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BPP has effective dimension at most 1/2 unless BPP = EXP

Philippe Moser*

Abstract

We prove that BPP has Lutz’s p-dimension at most 1/2 unless BPP equals EXP.
Next we show that BPP has Lutz’s p-dimension zero unless BPP equals EXP on infinitely
many input lengths. We also prove that BPP has measure zero in the smaller complexity
class SUBEXP unless MA = EXP. Finally we show that under the plausible assumption
DTIME(2?") is hard to approximate by SAT-oracle circuits of size ¢ (for every fixed
polynomial ¢) BPP has p-dimension zero.

1 Introduction

Lutz [Lut00] has recently introduced an effective generalization of Hausdorff dimension, by
defining a resource-bounded Hausdorff dimension on exponential time complexity classes such
as E and EXP, and on exponential space complexity classes. One of the motivation is to
quantify the structure of sets that have resource-bounded measure zero, in the same way
as classical Hausdorff dimension can be used to quantify many sets of Lebesgue measure
zero. For instance Lutz proved in [Lut00], that for every real number a € [0, 1], the class
SIZE(@2™/n) has dimension « in ESPACE.

Up to now, no results about the dimension of standard complexity classes were known.
We give such a result by showing that BPP has p-dimension at most one half, unless BPP is
intractable, i.e. BPP = EXP. Thus we improve the zero-one resource-bounded measure law
for BPP from [Mel00], by showing that either BPP has p-dimension at most 1/2, or else has
p-measure one.

We also prove that BPP is a very small subset of E, unless BPP is intractable on infinitely
many input lengths, i.e. BPP has p-dimension zero, unless BPP equals EXP infinitely often.

Next we investigate the measure of BPP in complexity classes smaller than E, such as
SUBEXP, with the measure notion of [AS94]. We improve a result of [BFF97] by showing
that BPP has measure zero in SUBEXP, unless MA = EXP.

One important issue in derandomization theory is to find plausible hypothesis implying
P = BPP. More details on this topic can be found in [Kab02]. Still it is possible that BPP
is a small subset of EXP whithout being equal to P. Therefore searching for some weaker
hypothesis than those implying the P = BPP equality, that still imply that BPP is a small
subset of EXP, is of great interest. We use a recent modified result of [GW02] to give such
a hypothesis, which is not known to imply the P = BPP equality, namely that if for some
d > 0, DTIME(29") is hard to approximate by SAT-oracle circuits of size ¢ for every fixed
polynomial g, then BPP has p-dimension 0.
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2 Preliminaries

We use standard notation for traditional complexity classes; see for instance [BDG95] and
[BDGI0], or [Pap94]. Let us recall the definition of subexponential time classes. SUBEXP is
the class (.5 DTIME(2"), and for o > 0, the slice E,, is defined as E, = Us<a DTIME(2”6).

Two complexity classes €, D are said equal infinitely often, denoted C "= D, if for every
language A € C there is a language B € D, such that AN {0,1}" = BN {0,1}" for infinitely
many n. The symmetric difference of two languages A and B, denoted AAB, is given by
AAB = (A—B)U (B — A). For a polynomial ¢, denote by SIZESAT(g) the class of languages
decided by Boolean circuits of size g with oracle gates for SAT. We say that class C is hard
to approximate by SIZESAT(q) circuits, if any such circuits fails to guess the correct value of
a random instance with success probability greater than 2/3.

Let us fix some notations for strings and languages. Let sg, s1,... be the standard enu-
meration of the strings in {0,1}* in lexicographical order, where so = A denotes the empty
string. A sequence is an element of {0,1}°°. If w is a string or a sequence and 0 < i < |w|
then w(i] and w[s;] denotes the ith bit of w. Similarly w[i...j] and w(s;...s;] denote the ith
through jth bits. We identify language L with its characteristic function y,, where yy, is the
sequence such that xr[i]] =1 iff s; € L. We denote by L|m the string consisting of the first
m bits of the characteristic sequence of L. If w; is a string and ws is a string or a sequence
extending w;, we write w; C wo. Finally we denote by log the logarithm to the base 2.

