
On converting CNF to DNF

Peter Bro Miltersen∗ Jaikumar Radhakrishnan† Ingo Wegener‡

March 27, 2003

Abstract

The best-known representations of boolean functions f are those as
disjunctions of terms (DNFs) and as conjunctions of clauses (CNFs). It
is convenient to define the DNF size of f as the minimal number of terms
in a DNF representing f and the CNF size as the minimal number of
clauses in a CNF representing f . This leads to the problem to estimate
the largest gap between CNF size and DNF size. More precisely, what is
the largest possible DNF size of a function f with polynomial CNF size?
We show the answer to be 2n−Θ(n/ log n).

1 Introduction

Boolean functions f : {0, 1}n → {0, 1} can be represented by circuits, formulas,
branching programs, and many restricted variants of these fundamental com-
putation models. Here we investigate depth-2, unbounded fan-in circuits over
AND, OR, and NOT better known as DNFs and CNFs.

We repeat some well-known concepts (for more details see Wegener (1987)).
The set of variables is denoted by Xn = {x1, . . . , xn}. Literals are variables and
negated variables. Terms (or monomials) are conjunctions of literals. Clauses
are disjunctions of literals. Each boolean function can be represented as a
disjunction of terms, mostly denoted as disjunctive normal form (DNF). It would
be historically more correct to use the notion of disjunctive forms for all these
representations and disjunctive normal form for the unique representation as
disjunction of minterms or terms of length n. However, using the term DNF
in the less restrictive sense now seems to be more or less standard in computer
science, so we stick to this less restrictive notion in this paper. The size of
a DNF equals the number of its terms and the DNF size of f is the size of
a minimum-size DNF for f . By duality we can represent f as a conjunction

∗Dept. of Computer Science, University of Aarhus, Denmark. e-mail:
bromille@daimi.au.dk. Supported by BRICS, Basic Research in Computer Science, a cen-
tre of the Danish National Research Foundation.

†Tata Institute of Fundamental Resarch, Mumbai, India. email: jaikumar@tifr.res.in.
‡FB Informatik LS2, Univ. Dortmund, 44221 Dortmund, Germany. e-mail:

wegener@ls2.cs.uni-dortmund.de. Supported by DFG-grant We 1066/9.

1

Electronic Colloquium on Computational Complexity, Report No. 17 (2003)

ISSN 1433-8092

of clauses called conjunctive normal forms (CNFs) and obtain the complexity
measure CNF size of f .

We are interested in the maximal blow-up of size when switching from CNF
representation to DNF representation (or vice versa). By the law of distribu-
tivity, CNFs with m clauses of length k can be simulated by DNFs with km

terms not longer than m. If the clauses do not share any variable, this blow-up
cannot be avoided. However, this implies that the number of clauses is very
small compared to the number of variables. The main question of this paper is
the following one which does not have such a simple answer.

What is the largest possible DNF size of functions f : {0, 1}n → {0, 1} with

polynomial CNF size?

The problem is motivated by its fundamental nature: DNF size and CNF
size are fundamental complexity measures. Practical circuit designs like pro-
grammable logic arrays (PLAs) are based on DNFs and CNFs. Lower bounds
on unbounded fan-in circuits are based on the celebrated switching lemma of
H̊astad (1989) which is a statement about converting CNFs to DNFs where some
variables randomly are replaced by constants. Hence, it seems that the exact
relationship between CNFs and DNFs ought to be understood as completely as
possible. Fortunately, CNFs and DNFs have simple combinatorial properties
allowing the application of current combinatorial arguments to obtain such an
understanding. In contrast, the results of Razborov and Rudich (1997) show
that this is not likely to be possible for complexity measures like circuit size and
circuit depth.

