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Abstract

We obtain a characterization of ACCP? in terms of a natural class of constant width
circuits, namely in terms of constant width polynomial size planar circuits. This is shown
via a characterization of the class of acyclic digraphs which can be embedded on a cylinder
surface in such a way that all arcs flow along the same direction of the axis of the cylinder.

1 Introduction

This paper deals with the relationship between the computational power of width restricted
circuits and depth restricted circuits. We relate constant width polynomial size planar circuits
and also nondeterministic branching programs to constant depth polynomial size circuits.

Constant width polynomial size circuits (and branching programs) was shown to have sur-
prising computational power by Barrington [1]. The class of functions computed by constant
width polynomial size circuits is exactly NC?!, and is thus considerable more than the functions
computed by constant depth polynomial size circuits, being ACP.

Such connections are very interesting to explore, since they might provide the means for a
better understanding of the classes involved, thus approaching lower bounds. Currently however,
obtaining lower bounds for NC?! seems out of reach.

The smallest natural circuit class lacking lower bounds is ACC?, the subclass of NC1!
computed by constant depth polynomial size circuits allowing MOD gates. By restricting the
digraph representation of circuits geometrically, we obtain a characterization of ACC? in terms
of constant width circuits.

Theorem 1 Constant width, polynomial size planar circuits compute exactly ACCP.

Although Barrington and Thérien gave a characterization of ACC? in terms of finite
monoids [4] and Yao proved a nontrivial upper bound for ACC? in terms of a class of threshold
circuits [17], our result is the first alternative characterization of ACC? by a circuit model.

Planarity have previously been employed in circuit lower bounds. While for general circuits,
the best lower bounds for explicit functions are linear, superlinear lower bounds are known for
general planar circuits. This was first obtained by Lipton and Tarjan based on their planar
separator theorem [10], although their lower bound did not allow inputs to appear more than
once, as we require in the above characterization. For general planar circuits allowing inputs to
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occur several times, superlinear lower bounds was proved by Turdn, [14] and improved to the
current best lower bound of Q(nlog?n) by Groger [7].

Since the circuits of Theorem 1 are restricted in two more aspects than planarity, namely that
of constant width and of monotonicity in gate operations, it presents hope for obtaining much
better lower bounds than just slightly superlinear. Therefore one could hope that the geometric
perspective on computation can lead to new ways of understanding the internal structure of
NC!, thus obtaining progress towards separating ACC? and NC1.

Much of the naturalness of ACC? comes from the algebraic characterizations by Barrington
and Thérien of the classes AC? ACC® and NC! in terms of restrictions of finite monoids [4].
The class AC? has also been characterized in terms of geometric restrictions by Vinay [15] and
Barrington et al [2, 3]. It was shown that the class of functions computed by constant width
polynomial size upwards planar circuits (and nondeterministic branching programs) is exactly
ACO.

An intermediate geometric restriction between upwards planarity and planarity was studied
in [8]. There progress towards characterizing ACC® was obtained by relaxing the geometrical
restriction of upwards planarity to that of cylindricality. While the exact relation to constant
depth circuits is unknown under this restriction, it was shown that constant width polynomial
size cylindrical circuits (and nondeterministic branching programs) can compute a strict super-
class of AC?, while still only computing functions in ACCP. It is by building upon this result
we obtain Theorem 1.

The restrictions of upwards planarity and cylindricality are similar in the sense that each
layer of the circuit is drawn “together”, in such a way that all arcs flow in a common direction.
Under the restriction of planarity, nodes are in contrast allowed to be placed in an arbitrary
way in the plane.

The results on the computational power of cylindrical circuits, as well as the characterization
of ACO in terms of upwards planar circuits are actually based upon the algebraic characteriza-
tions by Barrington and Thérien[4]. Thus with the present characterization of ACC? and the
previous characterizations of AC? in terms of geometric restrictions, the link between algebra
and geometry in a computational setting seems very strong.

