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Abstract. It is known that random k-SAT formulas with at least

(2% -In 2) - n random clauses are unsatisfiable with high probability. This
result is simply obtained by bounding the expected number of satisfy-
ing assignments of a random k-SAT instance by an expression tending
to 0 when n, the number of variables tends to infinity. This argument
does not give us an efficient algorithm certifying the unsatisfiability of a
given random instance. For even k it is known that random k-SAT in-
stances with at least Poly(logn) - n*/2 clauses can be efficiently certified
as unsatisfiable. For k = 3 we need at least n®/?) T¢ random clauses.

In case of even k we improve the aforementioned results in two ways.
There exists a constant C such that 4-SAT instances with at least C - n?
clauses can be efficiently certified as unsatisfiable. Moreover, we give
a satisfiability algorithm which runs in expected polynomial time over
all k-SAT instances with C - n®/? clauses. Our proofs are based on the
direct application of known approximation algorithms on the one hand,
and on a recent estimate of the ¥-function for random graphs with a
linear number of edges, on the other hand.

1 Introduction

The k-SAT problem is to find out whether a given k-SAT formula over n propo-
sitional variables is satisfiable or not. Since it is well-known that the k-SAT
problem for k£ > 3 is N'P-complete and N'P-completeness is a worst case notion,
it is natural to ask for algorithms that can handle random formulas efficiently.
Given a set of n propositional variables and a function ¢ = ¢(n), a random
k-SAT instance is obtained by picking ¢ k-clauses over the set of n variables
uniformly at random and independently of each other. Part of the recent inter-
est in random k-Sat instances is due to the interesting threshold behavior, in
that there exist values ¢y = c¢g(n) such that random k-Sat instances with at
most (1 — €) - ¢ -n random clauses are satisfiable with high probability, whereas
for at least (1 + ¢) - ¢ - n random clauses we have unsatisfiability with high
probability. (Here, “with high probability” means “with probability tending to
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1 when n, the number of variables, tends to infinity”). In particular, we point
out that according to current knowledge ¢ = ¢x(n) lies in a bounded interval
depending on k only. However, it is not known whether the threshold really is a
constant independent of n, cf. [Fr 99]. The consistent experimental observation
that the satisfiability problem for those instances close to the threshold seems
to be algorithmically much harder than for those further away makes this model
particularly interesting. In this paper, we are concerned with values of ¢(n) well
above the threshold, hence our main problem is to efficiently find a proof that
a random formula is unsatisfiable.

There are two different types of algorithms for deciding whether a random
E-SAT formula is satisfiable or not. First, there are algorithms that on any input
formula have a polynomial running time, and that with high probability with
respect to the input give the correct answer, “satisfiable” or “unsatisfiable”.
However, with probability o(1), the algorithm may give an inconclusive answer.
We shall refer to algorithms of this type as efficient certification algorithms.
Secondly, there are algorithms that always answer correctly either “satisfiable”
or “unsatisfiable”, and applied to a random formula have a polynomial expected
running time [DyFr 89).

Let us emphasize that although an efficient certification algorithm may give
an inconclusive answer in some (rare) cases, such an algorithm is still complete
in the following sense. Consider random k-SAT instances where the number of
clauses is above the satisfiability threshold ¢; mentioned above. Completeness of
a certification algorithm in this context means that when picking such formulas
at random the algorithm gives the right answer, “unsatisfiable” in the present
case, with high probability, too. Note that no efficient algorithm can answer “un-
satisfiable” on all unsatisfiable inputs from each space; completeness only refers
to a subset whose probability tends to 1. Completeness of efficient certification
algorithms is always understood as described, also for properties different from
unsatisfiability.

Any certification algorithm can be turned into a satisfiability algorithm that
answers correctly on any input, simply by invoking an enumeration procedure in
case that the efficient certification procedure gives an inconclusive answer. But
even the completeness of the certification algorithm does not ensure that the
corresponding satisfiability algorithm runs in expected polynomial time. The
probability of an inconclusive answer may be too large to even out the time
needed for the enumeration procedure, even though it is o(1). On the other hand,
any satisfiability algorithm with expected polynomial time can be turned into an
efficient certification algorithm, because the probability that the running time
of the algorithm will be superpolynomial is o(1). Hence, having a polynomial
expected running time is a slightly stronger requirement.

From [FrGo 2001] and [GoKr 2001] it is essentially known that for random
k-SAT instances with Poly(logn)-n*/2 clauses we can efficiently certify unsatisfi-
ability, in case of even k. For odd k we need n{¥/2) +¢ random clauses. Recall that
probabilistically we know much more: Random k-SAT instances with at least
(2*-1In 2)-n clauses are unsatisfiable with high probability. Hence, it is an obvious



problem to design algorithms that can certify unsatisfiability of random formulas
efficiently for smaller numbers of clauses than given in [FrGo 2001,GoKr 2001].
To make further progress on this question, new techniques seem to be necessary.
Therefore, in this paper, we examine what various algorithmic techniques con-
tribute to the random k-SAT problem. We achieve some improvements for the
case of even k.

Based on the direct application of known approximation algorithms in the
sense advocated by [Fe 2002] or also [GoJu 2002], we obtain an efficient certifica-
tion algorithm for the case of at least C -n? 4-clauses, thereby gaining a polylog-
arithmic factor. We present two different certification algorithms. One algorithm
applies the Max-Cut approximation algorithm of Goemans and Williamson
[GoWi 95]. The other one employs the Min-Bisection approximation algorithm
of Feige and Krauthgamer [FeKr 2000]. Since the Max-Cut approximation algo-
rithm is based on semidefinite programming, our first algorithm is not a purely
combinatorial algorithm. In contrast, the application of the Min-Bisection algo-
rithm yields a combinatorial algorithm. We state our result only for k¥ = 4, but
we feel that it is only a technical matter to extend it to any even k and C - nk/2
clauses.

Moreover, we obtain the first algorithm for deciding satisfiability of random
2k-SAT formulas in expected polynomial time. The algorithm can handle even
semirandom formulas, cf. Sec. 4 for details. Our algorithm is based on computing
the Lovasz number ¥(G) of a graph G, which provides an efficiently computable
upper bound on the independence number of G [Gr et al. 88]. Only recently an
estimate on the probable value of the ¥-function of random graphs with a linear
number of edges has been obtained [Co 2003]. Based on this estimate we give an
(un-)satisfiability algorithm running in expected polynomial time on the space of
random k-SAT instances with C-n*/2 clauses. Note that the computation of the
Y-function is based on semidefinite programming again, hence, our algorithm for
deciding satisfiability in expected polynomial time is not purely combinatorial.

In Section 2 we give our certification algorithms and in Section 3 we state
the theorem crucial for their correctness. In Section 4 we deal with the expected
polynomial time algorithm. This section can be read independently from the
rest.

Related work. There are two more recent papers motivated by the random
k-SAT problem, [Fe 2002] and [BeBi 2002]. Instead of proposing new algorithms
for certifying unsatisfiability, Feige [Fe 2002] shows that non-approximability
results can be based on a certain assumption on the average-case complexity
of random k-SAT. Hence, Feiges results emphasize the intimate relationship
between approximation techniques and random k-SAT.

