Electronic Colloquium on Computational Complexity, Report No. 18 (2003)

Functions Computable in Polynomial Space

Matthias Galota and Heribert Vollmer

Theoretische Informatik
Universitat Hannover
Appelstrafie 4
30167 Hannover, Germany

(galota|vollmer)@informatik.uni-hannover.de

Abstract

We show that the class of integer-valued functions computable by polynomial-space Turing
machines is exactly the class of functions f for which there is a nondeterministic polynomial-
time Turing machine that on input z outputs a 3 x 3 matrix with entries from {—1,0,1} on each
of its paths such that f(z) is exactly the upper left entry in the product of all these matrices in
an order of the paths to be made precise below. Along the way we obtain characterizations of
FPSPACE in terms of arithmetic circuits and straight-line programs.

Keywords: polynomial space, complexity class of functions, bottleneck machines, leaf lan-
guages, arithmetic circuits, straight-line programs

1 Introduction

The class PSPACE of languages accepted by deterministic polynomial-space Turing machines has
a remarkable characterization in terms of bottleneck machines [CF91]: Take an arbitrary regular
language B whose syntactic monoid is not solvable, for example let B consist of those sequences
of permutations on 5 elements that multiply out to the identity. Then, for every language L €
PSPACE there is a nondeterministic polynomial-time Turing machine that, given any input word
z, produces as output a symbol from a fixed alphabet on each of its paths. Take the word obtained
by concatenating these symbols from left to right (in some fixed order of paths, e.g., the one induced
by the order of nondeterministic choices in the machines transition table) and call it the leaf string
of M on input z. Then, x € L iff the leaf string of M on z belongs to B. This characterization—
essentially nothing else than a translation version of Barrington’s seminal characterization of NC!
by bounded-width branching programs [Bar89] into the context of alternating polynomial-time
Turing machines—is referred to as “bottleneck” characterization, since we can cut up a PSPACE
computation into polynomial-time slices (namely, the computations of the single paths of an NPTM)
such that each of these subcomputations passes only a constant amount of information through a
bottleneck to its right neighbor (the state of a finite automaton, or an element from S5). Because
the leaf string of an NTM is central in this approach, it is also referred to as the leaf language
characterization of PSPACE [HLS193], see also [Pap94, Vol99b)].

This paper arose from the search for a similar characterization of the class FPSPACE of all
functions computable in polynomial space. We were looking for a simple function §, such that
for every h € FPSPACE there is a polynomial-time nondeterministic Turing machine M with the
property that for every input word z, the value h(z) is the value of § applied to the leaf string of

1

ISSN 1433-8092

M on x.

Being a little bit more general, given any function F' that evaluates leaf strings (we call F' a leaf
function), define the class F-FP as the class of all functions A for which there is a NPTM M such
that h(x) equals the value of F' applied to the leaf string of M (z) (a more formal definition is given
in Sect. 2). The question now is if there is a “simple” leaf function § such that FPSPACE = §-FP. §
should be “multiplication like” in the sense that each path contributes with some finite information
that is “multiplied” to the result obtained from the path to the left, and the “product” obtained
as a result of this multiplication will then be propagated to the path to the right.

From the leaf language characterization of the (language) class PSPACE, it is actually not too
hard to conclude that there is a finite automaton that, given a leaf string as input, can compute
the output of the corresponding FPSPACE-function:

Theorem 1.1. There is a finite automaton M with output such that for the function fi; computed
by M, we have: fy-FP = FPSPACE.

A proof for this Theorem is given in section 4.

However, we were not satisfied with the just given result. It is very much of a formal language
theoretic nature, and does not address the nice algebraic properties that the class FPSPACE shares.
A paper by Richard Ladner [Lad89] shows that the class FPSPACE coincides with the counting
class #APTIME. Say that a proof tree of an alternating Turing machine M is a minimal edge-
induced subtree of the computation tree of M that proves that M accepts its input, in the same
vein as an accepting path of a nondeterministic machine proves that the machine accepts its input
(a formal definition is given in Sect. 2). Now, a function f belongs to #APTIME if there is an
alternating polynomial-time machine M such that, for every z, f(z) equals the number of proof
trees of M working on input x.

Counting proof trees of alternating machines corresponds in a nice way to evaluating arithmetic
circuits over the natural numbers; hence Ladner’s result indirectly yields a nice algebraic charac-
terization of PSPACE. It was our goal to obtain a leaf function characterization of FPSPACE that
uses the spirit of Ladner’s result. We obtained the following;:

Theorem 1.2. Let § be the function that, given a sequence of 3 X 3 matrices with entries from
{—1,0,1}, multiplies out this sequence and outputs as result the upper left entry in the product.
Then, §-FP = FPSPACE.

