.

o The verification algorithm VERIFY3, on input a verification-key VK = (PK,h'®), a
message M and a triplet (o, 8,7) (which is supposedly a signature of M), accepts if and
only if both of the following conditions hold.

1. B (a, M) = 8.
2. (a, 8,7) € VIEW(R(PK)).

12



We denote by ‘FS’ the case that for every secure canonical ID scheme, there exists a
function ensemble H such that the corresponding signature scheme (obtained by the Fiat-
Shamir transform) is secure. We say that the Fiat-Shamir paradigm is secure if FS is true.
Otherwise, we say that the Fiat-Shamir paradigm is insecure. We note that the Fiat-Shamir
paradigm, of eliminating interaction by replacing the verifier with a function ensemble, has
also been applied in other contexts, such as in the context of CS proofs [Mi94].

We begin by proving the insecurity of the Fiat-Shamir paradigm under the assumption
that the CR hypothesis does not hold.

3 Proving the Insecurity of the Fiat-Shamir Paradigm,
Assuming —(CR)

This section is dedicated for proving the following Lemma.

Lemma 3.1. -(CR) = —(FS).

We will establish —(F'S) by transforming any secure signature scheme SS into a canonical
ID scheme, denoted by ID.% Intuitively, the sender will identify himself by signing a ran-
dom message sent by the receiver. The security of ID will follow from the security of SS.
The insecurity of the corresponding signature scheme, obtained by applying the Fiat-Shamir
transform to ID, will follow from the =(C'R) assumption.

Proof. Let SS = (GEN,SIGN,VERIFY) be any secure signature scheme.” Consider the
following ID scheme, ID = (G, S, R).

e G: On input 1", emulate GEN(1™) to obtain a pair (SK, VK), and output SK as the
secret-key and V K as the public-key.

e S and R are interactive Turing machines, that for any (SK,VK) + G(1"), the interac-

6We note that in some sense this transformation is the inversion of the Fiat-Shamir transform, which
converts any secure canonical ID scheme into a signature scheme.

"Recall that there exist secure signature schemes assuming the existence of one-way function ensembles
[NY8&9].

13



tion of (S(SK), R)(VK) is as follows.

S(SK) VK R

SIGN((SK,VK) (@)}

R(VK) accepts a transcript (a, 3,7) if and only if the following two conditions are
satisfied.

—a=0

— VERIFY(VK,B,7) =1
(i.e., 7y is a valid signature of 3, with respect to the verification-key V K).

Claim 3.1.1. (G, S, R) is secure, assuming the signature scheme (GEN,SIGN,VERIFY)
18 secure.

Proof. Trivial! O

We denote the corresponding signature scheme, with respect to the function ensemble H, by
(GEN3,SIGNy, VERIFYy).
Claim 3.1.2. Assuming —=(CR), for any function ensemble H the signature scheme

(GENy, SIGNy, V ERIFY,)

18 insecure.

Proof. A forger, given a verification-key (V K, h'®) and a signing oracle, will forge a signature
to some new message M, as follows.

1. Find M; # M, such that hfS(M;) = h"S(Ms). From our assumption —(CR), this can
be done in probabilistic-polynomial-time®.

8To be precise, we need to require that 3 is of size n and that the message to be signed is of size 2n.

14



2. Query the signing oracle with the message M;. The signature of My, obtained from the
signing oracle, is of the form (a, §,7) where

o a=1{
e = hFS(Ml)
e v=SIGN((SK,VK), ).

3. Output (e, §,7) as a signature to Ms.

(ar, B,7) is also a valid signature of M,, assuming that both («, 3,7) is a valid signature of
M and h¥S(M,) = h¥S(My;). Since both of these conditions are satisfied with non-negligible
probability, the forger succeeds in forging a signature of M, with non-negligible probability. [J

O

We thus established
-(CR) = —(FS).

The rest of the paper is dedicated to proving
(CR) = —(FS).

Henceforth, we assume that the C'R hypothesis holds.

4 Central Relation

In this section we define a relation that will be useful for the rest of the paper. Recall that
our goal is to establish —(F'S) under the C'R hypothesis. Our basic idea towards establishing
this goal is the following: Start with any secure canonical ID scheme. Construct a new
canonical ID scheme in which the receiver accepts either views that would have been accepted
by the original receiver or views in which the sender convinces the receiver that he knows the
receiver’s ‘next message’. That is, we extend the original verdict function so as to also accept
views of the following form: In the first round the sender sends a which is a commitment to a
circuit C' (which is supposedly the ‘next message’ function of the receiver). Upon receiving a
random message b from the receiver, the sender proves that the circuit C, which he committed
to, predicts b. For various technical reasons to be elaborated on later, the type of commitment
we use is tree-commitment. The notion of tree-commitment was introduces by [Mer90] and is
defined as follows.

15



Definition 11. (Tree-Commitment): A tree-commitment to x with respect to f is computed
as follows. Consider a binary tree of depth 1g(|xz|/n), and label its leaves with the coordinates
of x (each leaf is labeled with n coordinates). Label each non-leaf node by applying f to the
label of its children. The tree-commitment to x with respect to f, is denoted by TCr(x), and
consists of the label of the root and the depth of the tree.

More specifically, we take any secure canonical ID scheme and extend its the verdict
function so as to also accept views in which the sender, having sent a message a, which
is supposedly a tree-commitment to a circuit C, and upon receiving a message b from the
receiver, will prove that he knows a circuit C, such that both TC(C) = a (for some given
function f) and C'(a) = b. That is, we extend the verdict function so as to also accept views in
which the sender, having sent a message a and upon receiving a message b from the receiver,
will send a proof that he knows a witness to the triplet (f, a, b) in the following relation, which
was defined in [BGO1].

Definition 12. (Central Relation):
Rr ={((f,a,b),C) : Cla)=b A TC;C)=a A |C| <n'8"}
where C — C is a special circuit-encoding which satisfies the following properties.

1. It is an efficient encoding. That is, there is a polynomial-time algorithm that given any
circust C, outputs C.

2. Guveny, it is easy to check whether y is a codeword. That is, there is a polynomial-time
algorithm that given y, outputs 1 if and only if there exists a circuit C such that y = C.

3. There exists a polynomial-time algorithm that given any circuit-encoding C (where C' is
defined on inputs of size n) and given any x € {0,1}", computes C(z).

4. The circuit-encoding C — C has high minimum distance. More precisely, for every
C1 # Cy, C1 and Cy differ in a polynomial fraction of their coordinates.

Remarks:

1. We assume that the receiver’s ‘next message’ function is of polynomial-size. We cannot
bound this size by any fixed polynomial, and therefore we bound this size by some
super-polynomial, such as n'8”.

2. We defined R using a tree-commitment, as opposed to a regular commitment, for the
following technical reason. In our proof we get a contradiction to the security of the Fiat-
Shamir paradigm, by claiming knowledge of C; # Cy which commit to the same value.
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However, the size of these circuits is not a-priori bounded by some polynomial, and
hence we will not be able to extract this knowledge using a polynomial-time algorithm.
We get around this technical problem by using a tree-commitment, which allows one to
decommit to individual bits.

