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Abstract

In an attempt to generalize Christofides algorithm for metric TSP to the asymmetric TSP
with triangle inequality we have studied various properties of directed spanning cacti. In this
paper we first observe that finding the TSP in a directed, weighted complete graph with triangle
inequality is polynomial time equivalent to finding the minimum spanning cactus in the graph
and then prove that it is NP-complete to determine whether a general unweighted digraph
contains a directed spanning cactus. The proof is a reduction from Exact cover and may be of
independent interest.
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1 Introduction

The Traveling Salesman Problem (TSP) is one of the most famous and well-studied NP-problems.
It was proven NP-complete already by Karp [5]. This means that an efficient algorithm for TSP is
highly unlikely; hence it is interesting to investigate algorithms that compute approzimate solutions.
However Sahni and Gonzalez [7] showed that in the case of general metrics it is NP-hard to find
a tour with weight within polynomial factors of the optimum. When the metric is symmetric and
constrained to satisfy the triangle inequality there exists a folklore 2-approximation algorithm, i.e.,
an algorithm that finds a tour no longer than two times the length of the optimal tour: Compute
a minimum spanning tree and then transform it into a TSP tour. The best known approximation
algorithm is a factor 3/2-approximation algorithm due to Christofides [1]. It constructs a TSP tour
from a spanning tree and a matching.

The above algorithms apply only to symmetric distance functions. The asymmetric case is
much less understood. The best known algorithm, invented by Frieze, Galbiati and Maffioli [3],
approximates the TSP tour within a factor of logn. In their paper, Frieze et al. pose the question
regarding the optimality of their algorithm. This question is still one of the most intriguing open
questions in the field of approximation algorithms. The by now twenty-year-old algorithm of Frieze
et al. [3] is still the best known algorithm and there is only a miniscule lower bound: Papadimitriou
and Vempala [6] recently proved that it is NP-hard to approximate the minimum TSP tour within
a factor less than 220/219 — ¢, for any constant € > 0.

Hence, any algorithm approximating the minimum TSP tour within a factor independent of the
number of vertices 7 is of great interest to the community. In order to construct such an algorithm
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it is natural to try to generalize the ideas used by Christofides [1]. In particular, it seems fruitful to
search for structures similar to that of a spanning tree in asymmetric graphs. One such structure
is the spanning cactus:

Definition 1. [8] A strongly connected, directed graph where each edge is contained in at most
(and thus, in ezactly) one directed cycle is called a directed cactus.

Definition 2. A spanning, directed cactus for a directed graph G is a subgraph of G that is a
directed cactus and connects all vertices in G.

Our first observation is that finding the minimum spanning cactus and the minimum TSP tour
are polynomial time equivalent problems. They also have the same hardness of approximation.
Therefore it can not be easier to find a minimum spanning cactus than a minimum TSP tour.

Theorem 1. Finding a spanning cactus of minimum total edge weight in an asymmetric, weighted,
complete graph where the weights obey the triangle inequality is polynomial time equivalent to finding
the minimum TSP tour in the same graph. They also have the same hardness of approrimation.

We then consider cacti for their own sake. More precisely, we study the problem of finding a
spanning cactus in a general, unweighted, directed graph and proved that it is NP-complete.

Definition 3. Spanning cactus problem (SCP): given a directed graph, decide if there is a spanning,
directed cactus in the graph.

Theorem 2. SCP is NP-complete.

This result indicates that cacti in asymmetric graphs are not useful as a tool in the construction
of approximation algorithms for other NP-complete problems.

1.1 Previous work

In discrete mathematics cacti are an accepted graph structure and in undirected graphs they have
been carefully studied. Finding the minimum cut in a graph is a well-known optimization problem.
Here a cactus is a useful and simple representation of the minimum cuts in a graph (there can be
many). Cacti for this purpose are used for example by Fleischer in [2].

Directed cacti are much less studied than the undirected ones. In 1994 Schaar [8] published
a paper about Hamiltonian properties of directed graphs. He showed some results about graphs
restricted to be directed cacti. As far as we know no one has shown anything about the complexity
of finding a spanning cactus in a directed graph.