The proof of this result relies on a stronger characterization of FPSPACE in terms of count-
ing functions than the one given in Ladner’s paper [Lad89]. We first move to the slightly more
general setting of polynomial space Turing machines that compute integer valued functions, i.e.,
we allow negative values, and show that this class coincides with the class of functions that can
be obtained as differences of two functions counting proof trees of alternating machines. Then, we
combine relations among alternating Turing machines, arithmetic circuits over the integers, and
straight-line programs. Our main result then follows by expressing the computation of a straight-
line program in terms of multiplication of small-dimensional matrices. Along the way, we thus
obtain characterizations of FPSPACE using all these different computation models; e.g., we show
that FPSPACE-functions are exactly those that can be computed by exponential size straight-line
programs that use only 3 registers.

Galperin and Wigderson [GW83] investigated problems whose instances are not given in the
usual string representation but encoded by Boolean circuits. The succinct version of a language L is
defined to be the class of all circuits that encode strings in L. A consequence of our result concerns
complete problems for PSPACE: It follows that multiplication of constant dimension matrices over
{=1,0,1} is complete for PSPACE if the matrices are presented in a succinct way.

2

In the next section, we introduce the different computation models we make use of in this paper:
counting Turing machines, leaf functions, arithmetic circuits, straight-line programs, and matrix
programs. The latter three are non-uniform models—hence we have to look for an appropriate
notion of uniformity. Our main result holds for a very strict uniformity condition which we call full
binary tree uniformity. Section 3 then contains the proof of Theorem 1.2 making use of a number
of simulations among the different models defined previously.

2 Preliminaries
2.1 Complexity Classes of Functions

We fix the alphabet ¥ = {0, 1}. Functions computed by deterministic Turing machines are functions
f: ¥* — ¥*. Making use of the well-known bijections between ¥* and the sets N of natural numbers
and Z of integers, we will, depending on the context, consider Turing machines computing functions
f:¥* = Nor f: ¥* — Z. We call the class of all functions f: ¥* — Z which can be computed
by polynomial space TMs FPSPACE. Here, the number of cells used on the output tape does not
contribute to the space requirement of the machine; hence the output of a FPSPACE function may
be exponentially long compared to the input length. The class of functions f: ¥>* — N computable
by PSPACE TMs will be referred to as FPSPACE, .

We will make use of some counting function classes: For a TM M and input z, define acc(M, z)
to be the number of distinct accepting and rej(M, z) to be the number of distinct rejecting com-
putation paths of M on z. Let M be an NPSPACE TM. Define #PSPACE to be the class of
functions f: ¥* — N for which there is an NPSPACE TM M where f(z) = acc(M,z) for all z.
Define Gap-PSPACE to be the class of functions f: 3* — Z for which there is an NPSPACE TM
M where f(z) = acc(M,z) —rej(M,z) for all z.

Now let M be an APTIME TM. An accepting computation tree (or, proof tree) [VT89] on input
z is a subtree T" of the computation tree Tar(e) of M on z whose root is the root of Ty (;), whose
leaves are accepting leaves of T)(,) and whose nodes can all be obtained respecting the following
conditions:

— Every existential node in T” has exactly one successor node in T".
— Every universal node in T” has all its successors in Tpr(z) also in T

Define #(M, z) as the number of different accepting computation trees of M on input = and define
#APTIME to be the class of functions f: ¥* — N such that there is an APTIME TM M where
f(z) = #(M, z) for all z.

Proposition 2.1 [Lad89]. FPSPACE, = #PSPACE = #APTIME.

In [KSV00] a general framework to describe function classes was introduced, which closely
resembles the leaf language framework, originally introduced to describe complexity classes of sets
[BCS92, Ver93]. We will use a slightly simplified version, that suffices for our purpose here:

Let I be a finite alphabet and let 2 be the set of all finite vectors (sequences) of elements from
T. A leaf function is a function F': Q — Z that evaluates those sequences. (Leaf functions in the
slightly more general setting of [KSV00] were called generators in that paper.) Every leaf function
F' defines the class F-FP as the class of functions f: ¥* — 7Z for which there exist polynomial-
time computable functions g: 3* x N — I and h: 3* — N such that for all x € N, the sequence
Sz = (9(z,0),9(z,1),...,9(z,h(z))) belongs to 2 and f(z) = F(S;). The reader should think of
g(z,1) as the output of some nondeterministic polynomial-time Turing machine with input z on

3

path 7 and of S, as the sequence of outputs of that NPTM (i.e., the leaf string of M (x)) that is
evaluated by the leaf function F'.

Let 1 and F5 be two function classes. We define F; — F5 to be the class of differences of
functions from F; and F2 (not to be confused with F; \ Fa), i.e., {f | there exist f1 € F; and fo €
Fo with f(z) = fi(z) — fo(z) for all z }.

2.2 Non-uniform Computation Models

2.2.1 Arithmetic Circuits

Arithmetic circuits over the integers have input gates with values from {0, 1} and constant gates 0,
1, and —1; their inner nodes are gates which compute addition and multiplication. An arithmetic
circuit with n input gates computes a function f: {0,1}" — Z in the natural way.

