Electronic Colloquium on Computational Complexity, Report No. 26 (2003)

Inapproximability results for bounded variants of
optimization problems

Miroslav Chlebik
MPI for Mathematics in the Sciences, D-04103 Leipzig

Janka Chlebikova*
CAU, Institut fiir Informatik und Praktische Mathematik
D-24098 Kiel
jch@informatik.uni-kiel.de

Abstract

We study small degree graph problems such as MAXIMUM INDEPEN-
DENT SET and MINIMUM NODE COVER and improve approximation lower
bounds for them and for a number of related problems, like MAX-B-SET
PACKING, MIN-B-SET COVER, MAX-MATCHING in B-uniform 2-regular
hypergraphs. For example, we prove NP-hardness factor of 2_451 for MAax-3DM,
and factor of i—? for MAX-4DM; in both cases the hardness result applies

even to instances with exactly two occurrences of each element.

1 Introduction

This paper deals with combinatorial optimization problems related to bounded
variants of MAXIMUM INDEPENDENT SET (MAX-IS) and MINIMUM NODE
COVER (MIN-NC) in graphs. We improve approximation lower bounds for
small degree variants of them and apply our results to even highly restricted
versions of set covering, packing and matching problems, including MAXIMUM-
3-DIMENSIONAL-MATCHING (MAX-3DM).

It has been well known that MAX-3DM is MAX SNP-complete (or APX-
complete) even when restricted to instances with the number of occurrences of
any element bounded by 3. To the best of our knowledge, the first inapprox-
imability result for bounded MAX-3DM with the bound 2 on the number of
occurrences of any elements in triples, appeared in our paper [4], where the
first explicit approximation lower bound for MAX-3DM problem is given. (For
less restricted matching problem, MAX 3-SET PACKING, the similar inapprox-
imability result for instances with 2 occurrences follows directly from hardness
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results for MAX-IS problem on 3-regular graphs [2], [3]). For B-DIMENSIONAL
MATCHING problem with B > 4 the lower bounds on approximability were re-
cently proven by Hazan, Safra and Schwartz [10]. A limitation of their method,
as their explicitly state, is that it does not provide an inapproximability fac-
tor for 3-DIMENSIONAL MATCHING. But just inapproximability factor for 3-
dimensional case is of major interest, as it allows the improvement of hardness
of approximation factors for several problems of practical interest, e.g. schedul-
ing problems, some (even highly restricted) cases of Generalized Assignment
problem, and other packing problems.

This fact, and an important role of small degree variants of MAX-IS (MIN-
NC) problem as intermediate steps in reductions to many other problems of
interest, are good reasons for trying to push our technique to its limits. We
build our reductions on a restricted version of MAXIMUM LINEAR EQUATIONS
over Z, with 3 variables per equation and with the (large) constant number of
occurrences of each variable. Recall that this method, based on the deep Has-
tad’s version of PCP theorem, was also used to prove (% — g)-approximability
lower bound for TRAVELING SALESMAN problem by Papadimitriou and Vempala
[12], and for our lower bound of 3¢ for STEINER TREE problem in graphs [5].

In this paper we optimize our equation gadgets and their coupling via a
consistency amplifier. The notion of consistency amplifier varies slightly from
problem to problem. Generally, they are graphs with suitable expanding (or
mixing) properties. Interesting quantities, in which our lower bounds can be
expressed, are parameters p and A of consistency amplifiers that provably exist.

Let us explain how our inapproximability results for bounded variants of
Max-IS and MIN-NC, namely B-MAX-IS and B-MIN-NC, imply the same
bounds for some set packing, set covering and hypergraph matching problems.
MAX SET PACKING (resp. MIN SET COVER) is the following: Given a collection
C of sets draw from a finite set S, find a maximum cardinality collection C' C C
such that each element in S is contained in at most one (resp., in at least one)
set in C'. If each set in C is of size at most B, we speak about B-SET PACKING
(res. B-SET COVER).

It may be phrased also in hypergraph notation; the set of nodes is S and
elements of C are hyperedges. In this notation a set packing is just a matching
in the corresponding hypergraph. For a graph G = (V, E) we define its dual
hypergraph G= (E, 17) whose node set is just E, V= {v:v € V}, and for each
v € V hyperedge v consists of all e € E such that v € e in G. Hypergraph G
defined by this duality is clearly 2-regular, each node of G is contained exactly
in two hyperedges. G is of maximum degree B iff G' is of dimension B, in
particular G is B-regular iff G is B-uniform. Independent sets in G are in one-to-
one correspondence with matchings in G (hence with set packings, in set-system
notation), and node covers in G with set covers for G. Hence any approximation
hardness result for B-MAX-IS translates via this duality to the one for MAX-B-
SET PACKING (with exact 2 occurrences), or to MAX MATCHING in 2-regular
B-dimensional hypergraph. Similar is the relation of results on B-MIN-NC to
MIN-B-SET COVER problem.



If G is B-regular edge B-colored graph, then G is, moreover, B-partite with
balanced B-partition determined by corresponding color classes. Hence inde-
pendent sets in such graphs correspond to B-dimensional matchings in natural
way. Hence any inapproximability result for B-MAX-IS problem restricted to
B-regular edge-B-colored graphs translates directly to inapproximability result
for MAX-B-DIMENSIONAL MATCHING (MAX-B-DM), even on instances with
exact two occurrences of each element.

Our results for MAX-3DM and MAX-4DM nicely complement recent results
of [10] on MAX-B-DM given for B > 4. To compare our results with their for
B = 4, we have better lower bound (42 vs. 22 —¢) and our result applies even to
highly restricted version with two occurrences. On the other hand, their hard
gap result has almost perfect completeness.

The main new explicit NP-hardess factors of this contribution are summa-
rized in the following theorem. In more precise parametric way they are ex-
pressed in Theorems 3, 5, 6. Better upper estimates on parameters ug and Ap
immediately improve lower bounds given bellow.

Theorem. It is NP-hard to approximate:

e MAX-3DM and MAX-4DM to within % and i—? respectively, both results
apply to instances with exactly two occurrences of each element;

e 3-MAX-IS (even on 3-regular graphs) and MAX TRIANGLE PACKING (even
95

on 4-regular line graphs) to within g3;

e 3-MIN-NC (even on 3-regular graphs) and MIN-3-SET COVER (with ex-

actly two occurrences of each element) to within 1%9;
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e 4-MAX-IS (even on 4-regular graphs) to within £3;
e 4-MIN-NC (even on 4-regular graphs) and MIN-4-SET COVER (with ex-
actly two occurrences) to within g—g;
e B-MIN-NC to within I — 12logB
Preliminaries

Definition 1 MAX-E3-LIN-2 is the following optimization problem: Given a
system I of linear equation over Zo, with exactly 3 (distinct) variables in each
equation. The goal is to mazximize, over all assignments ¢ to the variables, the

ratio %(l“’), where sat() is the number of equations of I satisfied by .

We use the notation Ek-MAX-E3-LIN-2 for the same maximization prob-
lem, where each variable occurs exactly k times. The following theorem follows
from Hastad results [9] and the proof can be found in [4]



Theorem 1 For every € € (0, i) there is a constant k(e) such that for every

k > k(e) the following problem is NP-hard: given an instance of
Ek-MAX-E3-LIN-2, decide whether the fraction of more than (1 — €) or less
than (3 +¢€) of all equations is satisfied by the optimal (i.e. mazimizing) assign-
ment.

To use all properties of our equation gadgets, the order of variables in equa-
tions will play a role. We denote by E[k, k, k]-MAX-E3-LIN-2 those instances
of E3k-MAx-E3-LIN-2 for which each variable occurs exactly k times as the
first variable, k times as the second variable and k times as the third variable in
equations. Given an instance Iy of Ek-MAX-E3-LIN-2 we can easily transform
it into an instance I of E[k, k, k]-MAX-E3-LIN-2 with the same optimum, as
follows: for any equation x +y + z = j of Iy we put in I the triple of equations
ct+y+z=j,y+z+x=7j,and z+x+y = j. Hence the same NP-hard gap as
in Theorem 1 applies for E[k, k, k]-MAX-E3-LIN-2 as well. We describe several
reductions from E[k, k, k]-MAX-E3-LIN-2 to bounded occurrence instances of
NP-hard problems that preserve the hard gap of E[k, k, k]-MAX-E3-LIN-2.

2 Consistency Amplifiers

As a parameter of our reduction for B-MAX-IS (or B-MIN-NC) (B > 3), and
MAXx-3DM, we will use a graph H, so called consistency 3k-amplifier, with the
following structure:

(i) The degree of each node is at most B.

)

(ii) There are 3k pairs of contact nodes {(c},ci):i=1,2,...,3k}.

(iii) The degree of any contact node is at most B — 1.

(iv) The first 2k pairs of contact nodes {(cj,ct) : i = 1,2,...,2k} are implicitly
linked in the following sense: whenever J is an independent set in H, there
is an independent set J' in H such that |J'| > |J|, a contact node ¢ can
belong to J' only if ¢ € J, and for any i = 1,2,...,2k at most one node
of the pair (cf,ci) belongs to J'.

