Electronic Colloquium on Computational Complexity, Report No. 22 (2003)

Approximation Hardness and Satisfiability
of Bounded Occurrence Instances of SAT

Piotr Berman * Marek Karpinski f Alex D. Scott ?

Abstract

We study approximation hardness and satisfiability of bounded occurrence
uniform instances of SAT. Among other things, we prove the inapproximability
for SA'T instances in which every clause has exactly 3 literals and each variable
occurs exactly 4 times, and display an explicit approximation lower bound
for this problem. We also provide a tighter characterization of the uniformly
bounded occurrence instances which are surely satisfiable.

1 Introduction

We define a k-SAT instance as a set of clauses that are disjunctions of exactly k literals.
The decision problem asks for an assignment of truth values to the variables that
satisfies all the clauses. The maximimization problem is to find a truth assignment
that satisfies maximally many clauses. Cook [C71] has shown that k-SAT is NP-
complete for & > 3, and Papadimitriou and Yannakakis have shown that &-SAT is
MAX-SNP-complete for k£ > 2.

In this paper we study uniform and regular instances of SAT. An instance of (k, s)-
SAT is a formula in which every clause has length k, and each variable occurs exactly s
times. Another (somewhat longer) notation used for that problem is EsOCC-EESAT
(cf. [KO1], [BKO3]).

In this paper we show that there exists a (3,4)-SAT formula with 15 variables
and 20 clauses which is not satisfiable, and use this to prove that MAX-(3,4)-SAT
is not approximable to within some constant factor. We provide also an explicit
approximation lower bound for that problem (Theorem 1). The number 4 is easily

*Dept. of Computer Science and Engineering, The Pennsylvania State University. Research done
in part while visiting Dept. of Computer Science, University of Bonn. Work partially supported
by NSF grant CCR-9700053, NIH grant 9R01HGO02238-12 and DFG grant Bo 56/157-1. E-mail
berman@cse.psu.edu.

tDept. of Computer Science, University of Bonn. Research done in part while vising Dept. of
Computer Science, Princeton University. Work partially supported by DFG grants, Max-Planck
Research Prize, DIMACS, and IST grant 14036 (RAND-APX). E-mail marek@cs.uni-bonn.de.

!Dept. of Mathematics, University College London. E-mail scott@math.ucl.ac.uk

ECCC

ISSN 1433-8092

seen to be the smallest number of occurrences for which the problem is hard to
approximate (by a direct bipartite perfect matching argument). The best previous
result in this direction was the result of Feige [F98] to the effect that (3,5)-SAT is
hard to approximate to within a certain constant. We provide similar results for other
cases as well, e.g. for (4,6)-SAT and (5,9)-SAT.

We have learned later that Tovey [T84] also displayed an unsatisfiable (3,4)-SAT
formula and proved that the decision version of (3,4)-SAT is NP-complete. Further
progress was obtained by Dubois [D90] who has shown that (4,6)- and (5,11)-SAT are
NP-complete. In turn, Kratochvil ef. al. [KST93] defined f(k) as the largest s such
that (k, s)-SAT has a satisfiable formula and have shown the following: (a) if s > f(k)
then (k, s)-SAT is NP-complete, (b) f(k+ 1) < 2f(k) + 1 and (c) f(k) > |2¥/ek].

In this paper we improve the results of Dubois [D90] and Kratochvil et. al. [KST93]
as follows. We show that if s > f(k) then (k,s)-SAT is MAX-SNP-complete. We
also give improved bounds on f(k) for small values of k, for instance showing that

J(5) <9 (so that f(k) <9 x 2¥75 for k > 4), and that f(6) > 7.