The key to applying the results on the computational power of cylindrical circuits for proving
Theorem 1, is in identifying exactly which planar digraphs are cylindrical.

Theorem 2 A layered digraph D is layered cylindrical if and only if it is a subgraph of an
acyclic planar layered digraph with a unique source and sink.

This theorem is implicit in the works of Tamassia and Tollis [12] on tesselation representa-
tions of graphs in the plane and on a sphere. By “cutting” a digraph along a path from the
source to the sink, they effectively reduces the spherical case (or equivalently the cylindrical
case) to the planar case.

We give another proof of the theorem, working directly on the given planar embedding, tak-
ing advantage of the digraph being layered. This allows us to directly extract the combinatorial
characterization of cylindricality used in [8] and also makes later uniformity considerations eas-
ier. With appropriate definitions of uniformity we can obtain the following uniform version of
Theorem 1.

Theorem 3 Logspace-uniform constant width, polynomial size planar circuits compute exactly
logspace-uniform ACCP.

While the motivation here for exploring cylindrical representations of planar digraphs was
the study of constant width computation, it is interesting to compare the above characterization
with other previous representations of classes of planar graphs.



Mostly undirected graphs and various representation of those have been studied, even on
cylinder surfaces [13]. For digraphs, the following characterization of upwards planar digraph
was proved independently by Kelly [9] and Battista and Tamassia [5].

Theorem 4 (Kelly, Battista and Tamassia) For a digraph D the following statements are
equivalent.

1. D is a subdigraph of an acyclic planar digraph with o unique source and sink, which can
be embedded in the plane with the source and sink both on the outer face.

2. D has an upwards planar embedding, that is a planar embedding where all arcs are mono-
tonically increasing in the upwards direction.

3. D has an upwards planar straight-line embedding

By adding dummy node to a given planar digraph D with a unique source and sink we can
obtain a planar layered digraph D’ which is a subdivision D. Using Theorem 2 we obtain a
cylindrical embedding of D’ which in turn yields a cylindrical embedding of D. To complete
the analogy with the above theorem, we would consider cylindrical embeddings with the arcs
being geodesics, the natural notion of straight lines on a cylinder surface. For layered digraphs
such embeddings are easily obtained by the proof we will present for Theorem 2. For general
digraphs the above subdivision argument does not give this kind of embedding. This is also
obtainable, however, based on Battista and Tamassias proof of Theorem 4 by employing the
“cutting” operation of [12].

Organisation of Paper

In Section 2 we introduce the notions of embeddings and circuits we will consider. We also
state some basic properties about planar embeddings of certain digraphs. In Section 3 we prove
Theorem 2, and in Section 4 we prove Theorem 1, as well as characterizing the computational
power of planar branching programs. We introduce combinatorial embeddings in Section 5 as a
means for dealing with uniformity issues. We conclude with some discussions and open problems
in Section 6.

2 Preliminaries

Bounded depth circuits

ACDP is the class of functions computed by polynomial size bounded depth circuits consisting of
NOT gates and unbounded fanin AND and OR gates. ACC?9 is the class of functions computed
when we also allow unbounded fanin MOD gates computing MOD,,, for constants m.

Planar and cylindrical embeddings of digraphs

A digraph D = (V, A) is called layered if there is a partition V = VU V3 U ... UV} such that
all arcs of A goes from layer V; to the next layer Vi1 for some i. We call h the depth of D, |V;]
the width of layer ¢ and k = max |V;| the width of D.

A digraph is planar if it can be embedded in the plane. It is called upward planar if it
can be embedded in the plane, in a way such that all arcs are monotonically increasing in the
vertical direction. It is called cylindrical if it can be embedded on a cylinder surface, in a way
such that all arcs are monotonically increasing in the direction of the axis of the cylinder.



We call a layered digraph layered cylindrical if it can be embedded on a cylinder surface,
such that all arcs are monotonically increasing in the direction of the axis of the cylinder and
that layers correspond to disjoint circles of the cylinder, which contain all the nodes of the layer.