(v) The consistency property: Let us denote C; := {c},c?,...,c?k} for j €
{0,1}, and M; := max{|J| : J is an independent set in H such that J N
Ci—j = 0}. Then My = M, (:= M(H)), and for every ¢ : {1,2,...,3k} —
{0,1} and for every independent set J in H \ {Ci—w(i) 11 =1,2,...,3k}
we have |J| < M(H) — min{|{i : (i) = 0}|, [{i : (i) = 1}|}.

Remark 1 Let j € {0,1} and J be any independent set in H \ C;_; such that
|J| = M(H), then J D C;. To show that, assume that for some ! € {1,2,...,3k}
cé- ¢ J. Define ¢ : {1,2,...,3k} — {0,1} by () = 1 — j, and ¢(i) = j for



i # 1. Now (v) above says |J| < M(H), a contradiction. Hence, in particular,
C}; is an independent set in H.

To obtain better inapproximability results we use equation gadgets that
require some further restrictions on degrees of contact nodes of a consistency
3k-amplifier: (iii-1) For B-MAX-IS, B > 6, the degree of any contact node is at
most B — 2. (iii-2) For B-MAX-IS, B € {4, 5}, the degree of any contact node
¢ with i € {1,...,k} is at most B — 1, the degree of ¢} with i € {k+1,...,3k}
is at most B — 2, where j = 1,2.

For integers B > 3 and k > 1 let Gp stand for the set of correspond-
ing consistency 3k-amplifiers. Let pp i := min{% : H € Gk}, ABk ==
min{VELMEI - f1 e Gg o} (if Gap = 0, let Apy = ppg = ), up =
lim, ,.oiB,k, and Ap =lim;_,  Ap . The parameters up and Ap play a role of
quantities in which our inapproximability results for B-MAX-IS and B-MIN-NC
can be expressed. To obtain explicit lower bounds on approximability requires
to find upper bounds on those parameters.

In what follows we describe some methods how consistency 3k-amplifiers
can be constructed. We will confine ourselves to highly regular amplifiers. This
ensures that our inapproximability results apply to B-regular graphs for small
values of B. We will look for a consistency 3k-amplifier H as a bipartite graph
with bipartition (Dg,D;), where Co C Dy, C; C D; and |Dg| = |D1|. The
idea is that if D; (j = 0, 1) is significantly larger than 3k (= |C}|) then suitable
probabilistic model of constructing bipartite graphs with bipartition (Dg, D1)
and prescribed degrees, will produce with high probability a graph H with good
“mixing properties” that ensures the consistency property with M(H) = |D;|.
We will not develop probabilistic model here, rather we will rely on what has
already been proved (using similar methods) for amplifiers. The starting point
to our construction of consistency 3k-amplifiers will be amplifiers, which were
studied by Berman & Karpinski [3] and Chlebik & Chlebikovd [4].

Definition 2 A graph G = (V, E) is a (2,3)-graph if G contains only the nodes
of degree 2 (contacts) and 3 (checkers). We denote Contacts = {v € V :
degs(v) = 2}, and Checkers = {v € V : degg(v) = 3}. Furthermore, a
(2,3)-graph G is an amplifier if for every A CV: |Cut A| > |ContactsN A|, or
|Cut A| > |Contacts \ A|, where Cut A = {{u,v} € E: ezactly one of nodes u
and v is in A}. An amplifier G is called a (k,T)-amplifier if | Contacts| = k and
V| =T1k.

To simplify proofs we will use in our constructions only such (k, 7)-amplifiers
which contain no edge between contact nodes. Recall, that the infinite families
of amplifiers with 7 = 7 [3], and even with 7 < 6.9 constructed in [4], are of this
kind.

The consistency 3k-amplifier for B = 3

Let a (3k,7)-amplifier G = (V(G), E(GQ)) from Definition 2 be fixed, and z',
., 2°F be its contact nodes. We assume, moreover, that there is a matching



in G consisting of nodes V(G) \ {z%**1,...,23%}. Let us point out that both,
the wheel-amplifiers with 7 = 7 [3], and also their generalization given in [4]
with 7 < 6.9, clearly contain such matchings.

Let one such matching M C E(G) be fixed from now on. Each node
z € V(Q) is replaced with a small gadget A,. The gadget of z € V(G) \
{x?k+1 .. 2%F} is a path of 4 nodes zg, X1, Xo, z1 (in this order). For
z € {a?k*1 .. 2°F} we take as A, a pair of nodes zg, z1 without an edge.
Denote E, := {z¢,z1} for each z € V(G), and F, := {Xo,X1} for z €
V(G) \ {=2¢*1 ... 2%%}. The union of gadgets 4, (over all z € V(G)) con-
tains already all nodes of our consistency 3k-amplifier H, and some of its edges.
Now we identify the remaining edges of H. For each edge {z,y} of G we con-
nect corresponding gadgets A,, A, with a pair of edges in H, as follows: if
{z,y} € M, we connect Xy with ¥ and X; with Yp; if {z,y} € E(G) \ M, we
connect xg with y;, and x; with yg.

Having this done, one after another for each edge {z,y} € E(G), we obtain
the consistency 3k-amplifier H = (V(H), E(H)) with contact nodes :1:3 deter-
mined by contact nodes z? of G, for j € {0,1},i € {1,2,...,3k}. The proof of
all conditions from the definition of a consistency 3k-amplifier follows.

Clearly H is a bipartite graph with the bipartition (Dg, D) where D; is
the set of nodes of H with a lower index j, j € {0,1}. Further, |Dg| = |D;| =
(67—1)k =: M(H). Moreover, degree of each contact node in H is 2, and degree
of any other node is 3. First we prove that pairs {(z{,z}) : i = 1,...,2k} are
implicitly linked. In fact, we will prove the following stronger result:

Claim 1 Whenever J is an independent set in H, there is an independent set J'
in H such that |J'| > |J| and the following holds: if z € V(G)\ {z***1,..., 3%}
with |E, N J| =2, then |E; N J'| =1; in all other cases E, NJ' = E, N J.

Proof.  Consider z € V(G) \ {z2¥+1,..., 2%} with |E, N J| = 2 and make
the following modification of J. Take y € V(G) \ {z**1,...,2%*} such that
{z,y} € M. As {}y,Y1} € E(H) there is j € {0,1} such that Y; ¢ J. Take
one such j and replace z; in J by X;_;. Having the above modification of J
done, one after another for each z € V(G) \ {z2%*!,...,2%%}, we obtain J' as
required. [

Hence J' obtained from J using Claim 1 is an independent set even in the
graph H obtained from H adding an edge {zo,z1} connecting the pair E,, for

each z € V(G) \ {z%**1,...,23*}. We denote further by H the graph obtained
from H adding an edge {zo, 1} for all pairs E,, z € V(G).

Now our aim is to prove that H satisfies the consistency property. For this
purpose we keep fixed one (arbitrary) assignment ¢ : {1,2,...,3k} — {0,1},
and denote by J the set of all independent sets J in H such that J N {a:’l_ w(i) :
i=1,2,...,3k} = 0. If ¢» = 0 (respectively, ¥ = 1) clearly there is J € J with
|J| = M(H), namely J := Dy (respectively, J := D;). To complete the proof
of consistency of H we have to show that

|7] < M(H) —min{|{i : (i) = O}, [{i : () = 1}/} (1)



for every J € J. For this purpose we need to introduce some notations: Given
an assignment o : V(G) — {0, 1}, then N(o) contains for each z € V(G) exactly
those nodes from A, which have lower index o(z). Clearly |N(o)| = M(H). In
general, N(o) is not an independent set in H. But the structure of violating
edges of N(o), i.e. edges of H with both endpoints in N (o), can be described as
follows: for each {z,y} € E(G) with o(z) # o(y) there is exactly one violating
edge in H, namely {,(2), Yoy } if {2,y} € B(G) \ M; and {X,(z), Yo(y) } if
{z,y} e M.

An assignment o : V(G) — {0,1} is said to be admissible, if the set of
violating edges of N (o) forms a matching in H. Clearly, o is admissible iff for
each z € V(G) there is at most one y € V(G) such that {z,y} € E(G) \ M and
o(y) # o(). .

We will call an independent set J in H (in fact, even in H ) o-regular, if
J C N(o). To obtain a o-regular set from N (o) we have to remove at least one
endpoint for every violating edge if the set of violating edges forms a matching.
The cardinality of the set of violating edges is the same as of Cut (in G) of
the set {z € V(G) : o(z) = 0}. As G is an amplifier, this cardinality is at
least min{[{i : o(z') = 0}, |{i : o(2®) = 1}|}. It means, for any admissible
assignment o : V(G) — {0,1} any o-regular independent set J in H satisfies

17| < M(H) = min{[{i : o(a?) = 0|}, |{i : (") = 1}|}. 2)

Our strategy to prove (1) is to relate it to (2).
Now we are back to our fixed ¢) and J as above. Denote further by J the
set of J € J for which J is also independent set in H (in fact, J is then an

independent set also in H ). Let jmax be the set of all independent sets from j
of the maximum size, i.e. of size max{|J| : J € J}. Using Claim 1 we easily get
that this maximum is the same as max{|J| : J € J}. Hence it is sufficient to
prove (1) for an element J € jmax.