2 Small Enforcers

We need to show how to force the Boolean value of a variable within the limitations
of a (k,s)-SAT instance. This means providing a set of k-clauses that is satisfied if
and only if z; is true, and where z; (z) occurs s — 1 times—so it can be used once
more—and where auxiliary variables occur at most s times. To achieve regularity,
we may have to add some arbitrary clauses for the auxiliary variables. Since these
clauses are arbitrary, we will only provide their number, which may be a fraction,
e.g. a fractional number 1/3 means that when forcing values of 3 variables we need
to create one arbitrary clause. We represent a set of clauses as an array, where each
row lists literals of one of the clauses. By aligning the occurences of a variables we
make it easy to count.

If we want to use a proof of MAX-SNP-completeness to find an unattainable
approximation ratio for a problem, it is important to have as small size of the instance
translation as possible, and by extension, to minimize the size of all the gadgets that
collectively form a solution. Converting an unsatisfiable clause set into an enforcer
is in practice wastful, because our examples of small unsatisfiable set are composed
from several enforcers.

If a clause was obtained as an implication from a set of clauses, we annotate each
literal with a superscript in parenthesis that indicates the number of occurrences
of each variable in this set. From this perspective, an enforcer for (k,s)-SAT has
the form of z() where ¢ < s. If there exists such an enforcer, we can produce an
unsatisfiable set as xgz), e xg) and -z V...V 1z, We represent a set of clauses as an
array, where each row lists literals of one of the clauses. By aligning the occurences
of variables we make it easy to count.

2.1 Enforcers in (3,4)-SAT

The enforcer given here is somewhat smaller than the one described by Tovey [T84].
It contains 19 clauses, rather than 22 in the construction of [T84].
We can force variable = to be true using the following six 3-clauses:
r a —b

a b —c

b -d
8 = ¢
b ¢ d
r —a —d
r —a d

Because we need to add some arbitrary clause to have the fourth occurence of ¢, we
altogether use 19/3 clauses to force .

Three enforcers together with =21V —xzyV -3 create a nonsatisfiable formula with
20 clauses and 15 variables.

To make our conventions more clear, we will prove that the forcing indeed occurs.
Suppose that z is false and all 6 of the above clauses are true. Because we can delete
x from these clauses, we know that =aV —d and —a V d, hence —a. Now we can delete
a from the remaining clauses and the first clause yields =b. Now we can delete b and
the second clause yields —¢. Consequently, the third and fourth clauses yield =d and
d, a contradiction.

2.2 Enforcers in (4,6)-SAT

To define a set of clauses that forces = withing the constraints of (4,6)-SAT we define
the notion of supervised implication which in actuality is a set of six 4-clauses:

T W 2 Ta

-y z a —b

dD 5 (@ 50y = a b d
a b —-c d
a b -d e
a b ¢ —d -—e

Note that if we have two supervised implications, the same variable can play the
role of ¢ in both, and a variable can play the role of d in one and the role of e in
the other. As a result, only b’s have the deficit of occurences, and to remove this

deficit we add one clause to every four supervised implications. Therefore one such
implication requires 6.25 clauses.
Literal = forced to be true by 4-clauses:

Il
A
LroLoL

One can see that we force z using 20.75 clauses.

2.3 Forcing a Variable in (5,9)-SAT

The set of clauses that forces a variable to be false withing the limitations of (5,9)-SAT
has a complicated construction. We define the following auxiliary notion: F(iz, jy)
is a set of clauses in which z occurs ¢ times, y occurs j times and which cannot be
satisfied if both z and y are false, but which is otherwise satisfiable. Let f(iz,jy) =
|F(iz, jy)|. We will use a similar notion for a single variable (a contradiction if it is
false) or for three variables (a contradiction if they are all false).

Our goal is to define F(8z) and to find f(8x).

3
F8z)={xV -y V-1 V-yaV-oystUF(8yo, lz) U U F(8yi, 2x).

=1

Indeed, if x is false, then the only way to avoid contradiction is if y; is false for some
1 =0,1,2,3, but then either both = and yg are false, and we have a contradiction from
F(8yo, 1), or both z and y; are false, and we have a contradiction from F(8y;, 2x)
etc. Conversely, if y is true, both the initial clause and each of the 4 clause sets used
in the definition is satisfiable.

