(€002) T€ "ON Hodsy ‘A1xe|dwod feuoirendwod uo wninbojjo) J1uo%s 3

DDA

Average-Case Complexity Theory of Approximation
Problems

Birgit Schelm

Technische Universitdt Berlin
Fakultat IV — Elektrotechnik und Informatik
10587 Berlin, Germany
bts@cs.tu-berlin.de

Abstract. Both average-case complexity and the study of the approximability prop-
erties of NP-optimization problems are well established and active fields of research.
By applying the notion of average-case complexity to approximation problems we
provide a formal framework that allows the classification of NP-optimization prob-
lems according to their average-case approximability. Thus, known results about the
average-case behaviour of approximation algorithms — with respect to their running
time as well as their performance ratio — can be unified, though subsuming results
about problems being approximable within a certain factor with high probability under
the new classes is not straightforward. The structural properties of this framework
provide an interesting field of study on their own. We not only define appropriate
average-case approximation classes, but also a reduction that preserves approxima-
bility within average polynomial time. We show that the class of NP-optimization
problems with P-computable input distributions has complete problems with respect
to this reduction. The inclusion structure of the average-case approximation classes
is investigated. E.g. using a new result by Buhrman, Fortnow and Pavan [8] we are
able to show that DistNPO C Avg:-PTAS if DistNP C AvgP.

1 Introduction

There are several ways of dealing with the fact that many computational problems are
not solvable in polynomial time, unless P = NP. One way is to consider algorithms whose
running time is polynomial on most inputs, though it is still super-polynomial on some
instances that rarely occur. Another way, applicable to optimization problems, is to search
for polynomial-time algorithms that do not necessarily yield an optimal solution, but come
close to the optimum, for example up to a constant factor.

This paper combines these two approaches. To do so, one has to give formal definitions
of average-case approximation classes. Reflecting the two parameters of interest, namely the
running time and the quality of the solution found, there are three possibilities of relaxing
worst-case requirements to average-case requirements. First, we allow the running time to
be polynomial on average rather than bounded by a polynomial everywhere. The notion of
average polynomial time for decision problems is well established, see [24] for a survey, and
recent results like [8] attest to the relevance of this field of research. In this setting we ex-
amine average-case variants of worst-case approximation classes like PTAS, APX, poly-APX
and exp-APX as well as a reduction that preserves approximability in average polynomial
time. Using this reduction we define a notion of completeness for average-case approxima-
tion classes, and show that DistNPO, the class of optimization problems with P-computable

input distributions, has complete problems. We examine the inclusion structure of the av-
erage polynomial-time approximation classes assuming that NP is easy on average, that is
DistNP C AvgP, and under the assumption that DistNP & AvgP as well.

Second, we relax the requirement on the quality of solutions by allowing solutions to
meet the desired quality only on average. Finally, we combine these two relaxations. In
these settings we focus on average-case variants of APX, the worst-case class of optimization
problems approximable within a constant factor.

While defining average polynomial time versions of worst-case approximation classes is
straightforward, capturing the notion of approximability within a constant factor on average
is not that obvious. We give a formal definition for approximability within a constant factor
on average. This definition allows a more structural view on results on the average value of
the performance ratio of polynomial-time approximation strategies as given in [15,21,19],
see also the corresponding chapter in [2].

This paper is structured as follows. In Section 2 we review definitions and results from
approximation and average-case complexity theory, and define average polynomial-time ap-
proximation classes. Section 3 introduces an average-case approximability preserving reduc-
tion and shows that DistNPO has complete problems. In Section 4 the inclusion structure
of the average polynomial-time approximation classes is examined. A formal definition of
approximability within a constant factor on average is given in Section 5, a comparison of
the resulting classes is given in Section 6.

2 Preliminaries

We follow standard definitions of complexity theory, see for example [22], [3], or [13]. We
consider only nonempty words over X' = {0, 1}. By |z| we denote the length of a word z, by
X" the set of all words of length n, and by X" the set of all words of length at least n. By
< we denote the standard ordering on Y.

A probability function on X7 is a function p : + — [0,1] such that Y- v, pu(z) = 1.
Its corresponding probability distribution p*(z) is given by p*(z) = Zy< pu(y). For D C X+,
the conditional probability function u p is defined as pp(x) = p(z)/u(D) for x € D and
wp(z) = 0 otherwise. Let pun = pgn and p>n = p52». The conditional expectations of
random variables are denoted likewise by E, and Ex, respectively. We will use subscripts
to describe the probability of an event with respect to a conditional probability function as
well. A sequence of events By, for n € N holds with high probability if lim,,_, ., Pr[B,] = 1.