2.1 Lutz’s p-dimension

Lutz’s [Lut92] measure on E is obtained by imposing appropriate resource-bound on a game
theoretical characterization of the classical Lebesgue measure, via martingales. A martingale
is a function d : {0,1}* — R, such that, for every w € {0,1}*,

d(w) = w (1)

This definition can be motivated by the following betting game in which a gambler puts bets
on the successive membership bits of a hidden language A. The game proceeds in infinitely
many rounds where at the end of round n, it is revealed to the gambler whether s, € A or
not. The game starts with capital 1. Then, in round n, depending on the first n — 1 outcomes
w = xal0...n — 1], the gambler bets a certain fraction €,d(w) of his current capital d(w),
that the nth word s, € A, and bets the remaining capital (1 — €, )d(w) on the complementary
event s, € A. The game is fair, i.e. the amount put on the correct event is doubled, the
one put on the wrong guess is lost, as stated in Equation 1. The value of d(w), where
w = xal0...n] equals the capital of the gambler after round n on language A. The player
wins on a language A if he manages to make his capital arbitrarily large during the game.
We say that a martingale d succeeds on a language A, if d(A) := limsup,, 4 4, 4 d(w) = o0,
where we identify language A with its characteristic sequence x 4. The success set S°[d] of a
martingale d is the class of all languages on which d succeeds.

We sometimes relax Equation 1 by considering supermartingales. A supermartingale is
a function d : {0,1}* — Ry such that, for every w € {0,1}*, d(w) < w, i.e. the
associated strategy is allowed to throw money away.

Lutz’s idea for defining a dimension notion via martingales, is to perceive taxes on the
martingales’ wins, so that only martingales whose capital grows quickly are considered. This



motivates the following definition.

Definition 1 For a real number s > 0, a martingale is said s-successful on a language A, if

d(Alm)
(1—s)m = 0. (2)

lim sup
m—oo 2

A martingale is s-successful on a class if it is s-successful on every member of the class.

The dimension of a class is defined as the largest tax rate which can be perceived on the
martingales’ benefits, without preventing them from winning.

Definition 2 Let C be any complexity class. The p-dimension of C 1is the infimum over
all 8" € [0,1], such that there ezists a martingale d computable in polynomial time which s
succeeds on C.

Lutz’s proved in [Lut00] that the p-dimension notion satisfies all three standard measure
axioms, namely that E has p-dimension one, every single language in E has p-dimension zero,
and finally easy infinite unions of sets of p-dimension s have p-dimension s. More precisely,

Definition 3 Let X, Xo, X1, Xo,--- be complezity classes. X is a p-union of the p-dimensioned
sets Xo, X1, X2, -+ if X = Ug>o Xk, and for each s > supycy dim, (Xy) with 2° rational, there
is a function d : N x {0,1}* — [0, oo[ with the following properties.

1. d is p-computable.
2. For each k € N, the function di(w) := d(k,w) is a martingale.

3. For each k € N, dy, s-succeeds on X,.

The following Lemma states that the p-dimension of a p-union of sets is the supremum of
the p-dimension of all sets.

Lemma 1 [Lut00]
Let X, Xg, X1, X2,---, be a p-union of the p-dimensioned sets Xo, X1, Xo,---. Then

dim,(X) = sup dim,(Xk).
keN

2.2 Measure on SUBEXP

We will use the measure notion of [AS94] on the class SUBEXP. For the sake of completeness,
let us recall the definitions of [AS94] adapted to the class SUBEXP. To define a measure on
E., with a > 0, supermartingales computed by Turing machines with random access to their
inputs were considered in [AS94], that is on input w, the machine can query any bit of w to
its oracle. In order to allow such Turing machines to compute the lengths of their inputs w
without querying their oracles, they also have access to s|,; this convention is denoted by
M (8}))-

It is widely believed that random access subexponential time Turing machines are too
strong to define a measure on subexponential time classes, because it is not clear whether the
whole class has not measure zero relatively to subexponential-time computed supermartin-
gales. Therefore the concept was weakened in [AS94] by bounding the number of recursive



queries such a Turing machine is allowed to make. Let M be a random access Turing machine
and n € N. Define the dependency set G, € {1,2,...,2""1 — 1} such that for every string
w € {0,1}* coding for words of size up to n, M can compute M*(s,|) querying only input
bits in G-

A measure notion on SUBEXP was introduced in [AS94] by considering subexponential-
time random access Turing machines with subexponential size dependency sets.

