Electronic Collogquium on Computational Complexity, Report No. 28 (2003)

PSPACE Contains Almost Complete Problems

Olivier Powell *

Abstract

An almost complete set A for a complexity class € is a language of € which is not complete,
but that has the property that “many” languages of C reduce to A, where the term “many” is
used in reference to Lutz’s resource bounded measure (RBM). The question of the existence
of almost complete sets is unanswered for small complexity classes, which are those that do
not or are not known to contain E = time(2°™). One of the reasons for the emptiness of
quantitative-completeness results for small complexity class, as opposed to the case of big
complexity classes, where such results are abundant, is the fact that Lutz’s RBM does not
work well for small classes. We use a variation of Lutz’s RBM designed to work for small
complexity classes from [AS94], and use a diagonalisation process from [ASMRTQ0] to prove
that there exists a problem which is almost complete for PSPACE, the class of space efficiently
decidable problems.

1 Introduction

The study of quantitative-completeness notions started in [Lut95], through the definition of weak
completeness. A language L is weakly complete for a class € if it is a member of € and if the
set P.(L) of languages of C that reduce to it (where r is a certain type of reduction, such as
Turing reduction, manyone reduction, etc...), is not small, i.e not of null Lutz’s resource bounded
measure (RBM), which was introduced in [Lut92]. Since then, quantitative-completeness has
been intensively studied, in different classes, and under different reductions. A state of the art
of quantitative-completeness results can be found at the end of [ASMRT00]. These results have
contributed to the general study of the quantitative structure of big complexity classes, which
contain E, problems decidable in time 2°("). A survey of these results can be found in [Lut97].

Whereas many quantitative-completeness results have been gathered in big complexity classes,
there are no such results for the so called small complexity classes, which do not, or are not known
to contain E, such as P, the class of (time) efficiently decidable problems. One of the reasons
is that Lutz’s RBM does not work for small complexity classes. In order to obtain quantitative
results for small complexity classes, efforts have been deployed to construct measure concepts
applying to them. In [May94b], a notion of measure for PSPACE is constructed using a concept
of plogon machines. Perhaps more successfully, two different measure concepts for P arose from
the series of papers [AS94], [AS95] and [Str97]. ([Str97] is revisited in [Pow02], analysing and
correcting a mistake in it). These constructions have enough explanatory power to have yielded
results such as the proof in [CSS97] that the Lutz hypothesis, which is a strengthening of the
P # NP hypothesis, does not hold in small complexity classes. (For more details about the Lutz
hypothesis, see [May94a], [AS94], [LM94], [JL95a], [LM96], [Lut96] or, for a survey of the previous
results, [Lut97]).

We shall be concerned with obtaining a quantitative-completeness result for the class PSPACE.
To do so, we add structure to PSPACE by defining a measure for it, adapting the construction for
P from [AS94]. We then construct an almost complete set, under logspace-manyone reductions,
using a diagonalisation process defined and used in [ASMRTO00] to obtain similar results for the
class E.

*Université de Geneéve, Centre Universitaire d’Informatique, rue du Général Dufour 24, CH-1211 Genéve 4,
Switzerland, olivier.powell@cui.unige.ch

1 ISSN 1433-8092

2 Preliminaries

2.1 Computational Model

While defining a measure for PSPACE in section 2.3, we shall have to be concerned with Turing
Machines (TM) computing in bounded space complexity, which are restricted in the way they
can query their input. We follow the usual convention of providing these machines with random
access to their input; that is, these machines have a special address tape, and if an integer ¢ is
written in binary on this tape, the machine can in unit time move its head to position ¢ of its
input tape. These machines are also given an output tape, which is write only, and no restriction
is imposed on the size of the output: only the working space is bounded. What kind of elementary
arithmetics can we perform with such machines? This question is usually avoided, perhaps because
it is considered trivial. We do not agree with this point of view, since in many publications we
admit that when looking in detail at some arithmetical operation performed by machines bounded
logarithmically in working space or time, we could not convince ourselves that these operations
could be carried out efficiently, with the choice made for representing rational numbers, (such as
diadic rational numbers). For this reason, we have taken care to look in detail at the way rational
numbers should be represented, in order to allow arithmetical operations to be computed easily.
Our conclusion is that the representation chosen in definition 2.1, which was suggested in [Mos02],
permits to compute basic arithmetics efficiently, as we show in section 2.2.

Definition 2.1 A transducer T : {0,1}* — {0,1}* x {0, 1}* is said to compute a rational function
f:{0,1}* - Q if Vz € {0,1}* the output (a,b) of T, interpreted as a pair of integers coded in
binary satisfies f(x) = §.

Suppose that we have m functions f;, 1 < ¢ < m, each of them being efficiently space com-
putable. How efficiently can we compute easy arithmetics, such as the sum f = >"1" f;? The next
section is dedicated to answering this question, through lemma 2.7. Informally, lemma 2.7 says
the following.

Lemma 2.1 If a family {fi}1<i<m of rational functions can be computed space efficiently, then
elementary arithmetics can be computed on this family with only a logarithmic in m loss of effi-
ciency.

2.2 Adding and Multiplying with Small Space Complexity
2.2.1 Adding Natural Numbers

Suppose we have a family of functions {f;}i<i<m where f; : {0,1}* — N, such that each f;
is computable in small space complexity. How efficiently is it possible to compute the function
=", fi? The next lemma states that it is possible to compute f with only a logarithmic in
m loss of efficiency.

Definition 2.2 Let y be an integer, we note BIN(y) the binary representation of y. Let f be a
function, f:{0,1}* - N. A Turing machine M is said to compute f if BIN(f(z)) = M(z).

Lemma 2.2 There exists a constant ¢ such that for any m € N and for any family of functions
{fiti<i<m with f; - {0,1}* = N, and such that Vi AM; a Turing machine computing f; in SPACE =
g(n), (for a certain complezity function g), the function f := > ;" fi is computable in SPACE =
clg(n) +logm)].

Proof. For z with |z| = n, let yy - -yi1 = M;(z), with [= 29(") (wlog). Let A = A;; with A;; =
Yij, 1 <4 <mand 1 < j <! be the table, which is dynamically computable in SPACE = g(n),
and which is used to compute f according to the following standard way of adding numbers “by

hand”:

Yyu - Yn
: : ~A
+ Yml o Yma
. m — m z1 o m Zm—1 .
Let 21 :=)" Yi1, 22 := Y iq Yiz + | 5], oo Zm = 2 Yim + [T5]. Since for 1 <k <m

zr < 2m and since table A can be dynamically computed in SPACE = g(n), each z; can be
computed and stored in memory using SPACE = g(n) + c[logm + 1] = g(n) + clogm, for a certain
constant ¢, (the last equality holds if m > 1, and for ¢ replaced by another constant ¢’, but assume
this to be implicit). (Notice that while computing dynamically the table A, it will be necessary
to compute and store indexes i and j ranging from 1 to I. Since I < 29(™ (through trivial space-
time tradeoffs), such indexes are stored in SPACE = g(n), and are thus absorbed in the constant
¢). Now to finish the proof, it only needs to be observed that computing 2z; and outputting its
rightmost bit (corresponding to units), then computing z5 and outputting its rightmost bit, ...,
computing z,, 1 and outputting its rightmost bit, and computing and outputting every bits of z,,
produces the desired output. O

2.2.2 Multiplying Natural Numbers

Let f1 and f2 be two functions from {0,1}* to N, such as in lemma 2.2 of the previous subsection.
The following table permits to compute f; - f2, the product of the two functions:

Yu -+ Y11
X Y -+ Y
Ayoyy - - - An
~ Where Az] = y2iy1(j—z'+1);
+ Ay o e e Ap T withyy =0ifk<OQork>1.

Let hi(z) := Ajpy...a,, € {0,1}%, for 1 < <. Since y;;’s can be computed in SPACE = g(n),
and since the indexes range up to 2/ (and can thus be stored on g(n) 4+ 1 bits), the functions h;
can be computed in SPACE = c[g(n) + 1], for a certain constant ¢ not depending on f; and fs.
Now to compute the value of f = f; + fa, we could add the values of table A column-wise. To
bound the space complexity of the computation of this sum, we can use lemma2.2, (replacing the
fi’s of the lemma with the h;’s from above). The following corollary is then obtained:

Corollary 2.3 3¢ a constant such that if fi and fa are functions from {0,1}* to N computable
in SPACE = g(n), then f1 - f2 is computable in SPACE = c[g(n) + 1 + log(l)] = c[g(n)].