Clearly, for any J € J all nodes of A, N J have the same index for each
z € V(G). For J € JTmax we have, moreover, that A, N J # ( for each z €
V(G)\ {221, ..., 23%}. Keep, for a moment one J € Jmax fixed. It determines
an assignment o (=oy): V(G) = {0,1} in the following way:

(i) For z € V(G) \ {z**1,..., 23k}, o(z) € {0,1} is uniquely determined by
(® 75) AN J c {mo(w)aXo(w)}'

(ii) For z = z* with i € {2k+1,...,3k} we take o(x?) = (i), unless A,:NJ =
0 and o assigns (by the rule (i)) 1 — (i) to the both neighbors of z in G;
in that case we put o(z') = 1 — ¥ (i).

Clearly, J is o-regular. We will show that one can take J in such way that
o is, moreover, an admissible assignment. For this purpose we introduce the
following notation for elements J € Jmax:

m(J) = [{{z,y} € B(G) : o(z) = o(y)}I;
na(J) = |{i € {1,2,...,2k} : X{_, ;) € J}I.



For Jy,Js € Jmax we write Ji < Jp whenever (ny(Jy),n2(J1)) < (n1(J2), n2(J2))
in the lexicographic order. B

Let us keep fixed from now on one maximal element J of (Jmax, <). Due
to extremality of J in the order < we will be able to prove that o, determined
by J as above, is admissible, and to derive (1) from that. We will proceed in
several steps.

Claim 2 Assume that x € V(G) is a checker node, y, z, w € V(GQ) are (pair-
wise distinct) neighbors of x in G, such that {z,w} € M. Suppose o(z) = j,
and o(y) =o(z) =1—j. Then o(w) = j, and W;, X;, z; € J.

Proof. Clearly o(w) = j, because otherwise one could find larger J' €
jmax replacing in J the set J N (A; U {Wo, W1}) of cardinality at most 2 by
{z1-j,X1_j,Wi_;}, a contradiction. Then also W;, X; € J easily follows. As-
suming z; ¢ J one could obtain contradiction replacing X; in J by z;_; that
leads to J' € jmax with J < J'. Hence z; € J as well. O

Now we strengthen Claim 2 showing that its assumptions are never satisfied
for our extremal J.

Claim 3 Assume that x € V(GQ) is a checker node, y,z € V(G) are distinct
neighbors of x in G such that both edges {x,y} and {z,z} are from E(G)\ M.
Then either o(y) = o(z) or o(2) = o(z).

Proof. Put j := o(x), and assume for contradiction that o(y) = o(z) =1 — 4.
Using Claim 2 we conclude that X;, z; € J, and consequently yi1_j,z1—; ¢ J.
We will discus several possibilities for node y separately; in all of them we get
a contradiction.

(a) Let y be a contact, i.e. y = ¢ for some i € {1,2,...,3k}. Assume first
that i € {1,2,...,2k}. As A;sNJ #Pbut 28 ; ¢ J, clearly A,: N.J = {X] ;}.
Assuming ¢ (i) = j one could replace X{_; in J by «}. Otherwise ¢(i) =1 —j
and one could replace z; and X in J by z1_; and y;_;. In both cases it results
in J' € Jmax with J < J', a contradiction.

Assume now that ¢ € {2k +1,...,3k}. Aso(y) =1—jbut y1_; & J, it is
only possible if (i) = 1 — j and o assigns 1 — j to the second neighbor of y in
G. But then replacing z; and X; in J by x1_; and y1_; we get J' € jmax with
J < J', a contradiction.

(b) Let y be a checker. Take u € V(G) \ {z} such that {y,u} € E(G) \ M.
Assuming o(u) = j leads to a contradiction with Claim 2 when applied to the
checker y with 1 — j := o(y) in place of x with j := o(x). Namely, by the
Claim 2, y1—; € J, a contradiction. Hence o(u) = 1 — j, and in particular
uj ¢ J. Consequently, one can replace z; and X; in J by z1_; and y;_; to
obtain J' € jma.x with J < J', a contradiction. O

Claim 4 ¢ is an admissible assignment.



Proof. Assume, for contradiction, that o is not admissible. That means, for
some z € V(G) there are two distinct y, z € V(G) such that {z,y} € E(G) \ M,
{z,z} € E(G)\ M, and o(y) = 0(2) =1 — o(x). Due to Claim 3, z must be a
contact z = z*. Clearly i € {2k+1, ..., 3k}, because otherwise one of two edges
of G adjacent to 2 belongs to M. Due to our definition of o(2?) in that case we
conclude that necessarily o(z?) = (i) and xfp(i) € J. Now, y being a checker,
take u € V(Q) \ {z} such that {y,u} € E(G) \ M. Assuming o(u) = o(z?)
(=¢(i) =1—0(y)) we get a contradiction with Claim 3 (applied to the checker
y in place of z). Hence o(u) =1 — ¢ (). But now we can replace xfﬁ(i) in J by

Y1—y(i) to obtain J' € jmax with J < J’', a contradiction. That completes the
proof. O

Claim 5 Let z = 2 € V(G) be a contact node with o(z*) =1 — (i), and y, 2
be its neighbors in G. Then o(y) = o(z) = 1 — (7).

Proof. Fori e {2k+1,...,3k} it is clear from our definition of o. Thus assume
i €{1,2,...,2k}. Clearly Xf—w(i) € J. One of neighbors of z, say y, satisfies

{z,y} € M. If o(y) = (i), we can replace X| ., in J by X[ s if o(2) = 9(i)

we can replace X{ . in J by z7,,. In both cases we would obtain J' € J
with J < J', a contradiction. Hence necessarily o(y) = o(z) =1 — (). O

Denote Z := {z{_y : o(z) = 1 —4(i)}. From Claims above it easily
follows that o is an admissible assignment and that even J U Z is a o-regular
independent set in H. So we can apply (2) to J U Z in place of J to get

[T+ [{i: o(z") # 9()} < M(H) —min{[{i : o(2) = 0}, [{i : o (") = 1}]},
from which (1) easily follows verifying that always
min{|{i : (i) = 0}, [{i : (i) = 1}|} <
min{|{i : o(z') = O}, [{i : o(a") = 1}|} + [{i : o(a*) # P(i)}].
We have proved that H is a consistency 3k-amplifier, as claimed. As M(H) =
(67— 1)k, |V(H)| = 2M (H) and 7 can be taken < 6.9 (see [4]), it easily follows
The consistency 3k-amplifier for B = 4

The construction will be similar as in the case B = 3. Given k, we will look for
a consistency 3k-amplifier H = (V(H), E(H)) with the following properties:

(A) The first 2k pairs {(c,ct),i =1,2,...,2k} are connected by edges.

(B) The nodes cf, ci, i € {1,2,...,k} are of degree 3, the nodes cf, ci, i €
{k+1,...,3k} are of degree 2. All other nodes of H are of degree 4.



(C) H is a bipartite graph with the bipartition (Dg, D;), where Cy C Dy,
Cy C Dy and |Dy| = |D1| = M(H). (Here M(H) is the one from the
consistency property.)

Let a (3k,7)-amplifier G = (V(G), E(G)) be fixed, and z!, ..., z3* be
its contact nodes. Each node z € V(G) is replaced with a small gadget A,.
The gadget of a checker z is a pair of nodes zy, z; connected by an edge.
The same kind of gadget we take for any of the first k-contacts, i.e. for each

z € {zt,2%,...,2%}. For x € {a?F+1 22k+2 . 2%F} we take as A, a pair of
nodes zg, 1 (i.e. 2 and =z}, if x = 2* for ¢ € {2k + 1,...,3k} without an
edge. For z € {zF*t! 22642 22k} we take as A, a 4-cycle (zg,z1, Xo, X1)

(with nodes in this order). Denote further E, = {zg,z;} for each z € V(G).
The union of gadgets A, (over all x € V(G)) already contains all nodes of
our consistency 3k-amplifier H, and some of its edges. Now we identify the
remaining edges of H. If two nodes z,y € V(G) are connected by an edge in G,
we connect their pairs E, and E, with a pair of edges in such way that the node
of E, with an index j (j € {0,1}) is connected with the node of E, indexed
by 1 — j. Having this done, one after another, for each edge {z,y} of G, we
obtain a graph H = (V(H), E(H)). The contact nodes are c} := X§, ¢} := X?
fori € {k+1,k+2,...,2k}, otherwise ¢{ := z{ and ¢! := zi. Clearly H is
a bipartite graph with the bipartition (Do, D;), where D; is the set of nodes
with a lower index j, j € {0,1}. Further, |Do| = |Dy| = (37 + 1)k =: M(H).
One can easily check that the above requirement (B) on H concerning degrees
of nodes is satisfied as well as (A).

Our aim now is to prove the consistency property. For this purpose we keep
fixed one (arbitrary) assignment ¢ : {1,2,...,3k} — {0,1} and denote by J the
set of all independent sets J in H such that J N {c’i_w(i) i=1,2,...,3k} = 0.
We have to show that (1) holds for every J € J. It is clear that |J| < M(H),
as for each z € V(@) at most one of zg and z; can belong to J, and if z €
{z*+1, ..., 2?*} at most one of Xy, X; as well. Moreover, in the case 1) = 0, or
¥ = 1, one has in fact max{|J| : J € J} = M(H), as |Do| = |D:| = M(H).
Hence the first part of the consistency property is obviously satisfied.