1.2 Notations and conventions

In a directed graph an edge from vertex A to vertex B is denoted AB, a path from A to B to C is
denoted ABC and a cycle from A to B to C and back to A is denoted ABCA. Considered cycles
are always simple.

When we look at subgraphs (such as gadgets) we use the term cactus branch. We define the
term as:

Definition 4. Suppose there is a spanning cactus S in a directed graph G. In a subgraph H C G a
cactus branch is the set of edges {e :e € SN H}.



2 Proof of Theorem 1

We first prove that the minimum spanning cactus in a graph is in fact also the minimum TSP tour
and vice versa.

The TSP tour is a spanning cactus and therefore the weight of the minimum spanning cactus
is less than or equal to the TSP tour’s weight.

If we have the minimum spanning cactus it is possible to transform it into a TSP tour in the
following way: Start in an arbitrary vertex, traverse the spanning cactus in the order of an Euler
tour. If an edge goes to an already visited vertex replace the edge to the vertex and the next edge
in the Euler tour with the edge short-cutting them. If the new edge goes to a visited vertex repeat
until an unvisited vertex is found or to the end of the Euler tour. The triangle inequality gives that
the weight of the short-cut edge is less than or equal to the combined weight of the original edges.
The found TSP tour therefore has a weight less than or equal to the minimum spanning cactus’s
weight.

Secondly, we prove that TSP can be approximated within ¢ if and only if the size of the
spanning cactus can be approximated within ¢. Every TSP tour is a spanning cactus and hence a
c-approximation algorithm for TSP approximates the minimum spanning cactus within the same
ratio. Conversely, a c-approximation algorithm for the minimum spanning cactus can be used to
construct a c-approximate TSP tour by the construction outlined in the previous paragraph.

3 Proof that SCP is NP-complete

We will first show that SCP is in NP and then reduce Exact cover (which is a NP-complete
problem [5]) to SCP.

Lemma 1. SCP is in NP.

Proof. The definition of an NP-problem is that if the problem has a solution there is a witness
which convinces a verifier that the problem is solvable. It should be possible to check the witness
in polynomial time.

Our witness of SCP is the spanning cactus itself and the edges are given in the order of an Euler
tour. We will prove that we can check if the Euler tour is a spanning cactus in polynomial time.

If every vertex is in the Euler tour the subgraph is strongly connected.

To make sure that every edge is in at most one cycle, traverse the edges in the given order.
Then push every visited vertex on a stack. If we come to an already visited vertex, pop all vertices
above it (but not the vertex itself). Continue until all edges of the tour have been visited. If we
come to an already visited vertex, which is not on the stack, the test does not accept the graph as
a cactus, otherwise it does.

Thus we can check the witness of a spanning cactus in polynomial time. O

Remark: It is enough that the witness gives the edges of the cactus. The Euler tour can be
found in polynomial time.

3.1 Reducing Exact Cover to SCP

Exact cover is a well-known NP-complete problem [5]. By reducing Exact cover to SCP we will
show that SCP is NP-complete as well.



Definition 5. Exact cover problem: given a family F = {S1,Ss,...,Sn,} of subsets of a set U =
{u1,u9,...;umm}. Is there a subset C C F such that each u; € U is in ezactly one of the subsets
S;eC?

Theorem 3. [5] Ezact cover is NP-complete.

Theorem 4. [}] Ezact cover is equivalent to finding the 0-1 solution vector z of Az=b where A is
a 0-1 matriz and the vector b consists of only ones. The problem is NP-complete even when A is
restricted to having two or three ones in each row.

Note that the matrix multiplication above is defined over Z, not over Z,. Hence in a solution
of Az = b every equation has exactly one variable with value one and the rest have value zero.