Another motivation for considering the question is the study of SAT al-
gorithms and heuristics with “mild” exponential behavior; a study which has
gained a lot of momentum in recent years (e.g., Monien and Speckenmeyer
(1985), Paturi et al. (1998), Dantsin et al. (2000), Schöning (2002), Hofmeister
et al. (2002), and Dantsin et al. (2003)). Despite many successes, the following
fundamental question is still open: Is there an algorithm that decides SAT of
a CNF with n variables and m clauses (without any restrictions on the length
of clauses) in time mO(1)2cn for some constant c < 1? The obvious brute force
algorithm solves the problem in time mO(1)2n. One method for solving SAT is
to convert the CNF to a DNF, perhaps using sophisticated heuristics to keep the
final DNF and any intermediate results small (though presumably not optimally
small, due to the hardness of such a task). Once converted to a DNF, satisfi-
ability of the formula is trivial to decide. A CNF-DNF conversion method for
solving SAT, phrased in a more general constraint satisfaction framework was
recently studied experimentally by Katajainen and Madsen (2002). Answering
the question above limits the worst case complexity of any algorithm obtained
within this framework.

A final motivation for considering the question is a purely combinatorial
one. Consider the monotone version of our main question: What is the largest
possible DNF size of a monotone function f : {0, 1}n → {0, 1} with polynomial
CNF size. For monotone functions f it is well known (see, e.g., Wegener (1987),

2

Chapter 2, Theorem 2.2) that the minimal-size CNF consists of all prime clauses
which are shortest clauses c containing only non-negated variables and implying
that f equals 0, more precisely c(a) = 0 implies f(a) = 0. The dual statement
(considering prime implicants rather than prime clauses) holds for the minimal-
size DNF. We can consider the CNF consisting of all prime clauses as a set
system (a non-uniform hypergraph) S1, S2, . . . , Sm ⊆ V = {1, . . . , n} where Si

represents the clause consisting of all xj , j ∈ Si. A set A ⊆ V corresponds to
the term of all xk, k ∈ A. Such a set A corresponds to a prime implicant of f iff
A∩Si 6= ∅ for all i ∈ {1, . . . , m} and this property does not hold for any proper
subset of A. Hence, the monotone version of our main question is equivalent to
the following natural question of extremal combinatorics: What is the maximum

possible number of distinct minimal vertex covers of a non-uniform hypergraph

containing n vertices and nO(1) edges?

Somewhat surprisingly, the exact question we consider does not seem to
have been considered before. However, related research has been made. As
mentioned, H̊astad’s switching lemma can be considered as a result about ap-
proximating CNFs by DNFs. The problem of converting polynomial-size CNFs
and DNFs into representations by restricted branching programs for the pur-
pose of hardware verification has been considered since a long time (see We-
gener (2000)). The best lower bounds for ordered binary decision diagrams
(OBDDs) and read-once branching programs (BP1s) are due to Bollig and We-

gener (1998) and are of size 2Ω(n1/2) even for monotone functions representable
as disjunctions of terms of length 2.

In this paper, we prove tight bounds on the largest possible blow-up of size
when converting polynomial-size CNFs to DNFs. Section 2 contains example
functions where the blow-up is large:

– We present a function with a CNF of size nO(1) whose minimum-size DNF
has size 2n−Θ(n/ log n).

– We present a monotone function with a CNF of size nO(1) whose minimum-
size DNF has size 2n−Θ(n log log n/ log n).

In Section 3, we prove that the example for the general case is optimal:

– Any function with a CNF of polynomial size can be represented by a DNF
of size at most 2n−Ω(n/ log n).

A main technical tool of our proof of the upper bound is H̊astad’s switching
lemma, which is not surprising as this lemma can be interpreted as a lemma
about approximating CNFs with DNFs. Nevertheless, we need to add some
extra combinatorial machinery to get the good bound above. We do not have
a better upper bound for monotone functions, even though the lower bound for
monotone functions based on the example is smaller. Hence, our understanding
of the monotone case is actually worse than our understanding of the general
case. This is somewhat surprising; usually monotone complexity is easier to
understand than general complexity.

3

For the class of CNF-DNF conversion based SAT algorithms described above,
our results imply that no algorithm within this framework has complexity
mO(1)2cn for some constant c < 1, though we cannot rule out an algorithm
of this kind with complexity mO(1)2n−Ω(n/ log n) which would still be a very
interesting result.

For the problem of estimating the maximum size of the number of minimal
vertex covers of a non-uniform hypergraph, our results have the following direct
corollary:

– Any hypergraph with n vertices and nO(1) edges has at most 2n−Ω(n/ log n)

distinct minimal vertex covers. Furthermore, for each n, there is a hyper-
graph with n vertices and nO(1) edges with 2n−Θ(n log log n/ log n) distinct
minimal vertex covers.

