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Abstract

We study bounded degree graph problems, mainly the problem of k-Dimensional Matching
(k-DM), namely, the problem of finding a maximal matching in a k-partite k-uniform balanced
hyper-graph. We prove that k-DM cannot be efficiently approximated to within a factor of
O( k

ln k
) unless P = NP . This improves the previous factor of k

2O(
√

ln k)
by Trevisan [Tre01].

For low k values we prove NP-hardness factors of 54
53 − ε, 30

29 − ε and 23
22 − ε for 4-DM, 5-DM

and 6-DM respectively. These results extend to the problem of Maximum Independent-Set
in (k + 1)-claw-free graphs and the problem of k-Set-Packing.
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1 Introduction

This paper studies two related combinatorial optimization problems, which are bounded variants
of Independent-Set and Maximal-Matching in a hyper-graph. A hyper-graph is a set of vertices
and a family of subsets of vertices, each referred to as an edge. A set system is merely another
representation of a hyper-graph. Hence, the same optimization problems may be phrased either
in hyper-graph notation or in set-system notations. Specifically, in the problem of Set-Packing
(SP), one is given a family of sets and the problem is to find a maximal sub-family of sets that
are pairwise disjoint. This problem is equivalent to the problem of finding a Maximal-Matching
in a hyper-graph.
We study this problem in k-uniform hyper-graphs and Independent-Set in graphs of bounded

degree.
The bounded degree variants of this problem are known to admit approximation algorithms bet-
ter than the general versions, the quality of the approximation being a function of the bound on
the size of the edges or the bound on the degree of the vertices (detailed below). An extensive
body of algorithmic work has been devoted to these restricted problems (for example, [HS89]),
but matching inapproximability results have only recently been explored (notably by Trevisan
[Tre01]). We continue and explore the problem of k-Dimensional Matching. On our route, we
improve existing inapproximability results for k-DM, and thereby improve known inapproxima-
bility results for variants of the Independent-Set problem and the Set-Packing problem.
For large k, we are usually interested in the asymptotic dependence of the inapproximability
factor on k. However, for small k values, the constant is of major interest. Previous papers
typically focus on one of the cases.
We present two main results, one asymptotical inapproximability result (where the hardness
factor is a function of the bound), and one for low values of the bound.

1.1 k-Dimensional Matching

The Unbounded Variant. The general problem of finding a matching in a hyper-graph was
extensively studied (for example [BYM84, BF94, BF95, BH92, H̊as99, Wig83]). Quite tight
approximation algorithms and inapproximability results are known for this problem. H̊astad
[H̊as99] proved that Set-Packing cannot be approximated to within O(N 1−ε) unless NP ⊆ ZPP
(where N is the number of sets). The best approximation algorithm achieves an approximation
ratio of O( N

log2 N
) [BH92].

In contrast, the case of bounded variants of this problem seems to be of a different nature.

Bounded Variants. The problem of finding a maximal matching in a bipartite graph (2-DM)
is known to be solvable in polynomial time, say by a reduction to network flow problems [Pap94].
Polynomial time algorithms are also known for finding a maximal matching in a (not necessarily
bipartite) graph [Edm65]. In contrast to the 2-DM case, for all k ≥ 3 the k-DM problem is NP-
hard [Kar72, Pap94]. Furthermore, for k = 3, the problem is known to be APX-hard [Kan91],
but no explicit approximation hardness factor for 3-DM is known to date. 1

Currently, the best polynomial time approximation algorithm for k-Set-Packing (k-SP) achieves
an approximation ratio of k

2 (see the result of Hurkens and Schrijver [HS89]). This is, to date,
the best approximation algorithm for k-DM as well.

1Recently [CC02, BK03] obtained a hardness factor of 98
97

for 3-DM
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Several inapproximability factors were obtained for k-DM, with large values of k. Alon et al
[AFWD95] proved that Maximum Independent-Set on graphs with degree bounded by k (de-
noted k-IS ) is NP-hard to approximate to within kc − ε for some c > 0. This result implies the
same asymptotical hardness for k-DM by a simple gap preserving reduction (see Appendix E,
proposition 45). This was recently improved to the currently best asymptotical inapproximabil-
ity result by Trevisan [Tre01], who proved that k-IS cannot be approximated to within k

2O(
√

ln k)

unless P = NP .
We further improve the inapproximability factor of k-DM, and show that k-DM cannot be approx-
imated to within O( k

ln k ) unless P = NP . In addition, we improve the known inapproximability
results for low k values. Our results, however, do not apply to the problem of k-IS.

1.2 Other variants of Independent-Set

An independent-set in a graph is a matching in its dual hyper-graph. Hence, any hardness factor
proven for k-IS, immediately apply to k-DM (but not vice-versa). The best known approxima-
tion algorithm for k-IS achieves an approximation ratio of O(k log log k/ log k) (by Vishwanathan
[Vis96]). For low bound values instances of k-IS, the best approximation algorithm achieves an
approximation ratio of (k + 3)/5 for k ≥ 3 (see [BF94, BF95]). For a survey of approximation
algorithms for Independent-Set variants (including bounded degree variant) see [Hal98].
The known asymptotical inapproximability results for k-DM were originally proven for
Independent-Set on graphs with degree bound of k. However, unlike k-DM, several explicit
inapproximability factors were proven for k-IS with small k values, see [BK99, BK03].
Although hardness factors for k-DM do not immediately apply to k-IS, they do apply to some of
its variants.A variant of Independent-Set of interest to us is the Independent-Set in k-claw-free
graphs (denoted k-ISCFG). We shall define k-ISCFG formally later, and show that our hardness
of approximation factors for k-DM holds for (k + 1)-ISCFG.

1.3 Our Results

We prove the following theorems regarding the hardness of k-DM:

Theorem 1 (Asymptotic Hardness) It is NP-hard to approximate k-DM to within O
(

k
ln k

)

Theorem 2 (Hardness for Low Bound Values) For every ε > 0 it is NP-hard to approxi-
mate 4-DM, 5-DM and 6-DM to within 54

53 − ε, 3029 − ε and 23
22 − ε respectively.

The above two theorems immediately extend to hardness of approximation to within the same
factors for the problems of (k + 1)-ISCFG [Hal98] and k-SP.
The table below summarizes our inapproximability factors for k-DM and related problems versus
known approximation ratios and previous inapproximability results.

1.4 Paper Organization

Section 2 contains the proof of the asymptotic hardness of approximation for k-DM. Section
3 presents the low bound values hardness of approximation for k-DM. Section 4 contains a
discussion on the implications of our results, the techniques used and possible directions to
improve them. Definitions and restatement of known theorems used throughout this paper can
be found in subsections 1.5-1.7 and in appendix B. The proofs regarding hyper-graph disperser
and generalized disperser can be found in appendix C and D respectively. Appendix E contains
a description of the reduction from k-IS to k-DM.
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Problem Approximation Ratio Prev. Inapproximability Our Inapproximability

k-DM

k + 1-ISCFG k
2 [HS89] k

2O(
√

ln k)
[Tre01] O

(

k
ln k

)

k-SP

4-DM, 4-SP 2 [HS89] 98
97 − ε [BK03] 54

53 − ε

5-DM, 5-SP 5
2 [HS89] 50

49 − ε [BK03] 30
29 − ε

Table 1: Approximation ratios versus inapproximability results for k-DM and related problems

1.5 Formulation of the Problems Studied

The most general problem of the type studied here, is the Set-Packing problem.

Definition 3 (SP) Set-Packing is the following optimization problem:
Input: A hyper-graph H = (V,E).
Problem: Find a matching of maximal size in H.

Following are variants of this problem, where some bounds are put on the degree of the vertices
and on the size of the edges.

Definition 4 (k-SP) k-Set-Packing is the following optimization problem:
Input: A k-uniform hyper-graph H = (V,E).
Problem: Find a matching of maximal size in H.

A further restriction, and the main problem studied herein, is the Maximum k-Dimensional
Matching (k-DM) problem:

Definition 5 (k-DM) k-Dimensional Matching is the following optimization problem:
Input: A k-uniform k-partite balanced hyper-graph H = (V 1, ..., V k, E).
Problem: Find a matching of maximal size in H .

Note that a matching in a hyper-graph H is an Independent-Set in its dual graph and vice
versa. Hence the following problem is strongly related to k-DM.

Definition 6 (k-IS) k-Maximum Independent-Set is the following optimization problem:
Input: A graph G = (V,E) with maximal vertex degree bounded by k.
Problem: Find an Independent-Set of maximal size in H.

Due to the previous observation, k-IS can be reduced to k+1-DM in a gap-preserving reduction.
See Appendix E proposition 45 for details.
The next problem is a generalization of k-IS.