In [11] the following properties of planar embeddings are proved. They are stated under the
assumption of the digraph being 2-connected, but the proof does not use this assumption.

Lemma 5 Let D be a planar acyclic digraph with a unique source and sink, and let D be any
planar embedding of D. Then

1. Fach face ofﬁ consists of two directed paths.

2. For any vertex v ofﬁ all ingoing (outgoing) arcs of v appear consecutively around v.

Bounded width branching programs and circuits

A nondeterministic branching program is an acyclic digraph where all arcs are labelled by either
a literal, i.e. a variable or a negated variable, or a boolean constant, and an initial and a terminal
node. An input is accepted if and only if there is a path from the initial node to the terminal
node in the graph that results from substituting constants for the literals according to the input
and then deleting arcs labelled by 0.

When referring to constant width branching programs we will mean a nondeterministic
branching program which viewed as a digraph is layered and of constant bounded width.

By a constant width circuit we mean a circuit consisting of fanin 2 AND and OR gates and
fanin 1 COPY gates, which when viewed as a digraph, like for branching programs, is layered
and of constant bounded width. Input nodes can be literals or boolean constants.

Viewing nondeterministic branching programs and circuits as digraphs it makes sense to
restrict them geometrically. Since all cylindrical embeddings considered are layered cylindrical,
we will just write cylindrical instead of layered cylindrical.

3 Embedding digraphs on a cylinder

In this section we will prove Theorem 2. The “only if” part is easily obtained: Consider a
layered cylindrical embedding of a layered digraph D. By adding new arcs one can eliminate
sources and sinks appearing in all layers except the first and the last. Now add a new first
layer with a single node with arcs to all nodes in the previous first layer. Similarly add a new
last layer with a single node with arcs from all nodes in the previous last layer. We have thus
obtained an acyclic layered cylindrical superdigraph of D with a unique source and sink. The
proof is completed by observing that every cylindrical embedding can be transformed into a
planar embedding.

The “if” part is proved in several steps. First we will obtain a suitable partition of the
planar embedding, and then later use this to obtain a new embedding on a cylinder surface.

Consider a planar embedding D of a layered digraph D. Let V(D) = VpU... UV}, be the
layers of D. Let C be a closed curve in the plane, partitioning the plane into two regions R
and Re. We say that C is a separating curve for layer ¢ if the following two properties hold.

1. The intersection of C and D consists exactly of the nodes in V.

2. One of the regions R; contain the embedding of subdigraph induced by Vo U ... UV;_4
as well as the arcs from V;_; to V;, and the other region contains the embedding of the
subdigraph induced by V;11 U ... UV}, as well as the arcs from V; to Vi1



Figure 1: Curves separating an acyclic planar layered digraph.

The following proposition shows that we can find separating curves for all layers in an acyclic
planar layered digraph with a unique source and sink. This is illustrated in Figure 1.

Proposition 6 Let D be an acyclic planar layered digraph with a unique source and sink, with
layers V(D) = Vo U... UV}, and let D be a planar embedding of D. Then there exists disjoint
curves C1,...,Cyr_1 such that C; is a separating curve for layer i with respect to D for all 1.

Proof We will construct the separating curves by an iterative process. Assume that we have
found separating curves C1,...,C;_1.

Let v be a node in D which is neither the source or the sink. That is, v has at least one
ingoing arc and one outgoing arc, and by Lemma 5 all the ingoing arcs and outgoing arcs
appear consecutively around v in D. 1t is then meaningful to talk about the rightmost ingoing
(outgoing) arc, and the leftmost ingoing (outgoing) arc.

Since the ingoing arcs to V;_; and outgoing arcs from V;_; are separated by C;_; it follows,
that when traversing C;_1 from a node between the leftmost ingoing and outgoing arcs the next
node is approached between the rightmost ingoing and outgoing arcs.