Using this corollary, an upper bound of ¢?g(n) on the space required for computing (f; - f2) - f3
is obtained (we assumed for ease of notations that the constant term “+1” can be absorbed in the
constant ¢). An easy induction argument gives the following corollary.

Corollary 2.4 There exists a constant ¢ such that for any m € N and for any family of functions
{fi}i<i<m with f; : {0,1}* = N, and such that Vi AM; a Turing machine computing f; in SPACE =
g(n), (for a certain complexity function g), the function f :=IIT%, f; is computable in SPACE =
cm~g(n).

This exponential bound on the growth of the size required to compute the product of functions
computing natural numbers is quite large. We shall next explain how it is possible to compute
products of functions in a much more space efficient way than the one described above. The bound
obtained will be logarithmic in the number m of functions to be multiplied. This is much better
(twice logarithmically better) then the previous bound, which is exponential in m, and it shows
that a bound nearly as good (up to multiplication by a constant factor) as the one from lemma
2.2 for additions holds for multiplications.

2.2.3 Improving the Space Efficiency of Multiplications

Lemma 2.5 There exists a constant ¢ such that for any functions fi and fa from {0,1}* to N,
computable by Turing machines My (and My respectively), in SPACE = g1 (n) (and SPACE = g2(n)
respectively), and such that |My(z)| < i and |Ma(z)| < Iz (i.e. fi(x) < 2%, where I; is really
Li(|z])), then fi - f2 is computable in SPACE = max{g1(n), g2(n)} + cmax{logly,logl>}.

Proof. Suppose wlog that I; > l2, and consider the following multiplication table:

y1l1 - “e y1l2
X Y21, - Y2uy

Ay - - o An

where A;; = y2i91(j—it+1),

+ Alz(l1+lz) Algl — 7 with yir =0 fk<Oork>I.

This table can be dynamically computed in SPACE = max{g1(n),g2(n)}, plus a space of size

SPACE = cmax{log!l,logls} (for a certain constant c) to store the indexes of the table. Once again

the z;’s being the row-wise sum of table A have to be computed, and this takes SPACE = log(2l5)

(c.f proof of lemma 2.2 for the details, which remain the same). O
Using this lemma, we can improve on corollary 2.4:

Lemma 2.6 There exists a constant ¢ such that for any m € N and for any family of functions
{fiti<i<m with f; : {0,1}* = N, and such that Vi IM; a Turing machine computing f; in SPACE =
g(n), (for a certain complezity function g), the function f := II7%, f; is computable in SPACE =
clg(n) +logm].

Proof. The proof is obtained by induction. First let us define fo:=1and f; := f;fi_1 (for i from 1
to m). Notice that if we note /; to be the length of the output of a Turing machine computing f;,
then I; < il, where ! < 29(")_ Now let E(i) be the space required to compute f;. E(1) has value g(n)
by hypothesis. Using lemma, 2.5, we can bound E(i) by max{E(i—1), g(n)} +cmax{logl,logl;_1},
which is equal to E(i — 1) + clogl;_1 < E(i — 1) + clog(l(i — 1)). Solving the recursion gives
E(m) = g(n) + cllogl +1og 2l + - - - + log(I(m — 1))] = g(n) + c[log(l(m — 1)) 3] = c[g(n) + logm].

O

2.2.4 Rational Functions and Arithmetics

It follows from the results of the two previous subsections that:

Lemma 2.7 3¢ a constant such that for any family of rational functions { fi}1<i<m such that Vi
fi is computable in SPACE = g(n), (where n is the size of the input), simple arithmetics (sums,
substractions, multiplications and divisions) can be carried out in SPACE = c[g(n) + logm]

Proof. This holds because adding rational function requires multiplying the denumerators, and
adding the (weighted) numerators, multiplication requires multiplying numerators and denumer-
ators, which can be computed efficiently, by lemmas 2.2 and 2.6.]

2.3 A Measure on PSPACE

A measure for P which shares many of the properties of Lutz’s RBM, [Lut92], is defined in
[AS94]. As pointed out in their paper, this measure for P can be adapted to PSPACE. We find
it necessary to give a full description of this construction, including proofs. The reason is that
the original definition of [AS94] is nearly a decade old, and RBM has evolved considerably since
then, permitting clearer and cleaner definitions. The construction of [AS94] shares with Lutz’s
RBM the use of martingales as a central tool. Martingales are functions which can be interpreted
intuitively as functions describing the course of the so-called “casino game”, opposing a casino

and a gambler. While this approach is enlightening from the intuitive point of view, we do not
describe it in this article, and refer the reader to the existing literature on the subject, e.g [Lut97]
or [ASMRTO00] for more details. Formally, martingales are thus defined.

Definition 2.3 A super-martingale is a function d : {0,1}* — Rt such that d(w) > w,
and a martingale is a super-martingale which satisfies the inequality above with the “>” replaced
by an equality.

As explained above, martingales are used to play a game, called the casino game. When the
casino chooses a language L and the martingale “wins” against the casino, the language is said to
be in the success set, or to be covered by the martingale. Before we give the formal definition of
a success set, let us make the following convention.

Convention 1 We put on {0,1}* the canonical lez-length ordering, and the symbol sy always
denotes the Nth word under this ordering.

Definition 2.4 The success set of a (super)-martingale d, is S®[d] := {L € P({0,1}*) | limsupy_, o, d(x[0, N]) =
oo}, where xr[0,N] is the prefiz of length N + 1 of the characteristic sequence of L under the
canonical ordering.

In order to develop an RBM for a class €, we need to bound the resources available to compute
martingales. How many restrictions we need to put on the resources available depends on the class
for which we want to define a measure, which is PSPACE in the case we are interested in. There are
two resources that we will need to consider. The first one is the common space complexity. The
second resource is less usual, and is related to the way algorithms (or transducers) computing a
martingale query their input, (remember we are using a model of transducers having RAM access
to their input, c.f. section 2). To bound the query complexity of transducers in a way that suits
our needs, we need the following definition of dependency sets.

Definition 2.5 A dependency set is a family {Gn}nen of subsets of {0,1}*, such that the follow-
ing holds: 1) YN € N, Gn C {s0,...5x}. 2) Ik such that VN € N, |Gn| < logF(N)+k. 3)VM <
N, it holds that Gpr C Gn. A transducer T is said to query its input in a dependency set if the fam-
ily Qn := {s; | Iz € {0,1}" such that T(x) queries the ith bit of its input during its computation }
is such that {QN}nen is a dependency set.

With this definition at hand, we define “good” transducers (or I' transducers) by limiting the
space complexity of computations, and requiring the queries to the input to be done inside a
dependency set.

Definition 2.6 A transducer T is a T'(PSPACE) transducer if on an input of length N, T' computes
in SPACE = O(log N) querying its input in a dependency set.

The next convention is a detail, but we will need it in our effort to rigorously construct an
RBM for PSPACE. Its meaning will become clear when it is used. Intuitively, we sometimes need
to consider transducers which have an auxiliary input tape, on which the length of the (main)
input is written in binary. Let T be such a transducer, the convention that for any input x of
length N, the transducer T'(z) has the value N given as input on an auxiliary tape is explicitly
shown using the following notational convention.

Convention 2 LetT be a transducer. We write T (z) (or T) instead of T'(x) (orT respectively)
when T is a T'(PSPACE) transducer supplied with the length of its input on an auziliary tape.

Note that a transducer can very easily compute the length of its input. (It can do so in
logarithmic time, c.f. [Bus87]). The problem that we want to avoid by supplying a transducer T
with N on an auxiliary tape, is the way T queries its input. Therefore, no restriction is implied
on the way T'v(x) queries its auxiliary tape: only z is queried “according” to a dependency set.
The definition of “good” functions and martingales follows.

Definition 2.7 A T'(PSPACE) function is a function which is computed by a T'(PSPACE) transducer
T. A T'(PSPACE) martingale is a martingale which is computed by a T'(PSPACE) transducer T .

We now have all that is required to define a measure g on PSPACE. p is a partial function from
subsets of PSPACE to {0, 1}, which is thus defined.

Definition 2.8 (A measure for PSPACE) The function p : P(PSPACE) --» {0,1} is defined by
u(A) = 0 if 3d a T'(PSPACE) martingale such that A C S*®[d], and u(A) = 1 if w(PSPACE\ A) = 0.