Proposition 1. [BG01]:
Lz, € NTIME(n'¢™).

Proof. Follows immediately from the definition of Ry and from properties 2 and 3 of the
circuit-encoding C' — C. O

From the theory on Probabilistic-Checkable-Proofs it follows that there exists a polynomial-
time Turing machine Ppcp and a probabilistic-polynomial-time oracle machine Vpcp with the
following properties.

N

1. (Relatively-efficient oracle construction): for every ((f,a,b),C) € R,

Ppcp((f,a, b)aé) =7

such that
PT[VECP(fa a,b) =1] = 1.

2. (Non-adaptive verifier:) The verifier's queries are determined based only on its input
and on its internal coin tosses. That is, there exists a probabilistic-polynomial-time
algorithm @ pcp such that on input (f, a,b) and random coins 7, the verifier makes the
query sequence {g; }, where for every i,

q; = QPC’P((f, a, b): T, 7’)

3. (Efficient reverse-sampling): There exists a probabilistic-polynomial-time oracle machine
S such that, on input any string (f,a,b) and integers i and ¢, outputs a uniformly
distributed r that satisfies

Qpcp((f,a,b),r 1) =q.

4. (Proof-of-knowledge): There exists a probabilistic-polynomial-time oracle machine E
and a negligible function €(-) such that, for every (f, a,b) and for every 7, if

Pr{Vicp(f,a,b) = 1] > €(|(f, a,b)|),
then there exists C' such that ((f,a,b), C’) € R# and for every 1,

Pr(E"((f,a,b),7) = C}] > 2/3.
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5 Interactive Arguments for Rr

In order to carry out the above idea towards establishing =(F'S), we need a proof-of-knowledge
system for Rx. Moreover, since canonical ID schemes are confined to 3-rounds, we need a
proof-of-knowledge system for R which consists either of one round or of two rounds in
which the verifier goes first. We begin by presenting a 4-round interactive argument for Rz
presented by Barak and Goldreich in [BGO1]. We then do a series of modifications and obtain
a reduced interaction version of their construction.

5.1 First Interactive Argument: (P° V?)

We begin by reviewing the interactive argument for Rz, presented by Barak and Goldreich
in [BGO1]. The idea of such an argument goes back to [Ki92] and [Mi94]. We denote this
interactive argument by (P° V9):

e Common input: (f,a,b) (where f € F, and a,b € {0,1}").

e Auxiliary input to the prover: C such that supposedly ((f,a,b),C) € Ry.
1. VO Uniformly select fU4 € F,, and send it to the prover.

2. P

N

(a) Construction of a PC P-proof: Invoke Ppcp on ((f,a,b),C) to obtain
m = Ppcp((f.a,b),C).
(b) Tree-commitment to the PC P-proof: Compute
B =TCa(m),?

which is the tree-commitment to 7 with respect to fU4.

(c) Send f to the prover.

9Note that there are two levels of use of the tree-commitment.

e In the definition of Rz: TC4(C) = a.

e In the interactive argument for Rx: T'Cyva(mw) = f.
In both cases we use a tree-commitment since the size of both C and may be to large to extract. Using
a tree-commitment we can extract only a few coordinates, with the ability to verify that these values were
committed to.
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3. V0 Uniformly select a random-tape 7 for Vpcp, and send 7 to the prover.

4. PY Provide the answers to the (PCP) queries of Vpcp((f,a,b);y) augmented by proofs
of consistency to these answers.

(a) Determining the queries: Invoke Qpcp((f,a,b);7), in order to determine the se-
quence of queries that Vpcp makes on input (f,a,b), given a random string .

(b) For every query g; of Qpcp((f,a,b);7), send the label of the leaf that contains 7,
and send the labels of the path corresponding to this leaf, which consists of the
label of its sibling, the labels of its ancestors and the labels of its ancestors siblings,
which are needed in order to verify consistency with (.

We denote this response by 0 = (label(7y), auth(7)).

V0 accepts if and only if the following two conditions hold.

1. The answers provided by the prover would have been accepted by Vpcp.

2. All the proofs of consistency are valid.

(P°,V9), on input (f,a,b), can be schematically viewed as follows.

PY(0) Vo
L fUer,
WZPPCP((faa'ab)aé) ﬁ ’
B = TCfUA(ﬂ')
—

AN

5 = (label(7), auth(7)}

Lemma 5.1. [Mi9/],[BG01]: (P°,V°) satisfies the following properties.
o (Completeness): For every ((f,a,b),C) € Ry,
Pr{(P°(C),V)(f,a,b) = 1] =1

(where the probability is over the random coin tosses of V).
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e (CS-proof-of-knowledge): For every polynomial p(-), there exists a polynomial p'(-) and
a probabilistic-polynomial-time oracle machine E such that for every polynomial-size
circuit family P* = {P*}, for every sufficiently large n, and for every input (f,a,b), if

Pr{(P;,VO)(f,a,b) = 1] > 1/p(n)
(where the probability is over the random coin tosses of V°), then
Pr[aC s.t. ((f,a,b),C) € Rx and ¥i E™((f,a,b),i) = C;] > 1/p'(n)
(where the probability is over the random coin tosses of E).

We will not prove this Lemma since it was proved in [BGO1] (using the four properties of
(Ppcp, Veer)). Moreover, following the proof in [BGO01], it can be easily seen that the above
proof-of-knowledge property holds even if P} chooses (f, a,b) after receiving the verifier’s first
message fU4.

5.2 Modified Interactive Argument: (P!, V1)

For reasons to be clarified later, we modify slightly the above interactive argument, by modi-
fying the prover’s first message from g to a commitment of 5. Formally, we define a modified
interactive argument, which we denote by (P!, V'), as follows.

e Common input: (f,a,b) (where f € F, and a,b € {0,1}").
e Auxiliary input to the prover: C such that supposedly ((f,a,b), C’) € Rr.
1. V! Uniformly select

o fU4 ¢ F, (a function for the tree-commitment)
e k€ KEY, (aseed for COMM)
e r € {0,1}" (randomness for COM M)

Send (fY4, (k,r)) to the prover.
2. P

A

(a) Construction of a PC P-proof: Invoke Ppcp on ((f,a,b),C) to obtain

© = Ppcr((f,a,b),C).
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(b) Tree-commitment to the PC P-proof: Compute
ﬂ = TCfUA (71'),

(c) Send X
B = commy(B;T).

3. V! Uniformly select a random-tape 7 for Vpcp, and send 7 to the prover.

4. P': Send B, along with § = (label(v), auth(y)), which consists of the answers to the
(PCP) queries of Vecp((f, a,b);y) augmented by proofs of consistency to these answers.

V! accepts if and only if the following two conditions hold.

1. B = commy(B;r).
2. (fU4,8,7,6) e VIEW(V°(f,a,)).

(P, V1), on input (f,a,b), can be schematically viewed as follows.