We now find a separating curve C; for layer ¢ by the following process: Start in an arbitrary
node v in layer i. Follow along the left of the leftmost ingoing arc a to a node w in layer ¢ — 1.
If a is the leftmost outgoing arc of w we follow the curve C;_1 to the next node w’ and follow
the rightmost arc to a node v’ in layer i. Otherwise we follow the next outgoing arc (in the
counterclockwise order) to a node v’ in layer 7. Since both v and v belong to the boundary of
the face of D we are within and because they belong to the same layer of D, it follows from
Lemma 5 that v’ is approached along the rightmost ingoing arc.

Figure 2: Finding separating curves.

We now continue the same process, as illustrated in Figure 2, until a closed curve C; is
found. It is clear that C; has the following properties:

1. C; only intersects D in nodes from Vi.

2. ()} is disjoint from C1,...,C;_1.



3. The region R partitioned by C; containing C;_1 does not contain nodes from layers i, . .., h.

of which the last holds because D has a unique sink.

Now, since all nodes in V; has an ingoing arc, and since they are not in the region R
containing C;_; by (3), it follows from (1) that C; intersects ezactly the nodes in V;. From this
and (3) it follows that C; is a separating curve for layer 1. O

The next step is to associate an orientation (clockwise or counterclockwise) to each of the
separating curves. These will give the order in which the nodes of each layer is to be drawn
around a circle of the cylinder.

We give the first curve C the counterclockwise orientation. Now assume we have assigned
orientations to C4,...,C;_1. We assign an orientation to C; based on whether it contains C;_{
or vice versa. There will be three cases as illustrated in Figure 3:

(a). C;_1 is inside the region bounded by C;.
(b). The regions bounded by C;_; and C; are disjoint.

(c). C; is inside the region bounded by C;_;.

Figure 3: Orienting the separating curves.

In cases (a) and (c) we assign the same orientation to C; as C;j_1. In case (b) we assign the
opposite orientation to C; as C;_1.

From the properties of separating curves it follows that case (b) can only occur once. In
fact there is a k such that if ¢ < k, C; is oriented counterclockwise and if i > k, C; is oriented
clockwise.

For nodes a and b on a curve C, we will by, the segment from a to b, denote the segment of
C traversed by following C from a to b (inclusive) along the orientation associated to C'.

The crucial property is now the following: Let a and b be nodes of layer ¢ — 1 with arcs to ¢
and d in layer i respectively. Then nodes (except a and b) on the segment from a to b has only
arcs to the segment from c¢ to d (see Figure 3). This is in fact, basically the characterization of
cylindricality that was used in [8].

In fact, by this property, it follows that in Proposition 6, the separating curves found are
actually traversed according to the orientations assigned above.

Furthermore, assign an ordering of the outgoing (ingoing) arcs from (to) a layer by traversing
the separating curve according to the associated orientation, and including the outgoing arcs
(ingoing arcs) of each node in counterclockwise (clockwise) order. Then it follows from the
above property that the ordering of the outgoing arcs from a layer coincide with the ordering
of the next layer, where the arcs are ingoing.



We are now in position to create a layered cylindrical embedding of D. The nodes in layer ¢
are placed in a circle around the cylinder in the order they are met, when traversing the curve
C; according to the associated orientation, and the arcs between layers are simply drawn in the
order described above.

This completes the embedding and the proof of Theorem 2.

4 Planar branching programs and circuits

In this section we characterize the computational power of planar circuits (and nondeterministic
branching programs). First we show how to compute any ACC? function by a constant width
polynomial size planar circuit.

The core of the simulation is the following substitution lemma for planar circuits. Using this
we only need to show how to compute AND, OR and MOD,, by planar circuits, to establish
that planar circuits can compute all of ACCPO.

Lemma 7 If f(x1,...,x,) is computed by a planar circuit of size s1 and width wy and g1, ..., gn
are computed by planar circuits each of size so and width wy then f(gi,...,gn) is computed by
a planar circuit of size O(s153) and width O(wjws).