We define F(8z,12) as
F(8z,12) = {x V 2V ~yo V —w1 V 2} U F(8yo, 22) U F(8y1, 27) U F(8ya, 32).
We define F(8z,22) as
F(87,22) = {x V 2V ~wo V —w1 V 2} U F(8yo, 32) U F(8y1,37) U F(8ys, 1z, 1y).
We define F(8z, La, 1) as

F8x,la,1b) ={xVaVbV -y V -y} UF(8yo,3z) U F(8y,4z).

One can see that

f(8z) =1+ f(8z,1y) +3f(8z,2y) =2+ 5f(8z,2y) + f(8z,3y) =
T+ 11f(8z,3y) +5f(8z,1y,1z) = 12+ 16 f(8z, 3y) + 5[(8, 4y).
To define F(8z, 3y) we need to define three types of supervised implications, i.e. special
sets of clauses. A supervised implication of type I can be viewed in two ways, and it
is realized by nine 5-clauses:
—w x Yy Tz Ja

-r y -z a —b

-z a b —e¢ —d
a b ¢ d —e
= a b ¢ —d —e
a b ¢ d —e
a b —c d e
a b ¢ —d e
a b ¢ d e

A supervised implication of type II can be realized with two supervised implications
of type I, and thus we use 18 5-clauses:

1
[
O

SN
Il

:(;(1) — (—|2(3) — (x(Q) — y(2))

Type III is realized with one type II and two type I and one normal clause, thus we
use 37 5-clauses:

s@ - (ug4 — u2)
@A 5 (P
s u ul
N N O I (: &)
sA At (ug — Uy (2))
sAt — (ul Vg V 712)

Finally, F(8x, 3y) is formed from two type III implications and three normal clauses,

for the total of f(8z,3y) = 77 5-clauses:

—2(M A —3) (D A ¢ A oD

— 0 2 3
—xANayNayANas — b
F(8z,3y) =z® Ay = bAai NayNas — ¢
A 5 dDAdD A dD
C/\b — _'(dl/\dg/\d3>

One can use the above idea to get f(8z,4y) = 39. This leads to f(8z) = 12 416 x
774+ 5 %39 = 1439. We also need to add some extra clauses to increase the number
of occurences of some auxiliary variables to 9.

3 NP-completeness

Suppose that we can force a variable to be true withing constraints of (k, s)-SAT, i.e.
there exists a set F(z) of clauses of length k in which each variable occurs at most s
times, = occurs at most s — 1 times and such that all clauses in F(z) can be satisified
if and only if z is false. Then we can construct an unsatisfiable formula of (k, s)-SAT:
start with a clause z; V...V zj and for each i = 1,..., k we add set of clauses F(z;);
we need to take care that if ¢ # j then F(z;) and F(9z;) have no variables in common.
If some of the variables occurs less than s times, we can add extra clauses.

We can use the same approach to translate 3-SAT into (k, s)-SAT. First, we reduce
the number of occurences of each variables to 3. Then we replace a clause ¢ with
¢V x4 V z, using different variables for every clause. Next, we add F(z) for each new
variable. Finally, we add extra clauses to assure that each variable occurs exactly s
times. With little care, these extra clauses can be easy to satisfy.

We can conclude that if in (k,s)-SAT we can force a Boolean value of a variable,

then (k, s)-SAT is NP-complete.

4 MAX-SNP Hardness

Given an instance of MAX-2-SAT, we can increase the length of clauses by insert-
ing literals that are forced to be false. In this manner we can create a MAX-SAT
instance with the same minimum number of unsatisfied clauses in which all clauses
have a desired length. Towards the inapproximability result, we start from instances
constructed in [BKO03]. In that paper, in order to show the hardness of approximat-
ing MAX-2-SAT restricted to a certain class of instances, one have to construct the
classes of clause sets with the following properties:

1. Tt is NP-hard to distinguish on whether the minimum number of unsatisfied
clauses is at least (5 — €)k or at most (4 + 6)k;

2. all variables occur the same number of times except for those that occur in 4k
copies of a gadget called replacements of equations of a single auxiliary variable

(Fig. 6 in [BKO03]), here we will call this gadget RESAV;

In Theorem 12 of [BKO03] the size of these class sets is given as 256k for the case
when each variable occurs at most 4 times, and RESAV contains one clase with only
one literal and one variable with only 3 occurences. This proves the following lemma.