Let C = (Cy)nen be a family of arithmetic circuits where C,, has n input gates and let s,d: N —
N be functions. We say C is of size s (depth d) if, for every n € N, it holds that the number of
gates of C, is not larger than s(n) (the length of the longest directed path in C), is not larger than
d(n)). Let F:{0,1}* — Z and s,d: N — N be functions. We say F € AC-SIZE-DEPTH(s,d) if
there exists a family C of arithmetic circuits of size s and depth d, such that f(z) = SPy(z), for
all z € {0,1}*.

2.2.2 Straight Line Programs

An n-input straight-line program using m registers is, following [BOC92] (Ben-Or and Cleve actually
referred to this particular syntax of programs as linear bijection straight-line programs), a sequence
of instructions SP = (s;)1<¢<;, Where each instruction s; is of one of the following forms:

- Rj < Rj+c*R;,

- Rj<—Rj—C*Ri,

— Rj <—Rj + xk * R;,

- Rj <—Rj—.’17k*Ri,
where 4,5 € {1,...,m}, i # j, c€ {0,1}, k € {1,...,n}. The size of SP is defined to be I.

Such a program computes a function fgp: {0,1}" — Z as follows: Let £ = z1---x,. At the
beginning of the computation, register R; has as contents the value 1 and all other registers have
contents 0. Then the instructions s1; so; . . .; s; are performed in this order, changing the contents of
the registers in the natural way. Finally, the contents of register R; is the result of the computation,
i.e., the value of fgp(zx).

Let SP = (SP,)nen be a family of straight-line programs and s: N — N a function. We say
SP is of size s if, for every n € N, it holds that the length of SP, is not larger than s(n). Let
F:{0,1}* — Z and s,7: N = N be functions. We say F' € SLP-SIZE-REG(s,) if there exists a
family SP of straight-line programs of size s, such that SP, does not use more than r(n) registers,
for which holds f(z) = SPy (), for all z € N.

2.2.3 Matrix Programs

A d-dimensional n-input matrix program is a sequence of d x d matrices M P = (Ny)1<i<;, where
the entries of each matrix consist of elements of the set {—1,0,1} U {z1,...,Zn, —Z1,...,—Zpn}
[CMTV98]. The length of the program is defined to be I.

Such a program computes a function firp: {0,1}" — Z as follows: Let £ = z1---z,. The
result of the computation of M P is

l
fup(z)=(10...0)- (HNt)- s

0

in other words: fisp(z) is the upper left entry of the matrix Hézl N;.

Let MP = (MP,),en be a family of matrix programs and s: N — N a function. We say
MP is of size s if, for every n € N, it holds that the length of M P, is not larger than s(n). Let
F:{0,1}* — Z and s,d: N — N be functions. We say F' € MP-SIZE-DIM(s, d) if there exists
a family M P of matrix programs of size s, such that M P, is of dimension d(n), for which holds
f(z) = MPg (z), for all z € N.

2.2.4 Uniformity

One can assign to each computation tree T;(;) of an alternating TM M on input z an arithmetic
circuit Cpy(z) by doing the following:
1) Each existential node of T, is an addition gate in Cyy(y)-
) Each universal node of Ty(;) is a multiplication gate in Cyy(y)-
3) Two nodes which are connected by an edge in Ta(q) are connected by a wire in Cpy(y)-
)

If a path of Ty (s is accepting—which means that a 1 is printed on the leaf—the corresponding
gate of Cpy(y) is a constant gate 1. If a path is rejecting, the corresponding gate is a constant
gate 0.

5) The root of Thy(y) is the output gate of Cy(y)-

It is easy to see that #(M,z) = Cj(y). (Note that the circuit does not have any input gates.)

We say M is circuit preserving if M produces full binary computation trees Ty (;), for which
holds that for all inputs z of equal length the T/(,) are equal except for the leaves, which may
have different outputs.

If we want to describe arithmetic circuits with input gates we have to take a look at alternating
transducers. An alternating transducer M on input z describes an arithmetic circuit Cpy(y) if it
produces only outputs in {—1,0,1,2,3,4,...,|z| + 1} on its leaves. Then the circuit described is
as with TMs but with the following difference:

4) If, on a leaf of Ty(,), the output is a number 2 <4 < |z| + 1, then the corresponding gate of
C, will be an input gate labeled z;_1, if it is a number —1 < i < 1, the corresponding gate
will be a constant gate .

The value computed by the circuit on input z is Cpy(y)(z).

If the transducer M produces identical computation trees for all inputs of the same length
(which is more than circuit preserving), then we can call the produced arithmetic circuits C M(|z))-
The transducer then describes a circuit family Cjy.

Now we say that a family C of arithmetic circuits is Upgr-uniform (full binary tree uniform) if
it can be described in the above way by a polynomial-time alternating transducer, which produces
only full binary computation trees.