2 Efficient certification of unsatisfiability

Given a set of n propositional variables, Var = Var,, = {v1,...,v,}, aliteral over
Var is a variable v; or a negated variable —w;. A k-clause is an ordered k-tuple



Ii VIs V--- VI of literals such that the variables underlying the literals are
distinct. A k-SAT instance is a set of k-clauses. We think of a k-SAT instance as
Ci1 A C2 A... ANCy, where each C; is a k-clause. Given a truth value assignment
a of Var, that is simply a mapping assigning true (=1) or false (=0) to each
variable, we can assign true or false to a k-SAT instance as usual. We let T, be
the set of variables z with a(z) = true and F, the set of variables z with a(z) =
false.

The probability space Form,, 1, , is the probability space of k-SAT instances
obtained by picking each k-clause with probability p independently. There are
slightly different ways to define probability spaces of k-SAT instances. For ex-
ample with m ~ p-2¥.(n), where (n)y = n-(n—=1)-(n—2)---(n—k+1) we
might consider the uniform distribution of all k-SAT instances with m clauses.
Note that m is about the expected number of clauses of a random formula from
Form,, ;, ,. One might also define clauses as sets of literals or one might allow
tautological clauses ... . In line with common usage we assume that it is only
a technical matter to transfer our results to any of these possibilities to define
random k-SAT instances, but do not check the details.

A Ek-uniform hyperedge or simply k-tuple over the vertex set V is a vector
(z1, x2,...,x) where the x; € V are all distinct. H = (V,E) is a k-uniform
hypergraph if E is a set of k-tuples over the vertex set V. In the context of
k-uniform hypergraphs we use the notion of type in the following sense: Let
X1, Xo,..., Xy C V, ak-tuple (z1, 22, ..., ) is of type (X1, Xo, ..., Xi) if
we have for all ¢ that x; € X;. A random hypergraph H € HG,, 1, is obtained
by picking each of the possible (n); k-tuples with probability p, independently.

Let S be a set of k-clauses over the set of variables Var, as defined above.
The hypergraph H = (V, E) associated to S is defined by V' = Var and
(z1,22,23,--. ,xk) € E if and only if thereis a k-clausel; VIs V -- -Vl € S such
that for all 4 I; = =z; or I; = —z;. In case of even k the graph G = (V, E) asso-
ciated to S is defined by V' = {(z1,...,24/2) | 2; € Var and z; # z;fori # j}
and {(21, T2, ..., T2), (T(k/2)+1,---,2x)} € Eifand only if there is a k-clause
Ii VIp V--- VI € S such that the variable underlying I; is ;.

We use the following standard asymptotic terminology: When f(n) — 0,
O(f(n)) stands for a term g(n) such that |g(n)] < C - f(n) for a constant C
and all sufficiently large n. The following abbreviations are more specialized:
f(n) ~s g(n) iff there is an € > 0 such that f(n) = g(n)- (1 + O(1/n°)). Here
~s stands for strong asymptotic equality. Similarly we use f(n) = so(g(n)) iff
f(n) = O(1/n®) - g(n). We say f(n) is negligible iff f(n) = so(1).

Parity properties analogous to the next theorem have been proved in [Fe 2002]
for 3-Sat instances with a linear number of clauses and in [GoJu 2002] for 4-Sat
instances. But in the proof of [GoJu 2002] it is important that the probability
of each clause is p < 1/n?7° where ¢ > 0 is a constant. In this case the number
of clauses is with high probability at most O(n2~¢). This implies that the num-
ber of occurrences of two given literals in several clauses of a random formula
is small. Therefore we can essentially assume that we have no occurrences of
two given literals together in several clauses. This is not any more the case for



p = C/n? and some additional complications arise when proving the following
theorem.

Theorem 1 (Parity Theorem). For o random F € Formya, where p =
C/n? and C is a sufficiently large constant, we can efficiently certify the following
properties.

(a) Let S C F be the subset of all clauses of F' corresponding to one of
the 16 possibilities of placing negated and non-negated variables into the four
slots of clauses available. Let G = (V,E) be the graph associated to S. Then
IS| = C-n?-(1+s0(1)) and |E| = C-n?-(1+ so(1)).

(b) For all satisfying assignments a of F' we have that |T,| ~5 (1/2)-n and
Ful ~ (1/2)-n.

(c) Let S be the set of clauses of F consisting only of non-negated variables.
Let H be the hypergraph associated to S. For all satisfying assignments a of F'
the number of 4-tuples of H of each of the 8 types

(Ta7 Ta7 Ta7 Fa)7 (Ta7 Ta7 Fa7 Ta)7 (Tll7 FIIJ TDJ Ta)7 (Fa7 Tll) Ta7 Tll)?

(Fa7 Fll7 Fa7 Ta)? (Fa7 Fa7 Ta7 Fa)? (FGJ Tll) FGJ FG)J (Tll7 Fa7 Fll7 Fa)

is (1/8) - C - n% - (1 + so(1)). The same statement applies when S is one of
the remaining seven subsets of clauses of F' which have a given even number of
negated variables in a given subset of the four slots available.

(d) Let H be the hypergraph associated to those clauses of F' whose first slot
contains a negated variable and whose remaining three slots contain non-negated
variables. The number of 4-tuples of H of each of the 8 types

(Ta7 TDJ TDJ Ta)7 (Ta7 Ta7 Fll7 FII)7 (Ta7 Fa7 Ta7 Fa)7 (Ta7 Fa7 Fa7 Ta)7

(Fa7 Fa7 FGJ Fa)? (FOJ Fa7 Ta7 Ta)7 (FDJ TGJ Fa7 TG)J (Fa7 Ta7 Ta7 Fll)

is (1/8) - C - n% - (1 + so(1)). The same statement applies when S is one of
the remaining seven subsets of clauses of F' which have a given odd number of
negated variables in a given subset of the four slots available. O

The technical notion type of a 4-tuple of a hypergraph is defined above. On
probabilistic grounds we know that satisfying assignments do generally not exist
under the assumptions of the theorem. However, we cannot efficiently certify this.
Instead, we can only certify the weaker statements of the theorem. Statement (b)
means that we have an € > 0 such that we can certify that all assignments a with
|To| > (1/2)-n-(1+1/n°) or |F,| > (1/2)-n-(1+ 1/n°) do not satisfy a random
F'. In the same way (c) means that we can efficiently certify that all assignments
a for which the number of all positive clauses of one of the prescribed types is not
between (1/8)-C-n?-(1 — 1/n) and (1/8)-C-n?- (1 + 1/nf) do not satisfy F.
In particular the number of clauses with an even number of literals true under a
is asymptotically negligible. We present the proof of the Parity Theorem in the
next section. First we state our unsatisfiability certification algorithms.

Given a graph G = (V, E), a cut is a partition of V into two subsets V3 and
V>. The Max-Cut problem is the problem to maximize the number of crossing



edges, that is the number of edges with one endpoint in V7 and the other endpoint
in V5. In this context Opt(G) is the maximal number of crossing edges of a cut.
There is a polynomial time approximation algorithm which, given G, finds a cut
such that the number of crossing edges is guaranteed to be at least 0.87-Opt(G),
see [Au et al. 99], page 399. Note that the algorithm is a deterministic algorithm.