Lemma 1. There exists a family of sets of 2-clauses such thal each, for some n,
consists of 252n 2-clauses and 4n 1-clauses for which it is NP-hard to distinguish
between the systems where (25n — e)n clauses can be satisfied and systems where at
most (251 + e)n clauses can be satisfied (for ¢ < 1/2). Moreover, 4n variables in this
system occur 3 times, while other variables have exactly 4 occurences.

We can transform a system from this theorem into an instance of Max-(3,4)-
SAT in two stages. First, we increase the length of all clauses to 3 by insert-
ing 260n variables that are forced to be false. Forcing them to be force requires
(260 x 19/3 = 1646 + 2/3)n 3-clauses. Second, we need to increase the number of
occurences of 4n variables using 4/3 n clauses. Thus we increased the number of
clauses in the system from 256n to 1904n and we can conclude that

Theorem 1. There exists a family of instances of Maa-(3,4)-SAT such that each,
for some n, consists of 1904n clauses, for which it is NP-hard to distinguish between
the systems where (1900 — e)n clauses can be salisfied and systems where at most

(1899 + e)n clauses can be satisfied (for e < 1/2).
This entails the following corollary.

Corollary 1. [t is NP-hard to approzimate MAX-(3,4)-SAT to within any factor
below 1.00052.

Moreover, Theorem 12 of [BK03] shows that the size of the difficult clause sets for
the case when each variable occurs at most 6 times is 168, and RESAV contains two
variables with only 5 occurances. This shows the following.

Lemma 2. There exists a family of sets of 2-clauses such thal each, for some n,
consists of 168n 2-clauses for which it is NP-hard to distinguish between the systems
where (164 —¢)n clauses can be satisfied and systems where al most (163+¢)n clauses
can be satisfied (for e < 1/2). Moreover, 8n variables in this system occur 5 times,
while other variables have exactly 6 occurences.

We can transform a system from this theorem into an instance of Max-(4,6)-SAT
in two stages. First, we increase the length of all clauses to 4 by inserting 336n vari-
ables that are forced to be false. Forcing them to be false requires 336 x 20.75 = 6972
3-clauses. Second, we need to increase the number of occurences of 8n variables using
2n clauses. Thus we increased the number of clauses in the system from 168n to
7144n and we can conclude that

Theorem 2. There exists a family of instances of Maz-(4,6)-SAT such that each,
for some n, consists of T144n clauses, for which it is NP-hard to distinguish between
the systems where (7140 — e)n clauses can be salisfied and systems where at most

(7139 + e)n clauses can be satisfied (for e < 1/2).

In the same fashion we can show that Max-(5,9)-SAT is also MAX-SNP-hard, but
the calculation of the provable inapproximability ratio is a bit difficult. A system
of 2-clauses in which there is a difficult gap of almost n clauses would have about
100n clauses, and thus it would require an insertion of about 300n variables forced
to be false—so we increase the clause length to 5. For each of the 300n variables we
need roughly 1500 clauses that force it, and thus we get a system with ca. 400, 000n
clauses. (It may be possible to decrease this estimate by a factor of 2.)

Note that if there exists an unsatisfiable formula of (k, s)-SAT, then there exists
a system in which some variable & occurs less then s times and which can be satisfied
if and only if z is false. Such a system can be used to define an Eq-reduction that
transform (2, s)-SAT instances into instances of (k, s)-SAT, using the same approach
as in the last two theorems. Therefore we can conclude that

Theorem 3. If s > f(k) then (k,s)-SAT is MAX-SNP-complete.