A family SLP of straight-line programs is Uppr-uniform if there exists a polynomial-time
nondeterministic transducer which produces only full binary computation trees and, for input z,
outputs as a leaf string the straight-line program SLP, with the instructions as leaves.

5

The definition for matrix programs is analogous: We have to find a polynomial-time transducer
which outputs the matrices of M P on its leaves.

3 Result

We will make use of two technical lemmas:
Lemma 3.1. P C Uppr-AC-SIZE-DEPTH (27", n0()).

Proof. We know that P = Up-SIZE(n%M) (see [Vol99a] Corollary 2.30.). Let I € P. Then there
exists a transducer M which produces, on input 1", binary Boolean circuits B,, of size and height
p(n), for some polynomial p, which accept all z with |z| = n and = € L. Since the space complexity
of M is log(p(n)), its time complexity is 2'°6((") = p(n). This means that M is a polynomial time
transducer.

For z,y € {0,1} it holds that -z =14+ (-1)-z,zVy=z-(14+(-1)-y)+yandz Ay =z-y.
So, by replacing Boolean gates with binary arithmetic circuits which compute the same value one
can find a binary arithmetic circuit family A with size and height 4-p(n) which uses constant gates
1 and —1 and with A ;/(z) = By (z) for all z € N. Of course there is a polynomial time transducer
M 4 which describes A.

We have to find an alternating polynomial time transducer M’ which produces a family of full
binary arithmetic circuits Cpy with Crr(jz)) () = Ajg/(T).

M!(z) will first simulate M 4(11*l) and write down Ajz on its work tape. Then it will build a
computation tree which resembles A ;. But since A;|, as an arithmetic circuit, need not be a tree
whereas Cjyr(,) has to be a tree, some modifications have to be made:

Every sub-circuit of A, whose result is used by more than one gate will be replicated once for
each usage of its result. This replication will start at the root gate.

The resulting binary arithmetic circuit Cpy () can be of exponential size, but its height is
identical to that of A, . It can easily be padded so that it is fully balanced.

Since the height of Ty (|x|) = Cprr(j)) is 4-p(|z]), its size is at most 242(2)) | Since Cur(z))(7) =
Ajg)(z) = Bjg/(z), we know that Cpy decides L. This shows L € Uppr-AC-SIZE-DEPTH(2""",
nO(l))_ O

Lemma 3.2. Let f € #APTIME. Then there exists a polynomial r such that for every polynomial
g with ¢ > r there emrists a circuit preserving APTIME TM M, with computation trees of depth
ezactly q(|z|), for which holds: f(x) = #(My,z).

Proof. Let f € #APTIME. We know #PSPACE = #APTIME. So, there is an NPSPACE
TM M; which shows f € #PSPACE. We go full circle and use the proof of Proposition 2.1 to
show that there exists an APTM M’ which depends on My with f(z) = #(M’',z) for all z € N.
But we enhance the proof a little bit thus showing that M’ produces completely balanced binary
computation trees:

Let = be an input to M of length n. Without changing the number of accepting paths of My on
z, we can pad all computations so they are of the same length 2P(") for some polynomial p(n); we can
also assume there is a unique accepting configuration. Consider the following alternating algorithm,
reach(C, D, K), which accepts if and only if configuration D is reachable from configuration C in
exactly 2* steps.

function reach(C, D, k);
begin
ifk=0
then
if D is reachable from C' in one step
then accept
else reject
else
\ E[reach(C, E,k — 1) Areach(E, D,k — 1)]
end

The notation \/ E means existentially choose a configuration E. This existential branching can
be done with a complete binary tree. If the number of configurations is not a power of 2, we can
pad with non-reachable configurations. The notation A is a binary operator meaning universally
choose one of its operands. So, one call of the function reach(C, D, k) yields a completely balanced
computation tree. The recursive call “[reach(C, E,k —1) Areach(E, D,k —1)]” hangs two complete
trees of the same size on each leaf of the first tree. This continues until £k = 0 and the whole
computation tree is completely balanced.

Since the construction of the computation tree does not depend on the input, but only on the
input length, all computation trees for inputs of the same length are equal.

The alternating algorithm that simulates My on input z is simply the call reach(init, acc, p(n)),
where 4nit is the initial configuration of My on input z, and acc is the unique accepting configura-
tion.

Since it can be shown by induction over k£ that the number of computation paths from C to
D of length exactly 2* equals the number of accepting computation trees of reach(C, D, k), the
number of accepting computations of My on input x equals the number of accepting computation
trees of reach(init, acc, p(n)).

So, M'(x) computes reach(init,acc,p(n)). Let h: N — N be the function which describes the
height of the computation tree depending on the input length. We can find a polynomial which is an
upper bound for h. This polynomial will be our desired r. The TMs M, for polynomials ¢ > r will,
on input z, compute ¢(|z|) and simulate M’(z) while counting the height of the computation tree.
When M’(z) has finished at height A(|z|) the computation tree will be padded by ¢(|z|) — h(|z]|)
steps while not changing the number of accepted paths. O

Our main result now gives a characterization of FPSPACE in terms of counting classes, arith-
metic circuits, straight-line programs, matrix programs and leaf languages. The statement of
Theorem 1.2 from the Introduction is equality (1 = 8) of the following theorem.