Algorithm 2 The input is a 4-Sat instance F.

1. Certify the properties as stated in Theorem 1. If this certification is not
successful the algorithm stops with an inconclusive answer.

2. Let S be the subset of all clauses of F containing only non-negated vari-
ables. We construct the graph G = (V, E), as defined above, associated to this
subset S.

3. Apply the Maz-Cut approzimation algorithm to G.

4. If the cut found in 3. contains at most 0.86 - |E| edges the output is “un-
satisfiable”, otherwise the algorithm gives an inconclusive answer as it cannot
determine whether F' is satisfiable or unsatisfiable. O

Theorem 3. Algorithm 2 efficiently certifies the unsatisfiability for Formy, 4,
where p = C/n? and C is sufficiently large.

Proof. To show that the algorithm is correct, let F' be any satisfiable 4-SAT
instance. Let a be a satisfying truth value assignment of F. Let H be the
hypergraph associated to S. From Step 1 we know that only an asymptoti-
cally negligible fraction of the 4-tuples of H has a type not among the eight
types with an odd number of T,’s. Now consider the partition of the vertices
of the graph G where Vi = {(z,y) |z # yandz,y € T,orz,y € F,} and
Vo ={(z,y)|z € Ty,y € Foorz € Fy,y € T,}. From Step 1 we know that
the number of edges between V4 and V5 is equal to |E|- (1 + so(1)). The Max-Cut
approximation algorithm finds a cut which with at least 0.87-|E| crossing edges.
Therefore the algorithm does not answer “unsatisfiable” and is correct.

To show the completeness of the algorithm let ¥ € Formy 4, where p =
C/n? be a random formula. Step 1 is successful with high probability as we
know from Theorem 1. Let Vi, V2 be an arbitrary cut of G with |Vi| = m
and I = |Vz] = n(n —1) — m. The number of crossing edges possible at all
is bounded above by m - [. Each edge possible is present in G with probability
p=1—-(1-p)? = 2p-(1+0(1)), independently. The probability of the event
that the number of crossing edges of the given cut V1, V is at least b is bounded
above by the probability that the binomial distribution with parameters m -1
and p' is at least b. Moreover, m - [ is maximized when m = [ = n(n —1)/2.
In this case the expectation of the number of crossing edges is bounded above
by C-n-(n—1)/2- (14 so(1)). Tail bounds for the binomial distribution imply
that we have at least (1 + ¢)-C-n-(n—1)/2-(1+ so(1)) crossing edges for a
given constant € > 0 with probability bounded above by e~ 2(Cn(n=1)) ' Ag there
are 27("=1) possible cuts altogether, the probability that we have a cut with at
least (1 +¢)-C-n-(n—1)/2-(1+ so(1)) crossing edges is bounded above by
on(n—1) . g=2(C:n(n—1)) — (1) if we pick C sufficiently large. From Step 1 we



know that |E| = Cn?%(1 + so(1)), therefore with high probability the algorithm
cannot find a cut with at least 0.87 - | E| edges and the output is “unsatisfiable”
with high probability. O

As asymptotic terms in algorithms tend to cause confusion the following
remark is in order. At this point we know that an algorithm efficiently certifying
unsatisfiability exists, because there exist suitable so(1)-terms as we know from
our theorems and considerations. In order to be of practical use we would have
to specify the so(1)-terms. Suitable functions can be derived from our proofs.

Given a graph G = (V, E), where |V| is even. A bisection of G is a partition
of V into two subsets Vi and Va2 with |Vi| = |V2| = |V|/2. The Min-Bisection
problem is the problem to minimize the number of crossing edges, that is the
number of edges with one endpoint in V; and the other endpoint in V5. In
this context Opt(G) is the minimal number of crossing edges of a bisection.
There is a polynomial time approximation algorithm which, given G, finds a
bisection such that the number of crossing edges is guaranteed to be at most
O((logn)?) - Opt(G), |V| = n, see [FeKr 2000].

Algorithm 4 The input is a 4-Sat instance F.

1. Certify the properties as stated in Theorem 1. If this certification is not
successful the algorithm stops with an inconclusive answer.

2. Let S be the subset of all clauses of F' whose first literal is a negated variable
and whose remaining literals are non-negated variables. We construct the graph
G = (V, E) associated to this set S. Check if the mazimal degree of G is at most
3-Inn. If this check is not successful the algorithm gives an inconclusive answer.

3. Apply the Min-Bisection approximation algorithm to G.

4. If the bisection found contains at least (1/3) - |E| edges, then the output is
“unsatisfiable”. Otherwise the algorithm cannot determine if F' is satisfiable or
not. O

Theorem 5. Algorithm 4 efficiently certifies the unsatisfiability for Formy 4,
where p = C/n? and C is sufficiently large.

Proof. To show the correctness of the algorithm let F' be a satisfiable formula
and let a be a satisfying assignment of F'. Let H be the hypergraph associated to
S. From Step 1 we know that all up to C -n?- (1 + so(1)) 4-tuples from S are of
one of the 8 types with an even number of T},’s. Now consider the partition of the
vertices of the graph G where Vi = {(z, y) |z # yand z,y € T, or z,y € F,}
and Vo = {(z,y) |z € Ty, y € Foorz € F,,y € T,}. From Step 1 we know
that |F,| = 1/2-n-(1+ so(1)) and |T,| = 1/2-n - (1 + so(1)). Therefore we
have that |V1| = 1/2-n(n—1)-(1+so(1)) and |Va| = 1/2-n(n—1)-(1+s0(1)).
Thus Vi, V5 is a cut which is almost a bisection. From Step 1 we know that the
number of edges of G' between Vi and V5 is so(n?). The cut Vi, V5 can be made
into a bisection by moving at most so(n?) vertices from V; to V» or vice versa.
This may increase the number of crossing edges by so(n?), as we check in Step
2 that the maximal degree of G is at most logarithmic. Therefore we have that
Opt(Q) is at most so(n?). Then the Min-Bisection approximation algorithm will



8

find a bisection with at most O((logn?)?) - so(n?) many crossing edges which is
less than (1/3) - |E| and the algorithm does not give “unsatisfiable” as output.
To show the completeness of the algorithm let ' € Form, 4, where p =
C/n? be a random formula. Step 1 is successful with high probability as we know
from Theorem 1. As to Step 2, we know that the number of neighbors of a given
vertex (z, y) follows the binomial distribution with parameters (n—2)(n—3) and
p', as defined above. Using the bound from [AlSp 92], Theorem A.12, page 237,
we see that the certification in Step 2 successful with high probability. Let V7, V5
be an arbitrary bisection of G. As in the completeness proof of Algorithm 2 we
have that with high probability the number of crossing edges of any bisection is
at least (1—¢)-C-n-(n—1)/2. Therefore Min-Bisection approximation algorithm
can only find a bisection with at least this number of crossing edges. As we know
that |E| = C -n?- (1 + so(1)) the algorithm gives “unsatisfiable” as output with
high probability. O

3 Proof of the Parity Theorem

We present the algorithms to prove Theorem 1. To deal with the problem of
multiple occurrences of pairs of variables in several clauses we need to work with
labelled (multi-)graphs and labelled (multi-)hypergraphs, instead of graphs and
hypergraphs as in [GoJu 2002]. In a labelled graph we allow for multiple edges
between two vertices. The edges between two vertices are distinguished by labels.
The same applies to labelled hypergraphs.