PY(0) V1
T ()
m = Ppop((f,0,0),C) 7 N
B iC;CfUA (71') 5 = commy (5a ’f'))
Y
5 = (label(v), auth(y)) 85

Lemma 5.2. (P', V') satisfies the following properties.
o (Completeness): For every ((f,a,b),C) € Ry,
Pr[(PY(C),VY)(f,a,b) =1] =1
(where the probability is over the random coin tosses of V1).
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e (CS-proof-of-knowledge): For every polynomial p(-), there exists a polynomial p'(-) and
a probabilistic-polynomial-time oracle machine E such that for every polynomial-size
circuit family P* = {P*}, for every sufficiently large n, and for every input (f,a,b), if

Pr{(P;,V')(f,a,b) =1] > 1/p(n)
(where the probability is over the random coin tosses of V1), then
Pr(aC s.t. ((f,a,b),C) € Rx and Vi E™((f,a,b),4) = Ci] > 1/p(n)
(where the probability is over the random coin tosses of E).
As before, the above proof-of-knowledge property holds even if P chooses (f,a,b) after
receiving the verifier’s first message (fU4, (k,r)).

5.3 Reduced-Interaction Argument: (P" V#)

As mentioned earlier, we would like to use an interactive argument for Rz, to construct a
secure canonical ID scheme such that the corresponding signature scheme (obtained from the
Fiat-Shamir transform) will be insecure with respect to any function ensemble. However,
canonical ID schemes are confined to three rounds, and using the above interactive arguments
we end up with an ID scheme with too many rounds. Thus, we would like to reduce the
number of rounds in (P!, V'). We reduce the number of rounds by applying the Fiat-Shamir
transform itself to (P, V') (i.e., by replacing V’s second message with some function applied
to P's first message).

For any function ensemble H, we define a reduced-interaction argument (P%, V*) for Rz,
with respect to H, as follows.

e Common input: (f,a,b).
e Auxiliary input to the prover: C such that supposedly ((f,a,b), C’) € Rr.
1. V*: Uniformly select

o fU4 ¢ F, (a function for the tree-commitment)
e k€ KEY, (aseed for COMM)

e 7 € {0,1}" (randomness for COM M)

e hi,....,h, € H,
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Send (fU4, (k,r), (h1,...,hs)) to the prover.
2. P
(a) Invoke Ppcp on ((f,a,b),C) to obtain 7 = Ppep((f,a,b), C).
(b) Compute 3 = TCpva(m).
(¢) Compute 8 = commy(B;r).
(d) Fori=1,...,n,
e compute y; = h;(5).
e Let §; be the (PCP) answers corresponding to the queries Qpcp((f,a,b); )
augmented by proofs of consistency to these answers.

(e) send (8, {7}, B, {8:}10)-
V*# accept if and only if the following two conditions hold.
1. B = commy(B;1).
2. Fori=1,...,n

~

e % = hi(B).
o (fUAaB:ina(si) € VIEW(VO(fa a, b))

(P*™, V™), on input (f,a,b), can be schematically viewed as follows.

PH(C) Vi

FUA (k,r), (R, .., )

™ = PPC’P((f’ a, b)? CAf)
Aﬁ = TOfUA(’]T) .
B = commkgﬁ;r) B, {7}, B, {0:}
Yi = hi(B)
d; = (label(7;), auth(vy;))

~

Remarks on (P* V#):
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1. The reason that we require the prover to convince the verifier with n functions (rather
than just one function) is to achieve error reduction.

2. We introduce some notation which will be useful later. Let ¢ denote the message sent by
V*#, and let ans denote the response to ¢ sent by P*. Recall that if V*(f, a,b) accepts
the view (g; ans), then we say that (g;ans) € VIEW (V*(f,a,b)).

5.3.1 (P V*) and CS-Proofs

The proof system (P* V) is closely related to CS-proofs, defined by Micali [Mi94]. Loosely
speaking, CS-proofs are non-interactive proof systems for languages in NEX P. In CS proofs,
Micali eliminated interaction from an interactive proof system for NEX P (which is essen-
tially (P° V?)) by replacing the verifier with a random oracle. Micali proved that, in the
Random Oracle Model, C'S proofs satisfy both the completeness property and the CS-proof-
of-knowledge property.!® One can make the following hypothesis.

Hypothesis (CSP):There ezists a function ensemble H such that if the random oracle is
replaced with a function uniformly chosen from H, then CS-proofs still satisfy both the com-
pleteness property and the CS-proof-of-knowledge property.

For every function ensemble H, (P*, V%) satisfies the completeness requirement. However,
we do not know if (P*,V*) satisfies the CS-proof-of-knowledge property. Looking carefully
into the definition of C'S-Proofs one can easily verify the following.

Proposition 2. The C'SP hypothesis implies that there exists a function ensemble H for which
(P™ V%) satisfies both the completeness property and the CS-proof-of-knowledge property.

Namely, if CS-proofs can be realized in the real world by some function ensemble H, then
so can (P* VH),

6 Proving The Insecurity of the Fiat-Shamir Paradigm,
Assuming (CR)

Our goal is to construct a secure canonical ID scheme such that the corresponding signature
scheme, obtained from the Fiat-Shamir transform with respect to any function ensemble,
will be insecure. Our first idea is the following. Take any secure canonical ID scheme and

10The definitions of completeness and of CS-proof-of-knowledge were given in Lemma 5.1 and Lemma 5.2.
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extend its verdict function so as to also accept transcripts which convince the receiver that
the sender knows the receiver’s ‘next message’. Since the receiver chooses the next message at
random (follows from the definition of a canonical ID scheme), there is no way that a sender
can guess the receiver’s ‘next message’, except with negligible probability, and therefore the
scheme remains secure. However, when the ID scheme is converted into a signature scheme
by the Fiat-Shamir transform, the receiver is replaced with a public function from a function
ensemble, and then everyone knows in advance the receiver’s ‘next message’ on any input, and
so can generate an accepting transcript, which corresponds to a legitimate signature. Hence,
the corresponding signature scheme, with respect to any function ensemble, will be insecure.

The main problem with this approach is the following: How can the sender convince the
receiver that he knows the receiver’s ‘next message’? One idea is to send the receiver a
polynomial-size encoding of a circuit which computes the receiver’s ‘next message’ function.
However, the size of the interaction is bounded by an explicit polynomial, whereas the re-
ceiver’s ‘next message’ circuit may be of any polynomial size. Therefore, we need to find a
protocol of a-priori bounded size, in which the sender will be able to convince the receiver of
knowledge of any polynomial-size circuit.

To achieve this goal, the sender, instead of sending an encoding to his circuit in hand (which
may be too big), will send a commitment to his encoding. The type of commitment we use
is a tree-commitment, which allows a fixed polynomial-size commitment for any polynomial-
size circuit. Then, upon receiving a message from the receiver, the sender will convince the
receiver that the circuit which he had committed to predicts this message. Recall that Rz
was designed exactly for this purpose. The sender will convince the receiver that he knows a
circuit-encoding C' which is a witness to the triplet (f,a,b), where a is the tree-commitment
(with respect to f) sent by the sender and b is the message sent by the receiver. This will be
done using the reduced-interaction argument (P*,V*) for R.