Definition 4 Let a > 0. A class A of languages is said to have E,-measure zero if there exists
a supermartingale d, such that d(w) is computable in time 2"5, with § < a and n = [s),|, by

a random access Turing machine with dependency set of size 2”6, and such that A C S*°[d].

Such a supermartingale is called an E,-computable supermartingale.
It is shown in [AS94] that this measure notion satisfies all three measure axioms. Let us
formulate the third axiom more precisely.

Definition 5 Let a > 0. X = Uz’eN X, is an Eq-union of Eq-measure zero sets if there exists
an indezed supermartingale d such that X; C S*°[d;], where d;j(w) = d(i,w) is computable in
time 2" + q(3), for some polynomial q, with § < o and n = |s,|, by a random access Turing

machine with dependency set of size on’.

It is proven in [AS94] that the third axiom holds for the measure notion on SUBEXP.

Theorem 1 [AS94]
Let X = ;> Xi be an E-union of E,-measure zero sets. Then X has E,-measure zero.

3 BPP has dimension at most one half unless BPP = EXP

The next result states that the dimension of BPP is at most 1/2, unless BPP in intractable.
Theorem 2 If BPP # EXP then BPP has p-dimension at most 1/2.
Proof. The proof relies on the following result.

Theorem 3 Let C be any complezity class such that for every language A € C there exists
a language B € DTIME(2™), such that

Pr [A(z) = B(z)] > 1—-1/m, (3)

|z|=m
for infinitely many lengths m. Then C has p-dimension at most 1/2.

Proof. Let B € DTIME(2™) be any language and let m > 0. Consider the following betting
strategy dp, which divides its initial capital into infinitely many capitals {1/m?};,~0, where
share 1/m? will be bet on strings of size m, in the following way. dp bets a fraction a (which
will be determined later) of its current capital that the membership bits are the same as those
of B.

Computing dp(w), where w is the characteristic sequence of some language for words up
to length ¢, can be done by computing the memberships bits of B for all words of size less
than ¢ in lexicographical order. Since B € DTIME(2"), dp is computable in time #2¢ < |w]|?.



Moreover if A is a language such that Equation 3 holds, there are infinitely many lengths
m on which dp multiplies its initial capital 1/m? by a a factor 1 + a on at least a fraction
1—1/m of all 2™ bets it makes on words of size m. Consider M(A) the infinite set of lengths
such that Equation 3 holds. For every m € M (A) we have,

]. m m ]- m
dp(xal2™") > —(1+a)07/™ (1 —a)/"" = —[(14a)' 71 - )P
m m

(4)
Consider the set Cp of all languages A satisfying Equation 3. Let us show that Cp has p-
dimension at most 1/2. Let s > 1/2, and A € Cp be any language. Consider the martingale
d = d4 ) as above, where the betting fraction a depends on s and will be determined later.
Equation 4 implies,

: d(xal2™) _ . 1 (1+a) ™1 —a)/™ o,
d V%) VAN .
hrfln_f;p o(i—s)zm+i = hgl_f;p m2 [ 92(1—s)
Consider F'(a,m) := (Ha)l;ﬁrb_(sl)_a)l/m. Let us show that there exist 0 < ag < 1, My >

1 and ¢ > 1, such that for every m > My, F(ag,m) > c¢. This immediately implies

limsupm%m% = oo. Since s > 1/2, let § > 0 be such that 2(1 —s) = 1 — 4.

Let 0 < ag < 1 and M > 1 be such that for every m > M, mT_llog(l +ag) >1—46/4. Let
M’ > 1 be such that for every m > M’, |- log(1 — ag)| < §/4. Consider

m—1
T(ap,m) =

1
log(1 4+ ag) + — log(1 — ayp),

and let My = max(M,M'). For every m > My, we have T'(ag,m) > 1 —4§/2 > 2(1 — s).
Therefore there exists &' > 0, such that T'(ag, m) > 2(1 — s) + ¢', which implies 2;(:170_:;) > 27
Let ¢ = 29 > 1, thus for every m > My, F(ag,m) > c.