Let H = (V, E) be a standard 4-uniform hypergraph. When speaking of
the projection of H onto coordinates 1 and 2 we think of H as a labelled
multigraph in which the labelled edge {1, Z2}(3,,25,25,24) 1S Present if and only
(z1,22,23,24) € E. The choice of the 4-tuples of H as labels ensures that each
labelled edge corresponds to exactly one 4-tuple of H. We denote this projec-
tion by G = (V, E). We extend the results and the notation from page 71 ff
of [Ch 97] to G. Of course, any other set of two coordinates can be treated in
the same way. The subsequent considerations refer to projections of 4-uniform
hypergraphs only, but they actually apply to general labelled multigraphs.

Lete = |E|,V ={1,...,n}, X C V,and Y = V\X. We denote the
number of labelled edges of G with one endpoint in X and the other endpoint
inY by e(X, Y). That is

|{(xaya ] _) € E|£U€X,y€ Y}|

X)) =
Y +{y, 2z, -, -) €e ElzeX,yeY}.

Similarly e(X) is the number of labelled edges with both endpoints from X, that
is

e(X) = |{($17 T2, —, _) € E|.’E1,.Z'2 € X}| .
The edge density of G is p = e/(}). Picking a set of vertices {z,y} with z # y

uniformly at random from all such sets, p is the expected number of 4-tuples
(z1, 2, —, —) € E with 11 =y, z9 = z or vice versa. Picking X C V with



|X| = m uniformly at random from all sets with m elements e(X) is a random
variable with expectation
m m
Ne-—-
P\ 2 n

Similarly, for Y = V\ X the expectation of e(X,Y) is

SIS

p-m-(n—m)z2-e-ﬂ-(1—ﬂ) .
n n

G has discrepancy 6 with respect to S iff § is minimal with the property that
forall X CV with g-n < |X|<(1-0) n,

1—=8)p- ("2") <e(X)<(146)p- ('f')
and for Y = V\X
(L=8)p-X]- Y] < e(X, Y) < (1+8)-p- [X] - Y]

In an asymptotic setting we use our terminology from Section 2 and say that
G has negligible discrepancy (with respect to 8) iff G has discrepancy & where
0 = §(n) is negligible. Negligible discrepancy (with respect to ) means the same,
as for all X CV with | X|=a-n where f <a <1-3,

e(X) ~; ea? (1)

and for Y = V\X
e(X,Y) ~s 2ea(l —a) . (2)
Note that p(%') = ea®(1+0(1/n)) and pan(1 — a)n = 2ea(l —a)(1+ O(1/n)).

The n x n-matrix A = Ag is the adjacency matrix of G where edges are
counted with their multiplicity,

A(w,y)=|{(w,y,—, _) € E}|+ |{(y7$7 ) _) € E}|

As A is real valued and symmetric, A has n different eigenvectors and corre-
sponding real eigenvalues which we consider ordered as

AL,A > A4 > -0 2> Apa.

We let A = Aq = maxo<i<n |Ai,a| = max{|A2 4|,|An,4|}. In an asymptotic con-
text we speak of strong eigenvalue separation with respect to a constant k. By
this we mean that . , ¥ = s0(A\}). When £ is even, strong eigenvalue separa-
tion implies in particular that A\¥ = so(AY) and as k is constant, that A = so(\;).
From Linear Algebra it is known that for any & > 0

Trace(A*) = Z AR (z,z) = Z )\:-“’A.
e=1 i=1
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Moreover, we have that Trace(A*) is equal to the number of closed walks of
length k in G.
The degree of the vertex z in G d; = dy g is

d:c = |{(m7 ) _) € E}l + |{(_7$_7 _) € E}|

The n x n-matrix L = Lg is a normalized adjacency matrix, it is related to
the Laplacian matrix, we have

Az, y)
dydy,

L(z,y) =

As L. = Lg is real valued and symmetric, too, we use all the eigenvalue notation
introduced for A analogously for L. Here Ay z, is precisely known, A1z, = 1. Let
d = d(n) be given. In an asymptotic context we say that G is almost d-regular,
if for any vertex z of G dy,¢ = d(n)-(1 + so(1)). Theorem 5.1 and its corollaries
on page 72/73 of [Ch 97] imply the following fact.

Fact 6 Let G = (V, E) where V = {1,...,n} be a projection onto two coordi-
nates of a 4-uniform hypergraph H = (V, E) with e = |E|. Let G be almost
d-regular, let B < a <1 — B where § > 0 is a constant, and let X C V with
|X| = an. Then we have,

(a) |e(X)—ea2| <Ar-e-a-(1+so0(1)),
(b) le(X,Y) —2ea(l —a)| <Ar-2-e-y/a-(1—a)-(1+s0(1)) forY = V\X,

where A\, = maxs<i<n |Ai,r| and L = Lg is defined above.

Note that (a) and (b) of Fact 6 imply negligible discrepancy, cf. (1), (2), provided
Ar, = so(1). Therefore we need methods to estimate Ar. As eigenvalue properties
are more easily to show for A = Ag than for Lg the following lemma is important
and may even be of some independent interest.

Lemma 1. Let G be the projection onto two given coordinates of the 4-uniform
hypergraph H = (V, E) where V. = {1, ..., n}. If G is almost d-regular and
Ag has strong eigenvalue separation with respect to a given constant k, then Lg
has strong eigenvalue separation with respect to k.

Proof. Let W be the number of closed walks of length k in G. Then W =
Trace(A*) and an inductive argument shows that

n 1 k
Trace (LE) = Z Lg(z,z) <W- (3) -(1+s0(1)) .

z=1
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Then we get,

n
Z Af 1, = Trace (L)

B <w. (é)k (1 + 50(1))

1

k
= Trace (Af) - (E) - (14 s0(1))

) <_ Af"‘a) ' G)k (14 s0(1)) -

As M1z, =1, whereas Af ;. = d"- (1+s0(1)) we get that Y31, A¥; = = so(1).
Note that A 4 is always at most the maximal degree of G and at least the
minimal degree. This can be seen from the well known characterization A4 =
maxgzo T Az/z'"x where z'" is the transpose of the n-dimensional column

vector x. O

We collect some probabilistic properties of labelled projections when H is a
random hypergraph.

Lemma 2. Let p = ¢/n? where ¢ is a sufficiently large constant and let H =
(V,E) be a random hypergraph from HGpap. Let G = (V,E) be a labelled
projection of H onto two coordinates.

(a) Let d=d(n) =2-c-n . Then G is almost d-regular with probability at least
1 — e (%) for a constant e > 0.

(b) The adjacency matriz A = Ag has strong Figenvalue separation with respect
to k =4.

Proof. (a) Altogether there are 2(n — 1)3 4-tuples which might induce a labelled
edge of G incident with z. Each of these labelled edges is present with probability
p = ¢/n? independently. Therefore for a given vertex z the degree of z, d,, follows
the binomial distribution with parameters 2(n — 1)3 and p. As the expectation
is 2en(14+ O(1/n)), standard tail bounds for the binomial distribution imply the
result.