Proof By exchanging AND with OR gates and vice versa and by negating inputs, g1, ..., gn
are also computed by planar circuits of size sg and width we. Consider any planar embedding
of a circuit C for f and choose planar embeddings of circuits Cy,...,C, and Cy,...,C, for
Ji,---,9n and gi, ..., g, With the output gate appearing on the outer face.

We now stretch each layer of C' into so layers, by replacing each arc by a string of so — 1
COPY gates, preserving planarity of the embedding. This ensures that input nodes in different
layers are at least so layers apart, and only increases the size by a factor s and the width by a
constant factor.

This now allows us to simply substitute the embedding of C; for x; and the embedding of
C; for #; in the embedding of C preserving the planarity, without a large increase in width. [

In [8] the construction for AND, OR and MOD,, is given in terms of cylindrical branching
programs, and hence also in terms of planar circuits. For completeness we provide the details
of the constructions directly in terms of planar circuits here.

The AND (and OR) of n inputs is easily computed by a planar circuit of width 2 and size

O(n) as shown in Figure 4.
T2 T3 X4 4 Tn

Figure 4: A planar circuit computing AND.

The construction for MOD,,, is more complicated, an example of it is shown in Figure 5.

It can be computed by a planar circuit of width O(m) and size O(mn) constructed as follows:
We will have 2n + 1 layers. The first layer consists of a single input gate with the constant
1. In the last 2n layers the main part consists of m sufficiently long strings, which we number
0,...,m — 1, of alternating AND and OR gates taking each other as input, the AND gates in
odd layers and the OR gates in even layers.

String 0 start with an AND gate and all other strings start with an OR gate. The constant
input 1 in layer 0 will take the place of an OR gate in string 0. The construction will ensure
that the OR gate in layer 2i of string j evaluate to 1 if and only if 22:1 =j (mod m).



The first AND gate in string 0 take the constant input 1 as input. The first OR gate in the
other strings take a constant input 0 as input. The AND gate in layer 2i 4+ 1 of every string
take z; as the other input. The first m — 1 OR gates in string 0 take a constant input 0 as the
other input. The other OR gates in string 0, say in layer 2i, take an AND gate as the other
input, which is fed by z; and the OR gate in layer 2(i — 1) of string m — 1. In general does the
OR gate in layer 2¢ of string j take an AND gate as the other input, which is fed by x; and the
OR gate in layer 2(i — 1) of string j — 1. The output gate is the last OR gate of string 0.

Figure 5: A planar circuit of width 9 computing MOD3 on 5 inputs.

Note, that while the above constructions are cylindrical, once we use Lemma 7 to substitute
a circuit computing MOD,,, on more than m inputs, we leave the class of cylindrical circuits.

To conclude, we can from an ACCO circuit construct a constant width, polynomial size
planar circuit computing the same function as follows: Expand the ACCDP circuit into an ACC?°
formula, and move the NOT gates to the layer just above the inputs by the usual constructions.
Now proceeding layer by layer, we build appropriate components for the AND, OR and MOD,,
gates, and compose these using the substitution lemma.

We now prove the last part of Theorem 1, that constant width, polynomial size planar
circuits only compute functions in ACC?Y.



We need the following theorem from [8].

Theorem 8 FEvery boolean function computed by a constant width, polynomial size cylindrical
circuit is in ACCP.

Corollary 9 Let p be a polynomial and w any constant. Then there is a polynomial q and a
constant h such that every boolean function on n inputs computed by a cylindrical circuit of size
p(n) and width w is computed by an ACCC circuit of size q(n) and height h.

Now consider a planar circuit C' on n inputs of size p(n) and width w. We show that C
is computed by an ACC? circuit of size ¢(p(n))¥ and height wh, assuming without loss of
generality that 1+ p(n) < g(p(n)).