Let M1, Ms,--- be a standard enumeration of Turing machines running in deterministic
time 2", where M; runs in time polynomial in ¢ 4+ 2", and denote by B; the language decided
by M;. We will apply Lemma 1, with X; = Cp,. Let s > 1/2 be such that 2° is rational. The
indexed martingale ds(k,w) := d, p,)(w) satisfies Definition 3, therefore the class U;>1Cp;
has p-dimension at most 1/2 by Lemma 1. Since ¢ C U;>; Cp,, C has p-dimension at most
1/2, which ends the proof of Theorem 3.

Theorem 3 combined with the following result from [IW98] ends the proof.

Theorem 4 If BPP # EXP then for every language A € BPP and every € > 0, there is a
language B € DTIME(2"") such that the following holds: For any constant d > 0 and any
length-preserving randomized polynomial time Turing machine M,

Pr[A(M(1™)) = B(M(1™))] > 1 —m ¢
for infinitely many m, where the probability is taken over the internal coin tosses of M.

Consider the following length-preserving randomized polynomial time Turing machine M,
which on input 1™ and m-sized random string w outputs w. Applying Theorem 4 with e =1
and d = 1 yields

1
Pr [A(z) = B(z)| >1— —. 5
Pr[A(r) = B()] > 1- - %)
Thus by Theorem 3, BPP # EXP implies that BPP has p-dimension at most 1/2, which
ends the proof. O



3.1 BPP has p-dimension zero unless BPP 2 EXP

It is possible to reduce the 1/2 bound of Theorem 2 to zero under the stronger hypothesis
BPP be intractable on infinitely many input lengths.

Theorem 5 FEither BPP equals EXP infinitely often, or BPP has p-dimension 0.
Proof. The proof relies on the following result.

Theorem 6 Let C be any complexity class such that for every language A € C there exists
a language B € DTIME(2"), such that

Pr [A(z) = B(z)] > 1—1/m, (6)

|z|=m
for almost every lengths m. Then C has p-dimension 0.

Proof. Similar to Theorem 3.
Theorem 6 combined with the following slightly modified version of Theorem 4 ends the
proof.

%.0.
Theorem 7 If BPP # EXP then for every language A € BPP and every ¢ > 0, there is a
language B € DTIME(2") such that the following holds: For any constant d > 0 and any
length-preserving randomized polynomial time Turing machine M,

Pr[A(M(1™)) = B(M(1™))] > 1 —m ¢

for almost every m, where the probability is taken over the internal coin tosses of M.

4 BPP has SUBEXP-measure zero unless MA = EXP

The next result states that BPP is small compared to SUBEXP, under the assumption MA #
EXP.

Theorem 8 For every a > 0, BPP has E,-measure zero, unless MA = EXP.

Proof. The proof relies on the following result.

Theorem 9 Let C be any complezity class such that for every language A € C and for every
€ > 0, there exists a language B € DTIME(2™), such that

An{0,1}" =BnA{0,1}" (7
for infinitely many input lengths. Then C has Ey-measure 0, for every a > 0.

Proof. Let @ > 0 and let § = /2. Let B € DTIME(2"5) be any language and let m > 0.
Consider the following betting strategy, which starts with initial capital 1/m? for words of
size m, and on the first m words of size m, bets its current capital that the membership bits
are the same as those of B.



The dependency set of dp has polynomial size. Computing dp(w), where w is the char-
acteristic sequence of some language for words up to length m, can be done by computing
the memberships bits of B for the t first words of size ¢, for every t = 1,2,--- ,m. Since
B € DTIME(2™"), dp is computable in time m22™" which is less than 2™

Let A be a language satisfying Equation 7. There are infinitely many lengths m on which
dp multiplies its initial capital 1/m? by a a factor 2™. Consider M(A) the infinite set of
lengths m such that Equation 7 holds. For every m € M(A) we have, d(xa|2™!) > #27”,
which implies

lim_d(x[2"*") = oo. (®)

Consider the set Cg of all languages A satisfying Equation 7. Equation 8 implies that Cp
has E,-measure zero.

Let M1, M>,--- be a standard enumeration of Turing machines running in deterministic
time 2”6, where M; runs in time polynomial in 7+ 2”6, and denote by B; the language decided
by M;. The classes Cp,,CB,, - -, satisfy Definition 5 with the following indexed martingale
d(k,w) := dp, (w). Therefore the class U;>1Cp, has E,-measure zero by Theorem 1. Choosing
€ = ¢ implies that C' C U;>; Cp,, thus C has E,-measure zero. This ends the proof of Theorem
9.