Let us describe our strategy for the proof of (1). We need to introduce
some notions: An assignment o : V(G) — {0,1} to the nodes of G is said
to be nice, if for each x € V(@) there is at most one neighbor y of z in G
such that o(y) # o(z). Given an assignment o : V(G) — {0,1}, consider the
set N(o) C V(H) which for each x € V(@) contains exactly the nodes from
A, with the lower index of o(z). Clearly, |[N(c)| = M(H). In most cases
N(o) is not an independent set. But the structure of the set of violating edges
of H, i.e. those with both endpoints in N (o), is simple, assuming that o is
nice. In that case they are exactly the edges {Z,(s),Yo(y)} € E(H) such that
{z,y} € E(G) and o(z) # o(y). In particular, they form a matching in H,
and the cardinality of this matching is the same as the cardinality of Cut (in
G) of the set {z € V(G) : o(z) = 0}. As G is an amplifier, this is at least
min{|{i : o(z%) = 0}, [{i : o(z%) = 1}|}.
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Further, any independent set J in H that is subset of N (o) is said to be
o-regular (in fact, J is an independent set also in a graph obtained from H
adding an edge {zo, 1} connecting the pair E,, for each contact node z). We
have just proved that for any nice o : V(G) — {0, 1} any o-regular independent
set J in H satisfies (2). This is because to obtain an independent set J from
N(o) (of cardinality M (H)) we have to remove at least one endpoint for every
violating edge. So, our strategy to prove (1) is to relate it to (2).

Now we are back to our fixed ¢ and J as above. We want to prove that
max |J| over J € J is achieved even on “very regular” independent sets from 7.
Let us introduce the following notation for J € J:

m(J) = [Jl,

n2(J) = [J N (Uzev(e)Ea)l,
n3(J) = max{|J N Dy|,|J N D1|}.

For Ji, Jo» € J we write J; < Jy whenever (nl(Jl),ng(J1),n3(J1)) <
(n1(J2),n2(J2),n3(Js)) in the lexicographic order. Let us keep fixed any maxi-
mal element J of (J, <). Clearly, |J| = max{|J'| : J' € J}, hence it is sufficient
to prove (1) for this single J. Due to extremality of J in our order < we will
be able to relate J to o-regular independent set of H for some nice assignment
o : V(G) — {0,1}. Preliminarily, let o be defined only on those z € V(G) for
which E, N'J # 0: let o(z) be the index of a (unique) node of E, N J (i.e.
E, (1] = {2,))).

Claim 6 Let z € V(G) be a checker node with E, NJ = 0. Then for each y
such that {z,y} € E(G) the set E, N J is nonempty. In another words, o is
already defined for all three neighbors of x in G. Moreover, o attains both 0 and
1 as value on neighbors of x.

Proof. Let y, z, w be all three neighbors of z in G. Assume, for example,
that E, N J = (. As neither J U {zo} nor J U {z:} is an independent set in
H, necessarily for some j € {0,1} E.NJ = {z;} and E, N J = {w;—;}. But
then replacing in J either z; by z1_;, or wi_; by z;, will result in J' € J with
J < J' (namely, nz(J) < nz(J')), a contradiction. Hence o is already defined
for y, and in the same way for z and w too.

Assume now that o(y) = 0(2) = o(w) =: j € {0,1}. But then adding z; to
J will produce larger J' € 7, a contradiction. O

Claim 7 Let z = z' € V(G) be a contact node with E,NJ =0, and y, z be its
neighbors in G. By our assumption about G, y and z have to be checker nodes
with o(y) and o(z) already defined (due to Claim 6).

(a) If i € {k+1,...,2k} then X;(i) € J and o(y) # o(z2).
() Ifi € {1,...,k} U {2k + 1,...,3k} then either o(y) # o(z), or o(y) =
o(z) =1—1(i). In the latter case JU{x’i_lp(i)} is an independent set in H

(and also in a graph obtained from H adding an edge {xo, 1} connecting
the pair E, for each contact node x) too.
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Proof. (a) In this case clearly XZ,)(Z.) € J due to maximality of J. Further,
neither J' := J U {z},,} nor J' := J\ {X], } U{z]{ .} is an independent
set in H (it would imply J < J'). Hence for some j € {0,1} E,NJ = {y;} and
EZﬂJ:{Zl_]’}. .

(b) In this case J' := J U {z},,} is not an independent set in .J (it would
imply J < J'). Hence at least for one u € {y,2} we have o(u) = 1 — ¢(3).
Moreover, if o(y) = o(z) = 1 — 9(i), it follows that y,;) ¢ J and zy) ¢ J,
hence J U {z}_,} is an independent set as well. O

Now we are ready to extend ¢ to a nice assignment for which J is o-regular.

(i) If z € V(G) is a checker node with E, € J =, by Claim 6 both 0 and 1
are attained by o on neighbors of z. Necessarily one j € {0,1} is attained
twice there, and we let o(z) := j.

(i) If z = z* € V(G) is a contact node with E, NJ = @, by Claim 7 either
both 0 and 1 are attained by ¢ on neighbors of z, or both neighbors of z
have assigned 1 — ¢(i) by o. In the former case we let o(z?) = (i), in
the latter one o(zf) = 1 — (7).

Denote further Z := {2}_,; : o(2’) = 1 —¢(i)}. Clearly J is o-regular.
Using Claim 7(b), even J U Z is o-regular independent set in H.

Now we want to prove that o is a nice assignment. Clearly, by our extension
of o based on Claims 6 and 7, for each z € V(G) with E, N J = () at most one
neighbor y of z in G has o(y) # o(z). We have to prove that this is also true
for each z € V(G) with E, NJ # 0.

Claim 8 Let x € V(G) be either checker or contact node with E, NJ # 0.
Then there exists at most one neighbor u of  in G with o(u) # o(x).

Proof. Consider a neighbor u of z in G with o(u) # o(z). Clearly E, N J =
{%(z)} which implies uy(y) = U1_g(z) ¢ J, hence E, N.J = 0. If u is a checker
node, then due to Claim 6 the other two neighbors of u have assigned 1 — o(x)
already in the first stage, in particular (J\ {4 () })U{t1—-5(s)} is an independent
set as well. If u is a contact node, then due to Claim 7 the other neighbor of u has
assigned 1—o(x) already in the first stage, in particular (J\{zq()}) U{t1—0()}
is an independent set in this case as well.

Assume now, that two distinct neighbors y and z of z in G have o(y) =
0(z) = 1 — o(x). The analysis above shows that then J' := (J\ {z5@)}) U
{¥1-0(2)> 21—o(x) } Will be a larger independent set, a contradiction. [J

From above Claims we know that o is a nice assignment and that even JU Z
is a o-regular independent set in H. So, we can apply (2) to JU Z,

7] + i : o(2) # (i)} < M(H) — min{|[{i : o(z) = 0}/, [{i : 0(a") = 1}[},

from which we easily obtain (1) asin case B = 3. Hence H is really a consistency
3k-amplifier, as claimed. As M(H) = (37 + 1)k, and |V(H)| = 2M(H), this
gives us basic estimates puy < 21.7, Ay < 21.7.
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Figure 1: The equation gadget Gy := Gg[3] for 3-MAX-IS and Max-3DM.

We do not try to optimize our estimates for B > 5 in this paper, we are
mainly focused on cases B = 3,4. For larger B we provide our inapproximability
results based on small degree amplifiers constructed above. Of course, one can
expect that amplifiers with much better parameters can be found for these cases
by suitable constructions. We only slightly change the consistency 3k-amplifier
H constructed for case B = 4 to get some (very small) improvement for B > 5
case. Namely, also for z € {z*+1, 2%*+2 ... 2?¥} we take as A, a pair of nodes
connected by an edge. The corresponding ¢}, ¢t nodes of H will have degree
3 in H, but we will have now M(H) = 37k. The same proof of consistency
for H will work. This consistency amplifier H will be clearly simultaneously a
consistency 3k-amplifier for any B > 5. In this way we get the upper bound
pp <20.7, Ap < 20.7 for any B > 5.

3 The Equation Gadgets

In the reduction to our problems we use the equation gadgets G; for equations
r4+y+2z2=73,5 = 0,1. To obtain better inapproximability results, we use
slightly modified equation gadgets for distinct value of B in B-MAX-IS prob-
lem (or B-MIN-NC problem). We define equation gadgets G;[3] for 3-MAX-IS
problem (Fig. 1), G;[4] for 4(5)-Max-IS (Fig. 2(i)), G;(6] for B-MAx-IS B > 6
(Fig. 2(ii)). In each case the gadget G1[*] can be obtained from Gy[*] replacing
each i € {0,1} in indices and labels by 1 — .

For each u € {z,y, z} we denote by F,, the set of all accented u-nodes from
G, (hence F), is a subset of {uf, u},u,ui}), and F, := 0 if G; does not contain
any accented u-node; T, := F, U {ug, u;1}. For a subset A of nodes of G and
any independent set J in G; we will say that J s pure in A if all nodes of ANJ
have the same lower index (0 or 1). If moreover, AN J consists exactly of all
nodes of A of one index, we say that J is full in A.

The following theorem describes basic properties of equation gadgets.
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Figure 2: The equation gadget (i) Go := Go[4] for B-MaXx-IS, B € {4,5}, (ii)
Gy := Gy[6] for B-MAX-IS (B > 6).