If the width of C is in fact 1, then the function computed by C' is certainly also computed
by an ACC?P circuit of size ¢(p(n)) and height h.

Otherwise, pick a node v in the first layer of C' and let D be the subdigraph of the digraph
representation of C, which is induced by the nodes which are on a path from v to the output
node of C.

Removing the nodes in D, note that the remaining components are digraph representations
of planar circuits. There are at most p(n) of these each of size p(n), but with width w — 1, since
at least one node is removed from each layer. By induction, all these are computed by ACCP°
circuits of size g(p(n))“~! and height (w — 1)h.

Now by Theorem 2 D is cylindrical, and we construct a cylindrical embedding of it. For
all AND and OR gates that have indegree 1 in D we add a new input variable in the previous
layer, preserving cylindricality. This will yield a cylindrical circuit of size p(n) and width w on
at most p(n) inputs, which by 9 is computed by an ACC? circuit of size g(p(n)) and height h.
Now substitute the functions constructed inductively in this circuit to obtain an ACC? circuit
of size q(p(n)) + p(n)q(p(n))*~t < q(p(n))¥ and height wh computing the function computed
by C'. This completes the proof of Theorem 1.

Turning to the computational power of planar nondeterministic branching programs, we can
easily characterize this by Theorem 2. Indeed we can assume, without loss of generality that
every node is on a path from the initial node to the terminal node, and hence Theorem 2 applies
to give the following theorem.

Theorem 10 Constant width, polynomial size planar branching programs compute the same
boolean functions as constant width, polynomial size cylindrical branching programs.

As noted in [8] this class of functions does not seem capture all of ACC®. The compositional
approach that worked so well for planar circuits using Lemma 7 fails for planar branching
programs: in order to substitute a branching program for an edge, preserving planarity, one
would need an embedding with both the initial and the terminal node on the external face.
Thus by Theorem 4 and the results by Barrington et al [2], substituted branching programs can
only contribute with AC? functions.

5 Uniformity considerations

When considering uniformity, we need to be more precise when we talk about embeddings. We
will employ the concept of combinatorial planar embeddings based on Edmonds’ permutation
technique [6] (see also [16] pages 70-73).

Combinatorial embeddings are most conveniently introduced for undirected graph. Let
G = (V,E) be an undirected graph. For a vertex u define the set of neighbours N(u) =



{v | {u,v} € E} and let A = {uv |[{u,v} € E} be the set of all oriented arcs obtained from E.
Now let p, : N(u) — N(u) be a cyclic permutation of the neighbours of u. Define P: A — A
by P(uv) = vp,(u). Observe that P is a permutation of A.

As Edmonds now observed, there is a one-to-one correspondance between choices of {p, } and
2-cell embeddings of G into closed orientable surfaces, where faces of the embedding correspond
to the orbits of P.

We can thus say that {p,} is a combinatorial planar embedding of G if and only if Euler’s
formula v — e + f = ¢+ 1 is satisfied, where v = |V, e = |E|, f is the number of orbits in P
and c is the number of connected components of G.

A description of a combinatorial planar embedding of a digraph D then simply consists
of having for each vertex a list of the neighbours, in clockwise order around the vertex, say,
according to an embedding. A description of a layered cylindrical embedding consists of an
ordering of the nodes in each layer, corresponding to their order around the cylinder in an
embedding.

We thus say that a family of planar circuits or cylindrical circuits are logspace-uniform, if
there is a O(logn) space bounded Turing machine which on input 1™ outputs the description
of the circuit on n inputs as well as the above defined description of the embedding.

With these definitions it is not difficult to realize Proposition 6 in logspace and using this
also obtain Theorem 3. More details on this will be given in the final version of this paper.

6 Conclusion

We have obtained a characterization of ACC? in terms of a geometrical restriction of the
digraph representation of circuits. Together with the previous characterizations of AC? this
shows a striking similarity to the algebraic characterizations by Barrington and Thérien, as
summarized in the following table.

Circuit class ACY ACCY NC!