We shall present a transformation from the restricted form of Exact cover (given i Theorem 4)
to SCP. The structure of the reduction is similar to the one Johnson and Papadimitriou use when
they reduce Exact cover to Hamiltonian cycle [4]. The Exact cover problem consists of several
equations as in Theorem 4. The equations will be represented by a graph. If and only if the
graph contains a spanning cactus the equations have a solution and the solution can be determined
from the spanning cactus. We will do the reduction in three steps. First we will construct the
corresponding graph, then show that if there is a solution to the equations we can find a spanning
cactus in the graph, and thereafter prove that if there is a spanning cactus in the graph we can
find a solution to the equations.

3.1.1 Construction of the corresponding graph

Each equation will be represented by a gadget in the graph. There are two types of equations and
therefore two types of so called equation-gadgets. Every possible spanning cactus corresponds to
a solution of the equations. Also each variable will be represented by a gadget. There are two
possibilities for the spanning cactus in the variable-gadget which corresponds to the value of the
variable. To ensure consistency of the solution there is a so called zor-gadget which connects the
variable-gadget with the equation-gadget where the variable occur.

There are two types of equations, z1 + o + 3 = 1 and z; + 2 = 1. Equations with three
variables are represented by gadgets as in Figure 1. Each variable corresponds to an edge in the
gadget. If a variable-edge is in the spanning cactus the variable is zero, otherwise it is one.
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Figure 1: Gadget for equations with three variables 1 + zo + z3 = 1.

Equations with two variables are represented by gadgets as in Figure 2. Also here each variable
corresponds to one edge in the gadget and if the variable-edge is in the spanning cactus the variable
is zero otherwise it is one.

Each variable is represented by a gadget as in Figure 3. The value of the variable is represented
by two edges. Only one of the value-edges can be in the spanning cactus (Lemma 6) and intuitively:
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Figure 2: Gadget for equations with two variables 1 + z2 =1

if the zero-edge is in the spanning cactus the variable has the value zero and if the one-edge is in
the spanning cactus the variable has the value one.

AO > > >.B

Figure 3: Variable-gadget.

All these gadgets are linked after eachother in a cycle (Figure 4).

Figure 4: The structure of the graph. Equation-gadgets and variable-gadgets are linked in a cycle.
The variable-edges in the equation-gadgets are connected to the one-edges in the variable-gadgets
by xor-gadgets. (Most of the xor-gadgets are omitted in the figure.)

To ensure that a spanning cactus gives the same value to a variable in all equation-gadgets
a variable-edge in an equation-gadget is connected to the one-edge in the variable-gadget by an
xor-gadget as in Figure 5. The xor-gadget will have the property that exactly one of the two edges
it connects can be in a spanning cactus (Lemma 7 and 8).

The inner structure of the xor-gadget is as in Figure 6. ABCD is the one-edge in the variable-
gadget and LKJI is the variable-edge in the equation-gadget.

If one variable occurs in several equations the xor-gadgets are linked together in the variable-
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Figure 5: The xor connection between variable-edges in the equation-gadgets (left) and one-edges
in the variable-gadgets (right).

Figure 6: Xor-gadget. ABCD and LKJI are the edges which the xor-gadget connects.

gadget as in Figure 7. The figure shows two linked xor-gadgets but it can be extended to arbitrarily
many. In Figure 7 AF is the one-edge in the variable-gadget, RO and VS are variable-edges in the
equation-gadgets. In detail the linked xor-gadgets look like Figure 8.

3.1.2 A solution to Exact cover gives a spanning cactus

If there is a solution to Exact cover we want it to be a spanning cactus in our constructed graph.
In this section we will prove this by showing how to find a spanning cactus from a solution of the
equations in Exact cover.

Lemma 2. If there is a solution to the Ezact cover problem then there is a spanning cactus in the
constructed graph.

Proof. In a solution of an equation with three variables, two have the value zero and one has the
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Figure 7: Linked xor-gadgets. If a variable occurs in two different equations the xor-gadgets are
linked. AF is the one-edge in the variable-gadget, RO and VS are variable-edges in the equation-
gadgets.
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Figure 8: Linked xor-gadgets (the same as Figure 7)

value one. If a variable has the value zero its variable-edge is in the spanning cactus otherwise it is
not. Figure 9 shows three cactus branches which include exactly two of the three variable-edges in
the equation-gadget.