The F'S Transform and CS Proofs

As we shall see shortly (in 6.1), if there exists a function ensemble H such that (P*, V%)
satisfies the CS-proof-of-knowledge property, then the above approach works, and the insecu-
rity of the Fiat-Shamir paradigm is easily established. Thus, from Proposition 2, we conclude
that the C'SP hypothesis implies =(F'S). This is quite surprising, since it essentially implies
that if the F'S transform applied to CS-proofs is secure, then the F'S transform applied to
canonical ID-schemes is not secure.

It turns out that the bulk of complication is in showing that if the C'SP hypothesis is
false then still —(F'S) is established. In other words, the bulk of complication is in proving
that if the F'S transform, applied to CS-proofs, is not secure then the F'S transform, applied
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to canonical ID-schemes, is also not secure. This is also surprising since we expected this
direction to be the easy one.

6.1 Construction of ID!

We begin by carrying out the above idea. Let F be a collision resistance function ensemble.
Let ‘H be some a-priori fixed function ensemble. Let ID = (G, S, R) be any secure canonical
ID scheme. We extend the public-key and the verdict function of /D to obtain a new ID
scheme ID;, = (G',S*, R'), defined as follows.

e G': on input 17,
1. Run G(1™), to obtain a pair (SK, PK) « G(1").
2. Choose f €r Fp.

Output SK as the secret-key and PK' = (PK, f) as the public-key.

e R': On input a public-key PK' = (PK, f), R' will accept either views that R(PK)
accepts or views of the form

St R!

such that (g;ans) € VIEW (V*(f,a,b)).

To establish —(F'S), we need to show that IDj, is a secure ID scheme whereas the correspond-
ing signature scheme (obtained from the Fiat-Shamir transform) is insecure with respect to
any function ensemble. We begin by proving the insecurity of the corresponding signature
scheme.

Let us denote the signature scheme, obtained by applying the Fiat-Shamir transform to
ID}, and to H'S, by

SS3es = (GEN}rs, SIGN} i, VERIFY )} rs).
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6.1.1 On the Insecurity of S5, is

Lemma 6.1. For any function ensemble HTS, the signature scheme SS,}{FS 1S insecure.

Proof. We construct a forger that, on input any message M and any verification-key VK =
(PK',hTS) (where PK' = (PK, f) and h'5 € HI'S) | generates a signature of M with respect
to VK, as follows.

1. Let C be a circuit computing the hash function h¥%. Let Oy, be a circuit such that for
every x, Cp(z) = n most-significant-bits of C(x, M).

2. Compute Car.

3. Compute the tree-commitment a = TC f(C’M).

4. Compute (b,q) = C(a, M).

5. Emulate the interaction (P*(Cy), V¥|,)(f, a,b), to produce a transcript

(g, ans) + (P™(Cur), V¥|)(f, a,b)."

6. Output (a, (b, q), ans).

It is trivial to verify that all forger steps are polynomial-time computable, and by completeness
of (P™ V#), the forger will always be successful. O

6.1.2 On the Security of ID!

To establish —(F'S) it remains to show that there exists a function ensemble #, such that
ID;, is secure. It is easy to prove the security of 1D}, under the C'SP hypothesis.

Lemma 6.2. Under the CSP hypothesis, there exists a function ensemble H such that ID],
1S Secure.

Proof. The C'SP hypothesis implies that there exists a function ensemble H for which (P*, V)
satisfies both the completeness property and the CS-proof-of-knowledge property (follows from
Proposition 2). It is easy to verify that IDJ, is secure, with respect to this function ensemble

H. O
Note that ((f,a,b),Cu) € R.
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Thus, we proved (CSP) = —(FS).

Unfortunately, we do not know how to prove (directly) -(CSP) = —(FS). Instead
we proceed as follows. Consider the following two cases.

e (Case 1): There exists a function ensemble H such that 1D, is secure.

e (Case 2): For every function ensemble #H, I D}, is not secure.

If we are in Case 1 we are done, since then there exists a function ensemble H such that
ID}, is secure, whereas the corresponding signature scheme is insecure with respect to any
function ensemble, and —(F'S) is established. Hence, we assume that we are in Case 2. That
is, we assume that for every function ensemble H, there exists polynomial-size circuit family
Fy = {F}"} (which we call a FINDER), a polynomial-size circuit family P, = {P/'} (which
corresponds to a cheating prover) and a polynomial p(-), such that for infinitely many n’s,

1
p(n)
(where the probability is over f €gr F,, over b € {0,1}" and over the random coin tosses of
V#). We refer to this case by

Pri(Pr V™) (foa,b) =1 a=FP(f)] >

'YH 3 FINDER'
We distinguish between two subcases.

e (Case 2a): For every function ensemble H, I D}, is ‘extremely insecure’.

e (Case 2b): For every function ensemble H, IDj, is insecure and there exists a function
ensemble H' such that 1D, is not ‘extremely insecure’.

We define Case 2a to be the case that for every function ensemble H there exists a polynomial-
size circuit family F» = {FJ'} (called a SUPER-FINDER), a polynomial-size circuit family
P, = {P?} (which corresponds to a cheating prover) and a polynomial p(-) such that for
infinitely many n’s,

~ ~ 1
Pr[(PQn’VO)(faa:bl) =1 A (Pglavﬂ)(faaabQ) =1: (a:bl) = F2n(f)] > m
(where the probability is over f €r F,, over by €x {0,1}" and over the random coin tosses of
V* and V?). We refer to sub-case 2(a) by

VH 34 SUPER-FINDER
and we refer to sub-case 2(b) by

~(V# 3 SUPER-FINDER).

28



6.2 Construnction of ID?

Throughout this subsection we assume
(VX 3 SUPER-FINDER) = —(FS).

Fix a collision resistant function ensemble F. We establish —(F'S) by extending any
secure canonical ID scheme into a new ID scheme ID? = (G?,5% R?). The security of 1D?
will follow from the fact that JF is collision resistant. The insecurity of the corresponding
signature scheme (obtained by the Fiat-Shamir transform applied to I D?) will follow from the
fact that for every function ensemble H, I D3, is ‘extremely insecure’.

Take a secure ID scheme ID = (G, S, R), and define ID? as follows.

e G?: On input 17,
1. Run G(1™), to obtain a pair (SK, PK) « G(1").

2. Choose uniformly

- faflUAanUA € fn

— k € KEY, (aseed for COMM)

— r € {0,1}" (randomness for COM M)
— 7} (randomness for Vpcp).