Theorem 2 Let G; (j € {0,1}) be one of the following gadgets: G;[3], G;[4],
or G,[6], corresponding to an equation x+y+z = j. Let J be an independent set
in G such that for each u € {z,y} at most one of two nodes ug and u; belongs
to J. Then there is an independent set J' in G; with the following properties:

@ ' =11,
(II) for each u € {z,y} it holds J' N {ug,u1} = J N {ug,u1},
(III) J' N{z0,21} C I N{z0,21} and |J' N{z0,21}| <1,

(IV) J' contains (exactly) one special node, say (x)(y)w(z). Furthermore,
J' is pure in T, and full in F,.

Proof. We write proofs for the gadget G, the modifications for G; are obvious.
Denote by S the set of four special nodes: [000],[110], [101], [011].

A: The equation gadget for 3-Max-IS (Figure 1)

(a) First we show that we can always modify J to J' satisfying (I), (II), and
(ITI) such that |J' N {zo, 2z1}| < 1. For this purpose let .J as above be fixed with
both 29 € J and 2z, € J. Then clearly 2y ¢ J and 2] ¢ J. We can assume
that either z{ or z{ is in J because otherwise we could either add z{' to J (if a
special node ¢ J), or to replace in J by 2{, to ensure this property.
Hence we will assume in what follows that z{ € J (the discussion for the case
zy € J is, due to symmetry, analogous).

So, we are in the situation {zo, z1, 2]’} C J, implying 2 ¢ J, ¢ J. We
can further assume that € J (because otherwise replacing zp in J by 2|
we are done with this part of the proof).

(i) Assume first that ¢ J. Replacing 2{' in J by z{ we reduce this to
the case {z0,21,2),|110]} C J, [101] ¢ J, [000] ¢ J. We can further
assume that € J (because otherwise replacing z; in J by 2 we are
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done). As both and belong to J, clearly |F, N J| < 1. So we
can modify J inside F,, T, and S to J' with |J'| > |J| as follows. Let
J € {0,1} be fixed such that z1_; ¢ J. We take J' with F,NJ' = {7, 2]},

T,NJ" = {z1-4,21_;,2{_;} and SN J" = {| j1(1 - j) [}-

(ii) Assume now that € J. We can also assume that ¢ J (because
otherwise one could replacing in J by yi get the situation already

discussed in (i)). So recall that we have {2, 21,27 ,, } C J,
¢ J, ¢ J. Clearly |[FynJ| < 1. Now we can modify J inside Fj,
T, and S to J' with |J'| > |J| as follows. Let j € {0,1} be fixed such that
yi-; ¢ J. We take J' with F, N J' = {y;,y;}, T.NJ" = {21-j,21_ ;2] ;}

and SN J' = {{1i(1 =) |}

The proof of the part (a) is complete.

(b) After reduction from part (a) we can assume that J is an independent
set in Gy such that for each u € {z,y, 2} |J N {uo,u1}| < 1. Keep one such J
fixed and denote by J the set of all independent sets J' in Gy satisfying (IT)
and (III). Our aim is to prove that some of sets from 7 have to satisfy (I) and
(IV) as well. In the following part we will prove that there is J' in J satisfying
(I) and (IV'), where (IV') is a slight relaxation of (IV), namely

(IV") J' contains at most one special node and for each u € {z,y, z} the set J'
is pure and full in F},.

To prove that such J' exists, we will show that some extremal elements of J
have this property. Consider J' € J with the maximum cardinality, from those
with maximum cardinality the one with the least number of special nodes, and
from such sets the one which is pure in as many of T}, T}, T}, as possible. Let
us keep one such extremal J' € J fixed. We will show that J' satisfies (IV')
((T) being trivial). We will proceed in several steps.

Observation 1. If u € {z,y,2} and J' is pure in T, then it is full in F,.
Proof. Take j € {0,1} such that T, N J' contains nodes with the index j only.
Fix a node v € F, with index 5. Our aim is to show that v € J'. Assume,
on the contrary, that v ¢ J'. As J' U {v} is not an independent set due to the
maximality of J', a neighbor of v (one of special nodes) belongs to J'. Replacing
this special node in J' by v we obtain J"” € J with |J"| = |J'| but with less
special nodes, a contradiction. O

Observation 2. Ifu € {z,y,z} and J' is not pure in T, then one of the following
possibilities occurs:

(i) T, N J" = {u},u}} and both special nodes adjacent to uy and u{ belong
to J';

(ii) for some j € {0,1}: T, NJ" = {u;,uy ;} and both special nodes adjacent
to uj and uj belong to J'.
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Proof. Assume first that T, N J' = {u),u}}. If for some j € {0,1} the special
node adjacent to uj does not belong to J', then replacing uj_; in J' by uf
results in J"” € J which is more pure than J', a contradiction.

Now it is clear that if J' is not pure in T, and the case (ii) does not occur,
then for some j € {0,1} T, N J' = {u;,uj_;}. If the special node adjacent
to u’; (respectively, to uj) does not belong to J', then replacing uy_; in J' by
uj; (respectively, by u}) will result in J"” € J which is more pure than J', a
contradiction. O

Observation 3. |SNJ'| <2.
Proof. If for p = 0 or p = 1 we have |SN J'| = 4 — p, clearly for each
u € {z,y,2} |F,NJ'| < p. We can clearly find J” € J pure in T, T}, and
T, such that |T,, N J"| = 2 for each u € {z,y,z}, and SN J" = @. Clearly
[J"| > |J|+2—2p>|J|, and J" has less special nodes than J', a contradiction.
O

Now we are ready to complete the proof of part (b) showing that J' is, in
fact, pure in each T, u € {z,y, z}. By Observation 1 it is then even full in each
F, and clearly |SN J'| <1 will follow.

Assume, on the contrary that J' is not pure in some (at least one) T,
u € {z,y,z}. Using Observations 2 and 3 we obtain that |S N J'| = 2. Let
SNJ' = {s1,s2}. There are 6 theoretical possibilities how this pair {s1, s2} from
S is chosen. But each pair {s1,s2} of nodes from S has the following property
that can be easily verified. Thereisv € {z,y} for which two nodes of F,, adjacent
to {s1,s2} have distinct indices and at least one of them belongs to {ug, u}}.
This fact (together with SN J' = {s1, s2}) easily leads to a contradiction.

Thus J' is not full in F, and, due to Observation 1, it cannot be pure in T.
Hence Observation 2 applies. But neither (i) nor (ii) case of this observation
is consistent with what we know about nodes of F, adjacent to {s1,s2}. This
contradiction completes the proof of part (b).

(c) We have already seen that an independent set J' satisfying (I), (II),
(ITT), (IV') exists. Let for u € {z,y,2} ¥(u) € {0,1} be such that F, N J’
contains exactly all nodes of lower index ¥(u). If ¥(z) + ¥(y) + ¥(2) = 0

J'UA{| Y (x)y(y)v(2) |} is an independent set as required.

Otherwise one can add {‘ Y(x)Y(y)(1 —(2)) ‘} to J', remove zy;) from J'

if it belongs to it, and modify J' in F, to obtain J” such that F, N J" =
{21 _y(2)> A1_y () }- Now J" is as required.

’

B: For the equation gadget for B-MaAX-IS, B € {4,5} (Figure 2(i))

(a) Assume first that J contains no special node. One can choose ¥(z) €
{0,1} such that z1_y;) ¢ J and 2;_y,) ¢ J, and ¢(y) € {0,1} such that
Y1—y(y) ¢ J. Let s be the special node labeled by 9 (z)y(y)y(z), where ¥(z) =
(¥ (z)+9(y)) mod 2. If z1_y () ¢ J then clearly one can take J' = JU{s, 73, },
otherwise J' = (J\ {z1-y(z)}) U {8, 2y, }-

(b) Assume now that J contains exactly one special node, say s, and let its
label starts with ¢(x) € {0,1}. Then clearly [J N {z0,21}| < 1. If 21_y) ¢ J
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one can clearly take J' = J U {xij)(w)}. Otherwise modify J replacing s by
T _y () tO contain no special nodes, and continue as in the case (a).

(c) If J contains 2 special nodes then the label of one of them, say sq, starts
with 0, and the label of the other one, say si, starts with 1. From the structure
of Gp we can see that then JN{z{,z}} = 0. Let further ¢)(z) € {0,1} be chosen
such'that T1_y(z) ¢ J. Now replacing s;_y(,) in J by xip(gc) will produce J' as
required.

C: The equation gadget for B-MAX-IS, B > 6, (Figure 2(ii)).