(b) For definiteness we consider the projection G onto coordinates 1 and 2
of H. The number of closed walks of length 4 in G is equal to

Trace(A*) = ZA4(:v,x) = Z/\;{A .
e=1 i=1

We calculate E[Trace(A*)] using linearity of expectation. Given z; € V, each
closed walk of length 4 starting with z; is uniquely represented by an ordered
sequence of 4-tuples (hi, hz, hg, h4) which, given zo,xs,z4,25 = x1, can be
decomposed as h; = (x;, i41,—,—) or h; = (zi+1, 25, —,—). This allows us
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to bound the expected number of closed walks starting with 21 by the following
case distinction. For walks such that the h; are all distinct we get an upper
bound of

n® - (n2)? - (fT) (14 0(1/n)) = (2-O)* -n® - (1 + s0(1) .

When h; = hy and hg, hy are distinct we get an expectation of

3
n?- (n2)? - (%) (14 0(1/n)) = 50 ((2en)?) .

Similarly we get an expectation of so((2cn)?) for the remaining cases when the
h; are not all distinct. The expected number of closed walks altogether therefore
is n-n®(2c)* + so(n*). As G is asymptotically d-regular, where d = 2cn, with
probability 1 —e~2("") for an € > 0, we get that E [A{ 4] ~s (2cn)*. Therefore
E X7, Al 4,] = so(n*). Markov’s inequality shows for all f(n) not in so(n*)
that

Prob lz )‘?,AG > f(n)
=2

and the claim holds.
O

Now we can efficiently certify negligible discrepancy with respect to a given con-
stant 3 of projection graphs.

Algorithm 7 Input is a 4-uniform hypergraph H = (V,E). Let G = (V,E) be
the projection onto two given coordinates of H.

1. Check almost regularity of G. If the check fails, the algorithm stops with
an inconclusive answer. Determine a d such that for all vertices t € V d, =
d- (14 s0(1)).

2. Let A be the adjacency matriz of G. Compute Trace (A4).

3. If Trace (A*) = d*- (1 + so(1)) then the algorithm stops with a successful
certification. Otherwise it fails with an inconclusive answer.

To show the correctness of the algorithm, we assume that we have a pro-
jection G whose discrepancy is not negligible. The interested reader can easily
supply the asymptotic detail to make this assumption precise. If G is not almost
regular the algorithm will detect this and answer inconclusively. If G is almost
d-regular we can apply Fact 6 and get that AL, is not negligible. Therefore
AL, is not negligible, too. As all A7, . > 0 we have that Y37 ) A, > i,
is not negligible. As A; 1, = 1, we have that the matrix Lg does not have
strong eigenvalue separation with respect to ¥ = 4. By Lemma 1 we have
that Ag does not have strong eigenvalue separation with respect to k = 4.
By almost d-regularity using the characterization of A; 4, from the proof of
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Lemma 1 we have that A ,, = d*-(1 4 s0(1)). Therefore we cannot have that
Trace(A*) = d*- (1 + so(1)) and the algorithm can only answer inconclusively.

To show the completeness of the algorithm let H be a random hypergraph
from HGp 4. Lemma 2 (a) implies almost d-regularity with high probability.
Therefore A1, 4, = d-(1 + so(1)). With Lemma 2 (b) we have that Trace(4}) =
d* - (1 + so(1)) with high probability and the algorithm certifies this.

We need to certify discrepancy properties of projections onto 3 given coor-
dinates of a random 4-uniform hypergraph from HG,, 4, where p = ¢/n?. Let
H = (V,E) be a standard 4-uniform hypergraph. When speaking of the projec-
tion of H onto coordinates 1, 2, and 3, we think of H as a labelled 3-uniform
hypergraph G = (V, E) in which the labelled 3-tuple (z1,22,%3)(s,,00,05,04) 19
present if (z1,%2,x3,24) € E. We restrict attention to the projection onto co-
ordinates 1, 2 and 3 in the following. But of course everything can be done in
the same way for any other set of 3 coordinates. For X, Y, Z C V we define

e¢(X,Y,2) = [{(z,y,2, —) € B | (z,y,2) is of type (X,Y,Z)}| .

For the notion of type we refer to the beginning of Section 2. With n = |V| and
e = |E| we say that the projection G has negligible discrepancy with respect to
B if for all X with | X|=an, 8 <a<1-43,and Y = V\X we have that

eG(XaXaX) ~s as'e; eG(XJYJX) ~s az(l_a)'e

and analogously for the remaining 6 possibilities of placing X and Y into the 3
slots available, compare (1) and (2) for the case of labelled projection graphs.
For 1 <i<3andz € V we let d;; be the number of 4-tuples in E which
have z in the 7’th slot. Given d = d(n), we say that G is almost d-regular if and
only if dg; = d- (1+ so(1)) for all z € V and all ¢ = 1,2,3. The notion of an
adjacency matrix is not known for hypergraphs like G and we cannot directly
certify discrepancy properties. Therefore we assign labelled product graphs to

G.

Definition 1 (Labelled product). Let G = (V, E) be the projection onto co-
ordinates 1, 2, and 3 of the 4-uniform hypergraph H = (V, E).

The labelled product of G with respect to the first coordinate is the labelled
graph P = (W, F), where W =V XV and F is defined as: For x1,x2,y1,y2 € V
with (z1,41) # (22,Y2) we have {(z1,y1), (T2,Y2) }n k) € Fiff h = (2, 21,22, —)
E and k = (2, y1,y2, —) € E and (/) h # k.

In the labelled product we can think of each ordered pair of different 4-tuples
from E, ((z, 21, 22, —), (2, y1, y2, —)) as one edge. Of course labelled products
are defined with respect to each of the 3 coordinates of G in the same way. If the
projection G is almost d-regular the number of labelled edges of the product is

n-d-(d—1)-(1+s0(1)) =n-d*-(1+s0(1))

provided d > n° for an € > 0. Discrepancy notions for labelled products are
totally analogous to those for labelled projection graphs defined above. We can
omit the formal definitions at this point. Theorem 8 is an adaption of Theorem
2.3 in [GoJu 2002].
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Theorem 8. Let € > 0 and d = d(n) > n. Let G = (V,E) with |V| = n be
the labelled projection hypergraph onto coordinates 1,2 and 3 of the 4-uniform
hypergraph H = (V, E). Assume that G and H have the following properties.

1. G is almost d-regular.

2. The labelled projection graphs of H onto any two of the coordinates 1,2, and
3 have negligible discrepancy with respect to 8 > 0.

3. The labelled products of G have negligible discrepancy with respect to B2.

Then the labelled projection G has negligible discrepancy with respect to 5.

