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Abstract

We consider possible equality QMA = PP and give an argument

against it. Namely, this equality implies that PP contains PH. The argu-

ment is based on the strong form of Toda’s theorem and the strengthening

of the proof for inclusion QMA ⊆ PP due to Kitaev and Watrous.
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Now many quantum analogs of classical complexity classes are known. The
first example was the class BQP consisting of functions that are computable by
polynomial-time quantum algorithms. Quantum algorithms can be described
by quantum Turing machines as well as by uniform families of quantum circuits
as shown by Yao [14].

Quantum interactive proof systems provide an another important example of
quantum analog to classical complexity classes. It was shown by Watrous [11]
that PSPACE has three-message quantum interactive proof systems. Later
Kitaev and Watrous [8] proved that the class QIP(3) (three-message quantum
interactive proof systems) coincides with the class of QIP(poly) (the number of
messages is polynomial). Almost nothing is known about the class QIP(2). The
smallest class in this hierarchy, QIP(1), was initially studied by Kitaev under
the name BQNP and was considered as a quantum analog of NP. In fact,
there is no interaction between verifier and prover in the case of one-message
protocol. It seems more appropriate to address this class as a quantum analog
of the class MA which is a probabilistic analog of NP ant the smallest class
in Arthur–Merlin games hierarchy introduced in [1]. Therefore this class is now
referred as QMA. Kitaev proved QMA ⊆ P#P ⊆ PSPACE. Later Kitaev
and Watrous proved stronger result QMA ⊆ PP.

In this paper we consider possible equality QMA = PP. We will show that
this equality is hardly possible because it would imply the inclusion QMA =
PP ⊇ PH. It is believed that this inclusion does not hold. As a motivation to
that belief the relativized arguments can be applied. Beigel [2] constructed an

oracle A such that PNP
A 6⊆ PPA.
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Two key ingredients for our result are Toda’s theorem and arithmetic closure
properties of GapP functions. Toda [10] proved that P#P ⊇ PH. Moreover,
the reduction algorithm uses one query to #P oracle only. This property is
important to our proof.

The GapP functions were invented by Fenner, Fortnow and Kurtz [4]. The
class GapP is the closure of #P under subtraction. More natural definition
of GapP uses a notion of counting machine. A counting machine is a non-
deterministic Turing machine running in polynomial time and finishing at ei-
ther accepting or rejecting halting state. Given an input word x a counting
machine produces a gap gM (x). The gap is the difference between the number
of accepting computation paths and the number of rejecting computation paths.

Using gaps, it is easy to define many complexity classes such as PP, ⊕P

and others. One of them is the class AWPP. Fortnow and Rogers [6] proved
BQP ⊆ AWPP and constructed such an oracle A that PA = BQPA =
AWPPA but the polynomial hierarchy is infinite. Li proved that AWPP is
PP-low, i.e. PPAWPP = PP. This proof is sketched in [6]. PP-lowness of
AWPP implies that if BQP = PP then BQP = PP ⊇ PH due to Toda’s
theorem which implies that PPP ⊇ PH. Recently Fenner [3] simplified the
definition of AWPP by establishing the amplification property for this class.

PP-lowness of QMA is unknown and it is doubtful. In this work we show
that QMA is contained in some subclass of PP wider than AWPP. We denote
this subclass by A0PP to stress that it is to some extent an one-side analog of
AWPP. This class A0PP contains also the another quantum non-deterministic
class QNP which coincides with co-C=P [5, 13]. The amplification property
for the A0PP is obtained easily. We cannot prove PP-lowness of the A0PP

and cannot find out an oracle relative to which A0PP collapses to P. Instead
we propose the simple straightforward argument to show that A0PP = PP

implies PP ⊇ PH. In this argument we rely on the mentioned above property of
Toda’s reduction. In our construction we replace the oracle query by a guess and
checking the correctness of this guess by some PP-machine. The amplification
property of the A0PP is important at this point.

1 Gap functions and gap-definable classes

In this section we reproduce definitions and facts about gap functions and gap-
definable classes that will be used below. Then we define yet another complexity
class A0PP. Unfortunately we cannot identify it with previously defined classes.

We will use the following properties of GapP functions.

1. FP ⊆ GapP. FP is the class of functions computable in polynomial time
by a deterministic Turing machine.

2. #P ⊆ GapP. A #P function f(x) counts the number of accepting paths
for some counting machine M .