If J contains a special node then clearly |J N {zg,21}| < 1 and one can take
J' = J. Assume now that J contains no special node. Let ¢(z), ¢ (y) € {0,1}
be chosen in such way that z1_y(,) ¢ J and y;_y(,) ¢ J. Let s be the special
node in Gy labeled by (x)y(y)¥(z), where ¥(2) = (¥(z) + ¥(y)) mod 2. If
21_y(z) ¢ J then clearly one can take J' = J U {s}, otherwise one can obtain J'
from J replacing 2y _y ;) by s. O

4 Reduction for B-MAX-IS and B-MIN-NC

For arbitrarily small fixed € > 0 consider k large enough such that conclusion of
Theorem 1 for E[k, k, k]-MAX-E3-LIN-2 is satisfied. Further, let a consistency
3k-amplifier H have MECH) (resp. w) as close to up (resp. A\g) as we
need. Keeping one consistency 3k-amplifier H fixed, our reduction f (= fg)
from E[k, k, k]-MAX-E3-LIN-2 to B-MAX-IS (resp., B-MIN-NC) is as follows:
Let I be an instance of E[k, k, k]-MAX-E3-LIN-2, V(I) be the set of variables
of I, m := |[V(I)|. Hence I has mk equations, each variable u € V(I) occurs
exactly in 3k of them: k times as the first variable, k times as the second one,
and k times as the third variable in the equation. Assume, for convenience,
that equations are numbered by 1,2,...,mk. Given variable u € V(I) and
s € {1,2,3} let ri(u) < r2(u) < --- < r¥(u) be the numbers of equations in
which variable u occurs as the s-th variable. On the other hand, if for fixed
r € {1,2,...,mk} the r-th equation is x + y + 2 = j (j € {0,1}), there are
uniquely determined numbers i(z,7), i(y,r), i(z,r) € {1,2,...,k} such that
i @) =7 ) = 5 () = .

Take m disjoint copies of H, one for each variable. Let H,, denote a copy of
H that correspondents to a variable u € V(I). The corresponding contacts are
in H, denoted by Cj(u) = {u} :i = 1,2,...,3k}, j = 0,1. Now we take mk
disjoint copies of equation gadgets G", r € {1,2,...,mk}. More precisely, if the
r-th equation reads as x +y +2 =j (j € {0,1}) we take as G a copy of G;[3]
for 3-MAX-IS (or G,[4] for 4(5)-MAX-IS or G;[6] for B-MAX-IS, B > 6). Then
z’)(zn“)’ wi(xvr)

the nodes xo, %1, Yo, Y1, 20, 21 of G" are identified with nodes
(of Hy), yttiwm) ki) (of g ) 2K+ 2k (of B ), respectively.
It means that in each H, the first k-tuple of pairs of contacts corresponds
to the occurrences of u as the first variable, the second k-tuple corresponds
to the occurrences as the second variable, and the third one occurrences as
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the last variable. Making the above identification for all equations, one after
another, we get a graph of degree at most B, denoted by f(I). Clearly, the above
reduction f (using the fixed H as a parameter) to special instances of B-MAX-IS
is polynomial. Now we show how the NP-hard gap of E[k, k, k]-MAX-E3-LIN-2
is preserved.

We look at f(I) as at an instance of the MAX-IS problem. An independent
set J in f(I) is called standard if for each u € V(I) there is (necessarily unique)
¢(u) € {0,1} such that J N Ci_yy(u) = 0 and |JNV(Hy)| = M(H). It
implies, in particular, that J O Cy,)(u) (see Remark 1). Clearly, any standard
independent set J in f(I) determines an assignment ¢ : V(I) — {0,1}; an
independent set J is called, more specifically, p-standard. Further, it is clear
that a (-standard independent set J can contain one special node for each
equation satisfied by the assignment . More precisely, if r-th equation of I
reads as x + y + z = j then J can contain a special node from the equation
gadget G™ iff p(z) + ¢(y) + ¢(z) = j mod 2, namely the special node labeled
by @(@)e(y)e(2).-

Hence if sat(p) means the number of equations of I satisfied by ¢, one
can express easily the maximum cardinality of a ¢-standard independent set as
M (H)m+sat(p), for B-MAX-IS, B > 6; M (H)m +mk + sat(yp), for 4-MAX-IS
and 5-MAX-IS, and M (H)m + 6mk + sat(p), for 3-MAax-IS.

Taking ¢ optimal, i.e. such that sat(¢) = OPT(I)|I| = OPT(I)mk, allows
to express simply OPTgq(f(I)) := max{|J|: J is a standard independent set in
f(I)} using OPT(I). Namely OPTsq4(f(I)) = mk(M(H)/k + 6 + OPT(I)) for
3-MAX-IS, OPTyq(f(I)) = mk(M(H)/k + 1+ OPT(I)) for 4(5)-MAx-IS and
OPTua(f(I)) = mk(M(H)/k + OPT(I)) for B-MIS, B > 6.

The key point now is that the properties of our consistency gadget H im-
ply that there can never be advantageous to use independent set which is not
standard, to achieve the maximum cardinality. In other words, OPT(f(I)) is
achieved on standard independent set.

Let us prove now the fact that OPT(f(I)) = OPTgq(f(I)). For this purpose
consider one independent set J of f(I) such that |J| = OPT(f(I)). The aim is
to show, in several steps, that one can modify J to another independent set J’
in f(I) such that |J'| > |J| and J' is standard.

First, for each u € V(I), one after another, modify J inside H, to obtain
another optimal independent set Jy containing no pair of implicitly linked nodes.
In another words, for each v € V(I) an independent set Jo NV (H,) contains at
most one node from each of first 2k pairs of contact nodes.

Now, for each equation of I, one after another, modify Jy inside the corre-
sponding equation gadget G" according to Theorem 2, to obtain another op-
timal independent set J; with the following properties: For each u € V(I) an
independent set J; NV (H,) contains from each pairs of contact nodes at most
one node and for each r = 1,2,...,mk the graph J; NV (G") contains exactly
one special node. If this special node for the r-th equation x +y + z = j is
labeled by 9 (x)v¥(y)1(z), those bits can be viewed as a local satisfying assign-
ment for occurrences of variables z, ¥y and z in this equation. Moreover, for
each u € {z,y,z} the set J; in this equation gadget is pure and full in F,
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(with nodes of label ¢ (u) there), in particular u; _y,) ¢ J1. In this way the set
J1 uniquely determines local assignment 1) to all occurrences of each variable.
More precisely, as ¥(u) can vary from occurrence to occurrence of u, we should
write more precisely v (u?) for particular occurrences of u. For fixed u we will
also write 1, (i) := 1 (u?).

Now for each variable u € V(I) we can take the prevailing value from {0, 1} of
local assignment to occurrences of u as the definition of the value p(u), assigned
to this variable (by an independent set Ji). In the case of equal number of 0’s
and 1’s of local assignment to occurrences of u the choice of p(u) € {0,1} can
be arbitrary.

Keeping u € V(I) fixed, denote by S(u) the set of special nodes in J; that
determine for u the local assignment v inconsistent with ¢(u). Clearly,

1S(u)] = i : $u(i) # p(w)}] = min{[{i : Yo (i) = 0}, [{é : Pu(@) = 1}},

hence |J1 NV (H)| < M(H) — |S(u)| as follows from the consistency property of
H. If some u € V(I) are inconsistent, i.e. S(u) # @, we will further modify J;
in the following way:

(i) Remove first from J; special nodes that caused the inconsistency, i.e.
Uuev(n)S(u), of cardinality | Uy S(u)| < 3, [S(u)|.
For each inconsistent, occurrence of u we further modify J; inside the cor-
responding equation gadget: the node wj_ o(u)? T€SP- uy_ o(u) 18 replaced
by ufp(u), resp. u:;(u), if such nodes exist in the equation gadget.

(ii) Then for each u replace J; NV (H,) (of cardinality < M(H) — |S(u)|) by
an independent set in H, \ Ci_y(y)(u) of cardinality M (H).

The result of (i) and (ii) will be new independent set J' with |J'| > |J].
Moreover J' is ¢-standard. This completes the proof that OPT is achieved
on standard independent set of f(I). Hence we have an affine dependence of
OPT(f(I)) on OPT(I) as described earlier.

Let us now check how the NP-hard gap of E[k, k, k]-MAX-E3-LIN-2 is pre-
served. If an instance I of E[k, k, k]-MAX-E3-LIN-2 has m variables as above,
then f(I) has n := m|V(H)| + 16mk nodes, and OPT(f(I)) = mk(M (H)/k +
6 + OPT(I)) for 3-MAX-IS; n := m|V(H)| + 6mk nodes, and OPT(f(I)) =
mk(M(H)/k+ 14 OPT(I)) for 4(5)-MAX-IS; n := m|V(H)|+ 4mk nodes, and
OPT(f(I)) = mk(M(H)/k + OPT(I)) for B-MAX-IS, B > 6.

Hence the NP-hard question of whether OPT([) is greater than (1 — ¢),
or less than (% + 5) (but surely at least %) is transformed to NP-hard partial
decision problem of whether
e for 3-Max-IS:

IM(H)/k + 13 + 2¢
21V ()| + 32
o for 4(5)-MaXx-IS:

2M(H)/k + 3 + 2
2V (H)| [k + 12

2M(H)/k+14 - 2
2V(H)|/k+32 '

> OPT(f(I)) or OPT(f(I)) >n

QM(H)/k+4—2
2V(H)|/k+12

> OPT(f(I)) or OPT(f(I))>n
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e for B-MAX-IS, B > 6:

2M(H)/k+1+¢ M (H)/k+2 — 2
"oV HE)| [k + 8 2(V(H)|/k + 8

Consequently, it is NP-hard to approximate the solution of 3-MAX-IS within
1+(1—4e)/(2M (H)/k+13+2¢),4(5)-MAX-1IS within 1+ (1 —4¢)/(2M (H)/k+
3+ 2¢), B-MAX-IS, B > 6 within 1+ (1 — 4e)/(2M (H)/k + 1 + 2¢).