Intuitively, this measure defines a notion of big sets, (those of measure 1), and a notion of
small sets, (those of measure 0). The fact that this definition is consistent, (i.e. there are no
subsets A of PSPACE such that u(A) = 0 and u(A) = 1 at the same time), is an easy consequence
(left to the reader) of the measure conservation lemma (lemma 2.8). The terminology of calling u
a measure is justified by showing that p satisfies the following “measure axioms” which we shall
make precise.

M1 Easy unions of null sets are null sets (lemma 2.12).
M2 Singleton sets are null sets (lemma 2.9).
M3 PSPACE itself is not a null set (lemma 2.8).

We now state the lemmas asserting that the “measure axioms” hold, starting with the measure
conservation lemma which insures that the biggest subset of PSPACE, which is PSPACE itself, “looks”
big to u, i.e. has measure 1.

Lemma 2.8 (M3, Measure Conservation) p(PSPACE) # 0

Proof.(2.8) It has to be shown that no single I'(PSPACE) martingale covers the whole of PSPACE.
To prove this, we show that for any I'(PSPACE) martingale d, there exists a language L of PSPACE
which is not covered by d. Let d be a I'(PSPACE) martingale, and define recursively the language
L by L(sg) = 0, and for sy € {0,1}* the Nth word, (N > 0), L(z) := 1 if d(x.[0, N — 1]0) >
d(xp[0, N — 1]1), L(z) = 0 otherwise. First, notice that L ¢ S*°[d], since L “defeats” d at each
single step. To conclude, it only remains to show that L is in PSPACE. Let us describe an algorithm
Ay, running in space polynomial in its input size, such that Ap(z) = L(x) Vz. Suppose we have
to compute L(sy), n := |sy| = log N. Trivially, our work would be finished if we could compute
d(xr[0, N —1]0) and d(xr[0, N — 1]1) in polynomial space in n. Let us show that this is the case.
Since d is a I'(PSPACE) martingale, there exists a transducer Ty which, given x1[0, N — 1]0 as an
input, computes d(xr[0, N — 1]0) in polylogarithmic space in N, which is polynomial in n. We
shall thus describe an algorithm M, running in polynomial space in its input size, which on input
sy computes d(xr[0, N —1]0). (Computing d(xr[0, N — 1]1) is done similarly). First, notice that
computing N from sy is no problem to an algorithm computing in polynomial space, so the fact
that Ty has to have access to N on an auxiliary tape is easily solved. The problem, while M (sy)
tries to simulate the computation of T (xz[0, N — 1]0) in polynomial space in n, is to enable
the access to xr[0, N — 1]. Remember that we are describing an algorithm Ar(sny) which uses
M (sn) to compute L(sn). We see that the algorithm M has to simulate T, which needs to have
access to x1[0, N — 1]0. This raises the spectre of having to call Ay, recursively on every inputs s;,
0 <i< N, (since xr[i] = AL(s;)). This would be a recursion of depth N, thus exponential in the
size of the input sy, and which can thus not be afforded by A (sy), which we would like to let
run in polynomial space 1 in n. Thanks to the fact that Thy is a T'(PSPACE) transducer, this is not
the case: T,(xr[0, N — 1]0) only queries its input in a dependency set of size polylogarithmic in
N, which is thus polynomial in n. This enables us to bound polynomially in the size of its input
the recursive call of Ay, to itself. O

Next, we state the lemma asserting that the second measure axiom holds. This axiom requires
that the smallest (non empty) subsets of PSPACE “look” small to u, that is singleton sets consisting
of only one language of PSPACE should be of null measure.

Lemma 2.9 (M2) VL € PSPACE, u({L}) =0.

Proof.(2.9) Consider a martingale d which bets only on words of the form 0", for a certain n € N,
and each time it wagers, it tries to double its capital, betting on the fact that it is playing
against the language L. Since L is in PSPACE, d can be computed in polylogarithmic space in
its input size , and since d only wagers on words of {0}*, this computation can be done by only
querying the input in a dependency set. (More precisely, the dependency set is {Gn}nen, where
Gy ={0"|0<I<k}). O

In order to prove lemma 2.12 stating that easy unions of null sets gives a null set again, we
first need a few technical lemmas. The first lemma states that a I'(PSPACE) super-martingale can
always be replaced by a I'(PSPACE) martingale.

Lemma 2.10 Let d be a T(PSPACE) super-martingale, then there exists d a T'(PSPACE) martingale
such that S*®[d] C S*[d].

Proof.(2.10) To prove this lemma, it suffices to construct d a I'(PSPACE) martingale such that d > d.
First of all, let us define the following: for w € {0,1}* and b € {0,1}, we define WIN(wbd) :=
d(wb) — d(w), and for b € {0,1}, we let Ei: 1 —b. Notice that since d satisfies d(w) > %[d(w@) +
d(wd)], it holds that WIN (wb) + WIN (wb) = d(wb) + d(wb) — 2d(w) < 0, and thus —-WIN (wb) >
WIN (wb).

Let us now define d recursively: d(\) := d(\) (where A = sq is the empty word), and d(wb) :=
d(w) + 1[d(wb) — d(wb)]. In order to substantiate the proof, it remains to be shown that d is indeed
a T'(PSPACE) martingale such that d > d.

Let us start by showing that d > d by induction. First, notice: d(wb) = d(w) + 1d(wb) —
dwh)] """ d(w) + Ld(b) — d(w) + d(w) — d@b)] = d(w) + LWIN(wb) — WIN(wB)]. Next,
notice: d(wb) = d(w) + WIN (wb). Thus, to show that d > d, it suffices thus to show that:
WIN(wb) < L[WIN(wb) — WIN(wb)]. But this is easily seen to hold from the fact (shown
above), that —WIN (wb) > WIN (wb).

_ Next, notice that dis a martingale, since it immediately follows from the definition of d that
d(wb) + d(wb) = 2d(w).

Finally, to prove that d is a T'(PSPACE) martingale, remember that d(wb) := d(w) + 2ld(wb) —
d(wb)]. The right hand side of the sum is no problem, since d is by hypothesis a I'(PSPACE) super-
martingale. It may be feared that the left hand side of the sum starts a recursion of depth |w|,
but this is not the case since from the fact that d is a I'(PSPACE) martingale, it is possible to
compute d querying the input only in a dependency set G'v, thus enabling to bound the depth
of the recursion. More precisely, the following holds: d(w) = 3 3° {(klsx €Gan} d(w[0, k — 1w[k]) —
d(w[0, k —1](1 — w[k])), which permits to bound the depth of the recursion by |Gn| = log*(n) (for
a certain integer k). O

Next, we need another lemma, perhaps slightly more complicated, stating that if we have a
martingale which lets itself be approximated by a I'(PSPACE) function, we can always replace this
martingale by a I'(PSPACE) martingale covering the same subsets of PSPACE.

Lemma 2.11 (Exact computation) Let d be a martingale. Let d be a function such that there
exists Ty a T'(PSPACE) transducer computing d, and such that for every w, it holds that |d(w) —
dw)| < ﬁ Then there exists d, a I'(PSPACE) martingale such that S*®[d] C S*[d].

Proof.(2.11) We start by defining d a I'(PSPACE) super-martingale such that $°°[d] C S*[d]: for
w € {0,1}", d is defined by d(w) := d(w) + 3, where n :=log N.

First, we show that d is a super-martingale: d(wb) = d(wb) + st < d(wb) + 727 + 5k =
2d(w) — d(wh) + g = WOFAEH) <) 4 2 = WA <) 4 20 + Sl = d(w) +

oy = WD) 8 < d(w) + 52 < d(W) + 520 + o = A(W) + 52 = A(W) + 52 — 52y =

dw) — 327 = w < d(w). To see that d is a T'(PSPACE) super-martingale, we need to
show that there exists Ty a T'(PSPACE) transducer computing d by only querying its input in a
dependency set {Gx} nen- This latter fact is easily seen to follow from the fact that by hypothesis
d is a T(PSPACE) martingale, and that lemma 2.7 guarantees that it is possible to add the 2% term
to d(w). Finally, it trivially holds that S*[d] C S*°[d], since d < d. To finish the proof, we use
lemma 2.10 to insure the existence of a T(PSPACE) martingale d such that $*°[d] C S*[d]. a

In contrast with the two other measure axioms, the first one needs to be made precise, by
explaining what is meant by an “easy” union of null sets. Roughly speaking, a union of null sets
is eagy if it is uniform, from the point of view of martingales, and if the union of its dependency
sets is not too large. Precisely, the first measure axiom is the following condition under which the
union of a family of null sets gives a null set again.