Output SK as the secret-key and PK' = (PK, f, (fU4, f¥4), (k,r),~}) as the public-key.

e R?: On input a public-key PK' = (PK, f, (fU4, f¥4), (k,r),7}), R* will accept either
views that R(PK) will accept or views of the form

52 R?

~

B

A

Ve

a, blab%ﬁlaﬂ%éla 5;

where

= (7% B @915 01) € VIEW(VO(f, a, b))
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— (54 Ba; 725 02) € VIEW (VO(f, a,by)).
— BQ commits to a, by, by, B1, B2, as follows
5; = commy(Bz; commy(a, b1, by, Br;7)).

Intuitively, the above view can be thought of as an interleaved execution of the following two
views:

PO (fa a, bl) VO PO (fa a, b2) VO

%

UA UA
1 2
B B2
7 e V2
_ s
(51 52

Remark: It is necessary to append 7] to the public-key in order to later establish the in-
security of the corresponding signature scheme. More specifically, when I D? will be converted
into a signature scheme (by applying the Fiat-Shamir transform), the verifier will be replaced
with a hash function, and thus 7] will no longer necessarily be chosen at random. Yet, we
only know how to establish the insecurity of the signature scheme assuming that +} is chosen
at random. We get around this problem by XORing ~; with a uniformly distributed string
i, from the public-key.

6.2.1 The Security of I1D?

Lemma 6.3. Assuming F is collision resistant, ID? is secure.
Proof. Assume for contradiction that I D? is not secure. That is, assume that there exists a
cheating sender S = {S,,} and a polynomial p(-) such that for infinitely many n’s,
~ 1
Pr[(S,, R*)(PK') =1] > —
(Su (P =1] 2 o

(where the probability is over PK’ <— G?(1") and over the random coin tosses of R?).

Proof Plan: We will prove that the existence of S implies the existence of a circuit that
finds collisions in F. This will be done in two parts, as follows.
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e (Part 1): We will first show that there exist non-uniform probabilistic-polynomial-time
Turing machines F' = {F,} and P = {P,}, such for infinitely many n’s the following
holds.

For (a7 bl: b27 aury, GU.Z'Q) = Fn(f7 flUAﬂ 2UA)7
Pr (ﬁn(auxl),Vo\fIUA)(f, a,by) =1 A (pn(auxz),V0|f2UA)(f, a,by) = 1| > 1/p(n)?

(where the probability is over a uniformly chosen f, fU4, f¥4 € F,, and over the random

coin tosses of F,, P,, VO ra and VO|,pa)."?

The proof-of-knowledge property of (P, V) will imply that there exists a probabilistic-
polynomial-time oracle machine E and a polynomial p/(-) such that for any (a, by, bo, auzy, auz,)
which satisfy the above inequality,

[ Vi EPa@we) (£, a,by),i) = CF st ((f,a,b),C) € R ]

Pr ) and > /(1n)
{ Vi BPrlaue)((f q.by),i) = C2 s.t. ((f,a,by),C?) € Ry J P

(where the probability is over the random coin tosses of EPn(aue) gng P nlauzs)),

e (Part 2): We will then show that there exists a probabilistic-polynomial-time oracle
machine, with oracle access to F, F, and P,, such that, on input a uniformly chosen
f €r F,, outputs a collision in f, with non-negligible probability.

Note that since non-uniform probabilistic-polynomial-time Turing machines can be modeled
as polynomial-size circuits, Part 1 together with Part 2 imply the existence of a polynomial-
size circuit such that, on input a uniformly chosen f € F,, outputs a collision in f, with
non-negligible probability. This will contradict the assumption that F is collision resistant.

We proceed to carry out the proof plan.

Part 1:
o F,(f, f4, f74) operates as follows.

1. Choose uniformly
- PK «+ G(1")
— k € KEY, (a key for COMM,,)

recall that V0| ;ua is VO, restricted to sending fU4 as the first message.
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— r €{0,1}" (randomness for COM M,,)
— 7 (randomness for Vpep)

and Set PK, = (PK’ f’ ( 1[]A’ ZIJA)’ (k’ T)’ f)/i)'

2. Emulate an interaction of (S,, R?)(PK') to obtain a transcript
(32; (Y5 72); (@, b1, by, B1, Ba, 01,62)) (§n7R2)(PK,)-
3. Set aux; = (81, PK') and auxy = (52, PK').
Output (a, by, by, auzy, auzs).
o P,(auzx,), where auz; = (81, PK'), interacts with V0|f1UA(f, a, by) as follows.

— V° sends fV4 to P,.
— P, sends S, to V0.

— V° chooses 7! at random, and sends ! to P,.

— P, chooses 4 at random and emulates the interaction of
(§n|ﬂ17 R2|71163’Yi ,721)(PKI)’
to obtain a transcript
(Bi; (11 @ M. 72); (d', B3, b, 81, B, 61, 83)) 4= (Sulpys B2 Lyjang 03) (PK).
P, sends & to V°.
o P,(aux,), where auzs = (82, PK'), interacts with VO wa(f,a,bs) as follows.
— V9 sends fU4 to P,.
— P, sends S, to VO.

— V7 chooses 72 at random and sends 73 to P,.

— P, chooses 42 at random and emulates the interaction of

(Sulgas B?|2.3) (PK')

‘7% 3

to obtain a transcript
(62; (’ﬁa ’7%); (a”a bllla bIQIa 117 g’ (Sllla 65)) «— (gn|ﬁ2’ R2|'yf,'y§)(PK,)'

P, sends 6! to V°.
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Claim 6.3.1. Let F,(f, fU4, f¥4) = (a, b1, by, aux,, auzy). Then, for infinitely many n’s
Pr |(P,(auzy), V0|f1UA)(f, a,b)) =1 A (P,(auzs), V0|f2UA)(f, a,b) =1| > 1/p(n)?

(where the probability is over f, f'4, fY4 €r Fn, and over the random coin tosses of V0|f1UA
and VO‘fZUA).

Proof. By the assumption made for contradiction, for infinitely many n’s
Pr[(Sp, R)(PK") = 1] > 1/p(n)

(where the probability is over PK' and over the random coin tosses of R?).

The fact that v}, v2, 7 ® V1, Vs, v2, 72 are all uniformly distributed and independent of PK’,
implies that for infinitely many n’s, the following three conditions hold with probability at
least 1/p(n)3.

® (Sn, Rlyy0,) (PK') = 1
o (S B¥lyan3) (PE') = 1
o (S, R?y2.3)(PK") =1
In other words,
o (Bo; (W, 72); (a, b1, ba, Br, Ba, 01, 00)) € VIEW (R?|,,,)(PK')
o (Bo; (v © 1, 78); (a0, 0, B1, B, 61, 65)) € VIEW (R?| 16y, 1) (PK)
o (o (48,73); (o, b1, b5, B, By, 61, 85)) € VIEW (R?|.3 .2) (PK").

Equivalently, all the following conditions hold.