Passing to the complements one can state similar results for the MINIMUM
NoDpE COVER problem. Clearly, OPT,.(f(I)) = mk((|V(H)|—M(H))/k+10—
OPT(I)) for 3-MIN-NC; OPT,,o(f(I)) = mk((|V(H)|-M(H))/k+5—OPT(I))
for 4(5)-MIN-NC; OPTy(f(I)) = mk((|V(H)| — M(H))/k +4 — OPT(I)) for
B-MIN-NC, B > 6. So we get the NP-hardness of partial decision problem
e for 3-MIN-NC:

2[|V(H)|—M(H)]/k+184-2¢ 2[|V(H)|—M(H)]/k+19—2¢
N B N

> OPT(f(I)) or OPT(f(I) >n

e for 4(5)-MIN-NC:

2[|V(H)|— M(H)]/k+8+2¢ 2|V (H)|—M(H)]/k+9—2¢
n 21V (H) | /k+12 > OPT or OPT >n 2V (H) | /k+12 )

B-MIN-NC, B > 6:

2[\V(H)|—M(H)]/k+6+2¢ 2[|V(H)|-M(H)]/k+7—2¢
pAVUDMUDV O3 S OPT o OPT > n2lVUDIMUNYkiT22

is NP-hard. Consequently, it is NP-hard to approximate the solution of 3-MIN-NC
within 1 + (1 — 4e)/[2(|V(H)| — M(H))/k + 18 + 2¢]; 4(5)-MIN-NC within
1+ (1 —4e)/[2(|V(H)| — M(H))/k + 8 + 2¢]; B-MIN-NC (B > 6) within
1+ (1—4e)/[2(|V(H)|— M(H))/k+ 6 + 2¢].

The following main theorem summarizes the results

Theorem 3 [t is NP-hard to approximate: the solution of 3-MAX-IS to within
any constant smaller than 1 + 1/(2us + 13); for B € {4,5} the solution of
B-MAX-IS to within any constant smaller than 1+ 1/(2up + 3), the solution
of B-MAX-IS, B > 6, to within any constant smaller than 1 + 1/(2up + 1).
Similarly, it is NP-hard to approzimate the solution of 3-MIN-NC to within
any constant smaller than 1 + 1/(2A3 + 18), for B € {4,5} the solution of
B-MIN-NC to within any constant smaller than 1+ 1/(2Ap + 8), the solution
of B-MIN-NC, B > 6, to within any constant smaller than 14+ 1/(2\Ag + 6).

Using our upper bounds given for ug, Ap for distinct value of B we obtain
the following corollary

Corollary 1 It is NP-hard to approximate the solution of 3-MAX-IS to within

1.010661 (> 82); the solution of 4-MAX-IS to within 1.0215517 (> 33), the

solution of 5-MAX-1S to within 1.0225225 (> j—g) and the solution of B-MAX-IS,

B > 6 to within 1.0235849 (> %). Similarly, it is NP-hard to approzimate the

solution of 3-MIN-NC to within 1.0101215 (> 120); the solution of 4-MIN-NC

to within 1.0194553 (> 22); the solution of 5-MIN-NC to within 1.0202429
(> &) and B-MIN-NC, B > 6, to within 1.021097 (> 33). For each B > 3,
the corresponding result applies to B-regular graphs as well.
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5 Asymptotic Approximability Bounds

This paper is focused mainly on graphs of very small degree. In this section
we discuss also the asymptotic relation between hardness of approximation and
degree for INDEPENDENT SET and NODE COVER problem in bounded degree
graphs.

For the INDEPENDENT SET problem in the class of graphs of maximum
degree B the problem is known to be approximable with performance ratio
arbitrarily close to 212 (Berman & Fujito, [2]). But asymptotically better ratios
can be achieved by polynomial algorithms, currently the best one approximates
to within a factor of O(BloglogB/logB), as follows from [1], [11]. On the
other hand, Trevisan [13] has proved NP-hardness to approximate the solution
to within B/20(VIogB),

For the NODE COVER problem the situation is more challenging, even in
general graphs. A recent result of Dinur and Safra [8] shows that for any § > 0
the MINIMUM NODE COVER problem is NP-hard to approximate to within
10v/5 — 21 — 5. One can observe that their proof can give hardness result also
for graphs with (very large) bounded degree B(d). This follows from the fact
that after their use of Raz’s parallel repetition (where each variable appears in
only a constant number of tests), the degree of produced instances is bounded
by a function of 6. But the dependence of B(d) on § in their proof is really very
complicated. The earlier % — 4 lower bound proved by Hastad [9] was extended
by Clementi & Trevisan [7] to graphs with bounded degree B(d).

Our next result improve on their; it has better trade-off between non-approxi-
mability and the degree bound. There are no hidden constants in our asymptotic
formula, and it provides good explicit inapproximability results for degree bound
B starting from few hundreds. First we need to introduce some notation.
Notation. Denote F(z) := —zlogz — (1 — z)log(1 — z), = € (0,1), where
log means the natural logarithm. Further, G(c,t) := (F(t) + F(ct))/(F(t) —
aF()) for 0 <t <1 <1,g(t):=G(E,t) for t € (0,3). More explicitly,
g(t) = 2[—tlogt — (1 —t) log(1 — t)]/[—2(1 — ) log(1 — ) + (1 — 2t) log(1 — 2t)].
Using Taylor series of the logarithm near 1 we see that the denominator here is
1250 iyt > 12 and —(1—t)log(1—t) = t—t2 52 o et < b
consequently g(t) < 2(1 +1log $).

For large enough B we look for § € (0, %) such that 3|g(3)] +3 < B. As
9(3%) =~ 75.62 and g is decreasing in (0, ), we can see that for B > 228 any
0>6p = 2g* (L ]) will do. Trivial estimates on ép (using g(t) < 2(1+log }))
are 6 < >3 (log(B —3) +1 —1log6) < 2—1052

We w111 need the following lemma about regular bipartite expanders to prove
the Theorem 4.

Lemma 1 Let t € (0,3) and d be an integer for which d > g(t). For every
sufficiently large positive integer n there is a d-regular n by n bipartite graph
H with bipartition (Vo,V1), such that for each independent set J in H either
|[JNVo| <tn, or |[JNVi| < tn.
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Sketch. In the standard model of random d-regular bipartite graphs it is well
known (and easy to prove) that the conditions 0 < ¢t < * < 1 and d > G(c, t)
are sufficient for existence, for every sufficiently large n, of d-regular bipartite
graph with n by n bipartition (Vp, V), which is (¢, t, d)-expander (i.e., U C Vp
or U C Vi, and |U| < tn imply |T(U)| > ¢|U|; here T'(U) := {y: y is a node
adjacent to some z € U}) (see e.g. Theorem 6.6 in [6] for this result). If d > g(t)
(= G(3,1)), by continuity of G also d > G(c,t) for some ¢ > . So with
these parameters (c, t, d)-expanders exist for n sufficiently large, and they clearly

have the required property. O

Theorem 4 For every § € (0,§) it is NP-hard to approzimate MINIMUM NODE
COVER to within & — & even in graphs of mazimum degree < 3|g($)] + 3 <
3[%(1 + log %)] Consequently, for any B > 228 it is NP-hard to approxi-

mate B-MIN-NC to within any constant smaller than L — dp, where 0p =

6
2971 ([2]) < 3% (log(B — 3) + 1 —log6) < %@.

Proof. Let § € (0,%) be given, put d := [g()] + 1. Then we choose t €
(0,2) so close to § that d > g(t). Further we choose ¢ € (0,%) such that
(£ —e—6t)/(3+¢) > L —4. Then a positive integer k is chosen so large that

>
(i) NP-hard gap (3 + &,1 — ) of Theorem 1 applies to the problem
Ek-MAX-E3-LIN-2, and

(ii) there is d-regular 2k by 2k bipartite graph H with bipartition (Vg, V1), such
that for each independent set J in H either |JNVy| < 2kt, or |JNV1| < 2kt
(see Lemma, 1). Keep one such H fixed from now on.

We will describe reduction f from Ek-MAX-E3-LIN-2 to graphs and will
check how the NP-hard gap of (i) is preserved for MIN-NC problem.
Let I be an instance of Ek-MAX-E3-LIN-2, V(I) be the set of variables of I,
m

and m := |V(I)]. Clearly, the system I has Tk equations. For each equation of T

we take a quadruple of labeled nodes. More precisely, if the equation reads as £+
y+z =3 (j € {0,1}) we take 4 nodes with labels ‘ zyz = 007 |,| zyz = 01(1 — 7)

‘myz =10(1—j) ‘ and | zyz = 115 | Notice, that nodes correspond to all partial
assignments to variables making the equation satisfied. Denote by G the graph
whose node set consists of the union of nodes of those mTk quadruples, with an
edge added for each pair of inconsistently labeled nodes. The pair of nodes
is inconsistent if a variable u € V(I) exists that is assigned differently in their
labels. It is clear that independent sets in G; correspond to subsets of I satisfied
by an assignment to variables. Consequently, a(Gy) = ZEOPT(I). (Here af-)
stands for the cardinality of maximum independent set.) Clearly, the hard gap
of (i) is preserved for MAX-IS problem and translates to another one for the
problem MIN-NC for graphs G;.