Lemma 2.12 (M1) Let {X;}ien be a family of null sets, and let d; be a family of martingales
such that X; C S°°[d;]. Suppose there ezists Ty o transducer such that: 1) Tn(i,z) = d;(z). 2)
3k € N such that Vi € N, Tn(i,-) computes in SPACE = (i* + k)(log" (N) + k), querying (the right
hand side of) its input in a dependency set {Gi n}nen such that |G; x| < (i* + k) (log®(N) + k),
then p(Uz;enX;) = 0.

Proof.(2.12) We are going to exhibit a I'(PSPACE) martingale that covers U;X;. First of all,
consider the martingale d := Y ;- ¢;d;, for a certain family of ¢;’s which can be computed (from
i) in SPACE = i + k, (for a certain constant k), and such that }, ¢; = ¢ for a certain constant
c. It easy to see that d is a martingale such that UX; C S*°[d]. It remains to be shown that d
can be approximated by a I'(PSPACE) function d. The exact computation lemma (lemma 2.11)
will then permit to conclude. Let w € {0,1}". d is defined by: d(w) := 375%™ ¢;d;. We now
turn to the analysis of the complexity of computing d: the transducer T in the hypothesis of
the lemma insures that d;’s are computable in polynomial space in ¢ and polylogarithmic space
in N, which is globally polylogarithmic in N, since ¢ < n = log N. The ¢;’s are by hypothesis
computable in polynomial space in i, which is thus polylogarithmic in N too. Finally, lemma 2.7,
insures that the arithmetics required to multiply and sum up the previous ¢;’s and d;’s can still
be computed in polylogarithmic space in N. Thus, 3k € N and My a transducer computing d in
SPACE = log®(N) + k. In order to prove that d is a ['(PSPACE) function, we still need to prove that
My queries its input only in a set G such that {G N} NeN is a dependency set. To prove this,
notice that on input w € {0,1}", the computation of d by My queries its input in the following
set: Uj<,Gj N, the size of which is at most n (¥ +k)(logF (N)+k) < (logh(N)+k)® = logkl (N)+K,
and that since for any 4, {G; n} is a dependency set, it follows that {Gn} is a dependency set too
(i.e. Gpr C Gy if M < N). Thus d can be computed by My a I'(PSPACE) transducer. We next
prove that, for a suitable choice of ¢;’s, d is an approximation of d. Let define ¢; := ﬁ First
notice that ¢; can be computed (from) in polynomial space in 4, as required in the construction
above. Indeed, the only difficulty would be to compute 22" the rest is “simple” arithmetics
(as proved in lemma 2.7). Notice that 22" is coded (in binary) as 10*. So to compute 2%,
the only thing an algorithm has to do is to output a 1, and then use a counter ranging from
1 to 2¢ to output 0’s. The space required for the computation of this algorithm is mainly the
space needed to store the counter, which is 4, and thus polynomial in i, as announced. Next,
let us show that with this choice of ¢;’s, d becomes an approximation of d: Since d;(w) < 2V
(assuming wlog that d;(\) = 1 Vi), |d(w) — d(w)| = | ¥, cidi(w) — 332, cidi(w)| is bounded by
YN <> ;%ﬁ < % 3 < 5= = %. The exact computation lemma, (lemma
2.11), permits to conclude that UX; is a null measure set. O

3 An Almost Complete Set for PSPACE

We want to use the definition of p from the previous section to construct an almost complete set
for PSPACE. This is a technical task which is quite complicated, and justifies splitting things into

subsections. We keep separate (in subsection 3.1) the general definitions and conventions from the
main construction (in subsection 3.2). It is only in section 3.3 that we actually prove that this
construction yields the existence of an almost complete set for PSPACE.

3.1 Definitions and Conventions

We shall set the definitions and conventions required in the rest of the article, trying to avoid
unnecessarily heavy notations. For example, although different type of reductions exist (manyone,
Turing, etc...), we define reductions as logspace-manyone reductions, since they are the only type
of reductions we are concerned with in this paper. For completeness, we remind the reader of the
definition of (logspace-manyone) reductions.

Definition 3.1 A function R : {0,1}* — {0,1}* is a reduction from the language A to the
language B (noted A < B) if Vz € {0,1}*, z € B iff R(z) € A and 3 k € N and T a transducer
computing R in SPACE = O(logn).

The (lower) span of language is the set of languages that reduce to it. Roughly speaking, a
language is complete if its span contains the whole complexity class (which is PSPACE in the case
we are interested in), and it is almost complete if its span is “large”, from a measuring point of
view.

Definition 3.2 The span of a language A is P,(A) := {B | B < A}. If A € PSPACE, it is
complete if P,,(A) D PSPACE and it is almost complete if (it is not complete) and that u(Pp, (A)N
PSPACE) = 1.

We have announced to the reader that the construction of an almost complete set (in section
3.2) is done by diagonalisation. It should thus come as no big surprise that this construction needs
a few enumerated families. The first convention is to say that “{R;} is an effective enumeration
of reductions”, which means the following.

Convention 3 {R;};cn is an enumeration of reduction, and R is a transducer such that R(i, x)
computes R;(x) in SPACE = ilog(n) + 1.

The existence of such an enumeration is proved by using “yardstick” TM’s, and can be found
in the classical complexity theory literature, such as [BDG94a] and [BDG94b]. Similarly, we need
{L;}ien to be an effective enumeration of PSPACE.

Convention 4 {L;}ien is an enumeration of PSPACE, and M is a TM such that M(i,-) = M;(-)
decides L; in SPACE = n* + 1.

We next fix a notation for a/the canonical complete language for PSPACE and its associated
reductions.

Convention 5 Cpgpace := {(M;, 1121V) | M; accepts x in SPACE = |z|* + i } is called the “canon-
ial” PSPACE complete language. R; : {0,1}* — {0,1}* defined by Ri(x) := (M;,11=I'ti 1) is
called the ith canonical reduction, and R is a/the transducer such that R(i,-) computes R; in
SPACE =ilogn + i.

In the diagonalisation process used in subsection 3.2 to construct an almost complete set for
PSPACE, there is another enumeration which will be required. This enumeration is a family of
intervals {I;} forming a partition of {0,1}*, with the property that the “length” of these intervals
grows exponentially fast.

Definition 3.3 Let f : N — N be defined recursively by f(0) = 0 and f(i + 1) = 2¢f(i)* + 1.
{Zitien is defined by I; = {w € {0,1}*[f() < || < f(i +1)}.

The following remark on the length of words that can be found in a given interval I; and on
the rate of growth of f is trivial, but it is nice to put it down once and for all, since it will appear
further in this article at a point where we will too concerned with other difficulties to battle with
such details.

Remark 1 Letn := |sy| ~log N. Let i be the index such that sy € I;. The two following facts
will be useful: 1) n < f(i + 1), which can be rewritten as N < 2fG+1)_ 2) 2t < f(3) < n, or
alternatively © < log(f(i)) < log(n).

The diagonalisation process used in the next subsection requires us to distinguish, in each
interval I;, a subset D; called the distinguished words of I;. The distinguished words will be used
to separate the intervals I; in four groups, but this will be clear when they are used.

Definition 3.4 For every i € N, D; is defined as the i2 first words of I; (under the canonical
ordering), and is called the set of distinguished words of I;.

A first glimpse of the diagonalisation that is planned to be in the next subsection may be
suggested by the following remark, which possibly gives a hint on how the enumerations {I;} and
{R;} will be related.

Remark 2 Vz € D;, R;i(z) € UjSiRi(x)-

Notice that this remark is true simply because on input x € D;, the transducer R; has not got
enough time (using trivial space-time tradeoffs) to output a word of size greater than f(i+1). We
point out another trivial fact that we want to free our minds of.

Remark 3 If z is a distinguished word of I;, then |z| = f(i).

Finally, we need a last definition which separates the intervals {I;} in four groups, depending
on the value of a function g defined thereunder. This separation into four groups will be used in
the diagonalisation process of the next subsection, to define a recursive construction depending
on the values of g.

Definition 3.5 The function g : N — N is defined by g(i) := 1 if Iz € D; such that R;(z) & I;,
g(i) == 2 if 3x1, 22 € D; such that 1 # x2 and R;(x1) = Ri(x2), g(i) := 3 if Iz € D; such that
Ri(z) € U;<; Im(R;) and g(i) := 4 otherwise.