—_

° ) BQ = commy(Ba; commy(a, by, by, B1;7))
(7 B @4 61) € VIEW (VO(f, a, b))

(FU4; By v9;62) € VIEW (VO(F, a, by)).

w

[ ]
—_

. ,32 = COmmk(ﬁé; commk(ala bll: bl2: ﬁia T))
(U B (e ) @) € VIEW (VO(f,a,b1))
- (54 By 733 05) € VIEW (VO(f, a,b2)).

wW N
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o 1. = commy(By; commy,(a", b, bly, B; )
2. ( UA 1’,)/1 @,}/1,511) c VIEW(VO(f,a bl))
3. (fV4; 84573 08) € VIEW (VO(f, a, by)).

Since commy, is computationally-binding and S, is of polynomial-size, conditions (1) imply
that
(a’a bla b2a ﬂla /82) = (ala blla bIQa /Bia /Bé) = (CL”, b,117 bIQI’ i,’ g)

The above equality combined with conditions (2) and (3) imply that
L (f{"; Bisi; 01) € VIEW (VO(f, a,b1))
2. (5% B23713:03) € VIEW(VO(f, a,bs)).
U

The proof-of-knowledge property of (P° V?) implies that there exists a probabilistic-
polynomial-time oracle machine E and a polynomial p'(-) such that for infinitely many n’s,
for (a, bla an aulry, GUCCQ) = Fn(f, f1UA7 2UA)a

Vi EPa@us)((fa,b,),1) = CF st ((f,a,b1), Cl) € Ry

1
Pr and > - )
Vi BPeeus)((f.a,by),7) = C2 s.b. ((f,a,00),C2) € Rr | ¥
(where the probability is over uniformly chosen f, fV4, f/4 € F, and over the random coin

tosses of F,,, EPr(aue1) and EP"(“““))
Part 2: We next show how one can use E and F;,, and ﬁn to find a collision in F. We
define a probabilistic-polynomial-time oracle machine M, which is given oracle access to F,
F,, and P,, and such that on input a random function f € F, outputs a collision in f, with
non-negligible probability.

MEFnP, » on input f € F,, operates as follows.

1. Choose fU4, fI4 ep F, and run F,(f, f'4, f¥4) to obtain

(a, by, by, auay, auwsy) < Fu(f, U4, £374)

2. Choose a random ¢, and compute
(a) C} = BP0 ((f,0,b1),4)
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(b) C? = EPr@u2)((f,a,by),9).

3. Use the efficient reverse-sampling property of (Ppcp, Vpcp), to find random +; and 7,
such that 7 belongs to the set of queries of Qpcp((f,a,b1),71), and to the set of queries

of QPCP((fa a, b2)a 72)

4. Emulate the interaction of (P, (aux:), VO va,,)(f,a,b1) to get the labels of the path of
é’}, and emulate the interaction of (P, (auzs), Vo\ngm)(f, a, by) to get the labels of the
path of éf

Claim 6.3.2. With non-negligible probability (over f €gr F, and over the random coin tosses
of M, E, F,, and P,) somewhere along these paths there will be a collision in f.

Proof. With non-negligible probability (over the random coin tosses of M, E, F,,, and Pn),
C} is the 7’th bit of C' and C? is the 7’th bit of C?, where

~

((fa a, bl)a él)a ((fa a, b2), 02) S R}'.

Since C; # Cy and since the circuit-encoding C' — C' has large minimum distance, it follows
that with probability ﬁy the following inequality holds

Cl#C?

(where poly is a polynomial and the probability is over a random chosen ).
This implies that somewhere along these paths there will be a collision to f, since

Cl#C?
and yet A X
a = TCf(Ol) = TCf(CQ)
O
This Contradicts our assumption that F is a collision resistance function ensemble. O

We thus established the security of D2, We denote the signature scheme, obtained by
applying the Fiat-Shamir transform to ID? and the function ensemble %, by

SS3 = (GEN,,, SIGN;,,VERIFYY).
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6.2.2 The Insecurity of SS%

Lemma 6.4. Assuming'VH 3 SUPER-FINDER', for any function ensemble H, the signature
scheme SS3, is insecure.

Proof. Fix a function ensemble H. We show that for every message M there exists a forger
FORGM which, on input a random verification-key V K, outputs a signature of M, with
non-negligible probability.

Fix any message M. For any h € H, define

hM(z) = n least-significant-bits of h(z, M),

and let HM = {hM},cy. Let Fy = {F}}nen be a SUPER-FINDER for H™ and let P, = { P}
be the corresponding cheating prover such that for (a,b;) = F3'(f),

Pri(P, VO (f,a,b) =1 A (B2, V*)(f,a,bs) = 1] = non-negl(n)
(W}E\(;re the probability is over f €g F,, by € {0,1}" and the random coin tosses of V' and
' O)I; input a random verification-key VK = (PK’, h), where h € H,, and
PK'= (PK, f,(f{", 1), (k, 1), %),
the forger FORGM generates a signature of M as follows.
1. Compute (a, by) = FJ'(f).

2. Emulate the interaction of (]52", VO\fIUA)(f, a, by), to obtain a transcript
( lUA; ﬂl; *; *) — (f)2n’ VO‘fIUA)(fa a, bl)

3. Choose randomly by € {0,1}", and let ' = commy(a, by, by, B1;7).
4. Choose randomly hs ..., h, € H,, and let
v = (f37 (B, '), (WY R hgh).
5. Emulate the interaction of (P, V*"|,.,)(f,a,bs), to obtain a transcript
(anr; ans) = (B3, V"o, )(f, 0, bo).
Denote ans = (B2, (72,72, ... V%), Ba, (62,02, ..., 62)).
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6. Compute (7", ) = h(fs, M).

7. Emulate the interaction ~
(7, V0|f1UA,7169'yi’)(fa a, by)

to obtain a transcript
(flUA; ﬂl; 71 S ryi’; 51) — (PQna V0|f1UA,'yiea'yi’)(fa a, bl)

8. Output R
(ﬁ2; (’Yi'a 72); (a, b1, b, B1, B2, 01, 52))

as a signature of M.
We claim that the forger will be successful with non-negligible probability.
Claim 6.4.1.
Pr[VERIFY;(VK,M,FORG"(VK)) = 1] = non-negl(n)
(where the probability is over VK and over the random coin tosses of FORG™M ).
Proof. Denote the output of FORGM(VK) by (Bg; (v, 72); (a, b1, ba, B, B2, 01, 02)).
By the definition of PJ', for (a,b) = Fy,
Pr{(Py,V°)(f,a,b1) = 1 A (B2, V*)(f,a,by) = 1] = non-negl(n) (1)

(where the probability is over f €r Fy, by €x {0,1}" and the random coin tosses of V? and
VY.
We claim that similarly, for (a, b;) = F,

Pri(P. VO poa o) (frb) = 1 A (P, V| )(fr0,b) = 1] = non-negi(n)  (2)

(where the probability is over f €r Fp, by € {0,1}", and over f/4, ¥/ & v} and qu)-
This is so for the following reasons

1. fV4 was chosen uniformly in F,

2. 7! @ 7, was chosen uniformly (follows from the fact that -; was chosen uniformly and
vi was chosen independently of +}).