5 Satisfiability of Small Occurrence Instances

We now turn to lower bounds on f(k), the largest integer s such that every instance
of (k,s)-SAT is satisfiable. Lower bounds on f(k) were given by Kratochvil, Savicky
and Tuza [KST93], who used the Lovdsz Local Lemma to show that f(k) > |2%/ek];
they also showed f(i) =i for i <3 and 4 < f(4) <6.

The Lovasz Local Lemma has also been used in the study of the related problem
of hypergraph colouring; indeed this was one of its original applications (see [EL75],
[AS00], [BO1], [MRO2]). A hypergraph H = (V, E) is 2-colourable if there is a partition
V = ViUV, such that each edge contains vertices from both V; and V5. For k& > 2, let
g(k) be the largest integer such that every k-uniform hypergraph in which every vertex
is contained in at most g(k) edges is 2-colourable. It follows from a result of Seymour
[S74] that g(k) > k — 1 for every k, and after significant work it is now known when
g(k) > k: the Local Lemma shows g(k) > k for & > 9, Alon and Bregman [ABS8S]

showed that g(k) > k for & > 8, and finally Thomassen [T92] showed g(k) > k
for k > 4; while the Fano plane shows that ¢(3) < 3. More recently, McDiarmid
[M97] showed that it is possible to improve on bounds for g(k) obtained from the
Local Lemma by using the ‘lopsided’ version of the Local Lemma given by Erdos and
Spencer [ES91]. In this section we use a similar approach to obtain bounds on f(k).

Let G be a graph with vertex set X, and let {A,}.cx be a collection of events in
some probability space. We say that G is a lopsidependency graph for {A, },ex if, for
each € X, and each subset Y C X \ I'*(z), we have

P(A| \ A} < P(A,).

yeY

Here we write I'(z) for the set of neighbours of z and set T*(z) = {z} U T'(z). We
can now state the Lopsided Local Lemma.

Theorem 4. [ES91] Suppose that G = (X, E) is a lopsidependency graph for a
collection of events (Ay)zex. If there are real numbers (q:)zex such that, for each

reX,
P(A) <a [] (' —a)

yel(x)

then P(N\,cx Az) > 0.

Some notation: for a clause C', we write Ct for the set of variables that occur in
C' without negation, and C'~ for the set of variables that appear negated. We write
V(C) = C +UC™ for the set of all variables that occur in C.

Theorem 5. Suppose d > k > 1 are posilive inlegers and there is x € (0,1) such
that
2 (1 = 2)l2 (1 —)2y S, (1)

Then every instance of (k,d)-SAT has a satisfying assignment.

Proof. Let € be the set of clauses in an instance of (k, d)-SAT, and let X be the set of
variables occurring in clauses from C. We define a graph GG with vertex set € and an
edge between clauses C' and €’ if and only if there is a variable 2 that occurs negated
in one clause and without negation in the other. Given a sequence (p;)icx of reals
pi € [0,1], we generate a random assigment for X by setting each variable 7 € X true
independently with probability p; and false otherwise. Note that then

P(C not satisfied) = H P H(l — pi).
€C— €eCH
For C' € €, let A¢ be the event that C' is not satisfied. We first show that G is
a lopsidependency graph for the events (A¢)cee. Indeed, let C' be a clause in € and

let {C}:j € J} be a set of clauses that does not contain C' or any of its neighbours.
Let B be the event that C; is satisfied for every 5 € J. Let X be the set of variables

10

that occur both in €' and in some C}: changing the sign of all occurrences of some
of these variables if necessary, we may assume that all variables in Xy occur without
negation in C. By the definition of G, it follows that these variables do not occur
negated in any of the C;. Thus A¢ and B are both increasing in the variables in Xj.
Since A and B are independent if we condition on the assignment restricted to X, it
follows from the FKG inequality [FKG71], or the inequality of Harris [H60], that A
and B are positively correlated, and hence A and B are negatively correlated, which
is the condition required for a lopsidependency graph.