3. If g1, g2 ∈ GapP then −g1 ∈ GapP, g1 + g2 ∈ GapP, g1g2 ∈ GapP.
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4. If g(x) ∈ GapP, f(x) ∈ FP, f(x) > 0 and f(x) = O(|x|O(1)) then
(g(x))f(x) ∈ GapP.

These facts are easy to prove. For more properties of GapP functions see [4].
The multiplication of gaps is achieved by concatenation of counting machines

and XORing their halting states. An accepting state corresponds to 0 and the
rejecting state corresponds to 1. More precisely, suppose a counting machine
M1 produces the gap g1 and a counting machine M2 produces the gap g2. The
machine M producing the gap g1g2 imitates M1 at the first stage of compu-
tation and stores the halting state of M1. Then it imitates M2. At the end
of computation M accepts iff the halting states of M1 and M2 are the same;
otherwise M rejects. This multiplying procedure can be iterated to obtain a
product of polynomially many gaps. Also the XORing of acceptances can be
applied along a a certain branch of computation to produce a gap in a form of
exponential-size sum of polynomially sized products.

Let’s recall the standard definition of the class PP.

Definition 1. L ∈ PP iff there exists a counting machine M running in poly-

nomial time such that

• if x ∈ L then gM (x) > 0;

• if x /∈ L then gM (x) ≤ 0.

For our purposes it is convenient to use a slightly different definition of the
PP.

Lemma 1. L ∈ PP if there exist functions g(x) ∈ GapP and t(x) ∈ FP such

that

• if x ∈ L then g(x) > t(x);

• if x /∈ L then g(x) ≤ t(x).

Now we define a new counting class A0PP. In the next section we will show
that this class contains QMA.

Definition 2. L ∈ A0PP iff there exist functions g(x) ∈ GapP and T (x) ∈
FP (a threshold function) such that

• if x ∈ L then g(x) > T (x);

• if x /∈ L then 0 ≤ g(x) < 1
2T (x).

The inclusion A0PP ⊆ PP follows immediately from the definition. It also
easy to obtain the inclusions co-C=P ⊆ A0PP, AWPP ⊆ A0PP. Recall that
L ∈ co-C=P iff there exists a function g ∈ GapP such that

• x ∈ L implies g(x) 6= 0;

• x /∈ L implies g(x) = 0.
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Given such a function g(x) we can take the function 2g(x)2 ∈ GapP and the
threshold T (x) = 1 to conclude that L ∈ A0PP.

As for AWPP, it was proved by Fenner [3] that L ∈ AWPP iff there exist
functions g ∈ GapP and f ∈ FP such that

• x ∈ L implies 2/3 < g(x)/f(x) ≤ 1;

• x /∈ L implies 0 ≤ g(x)/f(x) < 1/3.

Taking g(x) and d2f(x)/3e as a threshold function we conclude that L ∈ A0PP.
We require in Definition 2 that a threshold ratio should be at least 2. It

is easy to amplify the threshold ratio to an exponent by using the mentioned
above property 4 of GapP functions.

Lemma 2. L ∈ A0PP iff for any polynomial r there exist functions g ∈ GapP

and T (x) ∈ FP such that

• if x ∈ L then g(x) > T (x);

• if x /∈ L then 0 ≤ g(x) < 2−r(|x|)T (x).

Similar to the AWPP, the class A0PP can be characterized by thresholds
in the form 2p(|x|) where p(·) is a polynomial.

Lemma 3. L ∈ A0PP iff there exist a polynomial p and a function g(x) ∈
GapP such that

• if x ∈ L then g(x) > 2p(|x|);

• if x /∈ L then 0 ≤ g(x) < 1
22p(|x|).

Proof. It is clear that the conclusion of the Lemma implies L ∈ A0PP.
Let’s now prove the opposite. Consider a language L ∈ A0PP. Assume

that functions g, T satisfy Definition 2. Since g(x) is the gap of some counting
machine (running in polynomial time), there exists a polynomial p such that
|g(x)| < 1

42p(|x|) for all x.

Let g′(x) = 4
3b 2p(|x|)

T (x) cg(x). We claim that the polynomial 2p and the function

(g′(x))2 satisfy the conclusion of the Lemma 3. Indeed, suppose that x ∈ L.
Then g(x) > T (x) and we have

g′(x)

2p(|x|)
=

4

3

⌊

2p(|x|)

T (x)

⌋

g(x)

2p(|x|)
>

4

3

(

2p(|x|)

T (x)
− 1

)

g(x)

2p(|x|)
>

4

3
− 4

3

g(x)

2p(|x|)
> 1. (1)

If x /∈ L then g(x) < 1
2T (x) and we have

g′(x)

2p(|x|)
=

4

3

⌊

2p(|x|)

T (x)

⌋

g(x)

2p(|x|)
≤ 4

3

2p(|x|)

T (x)

g(x)

2p(|x|)
<

2

3
. (2)

By squaring the inequalities (1) and (2) we come to the conclusion.