Proof. Let |E| = e and let X CV with |X| = a-n where § < a < (1 - f), and

Y = V\X. We need to show that eg(X, X, X) ~; a®-e. Let G1 = (V, E) be the

labelled projection of H onto the coordinates 2 and 3 and let P = (W, F) with

W =V x V be the labelled product of G with respect to the first coordinate.
For z € V let

a; = |{(Z,(L'1,.’L’2, _) e FE | x1,Ty € X}| s
then

ep(X x X) = Zaz(az -1)

zeV

= Z a(a; — 1) + Z az(a; —1)

z€X zZ€EY
Y @YY
z€X z€EY zeV
From negligible discrepancy of G; we have for the third term of the sum, that
Z a, =eg,(X) ~s o’ -e.
z€V

Each of the two remaining terms is minimized when each a, is the arithmetic
mean. In this case we get for the first term

eG(XJXJX)
an

and for the second term
€a (YJ Xa X)

(1-a)n
From negligible discrepancy of P we get that
eg, (X x X) ~g a*nd®
as |F| ~, nd?. Altogether we get
an-d? ~ e, (X x X)
> eH(X7X7X)2 eH(YaXaX)
- an (1-a)n

—a?-e-(1+s0(1)).
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As e ~gnd and d > n® we get

eG(XJXaX)z eG(YJXaX)z
an (1—a)n

a’nd®(1 + so(1)) >

Aseq(X, X, X) +eq(V,X,X) = eg,(X) ~s a? - e by negligible discrepancy of
(i1, the preceding sum is minimized when
eq(X, X, X)~;a-a®-e, eqg(V,X,X)~;(1—0a)-a*-e.

This can be seen as follows, if

eq(X, X, X)=(a+7)a?e and eg(V,X,X)=(1—a—7y)a2e

then
6(;(X,X,X)2 GG(Y,X,X)2
an (1-a)n
2 2
_(laty)®  A—a=9)N 4 0
@ (1-a)
_ <a2 + 237 +2 4 (1-a)? —12(1a— a)y + 72> aAnd?

2 2
= <1+’Y—+’Y—> a*nd?
o l1—«

Therefore we must have

2 2

4, 52 > 7 g 4, 52
and(1+so(1))_<1+a+1_a o“nd

and as B < a < 1— 3, B constant, we have 72 = so(1) and thus v = so(1). The
remaining cases to be considered in order to get negligible discrepancy of G can
be treated in the same way. O

Lemma 3. Let H = (V, E) be a random hypergraph from HGp 4, where p =
¢/n? and c is sufficiently large. Let G be the labelled projection of H onto the
coordinates 1, 2, and 3. Let P = (W, F') be the labelled product with respect to
the first coordinate of G. Then we have

(a) P is almost d-regular were d = 2 - ¢ - n with probability 1 —n—?(eglogn)

(b) The adjacency matriz Ap has strong eigenvalue separation with respect
to k = 6.

The analogous claim applies to any other suitable set of coordinates.

Proof. (a) We consider the vertex (z1,y1) € W. First, assume that z1 # y;.
We introduce the random variables,

Xz = |{(z7 1, —, _) S E}'; Yz = |{(Z, Y1, —» _) € E}|
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and
X; = |{(Z, -, I1, _) € E}|J Y;I = |{(Z’ - Y1, _) € E}|

and finally D = )7 X,-Y, + )  X.-Y/. Then D is the degree of the vertex
(z1,y1) in the labelled product P. We get that E[X,] = ¢ — O(1/n) and, as X,
and Y, are independent, that E[X, - Y,] = ¢ — O(1/n). This gives

E[D] = 2¢’n(1 + O(1/n)).

As the random variables X, - Y, are independent for different z’s, we can apply
Hoeffding’s bound, see [Ho 87], page 104, Theorem 7: For X;, ..., X,,, indepen-
dent, with a < X; < b for all i and p = E[}_, X;] we have

o 2n2 .6
X; - < ).
; # —e"p( n(b—a)2>

In our case we only have that 0 < X, < n? and the direct application of this
bound makes no sense. However using Theorem A.12 from [AlSp 92], page 237,
we get

Probl >d0-n

logn
Prob[X, > logn] < ( ) = p~(loglogn)

logn
Conditioning on the event that X,,Y,,X., Y] < logn for all z, we get with
constant 0 < € < 1/2 that

ZXZ-YZ—CQ-n
z

for an € > 0. The same argument applies to > X -Y, and we get that D =
2¢?n - (1+ so(1)) with probability 1 —n~?(loglog ™). As we have n(n —1) possible
vertices altogether the claim follows all vertices (z1,y1) with 21 # y;.

Now assume that 1 = y;. Then we get that D = >, X, - (X, — 1) +
>, XL(X. —1). Withm = (n—2)(n—3), X, follows the binomial distribution
with parameters m and p. As mp(1 —p) =Var[X,] = E[X?] — (E[X,])? we get
that E[X?] = ¢ + ¢ + O(1/n). Therefore

>—-n <e_9(n€’)
z

Prob l

E[X.(X, — )] = & +0(1/n)

and we can argue as in the first case.

(b) Let Ap be the adjacency matrix of P. We apply the same technique as
in the proof of Lemma 2 but with closed walks of length 6 instead of 4. Given
21,1 we need to bound the expected number of ordered sequences of pairs of
4-tuples like

(hlakl): (h27k2)7 (h3ak3)7 (h‘47k4)7 (h57k5)7 (ha, kﬁ) c E

where for each ¢ we have that h; = (2;, 2, i1, —) and k; = (24, ¥, Yir1,—) OF
h,’ = (Z,',.’E,H_l,.’ﬂz', —) and kt = (zi,yi+1,yz’, —) and Ty = X1, Y7 = Y1- In case all
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the h;, k; are distinct we can bound the expectation by n* - (2¢2)% + so(n*). In
case that the h;, k; are not all distinct we get a bound of so(n*). Then we have
that E[Trace](A%)] = (2¢°n)® + so(n%). Using (a) we can argue as in Lemma
2. ]

The following algorithm certifies negligible discrepancy of labelled projections
onto 3 coordinates of 4-uniform hypergraphs.

Algorithm 9 The input is a 4-uniform hypergraph H = (V, E). Let G = (V, E)
be the projection of H onto the coordinates 1,2, and 3.

1. Check if there is a suitable d such that G is almost d-regular. That is check
if dg,; = d(1+ so(1)) for all vertices x and all i =1,2,3.

2. Check if the labelled projections onto any two of the coordinates 1,2,3 of
H have negligible discrepancy. Apply Algorithm 7.

3. Check if the products of G are almost d-regular with d = 2c*n.

4. For each of the 3 labelled products P of G check if Trace (A%) = (2-¢*-
n)® - (1 + so(1)) where Ap is the adjacency matriz of P.

5. If all checks are positive then certify negligible discrepancy of the labelled
projection G. Otherwise the algorithm fails.

The correctness of the algorithm follows similarly to the previous consider-
ations proving the correctness of Algorithm 7. For random hypergraphs H €
HG 4,p the algorithm is complete.

Now we can state the algorithms proving Theorem 1. For Theorem 1 (a) just
count and observe that for any possibility of putting negations into a subset of
the 4 slots available we have (n),4 clauses altogether. Each clause is picked with
p = C/n? independently. Therefore the hypergraph associated with these clauses
is a random hypergraph from HG,, 4,, and the number of 4-tuples follows the
binomial distribution with parameters (n)s and p. Tail bounds for the binomial
distribution imply Theorem 1 (a).

Concerning Theorem 1 (b) we consider the following algorithm.