Definition 7 (k-ISCFG) Maximum Independent-Set in k Claw Free Graph is the fol-
lowing problem:
Input: A graph G = (V,E) which is k claw-free.
Problem: Find an Independent-Set of maximal size in H.
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Clearly k-IS is a special case of (k+1)-ISCFG, as a graph with maximal degree bound of k is in
particular a (k+1)-claw-free graph. In addition, the problem of k-DM translates to k+1-ISCFG
in the dual graph (see [Hal98]).

1.6 Hardness of Approximation

Definition 8 (Gap problems) Let A be a maximization problem. gap-A-[a, b] is the following
decision problem:
Problem: Given an input instance, decide whether there exists a solution of fractional size at
least b, or whether every solution of the given instance is of size smaller than a. If the size of
the solution resides between these values, then any output suffices.

Clearly, for any maximization problem, if gap-A-[a, b] is NP-hard, than it is NP-hard to approx-
imate A to within any factor smaller than b

a
.

Our main result in this paper is derived by a reduction from the following problem.

Definition 9 (Linear Equations) MAX-3-LIN-q is the following optimization problem:
Input: A set Φ of linear equations over GF (q), each depending on 3 variables.
Problem: Find an assignment that satisfies the maximum number of equations.

The following central theorem stemmed from a long line of research that formulated in the
celebrated PCP theorem (see [ALM+92, AS92]):

Theorem 10 (H̊astad [H̊as97]) gap-MAX-3-LIN-q-[ 1
q
+ ε ,1− ε ] is NP-Hard. Furthermore,

the result holds for instances of MAX-3-LIN-q in which the number of occurrences of each variable
is a constant, chosen from two possible values, and in which no variable appears more then once
in a single equation.

We denote an instance of MAX-3-LIN-q by Φ = {ϕ1, ..., ϕn}. Φ is over the set of variables
X = {x1, ..., xm}. Each equation has q2 satisfying assignments. Let Φ(x) be the set of all
equations in Φ depending on x, and Φ(x, l) be the subset of Φ(x) where x is the l’th variable in
the equation (clearly l ∈ [3]). Note that w.l.o.g. for every x ∈ X,Φ(x, 1) = Φ(x, 2) = Φ(x, 3) (as
we can take three copies of each equation, and shift the location of the variables). Denote by
Sat(Φ, A) the set of all equation of Φ satisfied by an assignment A. If A is an assignment to an
equation ϕ ∈ Φ(x), we denote by A[ϕ→ x] the corresponding assignment to x.

1.7 Hyper Dispersers

The following definition is a generalization of disperser graphs. For definitions and results re-
garding dispersers see [RTS00].

Definition 11 Let H = (V 1, ..., V k, E) be a k-uniform k-partite balanced hyper-graph, and let
V =

⋃

i∈[k] V
i. H is called δ-hyper-disperser if for every Independent-Set I, all but δV of the

vertices of I are located in one part. Formally, for every Independent-Set I ⊆ V the following
holds:

∃i.I \ V i ≤ δV
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2 Proof of the Asymptotic Inapproximability Result for k-DM

This section proves the asymptotic hardness of approximating k-DM (theorem 1) by a determin-
istic polynomial time reduction from MAX-3-LIN-q to k-DM. In the following construction we
utilize the existence of disperser-like graphs, as stated in the following lemma.

Definition 12 (Hyper-Graph Edge-Disperser) Let D(t, q) be a hyper-graph with the fol-
lowing properties; D(t, q) is q-regular d-uniform (where d = d3q ln q + 2qe). It has dt vertices
and qt edges; It is d-partite balanced (each part of size t); it is q-strongly-edge-colorable; and it
is a dual graph to a 1

q2
-hyper-disperser.

Lemma 13 For every q > 1 and t > 1 there exists a hyper-graph D(t, q) with the above param-
eters.

For proof see appendix C.

2.1 The construction

Let Φ = {ϕ1, ..., ϕn} be an instance of MAX-3-LIN-q over the sets of variablesX and Y . Theorem
10 holds even if each variable x ∈ X and y ∈ Y occurs a constant number of times cX and
cY respectively. Furthermore, the number of a variable’s occurrences in the first second and
third location of an equation is equal. We now describe how to deterministically construct, in
polynomial time, an instance of k-DM - the hyper-graph HΦ = (V,E).
Let DX ≡ D(cX , q) and DY ≡ D(cY , q) (as stated in lemma 13). For every variable x ∈ X

(or y ∈ Y ) we have a copy Dx of DX (or Dy of DY ). Formally, for every x ∈ X ∪ Y ,

V (Dx) = {vx,ϕ,i|ϕ ∈ Φ(x), i ∈ [d]}

E(Dx) = {ex,ϕ,i|ϕ ∈ Φ(x), i ∈ [q]}
where the index i ∈ [q] is given by a coloring of the edges with q colors such that no two edges
of the same color share a vertex (recall that such a coloring exists as this graph is q-strongly-
edge-colorable).

The Vertices of HΦ. The vertices of HΦ are the union of the vertices of all the copies of DX

and DY namely,

V = X × V (DX)
⋃

Y × V (DY )

that is
V = {vx,ϕ,i|x ∈ X ∪ Y, ϕ ∈ Φ(x), i ∈ [q]}

The Edges of HΦ. We have an edge for each equation ϕ ∈ Φ and a satisfying assignment to
it. Consider an equation ϕ = x1 + x2 + x3 = a mod q, and a satisfying assignment A to that
equation (note that there are q2 such assignments, as assigning the first two variables, determines
the third). The corresponding edge, eϕ,A, is composed of three edges, one from the hyper-graph
Dx1 , one from Dx2 and the last from Dx3 . Formally:

E = {eϕ,A|A ∈ [q]3, ϕ ∈ Sat(Φ, A)}
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eϕ,A = ex,ϕ,A(x) ∪ ey,ϕ,A(y) ∪ ez,ϕ,A(z)
Where A(x1), A(x2), A(x3) are the restrictions of the assignment A to the variables x1, x2, x3
respectively (note that each of the three composing edge, participates in creating q edges).
Clearly, the cardinality of eϕ,A is 3d.
This concludes the construction.
Notice that the construction is indeed deterministic, as each variable occurs a constant number

of times (see theorem 10). Hence, the size of DX and DY is constant and its existence (see lemma
13) suffices, as one can enumerate all possible hyper-graphs, and verify their properties.

Proposition 14 HΦ is 3d-partite-balanced.

Proof: We show how to partition V into 3d independent sets of equal size. Let the sets be Pl,i

whereas i ∈ [d] and l ∈ [3]:

Pl,i = {vx,ϕ,i|x ∈ X ∪ Y, ϕ ∈ Φ(x, l)}

Pl,i is clearly a partition of the vertices, as each vertex belongs to a single part.
We now explain why each part is an independent set. Let Pl,i be an arbitrary part, and let
eϕ,A ∈ E be an arbitrary edge, where ϕ ≡ x1 + x2 + x3 = a mod q:

eϕ,A = ex,ϕ,A(x1) ∪ ey,ϕ,A(x2) ∪ ez,ϕ,A(x3)

Pl,i ∩ eϕ,A may contain vertices corresponding only to one of the variables x1, x2, x3, since it
contains variables corresponding to a single location (first, second or third).
Let that variable be, w.l.o.g, x1. The edge ex1,ϕ,A(x1) contains exactly one vertex from each of
the d parts, as the graph Dx1 is d-partite. Therefore, the set Pl,i ∩ eϕ,A contains exactly one
vertex.
Since |Pl,i ∩ eϕ,A| = 1 for every edge and every set Pl,i, the graph HΦ is 3d-partite-balanced.

Claim 15 [Completeness] If there is an assignment to Φ which satisfies 1 − ε of its equations,

then there is a matching in HΦ of size
(

1−ε
q2

)

E.

Proof: Let A be an assignment that satisfies 1 − ε of the equations. Consider the matching
M ⊆ E consisted of all edges corresponding to A, namely

M = {eϕ,A(ϕ)|ϕ ∈ Sat(Φ, A)}

Trivially, M =
(

1−ε
q2

)

E, as we took one edge corresponding to each satisfied equation. These

edges are indeed a matching since for each variable, only edges corresponding to a single assign-
ment to that variable are taken.

Lemma 16 [Soundness] If every assignment to Φ satisfies at most 1
q
+ε fraction of its equations,

then every matching in G is of size O
(

1
q3
E
)

.