Theorem 3.3. Let ¥ be the set of all 3 x 3 matrices over {—1,0,1} and §: ¥* — Z with

n 1
(N1, ..., Np) =qet (1 0 0)<HNZ> 0
i=1 0

The following complezity classes are equal:
1) FPSPACE
2) Gap-PSPACE
3) #PSPACE — #PSPACE
4) #APTIME — #APTIME

5) Uppr-AC-SIZE-DEPTH(2"°" , nO())
6) Uppr-SLP-SIZE-REG (27", 3)

7) Uppr-MP-SIZE-DIM (27", 3)

8) §-FP

Proof. (1 C 3): Let f € FPSPACE. We have to find two NPTMs M, My with f(z) = #,(M1,z) —
#p(Ms, z) for all z € N.

Let My be the PSPACE transducer which computes f. We can easily find two PSPACE trans-
ducers M]T and M, which simulate M and compute max{f(z),0} and max{—f(z), 0} respectively.
Both machines compute functions in FPSPACE, and it holds that f(z) = M}L(w) - M} ().

This means FPSPACE C FPSPACE, — FPSPACE,. But since we know that FPSPACE, =
#PSPACE, it follows FPSPACE C #PSPACE — #PSPACE.

(2 =3): “O": Let f € Gap-PSPACE. Let My be the NPSPACE machine which shows f €
Gap-PSPACE. Then f(z) = acc(My,z) — rej(My,x).

By defining the NPSPACE-TM M]?L as My we get acc(M;',x) = acc(My,z). We define the
NPSPACE-TM M, as follows: M (z) simulates My(z) and inverses acceptance and rejection.
This means acc(M; , z) = rej(My, z).

But now we have f(z) = acc(M/}", x) —acc(Mf_,w), which gives us f € #PSPACE — #PSPACE.

“C”: Let f € #PSPACE — #PSPACE. Then there exist two NPSPACE-TMs M; and Ms with
[= acc(M, x) —acc(My, z). We define a new NPSPACE-TM M which behaves the following way
on input z: Firstly, it forks in two branches. On the first it simulates M;(z) and if M; accepts,
My accepts, too. If My rejects, My forks in two paths; on the first it accepts and on the second it
rejects.

On the second branch of the first forking Mj will be simulated. If My accepts, M forks in two
paths; on the first it accepts and on the second it rejects. If Ms rejects, My rejects, too.

It is easy to see that acc(My,z) — rej(My,z) = acc(My,z) — acc(My,z). But this means
f € Gap-PSPACE.

(3 = 4): Immediate from Proposition 2.1.

(4 C5): Let f € #APTIME — #APTIME. So, there exist two APTIME TMs M; and M, with
f(z) = #(Mq,z) — # (Mo, z) for all z € £*. Let M| and M} be two circuit preserving APTIME
TMs which both produce computation trees of height ¢(|z|) for some polynomial ¢ and for which
holds # (M, z) = #(M7,z) and #(Ma,z) = #(M,z). Lemma 3.2 assures that such TMs exist.

The computation trees Ty ;) and Ty, can be viewed as arithmetic circuits which output
#(M7,z) and #(Mj,x), respectively. We will now build a new circuit preserving transducer M’
with computation trees of height ¢(|z|) + 2, which only produces constant arithmetic circuits and
with CM’(z) = #(M{VT) - #(Méam)

M'(x) forks existential. On both paths M'(z) then forks universal. On path 1, M{(z) will be
simulated. On path 2, a completely balanced binary computation tree of height ¢(|z|) with only
universal forks will be built and on all paths of this subtree M'(z) will output 1. We will call
the arithmetic circuit without input corresponding to this subtree Cs,. On path 3, a completely
balanced binary computation tree of height ¢(|z|) with only existential forks will be built and on
its first path M'(z) will output —1. On all other paths of the subtree 0 will be output. We will
call the arithmetic circuit without input corresponding to this subtree Cs,. On path 4, M}(z) will
be simulated. It is easy to see that C's, =1 and Cg, = —1. This leads to Cpri(s) = (Cpy(z) * 1) +

(_1 * CM;(:B)) = #(M{,CE) - #(Méaa:)

We have to find an alternating polynomial time transducer M which produces only full binary
computation trees and which describes for each input = an arithmetic circuit C|; (only dependent
on the input length) with C\;(z) = #(M],) — #(Ms, z).