4



2 QMA vs A0PP

We choose the standard basis (the Shor’s basis) for quantum circuits. It consists
of operators T, H, K where

T : |a, b, c〉 7→ |a, b, c ⊕ ab〉; H =
1√
2

(

1 1
1 −1

)

; K =

(

1 0
0 i

)

. (3)

It is well-known that this basis provides universal quantum computation (see
books [7, 9] for details).

To define the QMA we use uniform families of quantum circuits. Such a
family is defined by a function that maps a binary word x (input) to a description
Ux of a quantum circuit (in the Shor basis). Informally, in the case of QMA

computation this circuit determines verifier actions on an input word x. (Note
that the word x can be used in the description of U(x).) The circuit Ux acts on

the space P ⊗ V , where P =
(

C2
)⊗n

is the space of the quantum prover qubits

and V =
(

C2
)⊗m

is the space of the quantum verifier qubits. Let p(x) be the
maximum of accepting probability over all possible prover messages |ξ〉. It can
be expressed as

p(x) = max
|ξ〉∈P

〈ξ| ⊗ 〈0m|U †
xΠaUx|ξ〉 ⊗ |0m〉. (4)

Here we assume that the first qubit contains 1 if the verifier accepts and 0 if
the verifier rejects. The operator Πa is the projector to the subspace La =
C

(

{|1y〉}y∈{0,1}n−1+m

)

of accepting final states. So, we come to the following
definition.

Definition 3. L ∈ QMA iff there exists a polynomial time computable function

x 7→ Ux mapping binary words to descriptions of quantum circuits such that

• if x ∈ L then p(x) > 2/3;

• if x /∈ L then p(x) < 1/3.

Theorem 1. QMA ⊆ A0PP.

To relate QMA with counting complexity classes we use the following inter-
pretation of (4) due to Kitaev and Watrous (see also [7]): p(x) is the maximal
eigenvalue of the operator

A = TrV V (x), V (x) = U †
xΠ(a)Ux(IP ⊗ |0m〉〈0m|). (5)

The maximal eigenvalue λmax of a positive operator can be estimated by the
trace of (sufficiently large) degree of this operator. For the operator A we have

λd
max ≤ TrAd =

2n

∑

j=1

λd
j ≤ 2nλd

max. (6)
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We will assume that d = n + 1 and will apply the bounds (6) to distinguish the
cases λmax < 1/3 and λmax > 2/3. Note that

λmax < 1/3 implies Tr Ad <
1

2

(

2

3

)d

,

λmax > 2/3 implies Tr Ad >

(

2

3

)d

.

(7)

Let h(x) be the total number of Hadamard gates H in the circuit Ux. Our
choice of the basis for quantum circuits guarantees that the trace of Ad is a
rational with the denominator 2−dh(x): TrAd = a(x)2−dh(x), a(x) ∈ Z.

Lemma 4. a(x) ∈ GapP.

Proof. Let s(x) be a size of Ux. The operator V (x) can be expressed in the form

V (x) = 2−h(x)V1V2 . . . V2s+2 (8)

where Vk ∈ {T, K,
√

2H, Π(a), IP ⊗ |0m〉〈0m|}. Note that matrix elements
(Vk)(α,γ),(β,δ) ∈ {0, +1,−1, +i,−i} (α, β ∈ {0, 1}n; γ, δ ∈ {0, 1}m; k ∈ [1, 2s+2])
and that the value of (Vk)(α,γ),(β,δ) is computable in polynomial time. So, we
have

(

V (x)
)

(α,γ),(β,δ)
= 2−h(x)

∑

. . . (Vk)(αk ,γk),(αk+1,γk+1) . . . (9)

where summation is taken over all sequences {(αk, γk)} such that 1 ≤ k ≤ 2s+3,
αk ∈ {0, 1}n, γk ∈ {0, 1}m, α1 = α, γ1 = γ, α2s+3 = β, γ2s+3 = δ.