Proof: Denote by Ex the edges of Hϕ corresponding to equations ϕ containing the variable x,
namely,

Ex = {eϕ,A|ϕ ∈ Φ(x), A ∈ [q2]}
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Denote by Ex=a the subset of Ex corresponding to an assignment of a to x, that is,

Ex=a = {eϕ,A|ϕ ∈ Φ(x), A[ϕ→ x] = a}

Let M be a matching of HΦ.
Let Amaj be the most popular assignment. That is, for every x ∈ X∪Y choosing the assignment
of x to be such that it corresponds to maximal number of edges. Formally, choose

Amaj(x) ∈ [q] s.t. |Ex=a ∩M | is maximized
Let Mmaj be the set of edges in M that agree with Amaj , and Mmin be all the other edges in
M , namely

Mmaj = {eϕ,Amaj
}ϕ∈Φ

Mmin =M \Mmaj

As Sat(Φ, Amaj) ≤ 1
q
+ ε, we have Mmaj < (

1
q
+ ε) E

q2
.

From the disperser-properties of DX and DY (derived from lemma 13) we know that

Mmin ∩ Ex ≤
1

q2
E(Dx)

This means that

Mmin ∩ Ex ≤
1

q3
Ex

as every edge of Dx is a subset of q hyper edges in Ex, but only one of such q edges can be taken
to M as they share vertices (recall that M is a matching).
Therefore,

Mmin ≤
∑

x∈X

Mmin ∩ Ex ≤
1

q3

∑

x∈X

Ex =
1

q3
E

and thus

M =Mmin +Mmaj ≤
2

q3
E

By claim 15 and lemma 16 we showed that Gap-k-DM-
[

2
q3
, 1
q2
− ε
]

is NP-hard. Since each edge

is of size k = 3d = 9dq ln q + 2qe it is NP-hard to approximate k-DM to within O( ln k
k
).

7



3 Proof of the Low k Values Inapproximability result for k-DM

3.1 The construction

We show a deterministic polynomial time reduction from gap-MAX-3-LIN-2-
[

1− ε, 12 + ε
]

to
gap-k-DM-[1 − ε, f(k) + ε], where f(k) is a constant that satisfies: ∀k ≥ 4 . 78 < f(k) < 1, and
specifically:

f(4) <
53

54
, f(5) <

29

30
, f(6) <

22

23

The formal description of the reduction is somewhat tedious and perhaps misleading of its
simplicity. Therefore, we first give an overview of the construction, and then provide the formal
definitions and propositions.

Overview

For Φ = {ϕ1, ..., ϕn}, an instance of Lin-3-eq-2 over the set of variables X = {x1, ..., xm}, we
construct a k-uniform k-partite balanced hyper-graph HΦ = (V

1, ..., V k, E).
The construction is composed of a consistency gadget and a gap gadget.
The first k − 1 parts of HΦ are the consistency gadget. These are further partitioned into sets
corresponding to the different variables. For each variable, we construct two sets of edges that
relate to its two possible assignments. The construction implies that a matching that contains
a large set edges of one type can contain only small set of edges of the other type. Thus, this
gadget enforces the consistency notion.
The gap gadget is the scheme in which the edges contain vertices of the last part. This scheme
enables a large matching in case that the equation set has an assignment that satisfies almost all
of its equations. In case that any assignment to the equation set satisfies only a small fraction
of its equations, the gap gadget permits only a small matching.
For detailed construction and proofs, see appendix A.

4 Discussion

Asymptotic k-DM

The gap between the asymptotic inapproximability result presented herein for k-DM, and the
tightest approximation algorithm known, was reduced to O(log k). The question whether the
best approximation ratio achievable in polynomial time is k

2 or O(
k

log k ) is interesting by itself,
as well as its implications to the difference between k-DM and k-IS.
The current asymptotic inapproximability factor of O( k

log k ) for k-DM approaches the tightest
approximation ratio known for k-IS, namely O(k log log k/ log k) [Vis96]. Thus, a small improve-
ment in either the approximation ratio or the inapproximability factor will show these problems
to be of inherently different hardness.
An improvement in the low bound values hardness factor for k-DM may also separate these
problems. The tightest known approximation algorithm for low bound values of k-IS achieves an
approximation ratio of (k+3)/5 for k ≥ 3 [BF94, BF95]. Thus, improving the low bound values
result up to factors of 65 + ε for 3-DM or 75 + ε for 4-DM, suffices to separate these problems.
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Properties and Limitations of the Technique

An interesting property of the asymptotic result is regularity of the hyper-graph. That is, the
hyper-graph HΦ is Θ

(

k
ln k

)

-regular (recall HΦ was q
2-regular where the parameter q refers to the

size of the field of the Max-3-Lin-q instance). As for the low bound values result, the hyper-graph
HΦ is not regular, but its vertices degrees are distributed evenly: half of the vertices have degree
2 and half of degree 4.
Another interesting property of the construction (for both asymptotic and low bound values

results) is called almost perfect completeness. This property refers to the fact that the matching
proved to exist in the completeness claims 15 and 18 is almost a perfect matching. Knowing the
location of a gap is interesting by itself and may proof useful (in particular if it is extreme on
either the completeness or the soundness). On the significance of this property refer to [Pet94].
A limitation of the result is the lack of inapproximability factor for 3-DM. This is, in fact, an

inherent limitation of the technique. The proof of soundness is composed of two main sections:
limiting the size of the majority fraction of edges in a matching, and using the minority fraction
in a set of edges to derive a large probability for collision. For the first part we use the gap gadget,
and for the second part we analyze the consistency gadget. A well known fact is that any regular
extractor (and thus a disperser which is special case of an extractor) must have vertices degrees
of at least 3. Thus, our consistency gadget, which is a generalization of a disperser (see appendix
D), has at least 3 columns. As the gap gadget is separated from the consistency gadget, this
forces a minimum of k ≥ 4 columns in the construction.

Improving the Low Bound Values Result

Obtaining tighter inapproximability results for small k values may be more difficult. This is
the case for low bound values instances of other problems (for example, for the Vertex Cover
problem, a long line of complex proofs and ideas let to the current state of inapproximability
factor slightly larger then 4

3 [DS02] versus an approximation ratio of 2).
The current gap between known approximation ratios and unapproximability factors for k-DM

is significant. For k = 4 the current gap is 2 vs. 54
53 , and for k = 3 the known approximation

ratio is 32 but no explicit inapproximability factor is known to date
1.

A plausible direction to improve the inapproximability results for k-DM is to tighten the
analysis of the soundness lemma. In the soundness analysis, the calculations of the maximal size
of a matching in the graph HΦ completely disregards the last column of vertices. The proof takes
into account only the first k − 1 columns of the consistency gadget. However, the last column
also introduces a restriction on the matchings in the graph. This additional restriction supplied
by the last column, which is not utilized hereby, may strengthen our result and perhaps supply
an inapproximability result for 3-DM. This is impossible with our current technique of analyzing
only the consistency gadget of k − 1 columns as explained above.
A second direction is to replace the gap gadget. A gadget is denoted an α-gadget if there is a

factor of α between the number of vertices that can be covered by a matching that corresponds
to a satisfying assignment, and the number of vertices that can be covered by any set of edges
that correspond to an unsatisfying assignment. The current gadget is composed of four vertices.
All four vertices can be covered by a matching that corresponds to a satisfying assignment, but
at most three out of four can be covered by any set of edges that correspond to an unsatisfying
assignment (refer to proposition 17). Thus, our gadget is a 4

3 -gadget. One might attempt to

1Recently [CC02, BK03] obtained a hardness factor of 98
97

for 3-DM
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construct a different gadget, applicable to a reduction from the more general problem of Max-
3-Lin-q, and obtain a gadget with a larger α parameter. However, any α-gadget applicable a
reduction from Max-3-Lin-q is bounded by α ≤ 3

2 . The reason is the requirement from the gap
gadget that a set of edges corresponding to a satisfying assignment be a matching. Because any
variable can determine whether a certain assignment is satisfying or not, a set of edges for any
two variables out of the three for a certain equation, must constitute a matching. Thus, for any
set of edges for an equation, edges corresponding to any one variable can be removed, and the
remaining edges must constitute a matching. Therefore α is bound by 3

2 .
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A Proof of the Low k Values Inapproximability result for k-DM

A.1 The construction

We begin by describing the construction of a (k−1)-uniform (k−1)-partite balanced hyper-graph
D̂Φ = (V

1, ..., V k−1, F ). This graph is the consistency gadget. We later explain how to extend
this graph to HΦ = (V

1, ..., V k, E) by applying the gap gadget.

The consistency gadget: The hyper-graph D̂Φ

The Vertices of D̂Φ. Denote the vertices of the hyper-graph D̂Φ by:

V i = {vix(l)|x ∈ X, l ∈ [dx]}

V (D̂Φ) =
⋃

i∈[k−1]

V i

Where dx =
4
3 · Φ(x).