M’ is circuit preserving, which means that its computation trees are only dependent on the
input length—apart from the leaves, which depend on the input. But the only leaves which really
depend on the input are the ones of the subtrees Ty ;) and Ty (,). Each of those leaves can
be computed in deterministic polynomial time. So, we can find a polynomial time transducer MI’)
which, for input (z,n) with 1 < n < 290)+2_ computes the output of path n of M'(z). But,
according to Lemma 3.1, we can find an arithmetic polynomial time transducer M/ which produces
an arithmetic circuit that computes M, (z,n).

So, M(z) simulates M’'(z) and, after finishing path n of its computation tree it simulates
M(x,n). With this simulation another arithmetic circuit will replace the leaf n of Cjyi(5). But
that circuit has a virtual input of (z,n). If one of its input leaves refers to a bit of the n part of its
input, M (z) has to replace that input gate by a constant gate which equals the bit of n.

After all the trees of the MI’, (z,n) have been blown up to equal size, the resulting T'ar(y) depends
solely on the input length, is a full binary computation tree, the output on its leaves will consist of
{-1,0,1,2,3,...,|z[+1} and for its corresponding arithmetic circuit we have C|y(7) = #(M],z)—
#(My,).

We conclude that f € UFBT—AC—SIZE—DEPTH(2”0(1),no(l)).

(5C6): Let f € UFBT-AC-SIZE-DEPTH(2"0(1),no(l)). Then there is an alternating polynomial
time transducer M which only produces fully balanced computation trees and with C M(|m|)(x) =
1(@).

It is known ([BOC92], see also [Vol99a], Theorem 5.15) that the computation of an arithmetic
circuit over the integers can be simulated by a straight-line program with only 3 registers. Let
P be the straight-line program that simulates the arithmetic circuit Cps(jz). We will now show
that there is a nondeterministic polynomial time transducer Mg which, on input z, computes on
each path one instruction of P, so that on the leaves of the computation tree of Mg the complete
straight-line program—in correct order—will be found. We will say Mg(z) describes P .

We will rely on the proof of Theorem 5.15 in [Vol99a]. There, following Ben-Or and Cleve
[BOCY2], the notion of offset is introduced: Let C' be an arithmetic gate and {i,7,k} = {1,2,3}
be the set of registers. We want to find a straight-line program which offsets register R; by R; * f¢
and a program which offsets register R; by —R; * fc. The proof shows that this is possible. The
programs look like this:

If C' is an input gate, the programs are R; < R; + fc * R; and R; < R; — fc * R;, respectively.
If C has predecessors D and E and fo = fp + fg or fc = fp * fg, then we can construct the
programs for fo under the assumptions that we have straight-line programs which do the job for
fp and fg:

Existential gate
Offset R; by R; * fc:

1) offset R; by R; * fp;

2) offset R; by R; * fg;

3) offset R; by R; * fg;

4) offset R; by —R; * fg.
Offset R; by —R; * fc:

1) offset R; by —R; * fp;

2) offset R; by —R; * fg;

3) offset R; by R; * fg;

4) offset R; by —R; * fg.
The last 2 subprograms in both programs are dummy programs to obtain a number of 4
subprograms.

Universal gate
Offset R; by R; * fc:

1) offset R; by —Ry, * fg;
2) offset Ry by R; * fp;
3) offset R; by Ry * fg;
4) offset Ry by —R; * fp.
Offset R; by —R; * fc:
1) offset R; by Ry * fg;
2) offset Ry by R; * fp;
3) offset R; by —Ry, * fg;
4) offset Ry by —R; * fp.

We see that each of the programs uses exactly 4 subprograms and in each subprogram the
result of only one arithmetic gate is used. So, if we have a completely balanced arithmetic circuit
of depth d—which is true for Cj;—, the resulting straight-line program will consist of exactly 44
instructions.

We will use the notion of configurations. The information needed to express the configuration
on a certain computation step is the contents of the work tapes, the positions of the heads and
the state of the transducer. For a transducer N, input z, and configuration ¢ we will call N(z, c)
the computation of N on input x which starts in configuration c¢. It yields the computation tree
Tn (z,c)-

Let ¢ be a configuration reached by M on input z. Let the state of M at configuration ¢
be universal resp. existential or an end state. M(z,c) builds a computation tree Ty,) which
can be expressed as an arithmetic circuit as shown. Let G(z,c¢) be the root gate of Tar(z,c)- We
will now prove by induction over the height h of Th(;) that there exists an nondeterministic
polynomial time transducer M, which can describe the straight-line program which offsets register
R; by Rj* f(s,c) and the straight-line program which offsets register R; by —R; * fg(s,c) for ¢ # j.

h =0: The root gate G(z,c) is the only gate of Ty(;); this means that the computation of M
is in an end state. There, M(z,c) outputs a value fg(;) € {—1,0,1,2,...,[z[+ 1}. If the
straight-line program to be described is “Offset R; by R; * fg(s,)”, then M 5 outputs the
straight-line instruction “R; <+ R; + fg(s,) * Ri” and if the program was “Offset R; by
—R; % fg(z,e)” then “Rj < Rj — fg(z,¢) * Ri” is written.