3.2 Construction of an Almost Complete Set

We use a diagonalisation process, which on parameter C a language, produces another language
Ae. The process is subtle, since it has to achieve three different tasks at the same time, the two
last ones being apparently contradictory: first, it should be that if € € PSPACE, then Ae € PSPACE.
Now suppose that € is complete for PSPACE. The process should insure that Ae is different from
G, but similar at the same time! More precisely, if € is complete, Ae should not be complete, but
nevertheless many languages of PSPACE should reduce to it, that is, Ae should be almost complete.
The definition of Ae is done with the following idea: at first, we start with the language Ae := C
and the empty language Be. Then we modify Be and Ae so that Be £ Ae, trying to modify as
little as possible the language Ae. More precisely, the definition is the following.

Definition 3.6 Let C be a language. The languages Ac and Be are defined recursively on the
intervals of the partition I of definition 3.8. On the interval Iy, we put Ae(z) = C(x) and
Be(x) = 0. Suppose that Ae N I; and Be N I; are defined Vj < i, Ae N I; and Be N I; are defined
according to one of the four following cases, depending on the value of g(37).

(1) If g(i) = 1. In this case, we leave Aec unchanged, Ac(z) := C(z) Vx € I;. By case assumption,
there exists £ := min{z € D;|R;(z) & I;}, and we use this fact to insure that Be £ Ae via R;, by
setting Be(z) := 1 — Ae(Ri(z)) if x =& and Be(z) =0 if z € I; \ {¢}.

10

(2) If g(i) = 2. Ag is left unchanged again, Ae(z) := C(x) Vo € I;. Let & < & be the two smallest
elements (which exist by case assumption) of D; such that R;(&1) = Ri(&2). Once again, we insure
that Be £ Ae via R; by defining Be(z) :==1 if x =& and Be(z) =0 if z € I; \ {&1}-

(3) If g(i) = 3. Let £ := min{z € D;|Ri(z) ¢ U,<; R;}. This time we have to modify Ac, by
setting Ae(z) := 1 if x = R;(€), Ae(z) = C(z) if x € I; \ {Ri(§)}. We let Be N I; be the empty
language, Be(x) := 0 Vz € I;, and thus it holds that Be £ Ae via R; since Be(£) # Ac(R;(§)).

(4) If g(i) = 4. By case assumption, R;(D;) C Uj<;Im(R;) N I;, and R; .
otherwise g(i) < 2. Since |D;| < i2, there ezists e; = min{l1 <1<i : |Ri(D;) N Im(R;)| > i}
Let J; be the first i elements of D; that are mapped by R; to Im(f%ei), and let F; .= R;(J;). If
CNF; =0, then let £ := max F;. We change Ac by setting Ac(z) :=1 if x = &, Aec(x) = C(x)
if v € I; \ {{}. Be(z) := 0 Vz € I;. Notice that if CN F; # (, then trivially Be £ Ae via R;,
(because Iz € J; such that Ae(R;(z)) = C(R;(z)) = 1 # Be(x)), and if CN F; # (0, & is here to
ensure that Be £ Ae via R;.

15 one-to-one, since

As emphasised throughout the above definition, Aec and Be are constructed to ensure that
Be £ Ae. The next remark is more precise.

Remark 4 Vi € NIz € I; such that Be(R;(x)) # Ae(z).

To show the strength of the above construction,. we will start proving some properties of it
although, as announced, the main result (which is the fact that Ae is almost complete for PSPACE
if € is chosen wisely), is kept for subsection 3.3. The rest of this subsection is dedicated to the
analysis of the space complexity required to decide Ae and Be (depending on the choice of €). To
come to this end, we start by giving a bound on the space required to compute the index of the
interval a word is in.

Lemma 3.1 There exists an algorithm Index that runs in SPACE = O(logn) such that Vz €
{0,1}*, Index(z) = i, where i is the index such that © € I;.

Proof. Let sy € {0,1}™ be the input to Index. We sketch a very simple algorithm computing
Index. First, compute and store n. Then compute the successive f(i)s for i = 0,1,2,3, ... until
i is such that f(i + 1) > n, and output i. Le us analyse the working space required to run this
algorithm. How much space does it take to compute f(j+ 1) having f(j) and j stored in memory?
By definition, f(j + 1) = 27f(j)7 + 1. Using lemma 2.7, we bound the working space required to
compute this value by O(log(f(j))). Since in our case, j < 1, this is bounded by O(logn). Note
that we can stop the computation as soon as we see that f(i + 1) is going to require more than
logn bits to be stored, and thus we never need to actually store in memory the value f(i+1). O

Since Ae and Bg are defined on each interval, applying a different rule depending on the value
of g on this interval, the natural plan to construct an algorithm deciding Ae (or Be) on input x,
is to have a subroutine finding the interval such that z € I;, and another computing the value of
g on this interval. The first step of this plan is already realised through the algorithm Index of
the previous lemma, the next step is described in the lemma to come.

Lemma 3.2 There exists an algorithm Case that runs in space O(log®n) such that Yz € {0,1}*,
Case(z) = g(i), where i is the index such that x € I; and g is the function of definition 3.5.

Proof. Let z be the input of size n. First use Index to compute and store the index ¢ such that
x € I;. Next, compute and store the value f(i). (It is trivial from the proof of lemma 3.1 that
these two computation steps can be carried out within the desired space bounds). Next, compute
and store in a list the set D;, which is of size i2, and whose elements are of length f(i). The
output of this computation cannot be stored within desired space bounds (although the working
space of the computation is easily shown to hold within the desired space bounds), since f(¢) could
be as big as n. To overcome this difficulty, the set D; has to be stored in a “compressed” form.

11

The compression takes advantage of the fact that each element of D; has only logi? significant
bits. Thus D; is compressed and stored on 2 logi? bits, which stays within the desired bound,
since 1 < logn. (Notice that having the value f(i) stored in memory, “decompression” of D, is
easy: it consists of padding f(i) — log®(i) zeros in front of any compressed object). Next, test
whether g(i) = 1, that is, test whether 3z € D; such that |R;(z)| < f(i). It is easy to see that
this computation can be done in space O(ilogn + 4), which is the space needed to compute R;
on elements of size n, and since the elements of D; are no longer than z, the input. (Remember
that if f and g are space efficiently computable, then so is g o f, even though the output of f
may be too large to be stored, and therefore decompressing the element of D; to feed them to
R; is not a problem). Next, unless g(i) is already known to be equal to 1 (in which case the
algorithm terminates outputting 1), test whether g(7) = 2. That is, test whether 3z # x5 € D;
such that R;(z1) = R;(z2). The computation of R;(xz) with € D; is bounded as for the case
where g(i) = 1. This time, the computation of R;(x1) and R;(x2) for (z1,z2) ranging in D; x D;
have to be done in parallel, comparing the output of both computations bitwise each time a bit is
outputed by one of the computations. This lets the space complexity of this computation step be
bounded by O(ilogn + 7). Next, unless g(i)s value is already known, test whether g(i) = 3. That
is, test whether there exists y € D; such R;(y) € U;<; 1 m(R;). To be convinced that this step can
be carried out space efficiently, let us look at one of the tests that have to be made. (All of which
can be carried out one at a time, after having cleared the memory space previously allocated).

Let j <14 and y € D; be fixed, and suppose it needs to be decided whether R;(y) € Im(R;). That

is, it has to be decided whether R;(y) is of the form (M, 11?/'"+7 2) for a certain z € {0,1}* and a
certain j < 4. The only difficult thing to see is that the number of 1s is correct. To verify this, we
need to compute |z|? +j, and compare it to the number of 1’s. This will take SPACE = log(|z|? +7),
which is adequate, since we can bound |z} + j by 2°0°6° ™) noticing that since y € D;, it holds
that |y| < n, and thus (through trivial space-time tradeoffs), the length of the output of R;(y),
and thus of 2, is bounded by 2°(i1°8™) This gives an upper bound of 2°1°8”?) on the length of
z and thus |27 + j < |z|' +i < |2]'°6™ + logn < 2900¢* ") a5 announced. Finally, if none of the
previous tests where successful, then g(i) = 4. O

To finish the analysis of the space complexity required to compute Ae and Be, we only need
to take advantage of the two previous lemmas, and optimise the computations naturally arising
from definition 3.6 while trying to decide Ae and Be.

Theorem 3.3 Let t(n) be a complexity function such that C is in SPACE = t(n). The languages
Ac and Be are in SPACE = max{t(n),log’(n)}.