3. PP (in step 7) cannot distinguish between the distribution of gy; and the distribution of
a random query of V"
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For all of the above reasons, f’ﬁ in (2) should succeed with essentially the same probability as
in (1).

The fact that (P, V°| ;04 g, )(f,a,b1) = 1 implies that

o (fU4 B v @;0) € VIEW(VO(f,a,b)).

The fact that (P, V*"|,,)(f,a,by) = 1 implies that (qy;ans) € VIEW(V*" (f,a,b,)),
which in turn implies that both of the following conditions hold.

o (f'4; Ba; 72 02) € VIEW (VO(f, a,bs))

o (7/,72) = h(Ba, M)).

The satisfaction of above three conditions imply that the forgery was successful. O

6.3 Construction of ID?

Throughout this subsection we assume
(VX 3 FINDER) A —(VH 3 SUPER-FINDER) = —(FS)

We assume that for every function ensemble H, I D}, is insecure, and that there exists a
function ensemble 7' such that D, is not ‘extremely insecure’. We establish —(F'S) by
extending any secure ID scheme into a new ID scheme ID?® = (G3,S53 R?). The security
of ID? follows from the fact that 1D, is not ‘extremely insecure’. The insecurity of the
corresponding signature scheme (obtained by applying the Fiat-Shamir transform to ID?)
follows from the fact that for every function ensemble H, I D], is insecure.

Take any secure canonical ID scheme ID = (G, S, R) and the function ensemble H', and
define I D3 as follows.

e G3: On input 17,
1. Run G(1"), to obtain a pair (SK, PK) + G(1").

2. Choose uniformly

- fa fUA € ‘7:11
— k€ KEY, (a key for COMM)
— r € {0,1}" (randomness for COM M)
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B bl2 € {07 1}n
— ¢} (a first message sent by V*').

Output SK as the secret-key and
PK' = (PK, f, f"%, (k,r), (b5, 4}))
as the public-key.

e R3: On input a public-key PK' = (PK, f, fU4, (k,r), (b}, q')), R?® accepts either views
that R(PK) accepts or views of the form

S3 R?

~

~

A

—
1, (b12,7 q”)

a, bl, 51, 51, ang
where
— (fY% Bi;m;61) € VIEW(VY(f, a,b1))
— (@' ®¢";ans) € VIEW (V¥ (f,a,b, ® 05))
- 31 commits to a, by, 81, as follows

Bl = commy(Sy; commy(a, by;T)).

Intuitively, the above view can be thought of as an interleaved execution of the following

two views:
PO (fa a, bl) VO

(7
fUA PY (fa,th@by) V7
! "
b1 qg Dq
"1 ans
-
51
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Remark: It is necessary to append b, ¢' to the public-key in order to later establish
the insecurity of the corresponding signature scheme. More specifically, when ID? will be
converted into a signature scheme (by applying the Fiat-Shamir transform), the verifier will
be replaced with a hash function, and thus b5 and ¢” will no longer necessarily be chosen at
random. Yet, we only know how to establish the insecurity of the signature scheme assuming
that b5 and ¢” are chosen at random. We get around this problem by XORing b5 with a
uniformly distributed string b, and XORing ¢” with a uniformly distributed string ¢'.

Lemma 6.5. Assuming H' does not have a SUPER-FINDER, I1D? is secure.
Proof. Follows easily from the definition of a SUPER-FINDER. O

We denote the signature scheme, obtained by applying the Fiat-Shamir transform to I D?
and the function ensemble H, by

SS3 = (GEN3,SIGNS,VERIFY,).

Lemma 6.6. Assuming 'VH 3 FINDER', for any function ensemble H, the signature scheme
SS3, is insecure.

Proof. Fix a function ensemble H*5. We exhibit a forger for SS3 rs. More specifically, we

show that for every message M there exists a forger FORG™ which, on input a random
verification key V K, outputs a signature of M, with non-negligible probability.
Fix any message M. For any h € HLS, define

hY(z) = n most-significant-bits of h(x, M).

Let HM = {hM})crs, and let H = H' UHM. By our assumption 'VH IFINDER', there
exist Fy = {F]}nen and Py = { P}, such that for a = F7*(f),

Pr[(P™, V*)(f,a,b) = 1] = non-negl(n)
(where the probability is over f €g Fp, b € {0,1}" and the random coin tosses of V).

It is easy to see that the existence of P implies the existence of a polynomial-size circuit
P such that for a = F(f),

Pr(Pr, V) (fra,b) =1 A (PP VR (f,0,bs) = 1] = non-negl(n)

(where the probability is over f €p F,, b1,bs €r {0,1}" and the random coin tosses of yH
and V"),
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We are now ready to exhibit the forger FORGM.
On input a verification-key VK = (PK', h), where h € HI'S and

PK, = (PK’ f’ fUA’ (k’ T)’ (bl2’ q’))’
The forger FORG™M generates a signature of M, with respect to VK, as follows.
1. Compute a = F*(f).

2. (a) Choose by € {0,1}", and compute r' = commy(a, by;7).

(b) Choose hy, ..., h, €g HES, and let
™ = (U4, (k,r"), (RM, BT, ... hM)).

n

(c) Emulate the interaction of (P7, V*"| ar)(f,a,b1) to obtain a transcript

(¢™; ans™) « (PP, VY| a0)(f, a,b1).

Denote ans™ = (B, (11, -, 7m), B1, (61, -, 8,))-
3. Compute (, (b4,4")) = h(B, M).

4. Emulate the interaction of (P, V*'| ae ) (f,a, by @ b), to obtain a transcript
(¢' @ "5 ans) « (By, V™ | gogr)(f, a,b) @ B).

5. Output X
(61) (717 (b12,7 q”))a (CL, b17 /817 517 CL’I’LS))

as a signature of M.

We claim that the forger will be successful with non-negligible probability.
Claim 6.6.1.

Pr[VERIFY;(VK,M,FORG"(VK)) = 1] = non-negl(n)

(where the probability is over VK and over the random coin tosses of FORGM ).
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Proof. Denote the output of the forger FORGM(VK) by (31, (71, (65,4")), (a, by, B1, 61, ans)).
By definition of P7, for a = F*(f),
Pr[(ﬁlnﬂ VHI)(fa a, bl) =1A (ﬁln? VHM)(f) a, b2) = ]‘] = non—negl(n) (3)

(where the probability is over f €g F,, b1,by €g {0,1}™ and the random coin tosses of yH
and VH"),

We claim that similarly, for a = FJ*(f),
Pr{(PE, V¥ |pog) (fra,b0) =1 A (PE VY|, )(f 0,0, @ b)) = 1] = non-negl(n) — (4)

(where the probability is over f €r F,, b1, by ® by € {0,1}", ¢ & ¢", qu)-
This is so for the following reasons

1. by & bf is uniformly distributed in {0, 1}™.
2. ¢ @ ¢" is uniformly distributed among the set of all queries of V'

3. PP (in step 2(c)) cannot distinguish between the distribution of gy, and the distribution
of a uniform query of V*".

For all of the above reasons, ]3,1 in (4) should succeed with essentially the same probability as
in (3).