h — h+1: G(z,c) has two successor gates D(z,c1) and E(x,cy) where ¢; and ¢ are the configu-
rations reached by M (z,c) while computing the left resp. right side of the branching at gate
G(z,c) until the new branching points D(z,c;) resp. E(x, cz) are reached. Let G(z,c) wlog.
be a universal gate and the straight-line program to be described wlog. be “Offset R; by
R; * fG’(:c,c)”'

Mg(z,c) forks in 4 branches (since we want a binary tree this is done in two steps) and
describes the following straight-line programs on the branches:

10

) offset R; by —Ry, * fr(z,c2);
2) offset Ry by R; * fp(z,c1);
) offset R; by Ry * fr(z,c2);
4) offset Ry by —R; * fp(z,c1).
This is done by simulating the left path of M (z,c) for branches 2) and 4) and the right path

for branches 1) and 3) until the gates D(z,c1) resp. E(z,c2) are reached. By the induction
hypothesis we know that the straight-line programs in 1) — 4) can be described by M.

The machine Mg on input z forks in two branches. On the first branch a full binary computation
tree of height d will be spanned. On its leaves will be written dummy instructions, e. g. Ry +
Ri1 + 0% R;. Only on its last two leaves the following instructions will be written:

1) Ro+ Ro+ 1% Ry

2) Ri+ R —1%x Ry
On the second branch of the first forking, Mg(z) will simulate M 4(z) until the first universal
resp. existential state is reached. Let the configuration of M, at this state be c4. Now Mg will
describe the straight-line program “Offset register R1 by Rz * fg(z,c4)”-

Thus, Mg(z) describes the program Py, and, since P computes f, we conclude that f €
Uppr-SLP-SIZE-REG (27", 3).

(6 C 7): In Theorem 5.35 of [Vol99a] it was proved that each instruction of a straight-line program
can easily (in polynomial time) be replaced by a matrix such that the resulting matrix program
is computationally identical to the straight-line program. The number of used registers in the
straight-line program will be the dimension of the matrices. Refer to [Vol99a] for details.

(7 C 8): Let f € Uppp-MP-SIZE-DIM(2" " ’,3). Then, there is a nondeterministic polynomial
time transducer M which describes a family of matrix programs which computes f. Let h be the
function which computes the number of leaves of T (;) and let g be the function which, on input
(z,n), computes the matrix computed on path n of Ty(,), where the variables x; are replaced by
the i-th bit of z. Since both these functions are in FP, f € F-FP.

o(1)
?

(8 C1): Let f € F-FP. This means, there are two polynomial-time computable functions g: ¥* x
N — ¥ and h: ¥* — N such that for all z, f(z) = §(g(z,1),...,g9(x, h(x))).

The matrices g(z,7) can easily be computed in polynomial space. We have to prove that the
result

h(z) 1
f@)=(1 0 0)-<Hg(z,z’))- 0

can be computed in polynomial space, too. Our problem is the fact that h(z) can be exponential in
|z| and this means that not only there are exponentially many matrices g(x,i)—which cannot all be
stored in polynomial space—, but also the entries of the matrix Hfg) g(z,1) can grow exponential
in h(z) which gives them an exponential length in |z|.

But these difficulties can be overcome by a method used, e.g., in the proof of #APTIME C

FPSPACE in [Lad89]:
H !
Let prod(z,a,l) = Hmln{a+2 ~Lh(@)} g(z,1); then we have

1
f@=(1 0 0)-prod(z,1,[r))- | 0
0

11

Furthermore we can use the following fact to find a recursive procedure to compute f(z):
prod(z,a,l + 1) = prod(z,a,l) - prod(z,a + 24,1).

We are still not able to write down the partial products prod(z,a,l) because of their size, but
we will define a recursive procedure bit(s, j, k, z, a,l) which computes the k-th bit of entry (i, j) of
the matrix prod(z,a,l):

function bit(i, j, k, z, a,l);
begin
ifl=0
then
return the k-th bit of entry (4, j) of matrix g(z, a)
else
return the k-th bit of entry (i, 5) of matrix prod(z,a,l — 1) -prod(z,a+2"1,1—1)
end
Since there are well known algorithms which compute addition and multiplication in logarithmic
space we can compute the matrix product of two—in |z|—exponentially sized matrices in space
polynomial in |z|. If we want a certain bit of the output we just have to run this algorithm and
discard its output until we arrive at the desired output bit. Whenever the algorithm asks for a bit
of its input we make a recursive call to bit.

The depth of the recursion is |h(x)|, which is polynomial in |z|. On each step of the recursion
we need space logarithmic in the size of matrices prod(z,b,m) with 0 < m < |h(z)| which again is
polynomial in |z|. Hence the computation of bit(, j, k, z, a,l) can be done in polynomial space. So,
since the desired result f(z) is the entry (1,1) of the matrix prod(z, 1, |h(z)|), we can output it by
successive calls to bit(1,1,k,z, 1, |h(z)]). O

Let C be a Boolean circuit. C defines the word over {0,1} whose ith bit is given by the output
of C on input 4. (In this way, actually only words whose length is a power of 2 can be defined by
circuits; however, there are different ways to handle arbitrary word lengths, for technical details
see, e.g., [Vei98].) Say that the succinct version of a language L is the set of all those Boolean
circuits that define words in L.