Proof. We exhibit an algorithm deciding Ae within the announced space bound. An algorithm for
Be can be obtained similarly. Let z € {0,1}" be the input. First compute, in space O(log®n), i
and ¢(4) such that z € I;, using the algorithms Index and Case of lemmas 3.1 and 3.2. If g(i) = 1
or g(i) = 2, then output C(z), which is computed in space t(n). Otherwise if g(i) = 3, find &, the
smallest element of D; such that R;(§) & U,<; I m(R;). In order to find &, it has to be tested (for

each z € D;) whether R;(z) = (M;,1/¥P+J y), for a certain j < 4 and for a certain y € {0,1}*. As
argued in the proof of lemma, 3.2, these tests can be carried out one at a time in SPACE = O(log® n).
Next, compute R;(£), and output 1 if z = R;(£), output C(z) otherwise. Computing R;(£)
takes SPACE = ilog(|¢|) + i, which is O(log®n) since i < logn and ¢ € D; = |¢| < |z| = n,
(and of course, computing €(z), if required, takes SPACE = t(n)). If g(¢) = 4, then compute
e; := min{l € {1,...,i} : |Riy(D;) N Im(R;)| > i}. This computation only needs to do simple

counting of how many elements of D; are mapped to Im(R;) by R;, for each j < i and for z’s
ranging over D;. Once again, the same difficulty arises: test whether R;(z) € Im(R;) for a
certain j < i, which we have already shown to be computable in SPACE = O(log®n). Once ¢;
is found, compute and store a compressed list of J;, the first i2 elements of D; being mapped
to Im(R.,) by R;, and a compressed list of F; := R;(J;), (taking advantage, as in the proof of
lemma, 3.2, of the fact that elements of D; have at most 2 significant bits). The compressed list
of J; and Fj are in fact the same, only the decompression algorithm changes, c.f. below. Then,

find § the compressed representant of y € J; such that R;(y) =: £ is max F;. This can be done

12

by decompressing and computing R; on every element of J;, and comparing them pairwise and
bitwise, (in order to avoid having to store the decompressed elements in memory). Once again,
a difficulty arises from the fact that y is too large to be stored in memory. Thankfully, ¥ is not.
The values that have to be computed are R;(y) = R; oDecompression(y), (where Decompression
only consists of padding f(i) —¢ 0’s before the compressed element), for y € J;. Since R;, and the
decompression algorithm both run in SPACE = ilogn 4 i = O(log® n), this bounds the working
space required for this computation step.If z # &, output C(z).Otherwise, (if z = &), we have to
check whether € N F; = 0, and output 1 if this is the case, and output C(x) otherwise. To test
whether € N F; = () we have to to compute C(y) Yy € F;. This is possible in SPACE = t(n), since
z =& =mazF; = |yl <nVye€ F;. A similar proof shows that the same space bounds hold to
compute Be. O

3.3 Proving the Almost Completeness of Ac,,,q

The main result of this article is the fact that, when one plugs in Cpspyce as a parameter in the
construction of the previous section, one obtains an almost complete set for PSPACE.

Theorem 3.4 Ae,,,,.. is almost complete (for PSPACE).

Let us comment on the structure we want to give to this section. We find that it is easier to
follow the guiding line if we state (and prove) results by decreasing order of importance, leaving
the technical results for the end. Following this idea, we started this section by stating theorem
3.4, and we shall also prove it immediately. Of course, the disadvantage is that the proof relies
results that are not yet proved, and that the reader must admit temporarily. The proof of theorem
3.4 follows.

Proof. Theorem 3.3 implies that Ae,,.. € PSPACE, and that Be,,.. € PSPACE. Since by construc-
tion Be,g: £ ACpemcs> then Ae,.,... 15 a language of PSPACE which is not complete. We would be
finished if we could prove that pu(Ppm,(Ae,gpe:)) = 1. We prove this later fact in lemma 3.8. O

It is now time to make use of definition 3.6. In this definition, the function g separating the
intervals {I;};en in four cases was defined. Recall that for i’s where g(i) = 4, sets J; and F; were
defined. These sets will be used to define a family of martingales which we need to prove our main
result.

Convention 6 Vi € N such that g(i) =4, e; € N and the sets J; and F; are defined as in the case
4 of definition 3.6. If g(i) # 4, we do not define e; nor J;, and we let F; := ().

Roughly speaking, we are going to finish showing that Ae,g,. is almost complete (i.e. prove
lemma, 3.8) by showing that the languages of PSPACE that do not reduce to it are rare, i.e. of null
measure. To prove this fact, we will show that it is possible to cover those languages with a (family
of) I'(PSPACE) martingale(s). Describing these martingales is the next job to be completed, and we
shall start now. These martingales will have a strategy (in reference to the “casino game”), which
is to always make the assumption that the languages that do not reduce to PSPACE do not contain
many words in a given family of sets {W;};en defined below, using the two sets of convention 6.
The detailed description of these martingale, and the reason why this strategy brings us to our
goals will arrive soon. First we define the family of W;’s mentioned above.

Definition 3.7 For all e,i € N, W; . is defined as Re’l(Fi). Wi () is the set of words of Wi,
that are smaller than =, under the canonical ordering.

As explained above, to prove lemma 3.8 we need to prove that the languages that do not
reduce to Ae,,,.. are a measure null set. This is done by showing that there is a (suitable family
of) martingale(s) covering this set. Since the formal definition 3.8 of these martingales is not
very intuitive, we start by giving an informal definition/explanation of these martingales, in the
form of a family of “betting strategies” to play the “casino game”. (c.f. [ASMRTO00] for a nice

13

description of the casino game, and of betting strategies). We describe informally a family of
martingales/betting strategies {de}een, such that d. wagers on words of U;enW; . only. Fix
e € N, and let us describe d.. Consider the following martingale while playing the casino game:
first split the initial capital ¢ = 1 into sub-capitals ¢; = %, for i € N*. The ith capital will be
used to bet on words of W; . only, according to the following strategy. Suppose the martingale
is playing against a language L, i.e. for the martingale to win against (or cover) the language, it
must hold that lim supy_, o, de(X£.[N]) = co. When it comes to bet on a word su, the martingale
first looks whether sy € W; . for some ¢ € N. If this is not the case, then no money is wagered
(i.e. d(x[1,N —1]1) =d(x[1,N —1]0) = d(x[1,N — 1))). If sy € W; for some i € N, the strategy
wagers all the current value of capital ¢; on the fact that the word sy is not in L. If this is the
case, the current capital ¢; is doubled, otherwise it is completely lost, and thus the current value
of ¢; becomes null. Simple, is it not? The hard bit will be to show how to compute this family
of martingales, and to show that they cover any language (of PSPACE) that does not reduce to
Az~ (More precisely, we will show that if L € Ae,g,e, then L, € S*®[d,]). Let us give a hint
on the way this is done, by showing a sufficient condition for a language to be covered by d.. Since
the size of W; is ¢ whenever g(i) = 4, the martingale uses the ith capital ¢; = zi to wager exactly
i times, (on words of W;), and since the strategy always plays the total amount of the current
value of ¢;, sooner or later, ¢; is either doubled i times, reaching the peak value of 1 (this happens
if LNW;, = 0), or it is completely lost, (if LN W; . # 0). If a language L is such that there
are infinitely many ¢’s such that L N W; . = 0, then there are infinitely many sub-capitals which
reach the peak value of 1, and thus the total current capital ¢ =), . ¢; tends to infinity as the
casino game goes on, (i.e. limsupy_, . d(x[1l,N]) = oo) and L is covered by the strategy. Thus
if any language L. of PSPACE that does not reduce to Aeg,,,., satisfies L, N W; . = () for infinitely
many 7’s, we are close to having proved what we wanted. We are now going to state things more
rigorously, and to prove step by step the points argued above. First of all, we define rigorously
the martingales d,.

Definition 3.8 Let L be a language and e € N. For any N € N, the function d. is defined by
de(xz[0, N]) := 3" en- ¢ (xL[0, N]), where the “sub capitals” c;(x.[0, N]) are defined by induction
on N. At the first step of the recursion (N = 0), the ¢;(x1[0,0]) ’s are initialised to c;(xL[0,0]) :=
%. At the Nth step of the recursion, the values of the c;’s are updated according to the following
rule: leti be the index such that R.(sy) € I;. If j # 1, c; is left unchanged. If j =i, but sy & Wi,
c; is left unchanged too. If j =i and sy € W, ¢, then c; = ¢; is modified according to the following
rule: ¢;(xz[0,N]) := 2¢i(xc[0,N — 1)) if s;v &€ L (i.e if xt[N] = 0), and ¢;(x[0,N]) := 0
otherwise, (i.e. if xt[N]=1).