In the equations with two variables a solution has exactly one variable with the value one and
one with the value zero. Figure 10 shows two cactus branches which include exactly one of the two
variable-edges in the equation-gadget.

In a solution a variable obviously has the value zero or one. The corresponding edge in the
variable-gadget (Figure 3) is in the cactus branch. The variable-gadget and the equation-gadget
for two variables are identical and the two cactus branches in Figure 10 are the same for the
variable-gadget. Thus we can find a cactus branch in the variable-gadget for each value of the
variables.

In a solution a variable has a unique value and thus the xor-gadgets will only connect edges in
the spanning cactus with edges not in the spanning cactus. Figure 11 shows cactus branches in the
xor-gadget which includes exactly one of the two “edges” ABCD and LKJI.

Hence if there is a solution to the equations Az = b we can find a spanning cactus in the
constructed graph. O



z3

Tl T2
Y A A
A > G > > > »e B
z3
1 T9
A > Ny LA >e B
z3
Tl T2
&
A Y
A e B

Figure 9: Possible cactus branches in a gadget for equations with three variables, 1 + 2 4+ 3 = 1.
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Figure 10: Possible cactus branches in a gadget for equations with two variables, 1 + 2o =1 .

3.1.3 A spanning cactus gives a solution to Exact cover

In this section we will prove that if there is a spanning cactus in our constructed graph there is
a solution to the equations in Exact cover (Lemma 3). We will also show how to determine the
solution from the spanning cactus.

Lemma 3. Suppose there is a spanning cactus in our constructed graph. Then there is a solution
to the equations Ax = b and the solution can be found in the spanning cactus.
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Figure 11: Cactus branches in a xor-gadget.

It is easy to see that the vertices connecting the variable- and equation-gadgets are in the
spanning cactus (Figure 4) since it is strongly connected. Some edges in the variable- and equation-
gadgets are not really edges but xor-gadgets. Presently we view them as atomic edges and prove
in Lemma 7 and 8 that our view holds.

Suppose there is a spanning cactus in our constructed graph. Then there is a cactus branch
in every gadget. We will prove that every cactus branch corresponds to a solution and that the
solution of the equations is consistent. We need the following properties of a directed cactus:

Lemma 4. In a directed cactus every vertex has the same in- and out-degree.

Proof. Assume that for one vertex there are more out- than in-edges. Since the graph is strongly
connected every out-edge is the beginning of a cycle. By the pigeon-hole principle at least two
cycles ends at the same in-edge. Then the in-edge is contained in two cycles which contradicts the
definition of a cactus. The same type of argument holds if there are more in- than out-edges. [

In the equation-gadget with three variables every cactus branch corresponds to a solution of the
equation. In other words exactly two of the three variable-edges should be in the cactus branch.
The following lemma, proves this and that the cactus branches in Figure 9 are the only possible
cactus branches in the gadget.

Lemma 5. Suppose that the gadget for equations with three variables (Figure 1) is a subgraph in
an arbitrary graph. Vertices A and B are connected to the rest of the graph but no other vertices
have any other edges than the ones in the figure. Any cactus branch includes exactly two of the
edges T1, T2 and 3.

Proof. The path is restricted in several ways. It follows the lower horizontal edges to connect all
vertices. If it traverses one vertical edge the cycle has to end in the same vertex to make the in-
and out-degree equal (Lemma 4). The spanning cactus traverses exactly one of the vertical edges



(otherwise one edge is contained in more than one cycle). For each vertical line there is exactly one
way to connect all vertices and to give all vertices an equal in- and out-degree (Figure 9). O

In the equation-gadget with two variables every cactus branch includes exactly one of the two
variable-edges to correspond to a solution of the equation. The following lemma proves this and
Figure 10 shows that the only possible cactus branches in the gadget.

Lemma 6. Suppose an equation-gadget for equations with two variables (Figure 2) is a subgraph
in an arbitrary graph. Vertices A and B are connected to the rest of the graph but no other vertices
have any other edges than the ones in the figure. Any cactus branch includes exactly one of the
edges 1 and xo.