Taking partial trace we get an expression for a matrix element of A:

Aα,β = 2−h(x)
∑

γ

(

V (x)
)

(α,γ),(β,γ)
. (10)

For matrix elements of Ad we have

(Ad)α,β = 2−dh(x)
∑

. . . Aαk ,αk+1
. . . (11)

where summation is taken over all sequences {αk} such that 1 ≤ k ≤ d + 1,
αk ∈ {0, 1}n, α1 = α, αd+1 = β. For the a(x) we obtain:

a(x) = 2dh(x)
∑

α

(

Ad
)

α,α
. (12)

Thus, a(x) is expressed as the exponential size sum of polynomially sized
products of numbers taken from the set {0,±1,±i}. The number of factors in
each summand is d(2s(x) + 2). Summands are indexed by sequences (αjk , γjk),
1 ≤ j < d + 1, 1 ≤ k ≤ 2s + 3, αjk ∈ {0, 1}n, βjk ∈ {0, 1}m. Each summand
can be calculated in polynomial time.
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Now it is easy to construct a counting machine M producing the gap a(x). At
the first stage of the computation the machine makes 2(n+m)d(2s(x)+3) branches
indexed by the sequences {(αjk , γjk)}. Along each branch the machine computes
the value of the summand in (12) indexed by the same sequence. If the value
is ±1 then the machine produces a gap according to this value. Otherwise it
produces a zero gap.

Thus, using this Lemma and the relations (7) for any language L from the
QMA we can construct a GapP function a(x) such that

• if x ∈ L then a(x) > 2dh(x)
(

2
3

)d
;

• if x /∈ L then a(x) < 1
22dh(x)

(

2
3

)d
.

This completes the proof of Theorem 1.

3 A0PP vs PP

The class A0PP looks very powerful. Is it coincide with PP? We cannot
answer this question. But we can give an argument against the positive answer.
Namely, we will prove the following theorem.

Theorem 2. If A0PP = PP then A0PP ⊇ PH.

As mentioned above, to prove Theorem 2 we need the strong form of Toda’s
theorem: P#P[1] ⊇ PH. In other words, any language L in the polynomial
hierarchy is recognizable by a deterministic polynomial-time #P-oracle machine
M that makes only one oracle query. Let f(y) ∈ #P be the oracle answer on
the query y.

Now we show how to recognize the language L by some (very restrictive!) PP

machine M ′ that queries a PP-oracle g. The machine must obey the following
conditions:

• along any computation path it makes just one query to the oracle;

• it is promised that the only one oracle’s answer is “yes”.

Note that possible values of f(y) range from 0 to 2q(|x|), q(·) is a polynomial.
At first, the machine M ′ makes 2q(|x|) branches indexed by possible values j of
f(y). Then the machine M ′ makes an oracle query about the sign of expression

g(y, j) = (f(y) − j − 1)(j − 1 − f(y)) ∈ GapP. (13)

It’s easy to see that g(y, j) > 0 iff f(y) = j. If the answer is “yes” then M ′

assumes that j = f(y) and imitates the behavior of M after the oracle query.
If M accepts then M ′ produces a gap 1. Along all other branches M ′ produces
a zero gap.
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Thus, if x ∈ L the machine M ′ produces the gap 1. Otherwise it produces
the gap 0. It is obvious from the description of M ′ that it satisfies the afore-
mentioned conditions.

To finish the proof of Theorem 2 let’s suppose that A0PP = PP. Due to
Lemma 2 and Lemma 3 there exist a GapP function g̃(y, j) and a polynomial
p such that

g(y, j) > 0 ⇒ g̃(y, j) > 2p(`),

g(y, j) ≤ 0 ⇒ 0 ≤ g̃(y, j) < 2−q(|x|)2p(`),
(14)

where ` = |y| + q(|x|). It is clear that 2p(`) ∈ FP. By G we denote a counting
machine such that G produces a gap g̃(y, j) on the input (y, j).

Now we construct a PP machine M ′′ that recognizes the language L. The
machine M ′′ operates similar to M ′. But it replaces an oracle query by imitation
of the machine G and produces a gap g̃(y, j). This gap is multiplied by a gap
produced by M ′ at the end of computation.

Let us calculate the gap produced by M ′′:

x ∈ L ⇒ gM ′′(x) > 2p(`),

x /∈ L ⇒ gM ′′(x) < 2q(|x|)2−q(|x|)2p(`) = 2p(`).
(15)

Applying Lemma 1 we get L ∈ PP.

Corollary 1. If QMA = PP then QMA = PP ⊇ PH.

This corollary follows immediately from Theorems 2 and 1.

Corollary 2. If co-C=P = PP then co-C=P = PP ⊇ PH.
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