Convention 7 Whenever it is clear from the context what is the language L referred to, we replace
the notation c(xr[0, N]) by c¢(N).

From the definition above, it should be clear that each function d. is a martingale. The reader
already convinced of it can easily skip the next lemma, that we include for completeness.

Lemma 3.5 For any e € N, d. is a martingale.

Proof. We have to verify that (for any e) d. : {0,1}* — R*, and that it satisfies the equality of
definition 2.3. By definition of the ¢;’s, it holds that 3777, ¢;(0) = 1. Also, there are at most N
sub capitals ¢; such that ¢;(IN) # ¢;(0), and these sub capitals satisfy 0 < ¢;(IN) < 1. Therefore,
since (for any L) de(xr[0,N]) = 3 ,cn+ ¢i(IV), it holds that 0 < de(xz[0,N]) < N +1 € R*.
Next, we need to check that d.(x.[0,N —1]) = dE(XL[O’N_l]l);rde(XL[O’N_l]O). Two cases have to
be distinguished: either Vj € N*, ¢;(N) = ¢;(IN — 1), and thus the equality is trivial, either one
(and only one) of the capitals ¢; (V) changes at the Nth step of the computation. If this is so, the
equality still holds, since ¢;(x£[0, N —1]1) = 0 and ¢;(x£[0, N —1]0) = 2¢;(x£[0, N —1]) =0. O

Remember that from convention 4, we have {L;};en an enumeration of PSPACE. The next
lemma is quite important, and it says that the eth martingale d. has the property of covering (the

14

eth language) L., if it does not reduce to Ae,,,- This finishes demistifying the role of the d.’s.
The proof is simple, if we have a technical result (lemma 3.7), but following the plan exposed at
the beginning of this subsection, we prove this technical result separately.

Lemma 3.6 For any e € N, if L, does not reduce t0 Agygpye, then Lo € S®[d,].

Proof. This lemma is proved using the next one, (lemma 3.7), which states that if Le € Aepepees

then W; . N L, = () for infinitely many ¢’s in N. This implies that, while playing the casino game

versus the language L., the martingale d. sees infinitely many of its sub-capitals ¢; reaching the

peak value of 1, which in turn implies that lim sup x_, o, de(xz[0, N]) = oco.]
The technical lemma required to finish the proof above is the following.

Lemma 3.7 ([ASMRTO0]) If L. does not reduce t0 Ag,g,:, then there are infinitely many i’s
in N such that W; . N L, = .

The fact that this lemma holds comes from the structure induced by the diagonalisation process
(of definition 3.6), and its proof can be found in full details in [ASMRTO00]. Nevertheless, we give
the main ideas of the proof.
Proof. Suppose that L, £ t0 Agyg,e:- Then necessarily, it does not reduce to Ae,g,.; via a finite
variation of R.. This implies that there are infinitely many words = such that Ae,, (Re(z)) #
Cospace(Re (7)), since L, reduces to Cpspace (via R,), and not to Ae,,,,. By analysing the construc-
tion of Ae,g,,.: (definition 3.6), we see that this implies that [g(i) = 4 and e; = e and CNF; = (] for
infinitely many ¢’s in N, (detailed explanation of this latter fact can be found in [ASMRT00]). We
then notice that for those infinitely many i’s, the following holds. CNEF; = § = R_}(C)NR, 1 (F;) =
0 = L. N W;, = 0, which finishes the proof. (c.f. figure 1 for an illustration of the “state of the
world” for those cases). O

Al
=
I

Figure 1: Cases where the ¢;(N) =1 for N >>

We can finally state the lemma we need to finish the proof of our main result: theorem 3.4.
Lemma 3.8 The set L := {L € PSPACE | L £ A¢,,c } iS5 @ measure null set: p(L) = 0.

Once again, we can prove this lemma very easily, except for a technical result that we prove
separately in lemma, 3.9.
Proof. Lemma 3.6 implies that L C UeenS™[d,], thus we will be finished if we manage to prove
that p(UeenS™[de]) = 0. We prove this latter fact in lemma 3.9. O

We only need a last technical lemma to complete the demonstartion.. This last technical
lemma is also the main technical result of this section. It states that a given union of sets is of
null measure. We know that this holds when the union is an “easy union” of null sets, c.f. the
first measure axiom, in section 2.3, and this is the way the proof is obtained.

Lemma 3.9 p(UeenS®[de]) =0

15

Proof. The next claim implies that US°[d,] is an easy union of null sets. The invocation of lemma
2.12 then terminates the proof.

Claim 1 There exists T a transducer such that: 1) Tn(e,x) = de(x). 2) Ik € N such that
Ve € N, Tn(e,-) computes in SPACE = (e¥ + k)(log®(N) + k), querying (the right hand side of)
its input in a dependency set {G. n}nen such that |Ge | < (e* + k)(log" (N) + k).

Let us substantiate this claim. Let ¢ = iy be the index such that R.(sny) € I;. Notice that

by definition of the ¢;’s, and since R, is increasing (with respect to the canonical ordering),

it holds that Vj > 4, ¢;(IN) = ¢;(0). We can thus rewrite d.(x.[0,N]) in a more convenient
|) .

way: de(xL[0,N]) = 372, ¢;(N) = X5;¢5(0) + Xjmy (V) = Ejnir + jm (V) = 3¢ +

7
1 oGN]

s 2o 5 (W) + 2 5(W (sn), where 8(A) = 1if ANL = 0, and §(A) = 0 otherwise.
We are going to show that this sum can be computed as efficiently as stated in claim 1. First,
we shall give an algorithm computing the last term of the sum above, whose analysis can be
summarised in the next claim:

Claim 2 Letn :=log N. 3T} a transducer such that Ve € N, Tx (e, x1[0, N]) computes 2“;];:’2' d(Wijie)
in SPACE = O(e3log® n) and querying the right-hand side of its input in a dependency set of size

O(e?log’n).

Before we substantiate this claim, let us discuss its consequences, in particular, the fact that it
implies that claim 1 holds (and thus that the proof of the lemma is finished). As will be seen

below, claim 2 is substantiated by the exhibition of an algorithm computing the last term of the
QWi (sl

sum o + di<i 2W;—j’el(S(Wj,e) + =—5——30(W/ .(sn)) - This algorithm can be easily modified in
order to compute any other term of this sum. We thus have implicitly a (uniform) family of
algorithms computing the terms of the sum above. What about an algorithm computing the sum
itself? Lemma 2.7 permits to bound the resources needed to compute the whole sum, and thus d,,
which substantiates claim 1, as announced. In fact, lemma 2.7 and claim 2, yield an even stronger
version of claim 2. Although claiml is sufficient to finish the proof, we cannot resist giving this
stronger version of claim 1 1.

Claim 3 Letn :=log N. There exists T} o transducer such that: 1) Ty (e,z) = d.(z). 2) Ik € N
such that Ve € N, Tl (e,-) computes in SPACE = O(e?log®n), querying (the right hand side of)
its input in a dependency set {G. n}Nen such that |G, x| = O(e* log® n).

We still have to substantiate claim 2. We do this by giving an algorithm for the transducer T,

W] (o)l
(as explained above, it suffices to exhibit an algorithm computing the term 2—’2,L(5 (Wi (sn)))-
(1) First, construct and store sy, querying the auxiliary input N. Let n := |sy| ~ log N.

(2) Compute z := R.(sn). This takes SPACE = n¢ + e, (c.f. convention 5). Notice that z should
not be stored, but it should rather be recomputed and accessed bitwise each time it needs to be
accessed.

(3) Compute i such that z € I;. Notice that |z| = [(M,, 1" ¢, sn)| < 3(n® + €). Using the
algorithm Index of lemma 3.1 as a subroutine, this computation is carried out in SPACE =
O(log |z|) = O(elogn).

(4) Compute g(i). (This takes SPACE = O(log® |2|) = O(e? log® n), using algorithm Case of lemma
3.2). If g(i) # 4, then terminate and output the value %, (which only requires SPACE = log |z|,
using remark 1, and since z € I;).

1 Gl

(5) If g(i) = 4, we need to compute W/ .(sn), and output 2™ i

output 0 otherwise. This is how it is done:

if W/ .(sy)NL =0, and

1 Although this stronger version of claim 1 is of no use in this proof, it could have implications for further results,
as explained in section 4.

16

(5.1) Compute e; := min{l < I < i : |Ry(D;) N Im(R;)| > i}. From (the proofs of) lemmas 3.2
and 3.3, we recall that this can be computed in log® |z| = O(e? log® n).