Proof. Since all vertices in a cactus have the same in- and out-degree (Lemma 4) there are only
two possible ways to traverse the gadget (Figure 10). O

A variable should of course have exactly one value. In other words exactly one of the value-
edges is in the cactus branch. The variable-gadget and the equation-gadget with two variables are
identical and Lemma 6 ensures that any spanning cactus includes exactly one of the two value-edges.

We introduce the xor-gadget to ensure that the variable has the same value in all equations.
Specially we want the xor-gadget to force exactly one of the edges it connects to be in the spanning
cactus. The following lemma proves this and that the cactus branches in Figure 11 are the only
ones.

Lemma 7. Suppose that the zor-gadget (Figure 6) is a subgraph in an arbitrary graph. Vertices A,
D, I and L are connected to the rest of the graph but no other vertices have any other edges than
the one in the figure. Any cactus branch contains either the edges AB and CD but not JI and LK
or it contains JI and LK but not AB and CD.

Proof. Since the spanning cactus is strongly connected the two diamonds (BEJFB and CGKHC)
are forced to be in the spanning cactus. A path in the cactus which starts in vertex A will end in
vertex D (Figure 11) since every vertex in a cactus has the same in- and out-degree (Lemma 4).
For the same reason a path which starts in vertex L ends in vertex I (Figure 11).

Assume that in the cactus there is a path from A to D and from L to I. Then particularly the
edges BC and KJ are in the cactus (otherwise some vertices will not have the same number of in-
and out-edges). Then the diamonds and the edges BC and KJ will form three different cycles. The
edges CG, GK, JF and FB will be contained in two cycles which contradicts the definition of a
cactus. U

If one variable occurs in several equations the xor-gadgets are linked together in the variable-
gadget (Figure 8). Even for linked xor-gadgets Lemma 7 holds. More formally the Lemma can be
extend to:

Lemma 8. In an arbitrary graph two (or more) zor-gadgets linked as in Figure 8 form a subgraph.
Single vertices as A, F, O, R, S and V (and possible more) are connected to the rest of the graph
but no other vertices have any other edges than the ones in the figure. Any cactus branch contains
either AB and EF or it contains RQ, PO, VU and TS (and possible more).

Proof. All diamonds are in the spanning cactus since it is strongly connected. Since the in- and
out-degree has to be equal (Lemma 4) a path in the cactus which starts in A still has to end in F,
and the same goes for paths from R to O and from V to S (and possible more).
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If there is a path in the cactus from A to F by Lemma 7 the edges RQ, PO, VU and TS can
not be in the cactus.

If there is a path in the cactus from R to O we want to show that it has to be a path in the
cactus from V to S as well. If there is a path from R to O the edges AB, BC, CD can not be in the
spanning cactus by Lemma 7. If the edge CD is not in the cactus Lemma 7 shows that the edges
VU and TS has to be in the cactus and that the edge EF can not be in the cactus. By induction
the argument can be extended to arbitrary many xor-gadgets. O

To conclude: If there is a spanning cactus in the graph every variable-gadget gives a value to
the corresponding variable (Lemma 6). The construction of the xor-gadgets ensures that every
variable has the same value in all equations (Lemma 7). Since there is a spanning cactus every
equation is satisfied (Lemma 5) and (Lemma 6). Thus we have a solution of Az = b and have
proven Lemma 3.

3.2 Conclusion

We have constructed a graph from a the equations Ax = b and shown that if there is a solution to
the equations we can find a spanning cactus in the graph (Lemma 2). If there is a spanning cactus
in the graph Lemma 3 shows that we can find a solution to the equations by the spanning cactus.
The result can be formalized to:

Theorem 5. There is a spanning cactus in the constructed graph if and only if Az = b has a
solution.

SCP is in NP (Lemma 1) and the reduction from Exact cover to SCP can obviously be done in
polynomial time. Since Exact cover is known to be NP-complete [5], Theorem 5 proves that SCP
also is NP-complete (Theorem 2) and we are done.
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