Algorithm 10 The input is a 4-Sat instance F. Let H = (V, E) be the hyper-
graph associated to the subset of clauses which consist of unnegated variables
only.

1. Use Algorithm 9 to check that the labelled projection of H onto coordinates
1,2,3 has negligible discrepancy.

2. Use Algorithm 9 to check that the labelled projection of H onto coordinates
2,3,4 has negligible discrepancy.

3. Do the same as 1. and 2. for the hypergraph associated to the clauses
consisting only of negated variables.

4. If all checks have been successful, then certify that |T,| ~s (1/2)n and
|Fo| ~s (1/2)n for any satisfying assignment a, where n is the number of vari-
ables of F'.

Let F be any 4-Sat instance such that the algorithm is successful. Let a be an
assignment with |F,| > (1/2)-n- (1 + §) where § = d(n) > 0 is not negligible
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in the sense of Section 2 (for example § = 1/logn). From Step 1 we know that
the fraction of 4-tuples of H of type (F,, F,, Fy, —) is ((1/2)- (1 + 8))3- (1 +
s0(1)). Under the assumption that a satisfies F, the empty slot is filled with a
variable from T,. From Step 2 we know that the fraction of 4-tuples of H of
type (=, Fa, Fu, Ty) is ((1/2)-(1 + 4))%-(1/2)(1 —§). As § is not negligible this
contradicts negligible discrepancy of the labelled projection onto coordinates 2,
3, and 4 of H. In the same way we can exclude assignments with more variables
set to true than false because Step 3 is successful. Therefore the algorithm is
correct.

For random F' the constructed hypergraphs are random hypergraphs and the
completeness of Algorithms 9 implies the completeness of the algorithm.

Concerning Theorem 1 (c) we consider the following algorithm.

Algorithm 11 The input is a 4-Sat instance F.

1. Invoke Algorithm 10.

2. Let H be the hypergraph associated to the clauses of F' consisting only of
non-negated variables.

3. Certify that all 4 labelled projections onto any 3 different coordinates of H
have negligible discrepancy (wrt. a suitable 3 > 0). Use Algorithm 9 .

4. Certify that all 6 labelled projections onto any two coordinates of H have
negligible discrepancy. Use Algorithm 7 .

5. Announce successful certification of the property of Theorem 1 (c) if all
preceeding algorithms are successful. Give an inconclusive answer otherwise.

The correctness of the algorithm follows because for a satisfying assignment
a we get a fraction of (1/8) - (1 + so(1)) of the 4-tuples of H of each of the
following types,

(Fa;FaaFaa_)a (FaaFaa;_aFa)a (Faa_aFaaFa)a (_aFaaFaaFa)'

This follows from Step 1 and Step 3. The unspecified position must be filled with
T, Similarly we get a fraction of (1/8) - (1 + so(1)) of the 4-tuples of H of each
of the types

(Taa Taa Taa _)7 (Ta; Ta: ) Ta)a (Ta; > Taa Ta)a (_> Taa Taa Ta)'

Negligible discrepancy of the labelled projection graphs implies that the vacant
slot must be filled with an Fj, and the algorithm is correct. Completeness follows
easily from our previous considerations.

Those cases of Theorem 1 which are left open by now can be treated simi-
larlyand the Parity Theorem is proved.

4 Deciding Satisfiability in Expected Polynomial Time

Considerations of this section are based on the probabilistic model Formy, i m,
of random k-SAT instances. Given a standard set Var = Var, = {z1,...,2,}
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of n propositional variables a k-clause is an ordered k-tuple of literals, that is
negated or non-negated variables. Note that here any kind of double occurrence
is allowed. A formula from Formy, t n, is an ordered tuple Ci A --- A Cp, of k-
clauses and each formula occurs with the same probability 1/(2n)* ™. Recall our
remark from the beginning of Section 2 concerning different models of random
k-SAT instances.

Our algorithm can even handle semirandom formulas. In the semirandom
case, input instances are made up from a random share and a worst case part
added by an adversary (cf. [FeKi 2001] for several semirandom models of com-
binatorial optimization problems and a motivating discussion). We shall study
the following simple semirandom model Form

n,k,m"

1. A formula Fy = Cy A -+ A Cp, € Formy, g, is chosen from the uniform

distribution.
2. An adversary picks any formula F' = Form:’k’m over the standard set of
variables Var,, in which at least one copy of each C;, i = 1,...,m, occurs.

Note that in general we cannot reconstruct Fy from F'. For each Fy € Formy, j m,
let Z(Fy) denote the set of all formulas that can be obtained according to 2.
above. For any k-SAT instance F', let |F| signify the number of clauses of F.
We say that an algorithm A has a polynomial expected running time applied to
Form:’ k,m if there exists a constant [ > 0 such that the following condition holds.
For any map I that assigns to each Fy € Form, i, an instance I(Fp) € Z(Fp)
we have Y cronm, 1 .. 1/ (20)F™ - Ra(I(Fb)) = O((n+|I(Fy)|)}), where Ra(F)
denotes the running time of 4 on input F.

Theorem 12. Let k > 4 be an even integer. Suppose that m > C - 2% . nk/2
for some sufficiently large constant C > 0. There exists an algorithm DecideSAT
that satisfies the following conditions.

1. Let F be any k-SAT instance over Var,.

— If F is satisfiable, then DecideSAT(F) finds a satisfying assignment.
— If F is unsatisfiable, then DecideSAT(F) outputs “unsatisfiable”
2. Applied to Form DecideSAT runs in polynomial expected time.

n,k,m’

Our algorithm exploits the following connection between k-SAT and the max-
imum independent set problem. Let V = {1,...,n}*/2 and v = n*/2 for the rest
of this paper. Given any k-SAT instance F' over Var, we define the two graphs,
Gr = (V,Er), Gy = (V, E}) as follows. We let {(v1,...,vk/2), (w1,...,wg2)} €
Er iff the k-clause
Ty Voo Vo 1y VT, V- - VT, ,, occursin Fyand { (v, - .., vk/2), (w1, ..., wry2)} €
ELiff the k-clause —zy, V -V =Zy, , V Ty, V -+ - V 2y, ,0ccurs in F. For a
graph G let a(G) be the independence number of G. The next lemma is an
observation from [GoKr 2001].

Lemma 4. If F is satisfiable, then max{a(Gr),(G')} > 2-*/2nk/2.
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The following lemma is proved in [GoKr 2001] without the exponentially low
probability bounds. It shows that the above reduction from certifying unsatisfia-
bility to bounding the independence number from above, maps random formulas

to random graphs. Let G, , denote a graph with v vertices and pu < (2) edges,
chosen uniformly at random.

Lemma 5. Let F' € Form,, j ,, be a random formula.

1. Conditioned on |E(GF)| = p, the graph Gr is uniformly distributed; i.e.
Gr =Gy A similar statement holds for G'g.

2. Lete > 0. Suppose that 2F - nk/2 < m < nk=1. Then with probability at least
1 — exp(—£2(m)) we have min{|E(GF)|, |E(GR)|} > (1 —¢)-27F% . m.