We leave getting a tight bound as an interesting open problem.

2 Functions with a large blow-up

It is well known that the parity function PARn and its negation are the only
functions with maximal CNF size (and also DNF size) which equals 2n−1. The
conjunction of parity functions on small variable sets has a small CNF size but
one may expect that it has large DNF size.

Definition 1 The function fk,n : {0, 1}n → {0, 1} is defined in the following

way. The variable set is partitioned into dn/ke sets S1, . . . Sdn/ke where |Si| = k
for i < dn/ke. The function gi is the parity function of all Si-variables and the

function fk,n the conjunction of all gi.

In order to avoid messy notation we assume in the following that n/k is an
integer (all sets Si have size k).

Theorem 2 The CNF size of fk,n equals n · 2k−1/k and the DNF size of fk,n

equals 2n−n/k.

Proof Each parity function gi has a CNF of size 2k−1 and the conjunction of
these n/k CNFs leads to a CNF for fk,n of size n ·2k−1/k. For a lower bound on
the CNF size we use the result (see, e.g., Wegener (1987), Chapter 2, Lemma
2.2) that the number of essential prime clauses is a lower bound on the CNF
size. A prime clause is called essential if it is the only prime clause c covering
some a ∈ f−1(0), i.e., c(a) = 0. Prime clauses of fk,n have to ensure that some gi

computes 0 and, therefore, each prime clause contains all Si-variables for some
i. Therefore, the prime clause c of gi covering ai ∈ g−1

i (0) is a prime clause
of fk,n. It is essential since it is the only one covering the input (b1, . . . , bn/k)
where gi(bj) = 1 for all j 6= i and bi = ai.

If fk,n(a) = 1, then a = (a1, . . . , ak) and gi(ai) = 1 for all i. In particular,
fk,n(b) = 0 for all Hamming neighbors b of a. This implies that the minterms
covering a ∈ f−1

k,n(1) are essential prime implicants and that the disjunction

4

of these minterms is the minimal-size DNF. We have 2k−1 choices for ai and,
therefore, (2k−1)n/k = 2n−n/k choices for a. �

In order to discuss this result we consider some parameter settings:

– If k equals a positive integer c, the CNF size grow linearly and the DNF
size equals 2n−n/c. Choosing c large enough, we obtain in the exponent a
term larger than (1 − ε)n for each constant ε > 0.

– If k = c log n, the CNF size grows polynomially and the DNF size equals
2n−c−1n/ log n. Choosing c large enough, we obtain in the exponent an
arbitrarily small constant for the (n/ log n)-term.

– If k = o(n), the CNF size grows at most weakly exponential (2o(n)) and
the DNF size can be made to 2n−α(n) for each α = ω(1).

Definition 3 The function f∗
k,n is defined with respect to the majority function

g∗i in the same way as fk,n with respect to gi.

The majority function on N variables computes 1 iff the input contains at
least dN/2e ones. Majority is the monotone function with the largest number
of

(

N
dN/2e

)

prime implicants (an argument based on Sperner’s lemma) and the

largest number of
(

N
dN/2e

)

prime clauses. In the following, we set r :=
(

k
dk/2e

)

.

By Stirling’s formula, r = Θ(2k · k−1/2).

Theorem 4 The CNF size of f∗
k,n equals n · r/k = Θ(n · 2k · k−3/2) and the

DNF size of f∗
k,n equals rn/k = 2n−Θ((n log k)/k).

Proof The proof is easier than the proof of Theorem 2 since it is sufficient
to count the number of prime clauses and prime implicants. Clauses of dk/2e
variables of the same block Si are the prime clauses of f∗

k,n. It is obvious that
each shortening is not a clause of f∗

k,n. Hence, the number of prime clauses
equals n · r/k.

In order to ensure that f∗
k,n(a) = 1 it is necessary and sufficient to have at

least dk/2e ones in each block. Hence, a prime implicant of f ∗
k,n is a conjunction

of prime implicants of each block. There are n/k blocks and r choices per block
which implies the theorem. �

For k = c log n, the CNF size is polynomially bounded and the DNF can be
made as large as 2n−εn log n/ log log n for each ε > 0 by choosing c large enough.