Using our fixed expander H we can enforce similar preserving of that NP-
hard gap even in graphs of maximum degree < 3d.

U
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Consider a variable v € V(I). Let V;(u) (j € {0,1}) be the set of all 2k
nodes in which « has assigned bit j. Choose any bijection between V5 (u) and Vg
(of H), and between V; (u) and V; (of H). Now take edges between Vg (u), Vi (u)
exactly as prescribed by our expander H. Having this done, one after another,
for each u € V(I), we get the graph G¥ =: f(I). Clearly, the transformation f
is polynomial, and the maximum degree of G¥ is at most 3d.

Any independent set in G is an independent set also in G, hence a(G¥) >
a(Gr) = ZEOPT(I) and nc(GY) < ne(Gr) = m—%’:(él — OPT(I)).

On the other hand, one can show that a(G7') < a(Gr) + 2kmt as follows:
Consider an independent set J of GH with |J| = a(G¥). For each u € V(I),
one after another, remove exactly one of sets J N Vy(uw), J N Vi(u) from J,
namely the one with cardinality < 2kt. (The existence is ensured by properties
of our expander H, and the way how G¥ was created.) Having this done for all
u € V(I) we get an independent set of G (hence of size < a(Gr)), removing no
more than 2kmt nodes. Hence a(G¥) < a(Gr)+2kmt = ZE(OPT(I) +6t), and
ne(GH) > k(4 — OPT(I) — 6t). Hence NP-hard question of whether OPT(I)
is greater than (1 —¢), or less than (1 +¢), is transformed to the one of whether
nc(GY) is less than (3 +¢), or greater than Z%(Z — ¢ — 6t). Consequently,
it is NP-hard to approximate MIN-NC to within ( —& —6t)/(3+¢) > £ — ¢
on instances G¥ of maximum degree < 3d.

The consequence about inapproximability of B-MIN-NC is straightforward.
a

Typically, the methods used for asymptotic results cannot be used for small
values of B to achieve interesting lower bounds. Therefore we work on new
techniques that improve the results of Berman & Karpinski [3] and Chlebik &
Chlebikova [4].

6 MAx-3DM and Other Problems

Clearly, the restriction of B-MAX-IS problem to edge-B-colored B-regular graphs
is a subproblem of MAXIMUM B-DIMENSIONAL MATCHING (see [4] for more de-

tails). Hence we want to prove that our reduction to B-MAX-IS problem can

produce as instances edge-B-colored B-regular graphs. In this contribution we

present results for B = 3,4. For the equation z +y + 2z = j (j € {0,1}) of
E[k, k, k]-MAX-E3-LIN-2 we will use an equation gadget G;[B], see Fig. 1 and

Fig. 2(i). The basic properties of these gadgets are described in Theorem 2.

Maximum 3-Dimensional Matching

As follows from Fig. 1 a gadget Go[3] can be edge-3-colored by colors a, b,
¢ in such way that all edges adjacent to nodes of degree one (contacts) are
colored by one fixed color, say a (for G1[3] we take the corresponding analogy).
As an amplifier of our reduction f = fy from E[k, k, k]-MAX-E3-LIN-2 to
MAX-3DM we use a consistency 3k-amplifier H € G3 , with some additional
properties: degree of any contact node is exactly 2, degree of any other node is
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3 and moreover, a graph H is an edge-3-colorable by colors a, b, ¢ in such way
that all edges adjacent to contact nodes are colored by two colors b and ¢. Let
Gspwm,k C Gs,, be the class of all such amplifiers. Denote pspm,x = min{@ :
H € Gspm,k} and pspm = limy,_, oo f13DM, k-

We use the same construction for consistency 3k-amplifiers as was presented
for 3-MAX-IS, but now we have to show that produced graph H fulfills condi-
tions about coloring of edges. For fixed (3k,7)-amplifier G and the matching
M C E(G) of nodes V(G) \ {z?*+1,... 23k} we define edge coloring in two
steps: (i) Take preliminary the following edge coloring: for each {z,y} € M
we color the corresponding edges in H as depicted on Fig. 3(i). The remaining
edges of H are easily 2-colored by colors b and ¢, as the rest of the graph is
bipartite and of degree at most 2. So, we have a proper edge-3-coloring but
some edges adjacent to contacts are colored by color a. It will happen exactly
if x € {zt,22,..., 2%}, {z,y} € M. (We assume that no two contacts of G are
adjacent, hence y is a checker node of G.) Clearly, one can ensure that in the
above extension of coloring of edges by colors ¢ and b both other edges adjacent
to zo and z1 have the same color. (ii) Now we modify our edge coloring in all
these violating cases as follows. Fix z € {z!,...,2?*}, {z,y} € M, and let both
other edges adjacent to zo and z; have assigned color b. Then change coloring
according Fig. 3(ii). The case when both edges have assigned color ¢, can be
solved analogously (see Fig. 3(iii)). From the construction follows uspy < 40.4.

T Xo Y; Yo T1 Xo Y1 Yo T Xo Y: Yo
.T """" l@ o—O- l --O @ O—@®----0O
O @ ----® O @ ----o O @—0O----@
Zo X1 YE) Y1 Zo X1 YO Y1 Zo X1 Yb n

() (i) (i)
Figure 3: a color: dashed line, b color: dotted line, ¢ color: full line

Keeping one such consistency 3k-gadget H fixed, our reduction f (= fg)
reduction from E[k, k, k]-MAX-E3-LIN-2 is exactly the same as for B-MaAX-IS
described in Section 3. Let us fix an instance I of E[k, k, k]-MAX-E3-LIN-2
and consider an instance f(I) of 3-MAX-IS. As f(I) is edge 3-colored 3-regular
graph, it is at the same time an instance of 3DM with the same objective
function. We can show how the NP-hard gap of E[k, k, k]-MAX-E3-LIN-2 is
preserved exactly in the same way as for 3-MAX-IS. Consequently it is NP-hard
to approximate the solution of MAX-3DM to within 1+(1—46)(%(H)+13+26),
even on instances with each element occurring in exactly two triples.

Maximum 4-Dimensional Matching

We will use the following edge-4-coloring of our gadget Go[4] in Fig. 2(i) (analo-
gously for G1[4]): a-colored edges {z},| 101 [}, {z},| 011 ]}, {y1,| 000 |}, {yo,| 110 ]};
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b-colored edges {z},| 110}, {=},]000]}, {y1,| 101 ]}, {yo,| 011 ]}; c-colored edges

{1, 2}, {20, 2}, {{101], M}, {20,011}, {21,]000]}; d-colored edges {z}, } },
{looo],[ 011}, {20, 101}, {21, } Now we will show that an edge-4-coloring
of a consistency 3k-amplifier H exists that fit well with the above coloring of
equation gadgets. We suppose that the (3k,7)-amplifier G from which H was
constructed has a matching M of all checkers. (This is true for amplifiers of [3]
and [4]). The color d will be used for edges {zo,z1}, z € V(G)\{x?**1,..., 23},
Also, for any z € {z*+1,... 2?*}, the corresponding {Xo, X1} edge will have
color d too. The color ¢ will be reserved for coloring edges of H “along the
matching M”, ie. if {z,y} € M, edges {zo,y1} and {x1,yo} have color c.
Furthermore, for z € {z*+1,...,2%*} the corresponding edges {zo, X1} and
{z1, Xo} will be of color ¢ too. The edges that are not colored by ¢ and d form
a 2-regular bipartite graph, hence they can be edge 2-colored by colors a and
b. The above edge 4-coloring of H and G;[4] (j € {0,1}) ensures that instances
produced in our reduction to 4-MAX-IS are edge-4-colored 4-regular graphs.

The following theorem summarizes both results for MAX-3DM and MAX-
4DM:

Theorem 5 [t is NP-hard to approzimate the solution of MAX 3DM to within
any constant smaller than 1+1/(2uspm+13) > 1.010661 > , and the solution
of MAX-4-DM to within 1.0215517 (> 43). The both mapprozcimabz’lity results
hold also on instances with each element occurring in exactly two triples, resp.

quadruples.

Lower bound for MIN-B-SET COVER follows from that of B-MIN-NC, as
explained in Introduction. It is also easy to see that instances obtained by our
reduction for 3-MAX-IS are 3-regular triangle-free graphs. Hence, we get the
same lower bound for MAXIMUM TRIANGLE PACKING by simple reduction (see
[4] for more details).

Theorem 6 [t is NP-hard to approximate the solution of the problems MAXI-
MUM TRIANGLE PACKING (even on 4-regular line graphs) to within any constant

smaller than 1+ 5 +13 > 1.010661 > gi, MIN-3-SET COVER with ezactly two
>

occurrences of each elements to within any constant smaller than 1 + m
1.0101215 > 190 4nd MiN-4-SET COVER with emactly two occurrences of each

99 7
elements to within any constant smaller than 1 + > 1.0194553 > 53

2418 +8

Conclusion remarks

A plausible direction to improve further our inapproximability results is to give
better upper bounds on parameters Ap, ug. We think that there is still a
potential for improvement here, using a suitable probabilistic model for the
construction of amplifiers.
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