Thus, with non-negligible probability both of the following conditions hold.
L. (¢ ®q";ans) € VIEW (V (f, 0,0 ® b5)).

2. (¢M:ans™) € VIEW((V*"(f,a,b)), which in turn implies that the following condi-
tions hold.

(a) v = hM(Bl), which implies that (y1, (b%,4")) = h(ﬁl, M)
(b) (fY4; B1;71;01) € VIEW(VO(f,a,by))

(c) Bi = commy(By; commy(a, by;r).

Recall that VERIFY32(VK) accepts if conditions (1) and (2) hold, and thus FORGM (VK)
is successful with non-negligible probability. O

Thus, we have established the insecurity of SS3. U
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7 On the Insecurity of FS Modifications

The F'S method was designed for constructing signature schemes by eliminating interaction
from canonical ID schemes. We proved that this method is insecure, in the sense that there
exist secure canonical ID schemes for which the corresponding signature scheme (obtained by
the F'S method) is insecure with respect to any function ensemble. A question that remains
is: Do there exist other secure methods for eliminating interaction?

We present two modifications of the F'S method considered in the literature. Using similar
ideas to the ones presented in this paper, we show the insecurity of these F'S modifications
as well.

7.1 First Modification

We first present the F'S modification introduced by Micali and Reyzin. In their paper, ‘Im-
proving The Ezact Security of Digital Signature Schemes’ [MRO02], they presented a method
for constructing F'S-like signature schemes that yields better “exact security” than the orig-
inal F'S method («, 3,7). In their method, the signer first chooses 3 (originally sent by the
receiver R) and then produces « (the first message of the sender S), by applying H to § and
to the message to be signed, i.e., « = H(B, M).'* This method can be applied only to ID
schemes in which the sender, given public-key PK and a pair (o, 3), can efficiently compute
~ for which («, 8,7) € VIEW (R(PK)). This method does not apply to ID schemes in which
the information used during the generation of « is necessary to compute 7.

We argue that this F'S-like method proposed by [MR02] is insecure, as follows. Take any
secure ID scheme and modify it by appending f €r F to the public key, and extending its
verdict function so as to also accept views of the following form

S (PK,f) R

where
(q;ans) € VIEW (V(f, (b, q), a)).

3They called this method the Swap method since they swapped the roles of a and 8 in the original F'S
method.
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We denote this extended ID scheme by IDy. It is relatively easy to show that the signature
scheme, obtained by applying the above F'S-like method to I Dy, is insecure with respect to
any function ensemble. Thus, if there exists a function ensemble H such that I D4 is secure,
then the aove F'S-like method is insecure. Namely, under the C'S P hypothesis, the above F'S-
like method is insecure. To complete the proof one needs to assume that for every function
ensemble H, I D4 is insecure. The rest of the proof is quite technical and follows the lines of
Sections 6.2 and 6.3.

7.2 Second Modification

We next present the F'S modification introduced by Abdalla, An, Bellare and Namprempre.
In their paper, ‘From Identification to Signatures via the Fiat-Shamir Transform: Minimizing
assumptions for Security and Forward-Security’ [AABNO02], they define a randomized gener-
alization of the Fiat-Shamir transform, and prove that a necessary and sufficient condition
for the security (resp. forward-secure) of signature schemes obtained from the generalized F'S
transform in the Random Oracle Model, is that the underlying ID scheme is secure (resp.
forward-secure) against impersonation under passive attacks.

The randomized generalization of the F'S transform transforms any canonical /D scheme
(e, B,7) into a signature scheme by replacing 8 with the value of H applied to o, M (the
message to be signed) and R (randomness chosen by the Signer). That is, a valid signature
of a message M, with respect to a public-key PK, is a triplet («, (8, R),~y)) such that

1. = H(a, M, R)
2. (o, B,7) € VIEW(R(PK)).

The insecurity of the above generalized F'S paradigm, follows trivially from the fact that it is
a generalization of the original F'S paradigm with R = (3, and from the fact that the original
F'S paradigm is insecure.

8 Open Problems

Do there exist other “natural” cryptographic schemes which are secure in the Random Oracle
Model, and become insecure when the random oracle is replaced with any public function? An
example of a “natural” cryptographic scheme that we are interested in is CS-proofs, defined
by Micali [Mi94]. The question is whether or not there exists a function ensemble 7, such that
CS-proofs remain sound (or remain a proof-of-knowledge) when the random oracle is replaced
with a public function chosen at random from H?
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Perhaps most interestingly, one would like to prove that either every “natural” task which
is realizable in the Random Oracle Model is also realizable in the “real world,” or that there
exists a “natural” task which is realizable in the Random Oracle Model and is not realizable
in the “real world.” For example, we know that there exists an identity based encryption
scheme which is secure in the Random Oracle Model [BF01]. But, does there exist an identity
based encryption scheme which are secure in the “real world.”?
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A Commitment Schemes

Naor [Na91] proved that commitment schemes exist assuming the existence of one-way func-
tion ensembles. Namely, assuming the existence of one-way function ensembles, there exists
functions I(n) and ¢(n), which are polynomially related to n, and there exists a commitment
scheme COM M IT such that for every n € N and for every k € KEY,,,

commity, : {0,1}" x {0, 1}l(n) -0, 1}t(n)-

Proposition 3. Under the CR hypothesis, For any function m(n), which is polynomially-
related to n, there exists a commitment scheme COMM, with a corresponding set of keys
KEY', such that for every n € N and for every k' € KEY]!,

commy : {0,1}™™ x {0,1}" — {0,1}".

Proof. Let F™ be a collision resistant function ensemble such that for every n € N and for
every " € F",
fm {0,131 — {0, 1}

(the existence of such a function ensemble follows from the C'R hypothesis).

Let F* be a collision resistant function ensemble such that

1. for every n € N and for every f! € F!

ftoqfo,13™ — {0,1}"

2. for every n € N,
foUtw)) = U
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(It is quite easy to see that such a function ensemble exists under the C'R hypothesis).

The set of keys for COM M is defined as follows: For every n € N,

KEY, ={(k,f7", [}) : k€ KEY,, i€ Fy, ,fie Fi}.

For every n € N, every (k, f™, f!) € KEY! and every (z,r) € {0,1}™™ x {0,1}", define
commyg, g p2) (w3 7) = fr,(commity (f™(x); 9(r)),

where g : {0,1}" — {0,1}!(®) is a one-way pseudorandom generator.'*

COMM is computationally-hiding since
1. g is a pseudorandom generator
2. COMMIT is computationally-hiding
3. falUsmy) = Un.
COMM is computationally-binding since
1. F!is a collision-resistance function ensemble
2. COMMIT is computationally-binding
3. F™ is a collision-resistance function ensemble.

4. g is one-way.

17t was proven in [GGM86] that one-way pseudorandom generators exist assuming the existence of one-way
function ensembles.
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