3 Upper bounds on the blow-up

We use H̊astad’s switching lemma. The following version due to Beame (1994)
is convenient for us.

5

Lemma 5 (H̊astad, Beame) Let a CNF f with clause length r on n variables

be given and let ρ be a random restriction leaving l variables free. Then

Pr[fρ does not have a decision tree of depth d] < (7rl/n)d.

We first present an upper bound with a fairly easy proof. The bound is not
optimal for the case of CNFs of polynomial size. We later obtain the optimal
upper bound for this case as a refinement of the easy argument.

Theorem 6 Let f : {0, 1}n → {0, 1} be a function with a CNF of size at most

2o(n1/2). Then f has a DNF of size at most 2n−Ω(n1/2).

Proof
Let ρ be a random restriction to the variables of f leaving n/2 variables free.
Assume that the CNF for f contains some clause containing more than n1/2

literals and fix such a clause. Assume without loss of generality that the clause
has at least as many unnegated as negated variables. We want to bound from
above the probability that the clause is not killed by ρ, i.e., the probability that
the clause is not made trivially true under ρ. This is at most the probability
that none of the unnegated variables of the clause is assigned 1 by ρ. With
probability 1− 2−Ω(n), ρ assigns the value 1 to some constant fraction of all the
variables {x1, x2, . . . , xn}. Given this event, Chernoff bounds give us that the
probability that none of the (at least n1/2/2) unnegated variables of the clause

are among the variables assigned 1, is at most 2−Ω(n1/2).

Since there are at most 2o(n1/2) terms of size more than n1/2 and since each
is killed by ρ with probability at least 1 − 2−Ω(n1/2), the probability that all

clauses of the CNF have size at most n1/2 in the CNF for fρ derived from the

CNF for f , is at least 1 − 2o(n1/2)2−Ω(n1/2) = 1 − 2−Ω(n1/2).
Now apply a second random restriction σ on the remaining free variables of

fρ leaving n1/2 variables free. Conditioned by the event that all the clauses of
fρ do have size at most n1/2, the switching lemma implies that the probability
that the function fσ◦ρ does not have a decision tree of depth n1/2/2 is smaller

than 2−Ω(n1/2). Thus, combining the two random restrictions into one, we have
proved that a random restriction to the variables of f leaving n1/2 variables

free, has a decision tree of depth n1/2/2 with probability at least 1− 2−Ω(n1/2).
We can fix the positions of the free variables while preserving this probability.

Thus, we have proved the following statement: There is a set S of n1/2 variables
among the variables of f so that if the remaining variables are fixed at random,

the resulting function has a DNF of size at most 2n1/2/2 with probability at

least 1 − 2−Ω(n1/2).
Now we make a DNF for the original function as follows: For each assignment

of the variables not in S for which it is not the case that the resulting subfunction

of f on the variables of S has a DNF of size at most 2n1/2/2 (a bad assignment),
we make the trivial DNF. For each assignment for S which it is the case that the

resulting subfunction of f on the variables of S has a DNF of size at most 2n1/2/2

6

(a good assignment), we take this DNF. We combine the DNFs we obtain for
the various assignments of S into a single DNF for f in the obvious way.

The contribution to the total size by the good assignments to the total size

is at most 2n−n1/2

2n1/2/2, i.e. 2n−Ω(n1/2). The contribution of the bad settings

is at most 2−Ω(n1/2)2n−n1/2

2n1/2

, i.e. 2n−Ω(n1/2). Thus, the total size is at most

2n−Ω(n1/2). �

We now make a more refined argument giving the optimal bound for polyno-
mial-size CNFs.

Theorem 7 Let f : {0, 1}n → {0, 1} be a function with a CNF of size nO(1).

Then f has a DNF of size at most 2n−Ω(n/ log n).

Proof
Given a CNF for f with m ≤ nc clauses for some constant c. Consider first

applying a random restriction ρ leaving n/2 variables free. The key to the proof
is to consider the following event E:

E: After applying ρ, there is a set S of at most n/10 free variables so

that every clause of the CNF that is not killed by ρ has at most 100c logn free

variables outside of S.