Thus, our next aim is to estimate efficiently the independence number of
a semirandom graph. Let 0 < p = p(v) < 1. The semirandom graph G}, is
+ )

produced in two steps as follows (similarly to Formn’ k,m

1. Choose a random graph Gy = G,, (remember that G, is obtained by
including each of the (;) possible edges with probability p independently).
2. An adversary adds to Gy arbitrary edges, thereby completing the instance

G =G,

(We will later set p = m(2n)~*.) We employ the Lovdsz number 9 (cf.
[Gr et al. 88,Kn 94]), which can be seen as a semidefinite programming relax-
ation of the independence number. Indeed, 9(G) > a(G) for any graph G. In
contrast to the independence number, the Lovész number ¥(G) can be computed
in polynomial time using the ellipsoid algorithm [Gr et al. 88] (rounding issues
can be ignored for our purposes). We shall now adapt the algorithms given in
[CoTa 2003,Co 2003] for approximating the independence number of classical
random graphs to our purpose: Our algorithm DecideMIS will output “typi-
cal”, if the independence number of the input graph is “small”, and “atypical”
otherwise.

Algorithm 13 DecideMIS(G,p)
Input: A graph G of order v, and a number p.
Output: Either “typical” or “not typical”.

1. If¥(G) < C'(In(vp))*/?(v/p)*/?, then terminate with output “typical”. Here
C' denotes some sufficiently large constant (independent of p, v).

2. Check whether there exists a subset S of V', |S| = 25In(vp)/p, such that
[V\ (SUN(S))| > 12(v/p)*/2. Here N(S) is the set of neighbours of S, that
is vertices adjacent to a vertex form S. If no such set S exists, then output
“typical” and terminate.

3. Check whether in G there is an independent set of size 12(/p)!/2. If this is
not the case, then output “typical”. Otherwise, output “not typical”.

The analysis of DecideMIS is based on two results concerning ¥(G, ) from
[Co 2003] and [Co 2003b], respectively.
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Theorem 14. Suppose that D < vp < 0.99v for some large constant D > 0.
There exist constants c1,ca > 0 such that with high probability

c1(In(vp)) "2 (v/p)'/? < 9(Guyp) < ea(In(p))'/?(v/p)'/>.
Theorem 15. Suppose that p < 0.99. Let M be a median of (G, p). Let & >
max{10, M'/2}. Then Prob[d(G,.p) > M + £] < 30exp (—5—M§j1—0€> .

Proposition 1. For any G, if DecideMIS(G,p) outputs “typical”, then a(G) <
C'(In(vp))*/2(v/p)!/?. Moreover, with respect to G, the probability that
DecideMIS(G,p) outputs “not typical” is < exp(—v). Applied to Gjp, DecideMIS
has a polynomial expected running time, provided vp > C", for some large con-
stant C"" > 0.

Sketch of proof. The proof goes along the lines of [CoTa 2003,Co 2003]. In addi-
tion to Thm. 14 and 15, to handle the semirandom graph G} ».ps We make use of
the monotonicity of ¥: If G; is a (weak) subgraph of Ga, then ¥(G1) > ¥(G2),
of. [Kn 94]. 0

Finally, our expected polynomial time algorithm for deciding whether a k-
SAT instance over Var, is satisfiable is as follows.

Algorithm 16 DecideSAT(F)
Input: A k-SAT formula F over Var,,.
Output: Either a satisfying assignment of F' or “unsatisfiable”.

1. Compute Gr and G%. Let p = m(2n)~*. If both DecideMIS(GF,p) and
DecideMIS(G’,p) answer “typical”, then terminate with output “unsatisfi-
able”.

2. Enumerate all 2™ assignments and look for a satisfiable one. If none is found
output “unsatisfiable”, otherwise “satisfiable” and the assignment.

Proof of Thm. 12. We may assume that m = [C2¥n*/2]. The correctness of
DecideSAT follows from Lemma 4. As for the running time, let Fy denote the
random k-SAT formula from which F' € Form n.k,m Das been constructed. Clearly,
the graphs Gr and G’ can be computed eﬂimently By the second part of Lemma
5, we may assume that min{|E(Gr,)|, |E(G%,)|} > 27%"'m. By the first part
of Lemma 5, the graphs Gr and G’ both can be made up as follows. First, a
random graph G, is chosen where v = n*/2 y = 2-%~1m_ Then, an adversary
adds some edges. The graphs make up a subset of G:’p whose probability is
bounded from below by an inverse polynomial fraction. This is the case because
our choice of p implies that Prob[|E(G, )] < p] is bounded from below by
some inverse polynomial and the semirandom model GIP allows us to add the
required edges. Therefore, the assertion follows from Prop. 1. O
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Proof of Lemma 5 The first part of the lemma is proven in [GoKr 2001]. We
shall prove that with probability > 1 — exp(—{2(m)) the graph G enjoys the
following three properties.
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1. The number P(F) of all-positive clauses in F is at least (1 —¢)2 *m.
2. The number L(F') of all-positive clauses of type

.’171V"'V23k/2VIL'1V"'V.’lTk/2

that occur in F is < €2 %m.
3. Let F=Cy A--- ANCyy,. Given literals ly,...,1l, put

h(ly V- ViIg) ={la V- Vi, lgjpp1 V- - Vi
Then
M(F) = |{i € {1,...,m}| h(C;) = h(C};) for some i # j}| < e27"m.

Since |Ep| > P(F) — L(F) — M(F), the lemma is an immediate consequence of
1-3 above.

In order to prove that 1. holds with sufficiently high probability, note that the
number of all-positive clauses is binomially distributed with expectation 2~*m.
By Chernoff bounds, Prob[P(F) < (1 —€)27%m] < exp(—£227%~1m). Similarly,
since the number of clauses as in 2. is binomially distributed with expectation
m(2n) %2 < e27*1m, we conclude that

Prob[L(F) > E[L(F)] + e2 ¥ 1m] < exp(—£?27%2m).

The probability that 3. is violated is most easily bounded using Talagrand’s
inequality. Indeed, we may consider Formy, ., as a product space A; X - -+ X Ay,
where /A; is a random clause, i = 1,...,m. First, let us estimate the expectation
of M(F). Let F = C1 A---ANCp. If i # j are fixed, then the probability
that h(C;) = h(C;) is 2n—*. Hence, by our assumption m < n*~1, E[M(F)] <
2m2n~F < 2m/n < €27%"2m. In order to apply Talagrand’s inequality, we
observe that if Fy, F» € Form,,  ,, differ only in the jth clause, then |M(Fy) —
M (F»)| < 2. Furthermore, let > 0. Suppose that F' = C1A- - -ACy, € Formy, g,
satisfies M (F) > r, and let

J ={ie{l,...,m}| there exists j # ¢ such that h(C;) = h(Cj)}.

Then there exists Jo C J, |Jo| < r+ 1, such that the following condition holds:
For any F' = Dy A--- A Dy, € Formy, i m, such that D; = C; for all j € Jy,
we have M(F') > r. Put ¢(r) = 4(r + 1). Then Talagrand’s inequality (in the
version [Ja et al. 2000, p. 40]) yields

Prob[M(F) > 2E[M (F)] + ] < 2exp <_4¢(2E[J\Z(F)] + t)) '

Letting ¢t = £27%~1m entails Prob[M (F) > £2%m] < exp(—£2~%m/100).
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