Theorem 9, combined with the following result from [BFNW93] ends the proof.

Theorem 10 [BFNWI3] If MA # EXP then for every language A € BPP and every € > 0,
there is a language B € DTIME(2™) such that AN {0,1}" = BN {0,1}", for infinitely many
lengths n.

By Theorem 10 the hypothesis of Theorem 9 are satisfied, which ends the proof. O

5 Plausible assumption implying the smallness of BPP

The following result states that BPP is a small subset of E if DTIME(2%") is hard to approxi-
mate by polynomial-size circuits with SAT oracle gates, for some d > 0.

Theorem 11 Suppose there exists d > 0 such that for every polynomial q there ezists a set
in DTIME(29") that is hard to approzimate in SIZESAT(g), then BPP has p-dimension zero.

Proof. The proof relies on the following result.

Theorem 12 Let d > 0. Let C be any complexity class such that for every language A € C
and for every e > 0, there ezists a language B € DTIME(2d"), such that

(AN{0,13")A(BN{0,1}") < 2™, (9)
for every n € N. Then C has p-dimension 0.

Proof. Let s > 0 and d > 0. For a language B € DTIME(2%"), the martingale d(s,p) (denoted
dp) starts with initial capital Cy, and bets a fraction a (with 0 < a < 1) of its current capital
according to the membership bit of B. It is easy to check that dp is computable in polynomial



time. Let A be any language satisfying Equation 9, where € will be determined later. Let
m € N. Since xa|m + 1 codes A up to strings of size logm, we have

dB(XA|m + 1) =Cp- (1 + a)J(m-I-l) . (1 o a)F(m—H)

where J(m+1) is the number of strings of size at most logm not in AAB, and F(m+1) is the
number of strings of size at most logm in AAB. Equation 9 implies F(m+1) < Z;‘flm 27 <
log m2!°6 ™. Thus J(m + 1) > Y/°5™ (27 — 20°) > m — log m2!°8°™. This implies

1—a

dB(XA|m+ 1) > CO . (1 + a)m—logmglogém ) (1 i a)logmzlogem > OO ) (1 n a)m . (1 - a)m2e
Define 0 < a < 1 such that b := (1 +a)/2('=%) > 1. Putting e = 1/4 yields
dp(xalm+1) _ Co . NG
2(1—5)(m+1) 2 7 o (1/6)
where ¢ = 1% > 1. Thus
dB(XA|m + 1) > @ . 9(mlogh) | 2(—\/ﬁlogc) _ 2(mlogb—¢'rTzlogc)
2(1=s)(m+1) — 9
Since limy, oo (mlog b — v/mlogc) = oo, we have
d 1
lim M = 50 (10)

m=oo 2(1—s)(m+1)

i.e. dp s-succeeds on A.

Let My, Ms,--- be a standard enumeration of DTIME(2%") , where machine M; runs
in time 29" 4 ¢(i) for some fixed polynomial q. Define d; := d(s,p;) With initial capital
Co = 1/i%. Denote by X; the set of languages on which d; s-succeeds. Since s is a arbitrary,
X1, X3, satisfy the hypothesis of Lemma 1, therefore |J,~, X; has p-dimension 0. Since
for every language A € BPP there exists a language B € P such that Equation 9 holds, we
have BPP C |J,~, X;, which implies that BPP has p-dimension zero. This ends the proof of
Theorem 12. Theorem 12 combined with the following modified result from [GW02] ends the
proof. It is easy to verify that the results in [GW02] can be modified to obtain the following
theorem.

Theorem 13 Under the assumption of Theorem 11, it holds that for every e > 0, every
language in BPP can be decided by a deterministic algorithm running in time 2042 that
errs on at most 2™ of the n-bit long inputs.

Finally with the use of Theorem 13, the hypothesis of Theorem 12 are satisfied, which ends
the proof. O

6 Final Remark

Obtaining a zero-one dimension law for BPP, by reducing the 1/2 bound to zero, deserves
further investigation. Omne way to obtain such a result would be to improve the uniform
derandomization of BPP of Theorem 4, by either obtaining an almost everywhere result, or
by reducing the error bound from 1 — m ™% to some quasi-polynomial bound. Improving the
zero-one law for RP from [IM03] to the resource-bounded dimension setting, would also be
interesting.
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