Nonuniform Automata on monoids Aperiodic Solvable | Unrestricted
Constant width Branching programs | Upwards planar ? Unrestricted
Constant width Circuits Upwards planar | Planar | Unrestricted

It would be very interesting to further investigate the link between algebra and geometry in
this setting. Intuitively, a cylindrical circuit correspond in some sense to an ACC? circuit with
just one layer of MOD gates. One could hope to explain this by tightening this link. In [8] a
II, o MOD o ACP lower bound and an ACC? upper bound was proved. Perhaps one could
give an seemingly better upper bound than ACC?, for example AC® o MOD o ACP°.

We don’t have a characterization of ACC? in terms of geometric restrictions of branching
programs, yet they remain attractive for their simplicity. It might very well be within reach to
obtain lower bounds for constant width planar branching programs, providing a first step for
employing planarity in lower bounds for ACC?P.

7 Acknowledgement

I am grateful to my advisor Peter Bro Miltersen for introducing me to constant width compu-
tation and for helpful comments and suggestions.

10



References

[1] D. A. Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in NCL. J. Comput. System Sci., 38(1):150-164, 1989.

[2] D. A. M. Barrington, C.-J. Lu, P. B. Miltersen, and S. Skyum. Searching constant width
mazes captures the AC? hierarchy. In Proceedings of the 15th Annual Symposium on
Theoretical Aspects of Computer Science, pages 73-83, 1998.

3] D. A. M. Barrington, C.-J. Lu, P. B. Miltersen, and S. Skyum. On monotone planar
circuits. In 14th Annual IEEE Conference on Computational Complezity, pages 24-31.
IEEE Computer Society Press, 1999.

[4] D. A. M. Barrington and D. Thérien. Finite monoids and the fine structure of NC1.
Journal of the ACM (JACM), 35(4):941-952, 1988.

[5] G. D. Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs.
Theoretical Computer Science, 61(2-3):175-198, 1988.

[6] D. Edmonds. A combinatorial representation for polyhedral surfaces. Notices Amer. Math.
Soc., 7:646, 1960.

[7] H. D. Groger. A new partition lemma for planar graphs and its application to circuit
complexity. In Fundamentals of Computation Theory, volume 529 of Lecture Notes in
Computer Science, pages 220-229. Springer, 1991.

[8] K. A. Hansen, P. B. Miltersen, and V Vinay. Circuits on cylinders. Technical Report 66,
Electronic Colloquium on Computational Complexity, 2002.

9] D. Kelly. Fundamentals of planar ordered sets. Discrete Mathematics, 63(2,3):197-216,
1987.

[10] R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM Journal
on Computing, 9(3):615-627, August 1980.

[11] R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar
graphs. Discrete & Computational Geometry, 1(1):312-341, 1986.

[12] R. Tamassia and I. G. Tollis. Tessellation representations of planar graphs. In Proceedings
27th Annual Allerton Conference on Communications, Control and Computing, pages 48—
57. University of Illinois at Urbana-Champaign, September 1989.

[13] R. Tamassia and I. G. Tollis. Representations of graphs on a cylinder. SIAM Journal on
Discrete Mathematics, 4(1):139-149, 1991.

[14] G. Turdn. On restricted boolean circuits. In Fundamentals of Computation Theory, volume
380 of Lecture Notes in Computer Science, pages 460-469. Springer, 1989.

[15] V Vinay. Hierarchies of circuit classes that are closed under complement. In 11th Annual
IEEE Conference on Computational Complezity (CCC-96), pages 108117, Los Alamitos,
May 24-27 1996. IEEE Computer Society.

[16] A. T. White. Graphs, Groups and Surfaces. Elsevier Science Publishers B.V, 1984.

[17] A. C.-C. Yao. On ACC" and threshold circuits. In Proceedings 31st Annual Symposium
on Foundations of Computer Science, pages 619-627. IEEE Computer Society Press, 1990.

11

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’