Denote by Vx the set of vertices that correspond to a certain variable x ∈ X:

Vx = {vix(l) ∈ ∪jV j}

Each set Vx is partitioned to k − 1 different parts, V 1x , ..., V k−1
x :

∀i ∈ [k − 1] . V i
x = V i ∩ V x

The Edges of D̂Φ. In this paragraph we only name the edges. In the next paragraph we
specify which vertices are contained in each edge.
For every set of vertices Vx we construct two sets of edges, Fx = Fx=0∪Fx=1, each corresponding
to a possible assignment to x. Namely:

Fx=1 = {eix=1|i ∈ [dx]}

Fx=0 = {eix=0|i ∈ [dx]}

F =
⋃

a∈{0,1},x∈X

Fx=a

Altogether that’s 2m sets of edges.

Structure of D̂Φ. According to lemma 31, for every ε > 0 there exists (Ωk−1 + ε)-dispersers
that are (k-1)-regular and (k-1)-strongly-edge-colorable. Define the graph Dx = (Fx=0, Fx=1, Vx)
to be such an (Ωk−1 + ε)-disperser on dx vertices (recall that the number of vertices of this
disperser must satisfy: ≥ dx · T vertices for some constant T . We can assume that w.l.o.g.
T = 1, as otherwise we could duplicate T times the equation set Φ).
Let D̂x = (V 1x , ..., V

k−1
x , Fx) be the dual graph of Dx. Since Dx is (k-1)-regular and (k-1)-

strongly-edge-colorable, its dual, D̂x, is (k-1)-uniform (k-1)-partite balanced.
Notice that this construction is indeed deterministic, as each x ∈ X occurs a constant number
of times (see theorem 10). Hence, the size of each (Ωk−1 + ε)-disperser is constant, and one can
find such graphs by enumerating all possible graphs.
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Introducing the gap gadget: constructing HΦ

In this subsection we explain how to transform D̂Φ into HΦ by using the gap gadget.

The vertices V k. The graph HΦ = (V
1, ..., V k, E) contains the same vertices as D̂Φ, and, in

addition, the vertices V k that constitute a new part. Denote these vertices as:

V k = {vkϕ[b]|ϕ ∈ Φ, b ∈ [4]}

The vertices that correspond to a certain equation ϕ ∈ Φ are denoted by V k
ϕ where:

V k
ϕ = {vkϕ[b]|b ∈ [4]}

Notice that the number of vertices in V k is:

V k =
∑

ϕ∈Φ

V k
ϕ = 4n =

4

3
· 3m

The connection scheme The vertices V k are added to the edges F = E(D̂Φ) so to create
the k-uniform edges E = E(HΦ). The connection scheme is identical for each equation ϕ ∈ Φ.
For each equation ϕ = x⊕ y ⊕ z = t , t ∈ {0, 1}, we create a set of twelve edges denoted Eϕ by
amending eight edges from F :

1. Arbitrarily pick two edges from Fx=0 and add the vertices v
k
ϕ[1], v

k
ϕ[2] to them, one vertex

to each.

2. Arbitrarily pick two edges from Fx=1 and add the vertices v
k
ϕ[3], v

k
ϕ[4] to them, one vertex

to each.

3. Arbitrarily pick one edge from Fy=0, duplicate it, and add the vertices v
k
ϕ[1], v

k
ϕ[3], one to

each copy (thus creating two edges).

4. Arbitrarily pick one edge from Fy=1, duplicate it, and add the vertices v
k
ϕ[2], v

k
ϕ[4], one to

each copy (thus creating two edges).

5. Arbitrarily pick one edge from Fz=0, duplicate it, and if t = 0 add the vertices v
k
ϕ[1], v

k
ϕ[4],

one to each copy (thus creating two edges). If t = 1 then add the vertices vkϕ[2], v
k
ϕ[3]

instead.

6. Arbitrarily pick one edge from Fz=1, duplicate it, and if t = 0 add the vertices v
k
ϕ[2], v

k
ϕ[3],

one to each copy (thus creating two edges). If t = 1 then add the vertices vkϕ[1], v
k
ϕ[4]

instead.

Of course, at each stage we pick edges that were not picked before. Denote by Ex, Ex=0, Ex=1 the
edges that were created from the sets of edges Fx, Fx=0, Fx=1 respectively. In addition, denote
all twelve edges corresponding to a certain equation as:

Eϕ = {e ∈ E|e ∩ V k
ϕ 6= ∅}

The connection scheme can be summarized by the following table. The columns stand for the
different variables of the equation ϕ = x⊕y⊕z = 0. The rows represent the possible assignments
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to a variable. A ∧ sign implies that two edges are constructed, one for each vertex (see stages
1-2 of the process described above). A ∨ sign implies that a single edge is duplicated to contain
each vertex (see stages 3-6 of the process).
A similar table describes the connection scheme for equations of the form ϕ = x ⊕ y ⊕ z = 1.
For the latter type of equations, the two cells of the last column are swapped.

Assignment / Variable x y z

0 vkϕ[1] ∧ vkϕ[2] vkϕ[1] ∨ vkϕ[3] vkϕ[1] ∨ vkϕ[4]
1 vkϕ[3] ∧ vkϕ[4] vkϕ[2] ∨ vkϕ[4] vkϕ[2] ∨ vkϕ[3]

Table 2: The connection scheme for an equation ϕ = x⊕ y ⊕ z = 0

For any equation ϕ ∈ Φ and any assignment to the variables A : X 7→ {0, 1}, denote the six
edges from Eϕ corresponding to an assignment A as EA,ϕ.

Proposition 17 For every ϕ ∈ Φ and an assignment A : X 7→ {0, 1}, it holds that ϕ ∈
Sat(Φ, A) if and only if there exists a matching MA,ϕ ⊆ EA,ϕ of size MA,ϕ = 4.

Proof: Let ϕ ≡ x⊕ y ⊕ z = t. Notice that the boolean expression in table 2 that corresponds to
A contains four different vertices if and only if the assignment is satisfying. Hence, there is no
matching of cardinality four for an unsatisfying assignment.
Furthermore, notice that if the assignment is satisfying, then from the six edges of EA,ϕ, the two
edges corresponding to x, one edge corresponding to y, and one to z cover all of V k

ϕ . According
to the construction, these four edges are a matching.

A.2 Definitions

Consider a matching M ⊂ E.
Let Amaj : X 7→ {0, 1} be the majority assignment, namely:

Amaj(x) :=







1 M ∩ Ex=1 ≥M ∩ Ex=0

0 otherwise

Similarly, define as Amin : X 7→ {0, 1}:

Amin(x) := 1−Amaj(x) (the complementary assignment).

We partition the matching M into two sets. Define Mmaj to be the set of all edges of M
corresponding to the majority assignment Amaj . LetMmin be the all other edges ofM . Namely:

Mmaj :=M ∩ EAmaj

Mmin :=M \Mmaj =M ∩ E|Amin

Let β be the fractional size of the set M defined as:

β =
k ·M
V
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Notice that β is defined to be a fraction of the vertices, as the graph HΦ is k-uniform.
Let βmaj be the fractional size of the majority set from the matching - Mmaj , and βmin be the
fractional size of Mmin:

βmaj =
kMmaj

V

βmin = β − βmaj =
kMmin

V

Similarly, for a certain variable x, let βx be the fractional size of the setM∩Ex, and βx,min, βx,maj

the fractional sizes of the minority and majority defined as:

βx = kM∩Ex

Vx

βx,min = kMmin∩Ex

Vx

βx,maj = k
Mmaj∩Ex

Vx

A.3 Completeness

Claim 18 (Completeness) If there is an assignment to Φ that satisfies 1 − ε fraction of its
equations, then there exists a matching M ⊆ E of size M ≥ 1−ε

k
V .

Proof: Let A : X 7→ {0, 1} be an assignment to Φ which satisfies 1− ε fraction of its equations.
Define the set M to be the union of all matchings MA,ϕ corresponding to the equations satisfied
by A. Formally:

M =
⋃

ϕ∈Sat(A,Φ)

MA,ϕ

Obviously, the edges of M do not intersect on the k’th part of HΦ, since two edges may collide
on this column only if they correspond to the same equation, but for each equation a matching
was taken. Hence, it remains to show that no two edges of M share a vertex from the first k− 1
parts of HΦ.
Denote by M |F the set of edges of D̂Φ defined by the edges of M removed of their vertex from
the k’th part. It remains to show that M |F is a matching.
Notice that two edges may share vertices from the first k− 1 columns only if they correspond to
the same variable. Consider two edges e1, e2 corresponding to the same variable x. Since they
both correspond to the majority assignment, the vertices of the dual graph Dx corresponding to
these edges reside in the same part. Thus these two edges are either disjoint or equivalent on the
first k − 1 columns. Since the matching M contains no duplicated edges, e1 and e2 are pairwise
disjoint. Hence M is a matching.
Observe the last column. For every equation ϕ that is satisfied by A, all four vertices V ϕ are
covered by M (see proposition 17). Thus, at least 1 − ε of all vertices in the last column are
covered by M . Since M is a matching and HΦ is k-uniform k-partite balanced (namely each
edge contains exactly one representative from each column), the fraction of vertices M covers on
every column is equal. Hence, M covers at least 1− ε of the vertices of HΦ.