Helmut Veith showed that if a complexity class € is characterized by a leaf language L, then the
succinct version of L is complete for € under First-order projections [Vei98]. First-oder projections
[Imm99] are a uniform version of Valiant’s projection reductions [Val82]. Thus, we conclude:

Corollary 3.4. The succinct encoding of the problem, given a sequence of 3 X 3 matrices over
{=1,0,1}, to determine if the entry in the upper left corner of the product is non-zero, is complete
for PSPACE wunder first-order projections.

Proof. Tt is immediate from Theorem 3.3 that the function § in its decision version (“Is the upper
left entry in the product of the input matrices non-zero?”) is a leaf language for PSPACE. Thus,
our corollary follows using Veith’s result. O

4 Proof of Theorem 1.1

Theorem 1.1. There is a finite automaton M with output such that for the function fn; computed
by M, we have: fy-FP = FPSPACE.

12

Proof. Let f € FPSPACE. Then, the set of all pairs (x,%) such that the i-th bit of f(x) is on is
in PSPACE. Express this PSPACE language using NPTM M and some regular leaf language B
with non-solvable syntactic monoid. Now define a NPTM M’ operating as follows: On input z,
M’ first branches for all values of i in a certain exponential range, and then simulates M on input
(z,7). Also, we have to make sure that the blocks for different values of i are separated by a certain
symbol # in the leaf string. Consider the finite automaton M"” reading the leaf string of M’ and
operating as follows: While reading leaf symbols within a block for some i, it simulates a finite
automaton M"' for B. When M" encounters a block marker #, it outputs 1 iff M is in a final
state, and 0 otherwise. In the next block, M" resumes the simulation of M’ in its initial state.
Thus, M" outputs a binary value when it reads a # and produces no output for other leaves. The
outputs at a block marker, however, are exactly the bits of the value f(z). O

Acknowledgment. We thank Sven Kosub, Miinchen, for enlightening discussions at several stages
during the development of this paper. We also thank Klaus W. Wagner, Wiirzburg, for pointing
out Theorem 1.1.

References

[Bar89] D. A. Mix Barrington. Bounded-width polynomial size branching programs recognize
exactly those languages in NC'. Journal of Computer and System Sciences, 38:150-164,
1989.

[BCS92] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity
classes. Theoretical Computer Science, 104:263-283, 1992.

[BOC92] M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number of
registers. SIAM Journal on Computing, 21:54-58, 1992.

[CF91] J.-Y. Cai and M. Furst. PSPACE survives constant-width bottlenecks. International
Journal of Foundations of Computer Science, 2:67-76, 1991.

[CMTV98] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC! com-
putation. Journal of Computer and System Sciences, 57:200-212, 1998.

[GWS83] H. Galperin and A. Wigderson. Succinct represantation of graphs. Information and
Control, 56:183-198, 1983.

[HLS*93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the
power of polynomial time bit-reductions. In Proceedings 8th Structure in Complezity
Theory, pages 200-207, 1993.

[Imm99] N.Immerman. Descriptive Complezity. Graduate Texts in Computer Science. Springer
Verlag, New York, 1999.

[KSV00] S. Kosub, H. Schmitz, and H. Vollmer. Uniform characterizations of complexity classes
of functions. International Journal of Foundations of Computer Science, 11(4):525-551,
2000.

[Lad89] R. Ladner. Polynomial space counting problems. SIAM Journal on Computing,
18(6):1087-1097, 1989.

[Pap94] C. H. Papadimitriou. Computational Complezity. Addison-Wesley, Reading, MA, 1994.

[Val82] L. Valiant. Reducibility by algebraic projections. L’enseignement mathématique,
28:253-268, 1982.

13

[Vei98] H. Veith. Succinct representation, leaf languages, and projection reductions. Informa-
tion & Computation, 142:207-236, 1998.

[Ver93] N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polynomial
theory of algorithms. Izvestija Rossijskoj Akademii Nauk, 57:51-90, 1993. In Russian.

[Vol99a] H. Vollmer. Introduction to Circuit Complezity — A Uniform Approach. Texts in The-
oretical Computer Science. Springer Verlag, Berlin Heidelberg, 1999.

[Vol99b] H. Vollmer. Uniform characterizations of complexity classes. Complezity Theory Col-
umn 23, ACM-SIGACT News, 30(1):17-27, 1999.

[VT89] H. Venkateswaran and M. Tompa. A new pebble game that characterizes parallel
complexity classes. SIAM J. on Computing, 18:533-549, 1989.

14

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