The utility of considering E is this: If the event E occurs, we are in a very
good position for finding a small DNF for fρ since no matter how the variables
of S are assigned values, the CNF for fρ has clause size at most 100c logn which
is very good for applying the switching lemma.

We now argue that E actually occurs with probability 1− 2−Ω(n). Suppose
E does not occur. Then we shall argue that we can find a set T of at most
n/(100c logn) clauses in the CNF containing in total at least n/10 variables
so that none of these clauses are killed by our restriction. Indeed, if E does
not occur we can find such a set by first taking an arbitrary clause of size at
least 100c logn not killed by ρ. Such a set must exist as otherwise the empty
set would work as T . If this clause has at least n/10 variables we are done.
Otherwise, the set of variables in the clause has size less than n/10, so since
E does not occur, there must be another clause with at least 100c logn “new
variables” (otherwise the clause we chose would work as T and E would occur).
We add this clause to our set and consider the union of the clauses added so
far. If this union has size at least n/10 we are done, otherwise there must be
a clause not killed by ρ with at least 100c logn “new variables”, etc. As E
does not occur, we can continue the process until the set found has the desired
property. Since in each step 100c logn new variables are found, the process can
only continue for at most n/(100c logn) steps and hence we will find a set T of
the desired size.

Given the set T of clauses, let V (T) denote the set of variables appearing in
the clauses of T . For each variable we make a note about whether it appears
negated or unnegated (or both), so we may also think of V (T) as a set of literals.
We estimate the probability of E not occuring:

7

Pr[E does not occur]

≤ Pr[Some set T of at most n/(100c logn) clauses not killed by ρ

has |V (T)| ≥ n/10]

≤
∑

T,|T |<n/(100c log n),|V (T)|≥n/10

Pr[No literal in V (T) is assigned 1 by ρ]

Let us upper bound the probability that for a fixed set of literals V (T) of size
at least n/10, no literal in V (T) is assigned 1 by ρ. Recall that ρ assigns random
values to n/2 randomly chosen variables. We may choose such a restriction by
considering each variable in {x1, x2, . . . , xn} at a time, choosing whether to fix
it and in case we decide to fix it, flipping a coin about which value to give it.
To obtain the right probability distribution, the probability by which we decide
whether to fix it should be (n/2 − k)/n where k is the number of variables we
already fixed. Suppose we follow this procedure, but consider the variables of
V (T) before the other variables. As (n/2−n/10)/(2n) > 1/8, we have that the
probability that none of the literals in V (T) is assigned 1 is less than (7/8)n/10.

Thus, we may continue our sequence of inequalities. We use the notation
(

n
<k

)

for the sum of all
(

n
m

)

, m < k.

∑

T,|T |<n/(100c log n),|V (T)|≥n/10

Pr[No literal in V (T) is assigned 1 by ρ]

<

(

nc

< n/(100c logn)

)

(7/8)n/10

≤ 2n/100(7/8)n/10

≤ 2−Ω(n).

Fix the positions of the free variables of ρ to a fixed set S while preserving
this probability. For every assignment of the variables not in S, we shall now
make a DNF for f and combine them as in the previous proof.

For assigments to the variables not in S defining a restriction ρ where E
does not occur, we make the naive DNF for fρ. From our upper bound for the
probability that E does not occur, the total number of terms to the final DNF
from these cases is at most 2n−Ω(n) so we can ignore these cases for the purpose
of the DNF size bound we have to prove.

For assignments to the variables not in S corresponing to restrictions ρ
where E does occur, we find the set T guaranteed to exist by the definition of
E. No matter how the variables of T are assigned values, the CNF for fρ has
clause size at most 100c logn. For every assignment π to the variables of T ,
we consider the function fπ◦ρ. Now take a random restriction σ of fπ◦ρ leaving
L = n/(1000c logn) variables free. By the switching lemma, the probability
that fσ◦π◦ρ does not have a decision tree of depth L/2 is at most 2−L. We
fix the free variables of σ while preserving this probability and make a DNF
for fπ◦ρ as in the previous proof by combining the good and bad cases of the

8

switching lemma. The total contribution of clauses to the final DNF for f from
these cases is at most O(2n−Ω(L)), as in the previous proof.