A.4 Soundness

Lemma 19 (Soundness) If every assignment to Φ satisfies at most a fraction 1
2 + ε of its

equations, the following holds: Every matching M ⊆ E is of size at most M ≤ (f(k) + ε) V
k
,
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where f(k) is a constant that for every k ≥ 4 satisfies: 78 < f(k) < 1. Specifically:

f(4) <
53

54

f(5) <
29

30

f(6) <
22

23

Proof: Let M ⊆ E be a matching in HΦ. We shall bound the size of its parts Mmaj and Mmin.
We begin with a bound on the size of the majority:

Claim 20 Mmaj < (
7
8 + ε) · V

k

Proof: By proposition 17, for every equation ϕ ∈ Φ that is not satisfied by the majority assign-
ment, at most three vertices are covered by M , namely: Mmaj ∩Mϕ ≤ 3.
Since every assignment satisfies at most a fraction 1

2 + ε of the equations, the fraction of vertices
that the edges of Mmaj can cover is most:

(
1

2
+ ε) · 1 + (1

2
− ε) · 3

4
=
7

8
+
ε

4

We proceed with a bound on the minority:

Claim 21 For every k ≥ 4, Mmin <
(

1−β
1−αk−1

· αk−1

2 + ε
)

· V
k
.

Proof: For every variable x, the set Mx,min is a matching (being a subset of the matching
M). Thus, the edges of Mx,min removed of their vertices from the k’th column are a matching
in the graph D̂x. Therefore, the corresponding vertices to the edges of Mx,min constitute an
independent set in the dual graph Dx. As Dx is an (Ωk−1 + ε)-disperser, it follows that:

∀x∈X . βx,min < Ωk−1(βx) + ε

Mmin <
∑

x∈X

(Ωk−1(βx) + ε) · Vx
k
≤

W.l.o.g. M ≥ αk−1 · Vk (otherwise we have a better bound on the size of M then the bound that
the lemma proposes). Recall that Ωk−1 is smaller then the line lk−1(x) in the range (αk−1, 1)
(see definition 30). Hence, according to the convexity of lk−1:

≤
∑

x∈X1

(lk−1(αk−1) + ε) · Vx
k
+
∑

x∈X2

(lk−1(1) + ε) · Vx
k

Where X = X1 ∪X2 is a partition of the variables that maximizes the above sum. As lk−1(1) =
Ωk−1(1) = 0 and lk−1(αk) = Ωk−1(αk) =

αk
2 , we get

Mmin <
(αk

2
+ 2ε

)

∑

x∈X1

Vx
k

(1)
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Where:
∑

x∈X1

αk−1 ·
Vx
k
+
∑

x∈X2

·Vx
k
=M

Namely:
∑

x∈X1

Vx
k
=

1− β

1− αk−1
· V
k

Hence by equation 1:

Mmin <

(

1− β

1− αk−1
· αk−1

2
+ ε

)

· V
k

Using claims 20 and 21 we get the following bound on M :

β · V
k
=M =Mmaj +Mmin <

(

7

8
+ ε

)

V

k
+

(

1− β

1− αk−1
· αk−1

2
+ ε

)

V

k

Thus:

β ≤ 7− 3αk−1

8− 4αk−1
+ ε ≡ f(k) + ε

Substituting the values for αk as derived in lemma 31, namely α3 ≤ 0.919, α4 ≤ 0.842, α5 ≤ 0.778
we get:

f(4) <
53

54
, f(5) <

29

30
, f(6) <

22

23

By claim 18 and lemma 19 Gap-k-DM-[1− ε, f(k) + ε] is NP-hard. Hence k-DM cannot be
approximated to within O (f(k) + ε) unless P = NP .
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B Preliminaries

B.1 Some Basic Notions

For the sake of simplicity, the cardinality of a set S is denoted by S (instead of |S|), where ever
this meaning is easily understood from the context.

Definition 22 (Hyper-Graph) A hyper-graph H = (V,E) is a set of vertices V and a family
E of subsets of V . Each member of E is called an edge.

Definition 23 (Matching) Let H = (V,E) be a hyper-graph. A subset M ⊆ E is called a
matching if all its edges are pairwise disjoint, namely,

∀e1, e2 ∈M e1 ∩ e2 = ∅

A matching M is of maximal size, if for every other matching M ′, we have

M ′ ≤M

We call a matching M perfect if it covers all the vertices of a the graph, that is,

⋃

e∈M

e = V

Definition 24 (Independent-Set) Let H = (V,E) be a hyper-graph. A subset of vertices
I ⊆ V is called an Independent-Set if no two vertices in it are neighbors, that is,

∀e ∈ E |e ∩ I| ≤ 1

An Independent-Set I is of maximal size, if for every other Independent-Set I ′ we have

I ′ ≤ I

We next define regular, uniform, partite, balanced and claw-free hyper-graphs.

Definition 25 (Bounds on Hyper-Graphs) Let H = (V,E) be a hyper-graph.
H is called k-uniform if all its edges are of cardinality exactly k, that is,

∀e ∈ E.|e| = k

H is called k-partite if there is a partition of V into k sets, such that each part is an Independent-
Set. H may be denoted:

H = (V 1, V 2, ..., V k, E)

Hence, in a k-uniform k-partite hyper-graph H = (V 1, V 2..., V k, E), we have

E ⊆ V 1 × ...× V k

A k-partite hyper-graph H = (V 1, V 2..., V k, E) is called balanced if all its parts are of equal size,
that is,

|V 1| = |V 2| = ... = |V k|
Notice that if there exists a perfect matching in a k-uniform k-partite hyper-graph H, then H is
balanced.
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A hyper-graph H is called d-regular if the degree of each vertex is exactly d.
A hyper-graph H is called d-strongly-edge-colorable if there exists a coloring of the edges f :
E 7→ [d] so that each vertex participates in at most one edge of each color. Formally:

∀e1, e2 ∈ E, e1 ∩ e2 6= ∅.f(e1) 6= f(e2)

A k-claw is a graph of k+1 vertices and k edges. One node is of degree k and all other vertices
are of degree 1. A graph G = (V,E) is called k-claw-free if there is no induced subgraph which
is a k-claw.

Definition 26 For a hyper-graph H1 = (V,E), define its dual graph H2 = (E, V ) to be the
hyper-graph in which vertices are the edges of H1 and edges are vertices of H1. For the graph
H2, every edge v ∈ V contains all vertices e ∈ E such that v ∈ e in H1.

Notice that a hyper-graph is k-partite if and only if its dual is k-strongly-edge-colorable and the
hyper-graph is k-regular if and only if its dual is k-uniform.

B.2 f-Dispersers

The following definition is another generalization of disperser graphs.

Definition 27 Let G = (V 1, V 2, E) be a bipartite graph. An Independent-Set I ⊆ V is called a
[δ1, δ2]-Independent-Set if it satisfies:

|I ∩ V 1| = δ1V
1 , |I ∩ V 2| = δ2V

2

Definition 28 Let G = (V 1, V 2, E) be a bipartite graph. G is called a (δ1, δ2)-disperser if it
does not contain any [δ1, δ2]-Independent-Set nor any [δ2, δ1]-Independent-Set.

Definition 29 Let G = (V 1, V 2, E) be a bipartite graph. G is called an f-disperser if it is a
(δ1, δ2)-disperser for every δ1 > δ2 so that δ2 = f(δ1 + δ2). G is called an (f + ε)-disperser if it
is a g-disperser for a function g that satisfies

∀x . g(x) ≤ f(x) + ε

Definition 30 For every k ≥ 3 let {Ωk : [0, 1] 7→ [0, 1]} be a family of functions with the
following properties: Ωk achieves a maximum in the range (0, 1) at the point αk ∈ ( 1k , 1). Ωk is
monotone decreasing in the range (αk, 1). Define the line:

lk(x) = Ωk(αk) ·
1− x

1− αk

The function Ωk is smaller or equal to lk in the range (αk, 1), formaly:

∀x ∈ (αk, 1) . Ωk(x) ≤ lk(x)

Furthermore, the constant αk satisfies:

α3 ≤ 0.919, α4 ≤ 0.842, α5 ≤ 0.778

αk <
4 ln k

k
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Lemma 31 For every ε > 0 and N > 0 there exists a k-regular k-strongly-edge-colorable (Ωk+ε)-
disperser G = (V 1, V 2, E), for which

|V 1| = |V 2| = T ·N

Where T is a sufficiently large constant that is independent of N .

Proof: See Appendix C.