Let = € (0,1) satisfy (1). We will choose probabilities (p;);cx so that, for every

clause C,

H i H (1—pi) <z(l- w)d(c),

1€C— €Ct
where d(C) is the degree of C' in G. Now it follows from (1) that, for 0 <17 < k, we
have

{L'I/k((l — L) + (1 - L)d Z) > 1

(note that (1 —z)"+ (1 —2)?" is minimized for integers in this range when i = [d/2]
or |d/2]). Thus we can choose numbers ng,...,n4 € (0,1) such that, for 0 < < d,

i < 2R — z)d

and
ni + na—i = 1.

For each i« € X, let pos(i) be the number of positive occurrences of ¢ in clauses of C.
We define p; = 1pos(s)-

For a clause ' and a variable a € V(C'), we define d¢(a) as follows: if a occurs
without negation in C' then d¢(a) is the number of negated occurrences of a in clauses
of C; if =a occurs in C' then d¢(a) is the number of non-negated occurrences of a in
clauses of C. Since (' is adjacent to a clause C' exactly when there is a variable that
occurs negated in one clause and without negation in the other, we have d(C) <
ZaeV()(]C() Now if @ is not negated in C' then p, = n4_4.(a), while if a is negated
then p, = 14, (a)- So

P(C unsatisﬁed) = H Di H (1 — Pz’) = H Nd—d(a) H (1 - 77dc(a))

1eC'— ieC't 1eC'— ieO+
1k
= I e < TT 000
ZEV ZEV

< z(l— x)d(p).

It therefore follows from Theorem 4 that, with positive probability, all clauses of €
are satisfied and, in particular, it follows that C is satisfiable. O

We can now prove our lower bounds on f(k).

11

Corollary 2. All instances of (6,7)-SAT, (7,13)-SAT, (8,23)-SAT and (9,41)-SAT

are satisfiable.

Proof. Apply Theorem 5 with = = 1/21, z = 1/47, * = 1/100 and = = 1/200
respectively. O

Dubois [D90] showed that if every instance of (r,s)-SAT is satisfiable then every
instance of (r + 1,s + [s/r]|)-SAT is satisfiable. Corollary 2 therefore implies the
following.

Corollary 3. Fuvery instance of (k,k + 1)-SAT is salisfiable for k > 6.

We remark that Theorem 5 is not enough to show that every instance of (5,6)-
SAT is satisfiable. Indeed, considering an instance in which each variable occurs three
times without negation and three times with negation, we see that we would need
some z € (0,1) such that 2w1/5(1 —x)? > 1, but the left hand side has maximum less
than 0.95. However, we conjecture the following.

Conjecture 1. Fvery instance of (5,6)-SAT is satisfiable.

Theorem 5 also gives an asymptotic lower bound on f(k) that is slightly better
than that of Kratochvil, Savicky and Tuza [KST93]. However, it should be possible
to obtain better bounds by employing techniques from hypergraph colouring (see, for
instance, Radhakrishnan and Srinivasan [RS00]).

Finally, we remark that the arguments above show only the existence of a solution
for instances of (r,s)-SAT with s < f(r). Beck [B91] gave an algorithmic version of
the local lemma, which provides that a randomized algorithm finding a satisfying
assignment with a large probability, but his proof requires a much smaller value of s.
For fixed r, and s < f(r), is there a polynomial-time algorithm that finds a satisfying
assignment for all instances of (r, s)-SAT?

Acknowledgments.

We thank Johan Hastad for drawing our attention to the problem of approximating
(3,4)-SAT and Jorg Rothe for informing us about previous results on that problem.