Thus, the total size of the DNF we construct for f is at most 2n−Ω(n/ log n),
as desired. �

4 Conclusion and open problems

We have proved tight bounds for the largest possible blow up in size when con-
verting a polynomial-size CNF to an equivalent optimal-size DNF. The following
questions remain open.

• What is the largest possible blow up in size when converting a polynomial-
size monotone CNF to an equivalent optimal-size monotone DNF? Equiv-
alently, what is the largest possible number of distinct minimal vertex
covers for a hypergraph with n vertices and nO(1) edges? We have given
the upper bound 2n−Ω(n/ log n) and the lower bound 2n−O(n log log n/ log n).
Getting tight bounds seems challenging.

• We have in this paper focused on the case of polynomial-size CNFs. We
can of course ask about the blow up in size starting from a CNF of any
particular size and our bounds generalize to other sizes in the obvious
way. In particular, the case of a linear-size CNF seems interesting, i.e.,
we consider starting with a CNF of size m = cn for some constant c. In
Section 2, we give examples of functions with a CNF of size cn for which
the optimal-size DNF is ≈ 2αcn for some constant αc depending on c with
αc → 1 as c → ∞. Our upper bound of Section 3 can be easily modified
to show: If f has a CNF of size cn, then f has a DNF of size at most
2βcn where βc is a constant depending on c. The constant βc that can be
derived from the current proof is bigger than αc and very close to 1 even
for small c. It would be interesting to get the two multiplicative constants
in these exponents tight for fixed c.

References

[1] Beame, P. (1994). A switching lemma primer. Technical Report
UW-CSE-95-07-01, Department of Computer Science and Engineer-
ing, University of Washington, November 1994. Available online at
www.cs.washington.edu/homes/beame/.

[2] Bollig, B. and Wegener, I. (1998). A very simple function that requires ex-
ponential size read-once branching programs. Information Processing Letters
66, 53–57.

[3] Dantsin, E., Goerdt, A., Hirsch, E.A., and Schöning, U. (2000). Determin-
istic algorithms for k-SAT based on covering codes and local search. Pro-

9

ceedings of the 27th International Colloqium on Automata, Languages and
Programming. Springer. LNCS 1853, 236–247.

[4] Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Pa-
padimitriou, C., Raghavan, P., and Schöning, U. (2003). A deterministic
(2−2/(k +1))n algorithm for k-SAT based on local search. Theoretical Com-
puter Science, to appear.

[5] H̊astad, J. (1989). Almost optimal lower bounds for small depth circuits.
In: Micali, S. (Ed.): Randomness and Computation. Advances in Computing
Research 5, 143–170. JAI Press.

[6] Hofmeister, T., Schöning, U., Schuler, R., and Watanabe, O. (2002). A
probabilistic 3-SAT algorithm further improved. Proceedings of STACS’2002.
LNCS 2285, 192–202.

[7] Katajainen, J. and Madsen, J.N. (2002). Performance tuning an algorithm
for compressing relational tables. Proceedings of SWAT 2002. LNCS 2368,
398–407.

[8] Monien, B. and Speckenmeyer, E. (1985). Solving satisfiability in less than
2n steps. Discrete Applied Mathematics 10, 287–295.

[9] Paturi, R., Pudlàk, P., Saks, M.E., and Zane, F. (1998). An improved
exponential-time algorithm for k-SAT. Proceedings of the 39th IEEE Sym-
posium on the Foundations of Computer Science 1998, 628–637.

[10] Razborov, A. and Rudich, S. (1997). Natural proofs. Journal of Computer
and System Sciences 55, 24–35.

[11] Schöning, U. (2002). A probabilistic algorithm for k-SAT based on limited
local search and restart. Algorithmica 32, 615–623, 2002.

[12] Wegener, I. (1987). The Complexity of Boolean Functions. Wiley. Free avail-
able via http://ls2-www.cs.uni-dortmund.de/∼wegener.

[13] Wegener, I. (2000). Branching Programs and Binary Decision Diagrams –

Theory and Applications. SIAM Monographs on Discrete Mathematics and
Applications.

10

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