C k-Partite k-Uniform Balanced δ-Hyper-Dispersers

In this section, we prove lemma 13, by demonstrating the existence of its dual graph. Namely, we
prove the existence k-Partite k-uniform balanced 1

k2 -hyper-disperser that is O(k ln k)-regular and
3k ln k strongly-edge-colorable. As stated before, these are generalizations of disperser graphs.
In addition, we provide an explanation why these are the best (up to a constant) parameters for
a hyper-disperser one can hope to achieve.

Construction. First, notice that if a hyper-graph is a δ disperser according to definition 28,
then for every set of vertices U ⊆ V , if U i = U ∩ V i and U j = maxi{U i} it holds that:

∑

i6=j

U i ≤ δV

We now turn to the proof itself:
The proof is by standard probabilistic method (see [AS00]). We construct a random k-partite
k-uniform d-regular d-edge-colorable hyper-graph and show that if d = 2k ln k then with high
probability the hyper-graph is a 3

k2 -hyper-disperser. This implies the existence of such graphs.

Construct a hyper-graph H as follows:

1. Begin with a k-partite graph with no edges. The vertices are: V = ∪iV i. Denote V i =
{v[i, j]|j ∈ [n]}. We call each part V i a column.

2. Define d sets of k-edges, one for each color. The i’th set of edges is denoted Ei = {e[i, j]|j ∈
[n]}, and defined as following:

• Define k − 1 random permutations: Πi
j ∈R Sn|j ∈ {2, ..., k} (chosen uniformly from

the set of all permutations on n items).

• In order to define an edge, simply take the an item from the first column, and follow
the first permutation to the second column, the second permutation to the third
column and so on. Continue this process and define the overall choice as a k-edge.
Formally, the j’th edge in the i’th set of k-edges is:

e[i, j] = { v[1, j], v[2,Πi
2(j)] , ..., v[k,Π

i
k(j)] }

Notice that each set of edges Ei covers every vertex exactly once. Therefore, H is edge-colorable
with d colors.
Proof:[of Lemma 13] We proceed to show that if d = Ω(k ln k), then the graph H is a 1

k2 -
hyper-disperser with high probability. Denote by P the probability that the random hyper-graph
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H (from the above construction) is not a 1
k2 -hyper-disperser. Let U be the family of all subsets

U ⊆ V of interest, namely,

U = {U |U ⊆ V, |U | = 2n

k
, U ∩ V 1 = n

k
}

(note that if a set U has no two vertices in one edge, so does any subset of U , hence it suffices
to check H for all subsets U ∈ U).
Denote by P [U ] the probability (over H) that no two vertices of U share an edge. By union

bound,

P = Pr[∃U ∈ U , and no two vertices of U share an edge]

≤
∑

U∈U

P [U ] ≤
(

(k − 1)n
n
k

)(

n
n
k

)

P [Û ] (2)

where Û ∈ U is the set which maximizes P [Û ].
We next bound P [Û ]. Let U i = Û ∩ V i. Let Ai,j be the event that there is an edge that
contains vertices both from U i and from U j , and define some arbitrary linear order on the set
of (unordered) couples (i, j) ∈ [k]× [k]. Then

P [Û ] = Pr[
⋂

(i,j)

¬Ai,j ] =
∏

i,j

Pr



¬Ai,j |
⋂

(i′,j′)<(i,j)

¬Ai′,j′





We know that Pr[Ai,j |
⋂

(i′,j′)<(i,j) ¬Ai′,j′ ] ≥ Pr[Ai,j ] as no collisions between Ui′ and Uj′ means
more occupied hyper edges. Hence we have

P [Û ] ≤
∏

i,j

Pr[¬Ai,j ] ≤
∏

i,j

[1− U i

n
]dU

j

As each vertex from U i is of degree d, and collide with a vertex vertices from U j with proba-
bility at least Uj

n
for each random edge. Therefore:

P [Û ] ≤
∏

i,j

e−
dUiUj

n = e−
d
n

∑k
i=1 U

i
∑k

j=i+1 U
j

Under the constraint that Û ∈ U the sum ∑k
i=1 U

i
∑k

j=i+1 U
j is minimized for U1 = U2 = n

k

hence
P [Û ] ≤ e−

dn

k2

Therefore by equation 2,

P ≤ ((ek2)nk (ek)nk )e−
dn

k2 ≤ (e2k3)nk e−
dn

k2

Thus any d which guarantees that (e2k3)
n
k e−

dn

k2 ¿ 1 suffices; hence n
k
ln e2k3 < dn

k2 and we have
d > 3k ln k + 2k

We now turn to see why the hyper-disperser we built above has optimal parameters. We base
our observation on a theorem by Ta-Shma et al from [RTS00]:
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Lemma 32 (Ta-Shma et al) Every bipartite d-regular ( 1
k
, 1
k
)-disperser must satisfy d =

Ω(k log k).

Proposition 33 Every k-partite k-uniform d-regular 1
k2 -hyper-disperser must satisfy d =

Ω(k log k).

Proof: We prove that in case there exists a hyper-graph which satisfies d = o(k log k), then there
exists a bipartite o(k log k)-regular ( 1

k
, 1
k
)-disperser, in contrast to theorem 44.

And indeed, we can transform a k-partite k-uniform d-regular 1
k2 -hyper-disperser H =

(V 1, V 2, ..., V k, EH) into a bipartite d-regular (
1
k
, 1
k
)-disperser G = (U1, U2, EG) in the following

way:
Let:

U1 = V 1

U2 = V 2

EG = {(v1, v2)|(v1, v2, v3, ..., vk) ∈ EH , vi ∈ V i}
Obviously G is a bipartite d-regular graph. In addition, suppose two sets of fractional sizes:

S1 =
1

k
U1, S2 =

1

k
U2

do not collide in G. Then these sets are of fractional size 1
k
· 1
k−1 ≥ 1

k2 (for large k) in H, thus

contradicting the fact that H is a 1
k2 -hyper-disperser.
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D Generalized Dispersers

In this section, we prove the existence of k-regular (Ωk + ε)-dispersers that are k strongly-edge-
colorable, as stated in lemma 31. In addition, we provide an explanation why these are the best
(up to a constant) parameters for an f -disperser one can hope to achieve.

Proof:[of Lemma 31] The proof is by the probabilistic method (see [AS00]). We construct
a random k-regular k-edge-colorable bipartite graph on N vertices and show that with high
probability the graph is an (Ωk + ε)-disperser (see definitions 29 and 30) for some ε > 0. This
implies the existence of such graphs. Then we shall prove that (Ωk+ ε)-disperser for every ε > 0
can be constructed using T ·N vertices (for some constant T > 0 which is independent of N).

Construct a bipartite graph G = (V 1, V 2, E) as follows:
item Let V 1, V 2 be the sets of vertices. Denote:

V 1 = {v1[j]|j ∈ [N ]}

V 2 = {v2[j]|j ∈ [N ]}
Define k sets of edges, one for each color:

E = ∪i∈[k]Ei

The i’th set of edges Ei is denoted:

Ei = {eij |j ∈ [N ]}

and defined as following: Let Πi ∈R SN be a uniformly chosen random permutation. Each edge
eij is defined using Π

i. Namely, the edge eij is:

eij = ( v
1[j], v2[Πi(j)] )

Let Ωk : [0, 1] 7→ [0, 1] be the following function:

Ωk(δ) ≡ min







1
2δ

η s.t. D(δ − η, η, k) = 1− ζ

Where ζ = 10−3 (an arbitrary choice, any constant close to 1 shall do) and:

D(δ, η, k) ≡ (1− η)(k−1)(1−η) · (1− δ)(k−1)(1−δ)

(1− η − δ)k(1−η−δ) · δδ · ηη

Intuitively, the function Ωk regards every input δ as the fractional size of an independent set in
the graph G. For this fractional size, Ωk outputs the maximum feasible minority fraction. That
is, suppose that G contains an [δ1, δ2]-independent set of fractional size δ = δ1 + δ2 and δ1 ≤ δ2.
Then δ1 must satisfy δ1 ≤ Ω(δ).
The expression of Ωk contains a minimum between 1

2δ (which is an obvious bound on the mi-
nority) and the value η s.t. D(δ − η, η, k) = 1− ζ. The expression D(δ − η, η, k)N represents an
approximation of the probability that G contains a [δ − η, η]-independent set.
We next prove that the graph G constructed above is an Ωk-disperser.
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Lemma 34 With high probability, G is an (Ωk + ε)-disperser.