(5.2) If e; # e, then W;, = 0, since W;. = R;Y(Ri(Ji)), and R;(J;) C Im(R.,), which has an
empty intersection with the co-domain of R,. Thus we terminate by outputting %, (the ith capital
is never used to wager, thus it stays at its initial value).

(5.3) If e; = e, we compute LIST := W, (Sn). LIST contains i < log(|z|) elements, all
of which are smaller in size than |z|. It could thus be stored using space equal to |z|log|z|,
but since W;, = R.'(R;(J;)), we can reduce the space required by storing LIST in a com-
pressed way: we store J;, which in turn can be compressed, remembering that the elements of
J; only have log(i?) < O(loglog(]z])) < O(loglog(n®)) < O(log(elogn)) significant bits. (c.f.
the proof of lemma 3.2). The decompression algorithm can be computed easily, since if v(() is
the “compressed” representative of { € W; ., the decompression algorithm consists of computing
R;' o R; o PADD(v(C)), where PADD(y(¢)) pads |z| — log|i?| zeros to the right of v(¢). The
decompression algorithm runs in SPACE = O(log” |¢]) < O(log® |2|), (which is the space required

olWiel . '
-~ if W/, NL =0, and 0 other-

2%

to compute R, ' o R;(¢)). Finally, the value to output is:

wise. It is easy to see that the value QIV;’:-,,:I can be computed in SPACE = log|z|. What about
the conditionWi”6 N L = (7 This is very easily checked, by querying the input, and verifying that
xz[M] = 0, for every M such that spr € W . Since this computation step is the only one requiring
to query the input, it permits to bound the size of the set of queried words by |W; .| < i < logn.
Therefore, on input sy, the bits queried are contained in Qn := U;<;W; e, where ¢ is such that
z € I;,and i < |z| = O(elogn). The Qn’s form a dependency set of size at most i2 = O(e? log® n)
(since |Wie| < 14).

O

4 Conclusion

The concept of almost completeness for a complexity class € defines problems that capture “some of
the hardness” of €, without being the hardest ones. It is known that such problems of intermediate
hardness exist for big complexity classes, (for which E is a prototype), but it was unknown whether
such problems existed for small complexity classes: complexity classes which do not, or are not
known to contain E. We answer this question by constructively proving that an almost complete
problem exists for PSPACE. Far from closing the chapter, this result rather opens the question
of the quantitative-completeness structure of PSPACE, and of other small complexity classes. A
sample of the questions that arise: Are there many almost complete problems in PSPACE? i.e.
what is the measure of the set of almost complete problems? A language A is almost complete
if its lower span P,,(A) is of measure 1, i.e. if u(P,,(A)) = 1, (and if it is not complete). A is
weakly complete if its lower span is of non-null measure, i.e. if (P, (A)) # 0. Do weakly complete
problems (which are not almost complete) exist for PSPACE? etc...

The most challenging problem is perhaps to investigate the quantitative-completeness structure
of P, which is arguably the class of highest interest, as its “nickname” of class of “efficiently
decidable problems” perhaps suggests. While class P itself may be very difficult to tackle, there
is reasonable hope that the structure of slightly larger classes, such as QP or SUBEXP, could be
investigated using the same approach as in this article. The reason for our optimism on the
feasibility of this goal is the very high efficiency of the family of martingales of lemma 3.9, which
can be computed logarithmically better then what is required, as pointed out in the discussion
preceding claim 3. This leaves some room for manoeuvre that could perhaps be used successfully
to extend the results of this article to small time complexity classes.

17

References

[ASO4]

[AS95]

[AS00]

[ASLMO8]

[ASMRT00]

[ASMZ96]

[ASTZ97]

[BC94]

[BDG94a]
[BDG94b)

[Bus87]

[CSS97]

[JL95a]

[JL95b)]

[Jue95]

[LMO94]

[LM96]

E. Allender and M. Strauss. Measure on small complexity classes, with applications
for BPP. In Proceedings of the 35th IEEE Annual Symposium on Foundations of
Computer Science, volume 35, pages 807-818, 1994.

E. Allender and M. Strauss. Measure on P: Robustness of the notion. In Proceedings
of the 20th Mathematical Foundations of Computer Science, volume 969, pages 129—
138. Springer, 1995.

K. Ambos-Spies. Measure theoretic completeness notions for the exponential time
classes. In Mathematical Foundations of Computer Science, volume 1893 of Lecture
Notes in Computer Science, pages 152-161. Springer, 2000.

K. Ambos-Spies, S. Lempp, and G. Mainhardt. Randomness vs. completeness: on the
diagonalisation strength of resource bounded random sets. In Mathematical Founda-
tions of Computer Science, volume 1450 of Lecture Notes in Computer Science, pages
465-473. Springer, 1998.

K. Ambos-Spies, W. Merkle, J. Reimann, and S. Terwijn. Almost complete sets.
Preliminary version in Symposium on Theoretical Aspects of Computer Science,
1770:419-430, 2000. To appear in Theoretical Computer Science.

K. Ambos-Spies, E. Mayordomo, and X. Zheng. A comparison of weak completeness
notions. In Proceedings of the 11th Annual Comference on Computational Complezity,
pages 171-178. IEEE Computer Society Press, 1996.

K. Ambos-Spies, S.A. Terwijn, and X. Zheng. Resource bounded randomness and
weakly complete problems. Theoretical Computer Science, 168:195-207, 1997.

D.P. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Addison-
Wesley, 1994.

J.L Balcazar, J. Diaz, and J. Gabaré6. Structural Complezity I. Springer-Verlag, 1994.

J.L Balcazar, J. Diaz, and J. Gabaré. Structural Complexity I1. Springer-Verlag 1990,
1994.

S.R. Buss. The boolean formula value problem is in ALOGTIME. In Symposium on
the Theory of Computing, number 19, pages 123-131. ACM, 1987.

J.-Y. Cai, D. Sivakumar, and M. Strauss. Constant depth circuits and the Lutz
hypothesis. IEEE Symposium on Foundations of Computer Science, 1997.

D.W. Juedes and J.H. Lutz. The complexity and distribution of hard problems. STAM
Journal on Computing, 24(2):279-295, 1995.

D.W. Juedes and J.H. Lutz. Weak completeness in e and ex. Theoretical Computer
Science, 143:149-158, 1995.

D.W. Juedes. Weakly complete problems are not rare. Computational Complezity,
5:267-283, 1995.

J.H. Lutz and E. Mayordomo. Measure, stochasticity, and the density of hard lan-
guages. SIAM Journal on Computing, 23:762-779, 1994.

J.H. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating completeness
notions if NP is not small. Theoretical Computer Science, 164(1-2):141-163, 1996.

18

[Lut92] J.H. Lutz. Almost everywhere high non-uniform complexity. Journal of Computer
and System Science, 44:220-258, 1992.

[Lut95] J.H. Lutz. Weakly hard problems. STAM Journal on Computing, 24:1170-1189, 1995.

[Lut96] J. H. Lutz. Observations on measure and lowness for AY. In Proceedings of the
13th Symposium on Theoretical Aspects of Computer Science, volume 1046 of Lecture
Notes in Computer Science, pages 87-97, Berlin, 1996. Springer Verlag.

[Lut97] J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra
and A. L. Selman, editors, Complexity Retrospective II, pages 225-260. Springer,
1997.

[May94a] E. Mayordomo. Almost every set in exponential time is P-bi-immune. Theoretical
Computer Science, 136:487-156, 1994.

[May94b] E. Mayordomo. Contribution to the Study of Resource Bounded Measure. PhD thesis,
Universitat Politécnica de Catalunya, Barcelona, 1994.

[Mer95] W. Merkle. Personal communication, 1995.

[Mos02] P. Moser. A generalization of Lutz’s measure to probabilistic classes. Technical
Report 02-058, Electronic Colloquium on Computational Complexity, October 2002.

[MV93] M.L. and P. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications.
Springer-Verlag New York, 1993.

[Pap94] C.H. Papadimitriou. Computational Complezity. Addison-Wesley, 1994.

[Pow02] O. Powell. Measure on P revisited. Technical Report TR02-065, Electronic Collo-
quium on Computational Complexity, December 2002.

[RS98) K.W. Regan and D. Sivakumar. Probabilistic martingales and BPTIME classes.
IEEE, pages 186-200, 1998.

[Str97] M. Strauss. Measure on P: Strength of the notion. Information and Computation,
136(1):1-23, 1997.

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject *help eccc’

19