References

[AS00] N. Alon and J. Spencer, The Probabilistic Method, 2nd ed. (Wiley, New York,
2000)

[AB88] N. Alon and 7. Bregman, FEvery 8-uniform 8-reqular hypergraph is 2-
colourable, Graphs Combin. 4:303-305, 1988

[A95] S. Arora, C. Lund, Hardness of Approzimations, in Approzimation Algorithms,
D. S. Hochbaum (ed.), PWS Publishing, Boston 1995, 399-446

12

[B91] J. Beck, An algorithmic approach to the Lovdsz local lemma I, in Random
Structures and Algorithms 2:343-365, 1991

[BK03] P. Berman and M. Karpinski, Improved Approzimation Lower Bounds on
Small Occurrence Oplimization, Elec. Coll. on Comp. Compl., Report 8 (2003)

[BO1] B. Bollobas, Random graphs, Second edition, Cambridge Studies in Advanced
Mathematics 73, Cambridge University Press, Cambridge, 2001, xviii+498 pp.

[C71] S.C. Cook, The complexily of theorem-proving procedures, Proc. 3rd ACM
STOC, 151-158, 1971

[D90] O. Dubois, On the r,s-SAT satisfiability problem and a conjecture of Tovey,
Discrete Applied Math. 26:51-60, 1990

[EL75] P. Erd6s and L. Lovasz, Problems and results on 3-chromatic hypergraphs
and some related questions, Infinite and finite sets, Vol. II, Colloq. Math. Soc.
Janos Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 609-627

[ES91] P. Erdés and J. Spencer, Lopsided Lovdsz local lemma and latin transversals,

Discrete Applied Math. 30:151-154, 1991

[F98] U. Feige, A threshold of Inn for approzimating set cover, Journal of ACM,
45(4):634-652, July 1998

[FKGT71] C.M. Fortuin, P.W. Kasteleyn and J. Ginibre, Correlation inequalities on
some partially ordered sets, Communications in Mathematical Physics 22:89—

103, 1971

[H97] J. Hastad, Some optimal inapprozimability results, Proc. 29th ACM STOC,
1-10, 1997

[HOO] J. Hastad, On bounded occurrence constraint satisfaction, Information Process-

ing Letters 74:1-6, 2000

[H60] T.E. Harris, A lower bound for the critical probability in a certain percolation
process, Proceedings of the Cambridge Philosophical Society 56:13-20, 1960

[KO1] M. Karpinski, Approzimating bounded degree instances of NP-hard problems,
Proc. 13th Symp. on Fundamentals of Computation Theory, LNCS 2138,
Springer, 2001, 24-34

[KST93] J. Kratochvil, P. Savicky and Z. Tuza, One more occurence of variable makes
satisfiability jump from trivial to NP-complete, STAM J. Comput. 8:203-210, 1993

[M97] C. McDiarmid, Hypergraph colouring and the Lovdsz Local Lemma, Discrete
Math. 167/168:481-486, 1997

13
[MR02] M. Molloy and B. Reed, Graph colouring and the probabilistic method, Al-
gorithms and Combinatorics 23, Springer-Verlag, Berlin, 2002, xiv+326 pp

[PY91] C. Papadimitriou and M. Yannakakis, Optimization, approzimation and com-
plexity classes, JCSS 43:425-440, 1991

[P94] C. Papadimitriou, Computational Complexity, Addison-Wesley, New York,
1994, 315-319

[RS00] J. Radhakrishnan and A. Srinivasan, Improved bounds and algorithms for
hypergraph 2-colouring, Rand. Structures and Algorithms 16:4-32, 2000

[S74] P.D. Seymour, On the two colouring of hypergraphs, Quart. J. Math. Oxford
Series 3 25:303-312, 1974

[T92] C. Thomassen, The even cycle problem for directed graphs, J. Amer. Math. Soc.
5:217-229, 1992

[T84] C.A. Tovey, A simplified satisfiability problem, Discrete Applied Math. 8:85-89,
1984.

[TO1] L. Trevisan, Non-approzimabilily results for optimization problems on bounded

degree instances, Proc. 33rd ACM STOC, 2001

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc

ECCC ISSN 1433-8092
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