Proof: We calculate the probability that G contains an [η, δ]-independent set or an [η, δ]-
independent set for any η ≤ δ so that η ≥ Ωk(η + δ) + ε. Denote this probability by P̂ .
Denote the probability that G contains an [η, δ]-independent set or an [η, δ]-independent set for
a specific η ≤ δ, η = Ωk(η + δ) + ε by Pη. According to the union bound:

P̂ ≤
N
∑

ηN=1

Pη ≤ N · Pη

Let U1i ⊆ V 1 be a set of vertices of cardinality ηN and U 2j ⊆ V 2 a set of cardinality δN so that
η = Ωk(η+ δ) + ε. Denote by Ai,j the event that [U1, U2] is an independent set in G. According
to the construction of G the probability of this event is:

P [Ai,j ] =

(

(

(1− η)N

δN

)

·
(

N

δN

)−1
)k

As this is the probability that k permutations assign each vertex of the set U 2j a vertex in

the set V 1 \ U1i . Therefore, according to the union bound the probability that G contains an
[η, δ]-independent set or a [δ, η]-independent set for a specific η is bound by:

Pη = P [∪i,jAi,j ∪ ∪j,iAj,i]

≤ 2
∑

i,j

P [Ai,j ]

≤ 2

(

N

δN

)(

N

ηN

)

·
(

(

(1− η)N

δN

)

·
(

N

δN

)−1
)k

= 2

(

N

δN ηN

)

·
(

(

(1− η)N

δN

)

·
(

N

δN

)−1
)k−1

Therefore:

P̂ ≤ 2N ·
(

N

δN ηN

)

·
(

(

(1− η)N

δN

)

·
(

N

δN

)−1
)k−1

Claim 35
N
√

P̂ ≤ N
√
20 ·D(δ, η, k)

Proof: We break up
N
√

P̂ into expressions:

N
√

P̂ ≤ N
√
2N · C(δ, η) ·Ak(δ, η)

Where:

A(δ, η) ≡ N

√

(

(1− η)N

δN

)

·
(

N

δN

)−1

C(δ, η) ≡ N

√

(

N

δN ηN

)
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By the Stirling approximation, which states that n! =
√
2πn(n

e
)n(1 + 1

12n +O(n−2)):

√
2παn

(αn

e

)αn
(

1 +
1

20αn

)

≤ (αn)! ≤
√
2παn

(αn

e

)αn

(1 +
1

αn
)

We get:

AN (δ, η) =
((1− η)N)! · ((1− δ)N)!

((1− η − δ)N)!N !

≤

(

(1−η)N
e

)(1−η)N (
(1−δ)N

e

)(1−δ)N√
4π2N2(1− δ)(1− η)

(

1 + 1
(1−δ)N

)(

1 + 1
(1−η)N

)

(

(1−η−δ)N
e

)(1−η−δ)N
(N
e
)N
√

4π2N2(1− δ − η)
(

1 + 1
20(1−δ−η)N

)

(

1 + 1
20N

)

≤
[

(N
e
)(1−η)+(1−δ)

(N
e
)(1−η−δ)+1

· (1− η)1−η · (1− δ)1−δ

(1− η − δ)1−η−δ

]N

·
√

1− δη

1− δ − η
·
(

1

1 + 1
20N

)2

≤
[

(1− η)1−η · (1− δ)1−δ

(1− η − δ)1−η−δ

]N

·
(

N + 1

N

)2

≤ 4 ·
[

(1− η)1−η · (1− δ)1−δ

(1− η − δ)1−η−δ

]N

Similar algebra yields:

CN (δ, η) =
(N)!

(δN)! · (ηN)!((1− η − δ)N)!

≤
√
2πN

(

N
e

)N
(1 + 1

N
)

√

23π3N3(1− η)(1− δ)(1− δ − η)( δN
e
)
δN · (ηN

e
)
ηN · ( (1−η−δ)N

e
)
(1−η−δ)N (

1 + 1
20N

)3

≤
(

1

2πN

)

·
[

1

δδ · ηη · (1− η − δ)1−η−δ

]N
(

N + 1

N

)3

=
4

πN
·
[

1

δδ · ηη · (1− η − δ)1−η−δ

]N

Combining both results yields:

N
√

P̂ ≤ N

√
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π
·D(δ, η, k) < N

√
20 ·D(δ, η, k)

Since η ≤ δ, we know that η ≤ η+δ
2 . Therefore, the fact that η > Ωk(η+δ) implies Ωk(η+δ) 6= δ+η

2
and hence D(δ, η, k) = 1− ζ.

Therefore
N
√

P̂ < N
√
20(1− ζ). This implies that for a sufficiently large (constant) N , P̂ << 1.

Hence G is an (Ωk + ε)-disperser with high probability. Notice that for every ε > 0, taking
N̂ = N · T for some constant T suffices for G to be an (Ωk + ε)-disperser with high probability.

Thus, we have proved that the random graph G is an (Ωk + ε)-disperser with high probability.
It remains to prove the properties of the function Ωk according to definition 30.
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Proposition 36 There exists a constant αk for which Ωk(αk) is a strict maximum for the func-
tion Ωk in the range (0, 1). The constant αk satisfies:

α3 ≤ 0.919, α4 ≤ 0.842, α5 ≤ 0.778

αk <
4 ln k

k

Proof: Define as αk the single constant in the range 0 < αk < 1 for which:

D(
αk

2
,
αk

2
, k) = 1− ζ

We first explain why such a constant exists. Define the function Dk(x) as:

Dk(x) := D(x, x, k) =
(1− x)2(k−1)(1−x)

(1− 2x)k(1−2x) · x2x

Define the natural logarithm of Dk(x) as:

gk(x) := lnDk(x) = 2(k − 1)(1− x) ln(1− x)− k(1− 2x) ln(1− 2x)− 2x lnx

The first and second derivatives of gk are:

g′k(x) = −2(k − 1) ln(1− x) + 2k ln(1− 2x)− 2 lnx

g′′k(x) =
2(k − 1)
1− x

− 2k

1− 2x −
2

x

Notice that the second derivative g′′k is negative in the range (0,
1
2). Hence, g

′
k is monotone

decreasing. In addition, the first derivative satisfies:

lim
x→0+

g′k(x) =∞ , lim
x→ 1

2

−
g′k(x) = −∞

Therefore, in the range (0, 12) the function gk is first increasing, then attains a maximum and then
decreases. Because the natural logarithm is a monotone function, the function Dk(x) behaves
the same way. In addition, Dk accepts the values:

lim
x7→0+

Dk(x) = 1
+, lim

x7→ 1
2

−
Dk(0.5) = 0+

Hence, in the range (0, 12), the function Dk(x) begins from the value of 1, raises to the maximum
and from the maximum decreases monotonically to zero. Therefore, the function D( x2 ,

x
2 , k)

behaves the same way in the range (0, 1). In particular, there is a unique point αk ∈ (0, 1) so
that D(αk2 ,

αk
2 , k) = 1 − ζ. In addition, the function D is monotone decreasing in the range

(αk, 1).

Claim 37 For every δ > 1
2k , the function D(δ, δ, k) satisfies:

∀δ ∈ ( 12k , 12) . ∀α ∈ [0, 1] . D(δ, δ, k) ≤ D(2δ · α, 2δ · (1− α), k)
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Proof: First notice the equivalent definition the property above:

∀δ + η ∈ ( 1
k
, 1) . D(δ, η, k) ≥ D(

δ + η

2
,
δ + η

2
, k)

According to the definition of the function D:

D(δ, η, k) = (1−η)(k−1)(1−η)·(1−δ)(k−1)(1−δ)

(1−η−δ)k(1−η−δ)·δδ ·ηη

Because part of the denominator is the same for any constant sum δ+ η, it is enough to see that

the function f(x) = (1−x)(k−1)(1−x)

xx
is multiplicative convex in the range 1

k
< x < 1. That is, for

x1 + x2 ∈ ( 1k , 1):

f(x1) · f(x2) = (1−x1)(k−1)(1−x1)

x
x1
1

· (1−x2)(k−1)(1−x2)

x
x2
2

≥ (1−
x1+x2

2
)(k−1)(2−x1−x2)

(

x1+x2
2

)x1+x2
= f2(x1+x2

2 )

This of course holds if the function

g(x) := log f(x) = (k − 1)(1− x) log(1− x)− x log x

is convex in the specified range.
And indeed function g(x) is convex in the range ( 1

k
, 1) as can be seen by the taking the second

derivative:

g′′ = xk−1
x(1−x)

Which is positive in this range.

Corollary 38 For every η ≥ δ > 1
2k , the function D(δ, η, k) satisfies:

∀ε ∈ (0, η+δ2 ) . ∀α ∈ [0, 1] . D(δ + ε, η − ε, k) ≤ D(δ, η, k)

Proof: Notice that in the proof of claim 37, the function g(x) was shown to be convex. The
corollary follows from the following fact about the convex function g:

∀ε ∈
[

0,
x1 + x2
2

]

. g(x1 + ε) + g(x2 − ε) ≤ g(x1) + g(x2)

(This know fact in convex theory can be proven using the Tailor series of g).

Definition 39 Define the function:

f δk (x) := D(δ, x, k)

Claim 40 For x ≥ δ > αk
2 the function f δk (x) is monotone strictly decreasing in the range

x ∈ (δ, 1− δ).
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Proof: Define the natural logarithm of f δk (x) as:

qδk(x) := ln f
δ
k (x) = w(δ) · [2(k − 1)(1− x) ln(1− x)− k(1− x− δ) ln(1− x− δ)− 2x lnx]

Where w(δ) is a positive expression that depends only on δ. The first and second derivatives of
qδk are:

q′k(x) = −2(k − 1) ln(1− x) + 2k ln(1− x− δ)− 2 lnx

q′′k(x) =
2(k − 1)
1− x

− 2k

1− x− δ
− 2
x

Notice that the second derivative g′′k is negative in the range (0, 1 − δ). Hence, g′k is monotone
decreasing. In addition, the first derivative satisfies:

lim
x→0+

q′k(x) =∞ , lim
x→(1−δ)−

q′k(x) = −∞

Therefore, in the range (0, 1 − δ) the function qk is first increasing, then attains a maximum
and then decreases. Because the natural logarithm is a monotone function, the function f δ

k (x)
behaves the same way. In addition, notice that:

lim
x→0+

f δk (x) ≥ 1 , f δk (δ) < 1

Therefore, the function f δk is monotone strictly decreasing in the range x ∈ (δ, 1− δ).

Corollary 41 For every δ ∈ (αk, 1), the function Ωk is monotone strictly decreasing.

Proof: Let δ > αk and Ωk(δ) = x. Let ε > 0 and Ωk(δ + ε) = y. Suppose that y ≥ x, then
according to corollary 38 and claim 40:

D(y, δ + ε− y, k) < D(x, δ + ε− x, k) < D(x, δ − x, k) = 1− ζ

In contrast to the assumption that Ωk(δ + ε) = y which imposes D(y, δ + ε− y, k) = 1− ζ.
Thus it must be that y < x.

We proceed to show that Ω(αk) is a strict maximum for Ωk in the range (0, 1).
In the range 0 < x < αk, according to the definition of Ωk, it holds that:

∀x ∈ (0, αk) . Ωk(x) ≤
x

2
<

ak
2
= Ω(αk)

In the range αk < x < 1, Ω(αk) is the strict maximum according to corollary 41. Hence, Ω(αk)
is indeed a strict maximum for Ωk in the entire range (0, 1).

We proceed to prove the bounds on αk. For that, it suffices to show that:

D(
αk

2
,
αk

2
, k) < 1− ζ

For the values k ∈ [3, 6] this is numerically verified. For a general k paramter, we first define the
following function which bounds D(δ, η, k):

U(δ, η, k) :=
eδ+ηe−(k−1)δη

δδ · ηη
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Claim 42 The function D(δ, η, k) is bound by:

D(δ, η, k) ≤ U(δ, η, k)

Proof: The function A is bound by:

A(δ, η) ≤ N

√

(1− η)δN ≤ e−ηδ

And the function C(δ, η) is bound by (using the inequality
(

N
k

)

≤ ( eN
k
)k):

C(δ, η) = N

√

(

N

δN ηN

)

≤
(

eN

δN

)δ

·
(

eN

ηN

)η

=
(e

δ

)δ

·
(

e

η

)η

And the bound on D follows.
And now using claim 42:

D(
1

k
,
1

k
, 4k ln k) ≤ U(

1

k
,
1

k
, 4k ln k) =

e
2
k e−(4k ln k−1)

1
k2

1
k

2
k

= (ek)
2
k e−(4k ln k−1)

1
k2

= e
2
k
(1+ln k)e−(4k ln k−1)

1
k2

= e
2
k
[1+ln k−2 ln k+ 1

2k
]

≤ e
2
k
[− ln k+2]

≤ e−
ln k
k

< 1− ζ
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Proposition 43 The function Ωk is bounded by the line lk(x) in the range (αk, 1). Formally:

∀x ∈ (αk, 1) . lk(x)− Ωk(x) > 0

Where:
lk(x) =

αk

2(1− αk)
(1− x)

Proof: Since the function D(δ, x) is monotone decreasing (see claim 40), it suffices to show that
for the function D, the following holds:

∀x ∈ (αk, 1) . D(x− lk(x), lk(x)) ≥ 1

In order to simplify expressions, denote by:

c =
αk

2(1− αk)

The function D(x− lk(x), lk(x)) is a function of a single variable. Denote it by:

Y (x) := D(x− lk(x), lk(x), k) = D(x− c(1− x), c(1− x), k)

= D((1 + c)x− c, c(1− x), k)

=
(1 + c)(1− x)(k−1)(1−x)(1+c) · (1− c+ cx)(k−1)(1−c+cx)

(1− x)k(1−x) · (c(1− x))c(1−x) · ((1 + c)x− c))(1+c)x−c

The function Y (x) is continues and differentiable function in the range (0, 1), as it is the mul-
tiplication of continues and differentiable functions in this range. The first derivative of this
function is:

Y ′(x) = Y (x) · g(x)
Where:

g(x) := c(k−1) ln(1−c+cx)−(1+c)(k−1) ln(1−x−cx+c)+k ln(1−x)−(1+c) ln(x+cx−c)+c ln(c−cx)

Notice that Y ′(x) is also a continues and differentiable function in the range (αk, 1), since the
argument of the logarithms is always in this range. To show that, consider ln(1 − c + cx) and
ln(x+ cx− c) (for the others this is obvious). The argument of these logarithms is zero outside
the range as:

1− c+ cx = 0⇒ x = −1− c

c
< 0

x+ cx− c = 0⇒ x =
c

1 + c
=

αk

2− αk
< αk

The derivative of g(x) is:

g′(x) =
[c(1 + c)(k − 2)]x+ 2c2 − 1

(1− x)(x+ cx− c)(1− c+ cx)

This function is also continues in the range (αk, 1) as the denominator doesn’t evaluate to zero
in the range (as shown for the arguments of the logarithms of g(x)).
Notice that the nominator evaluates to zero exactly once on the real line. The point where this
happens is:

x =
1− 2c2

c(1 + c)(k − 2) <
1− c

c(k − 2) =
2− 3αk

αk(k − 2)
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We show that this point is never in the range (αk, 1). For a large k parameter, the constant c
approaches zero, and hence 2c2 − 1 is negative. This implies that the point x is negative, and
hence not in the range. For small k values, one can substitute the value αk and see it is larger
then 2−3αk

αk(k−2)
.

Hence g′(x) is always non-zero in the range (αk, 1).

Therefore, the function g(x) can accept at most once zero in the range (other wise there would
be a maximum or a minimum). Therefore, the function Y ′(x) can evaluate to zero only once in
the range, as it is the multiplication of g(x) and a positive function.
Hence, the function Y , which is equal to 1 in αk−ε and 1, cannot cut the line l(x) = 1− ζ inside
the range. Therefore, Y (x) is either all below or all above the line l(x) = 1. Since:

lim
x→1−

Y (x) = 1+

Thus, in the range (αk, 1), the function Y (x) is all above the line l(x) = 1.
Combining propositions 36 and 43, completes the properties of Ωk to be proved.

We now turn to see why the Ωk-disperser we built above has optimal asymptotic parameters.
We base our observation on a theorem by Ta-Shma et al from [RTS00]:

Lemma 44 (Ta-Shma et al) Every bipartite d-regular ( 1
k
, 1
k
)-disperser must satisfy d =

Ω(k log k).

Notice that an Ωk-disperser is in particular a (αk, αk)-disperser. As αk = O( log k
k
) and the

Ωk-disperser is k-regular, the optimality follows from Ta-Shma’s lemma.
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E Reduction from k-IS to k-DM

This appendix includes a brief description of the reduction from k-DM to k-IS, that proves the
following proposition:

Proposition 45 If k-IS is NP-hard to approximate to within certain factors, then (k+1)-DM is
NP-hard to approximate within the same factors.

The reduction:

1. Let G = (V,E) be a graph instance of k-IS. First, replace the role of the edges and vertices
to obtain a hyper-graph H = (E, V ). Notice that a matching in H is an Independent-Set
in G. In addition, because G is of bounded degree k, the edges of H are of cardinality at
most k.

2. Vising’s theorem states that any graph of maximum degree k can be edge-colored with
k + 1 colors so that no vertex participates in two edges of the same color. Therefore, H is
strongly vertex colorable with k + 1 colors, and thus is (k + 1)-partite.

3. In order for the hyper-graph H to be k+1 uniform, more ”dummy” vertices must be added
to the graph.

4. As for making the hyper-graph H balanced, we make k+1 copies of the current H and join
them to s single hyper-graph so that there is an equal number of vertices for each color.

The reduction hereby shows that inapproximability results for k-IS apply to (k+ 1)-DM as well
(and thus also to (k + 1)-Set-Packing).
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