A function f: X+ — [0, 1] is P-computable if there exists a deterministic Turing machine
M such that |M(z,k) — f(z)] < 27% for all z € £T,k > 1 whose time is bounded by a
polynomial in |z| and k. Note that if a probability distribution p* is P-computable, the
corresponding probability function p is P-computable as well. Since the converse is not true
unless P = NP, see [16], we say that a probability function y is P-computable if both g and
p* are, thus following the standard notation used in the literature.

The standard probability functions on positive integers, words and graphs are defined as
follows. For positive integers we use fi(n) = ¢/n? with ¢ = 6/72 as a standard probability
function. This function does not put too much weight on small numbers, but its sum over
all positive integers is 1. A probability function po on X7 is obtained by first selecting a
length according to fi, then a word of this length with uniform distribution from X", that is,
po(z) = fi(|z]) - 271%l. When dealing with random graphs, we use — unless stated otherwise

— the G, p-model [7], where p may depend on n. According to this model, a graph with n
vertices is selected by randomly inserting an edge between two vertices with probability p,
independently of the existence or absence of other edges in the graph. So the probability
function pg, on graphs with n vertices is pug, (G) = p™(1— p)(;)_m, where m is the number
of edges in G. We obtain a probability function pg on the set of all graphs by first selecting
n according to fi, and then a graph according to ug, -

Next, we give a brief description of the basic definitions and notations of optimization
and approximation problems. A survey can be found for example in [2].

An NP-optimization problem F over an alphabet X is defined as a tuple (I, S, m, type)
such that

1. I C X* is the set of input instances with I € P.

2. § C I x X* is a relation of inputs and their feasible solutions. S(z) denotes the set of
feasible solutions for any = € I. We require S € P and |y| < ¢(|z|) for all y € S(z) and
some polynomial q.

3. m: S — Nt is the objective function with m € FP.

4. type states whether F' is a maximization or minimization problem.

NPO denotes the class of all NP-optimization problems. The optimal value opt(z) of the
objective function for z € I is opt(z) = max{m(z,y)|y € S(z)} for maximization and
opt(z) = min{m(z,y) |y € S(z)} for minimization problems.

If not stated otherwise, an approximation algorithm is a deterministic algorithm running
in polynomial time. For an approximation algorithm A, we denote by A(x) the solution
computed by A on input z. Clearly, A(z) € S(x) has to hold for z € T if S(x) # 0.

For © € I with S(z) # 0, the performance ratio R of an approximation algorithm
A is defined as R(z,A(z)) = max{opt(z)/m(z,A(z)), m(z, A(z))/opt(z)}. Note that
R(z,A(z)) > 1for all z € I. If R(z, A(z)) = 1, the solution found by A is optimal.

Let 7 : N — [1,00) be a function. We say that an approximation algorithm computes an
r-approzimate solution for F' € NPO if R(w,A(x)) < r for every € I. Then A is said to
be an r-approximate algorithm and F' is r-approzimable.

A problem F € NPO is in APX if F is c-approximable for a constant ¢ > 1. It is in
poly-APX if there exists a polynomial p such that F' is p(n)-approximable, and it is in
exp-APX if there exists a polynomial p such that F is 2P(")-approximable. F'is in PTAS if
there exists an approximation algorithm that returns a c-approximate solution for z in time
polynomial in |z| on input (z,c) for any z € I and constant ¢ > 1.

The notion of approximation preserving reductions we will use was first presented in [11],
see also [2]. Let Fy,Fy € NPO. Fy; AP-reduces to Fy (Fy <ap F3) if there exist functions
f,g that are computable in time polynomial in |z| for r fixed and a constant a > 1 such
that for every z € Ir, and for every r > 1

1. f(z,r) € Ip,.

2. If Spy (z) # 0, then Sg, (f(z,r)) # 0.

3. g9(z,y,r) € Sp, () for every y € S, (f(a:,r)).
4. For every y € Sk, (f(z,7))

Rp, (f(m,r),y) <r = Rp, (m,g(a:,y,r)) <l4a(r-1).

Note that the additional parameter r is only required to preserve membership in PTAS. If
the quality of the required solution is not needed for the reduction, the additional parameter
will be omitted. This also implies that the time needed to compute f and g does not depend
on it.

The AP-reduction is transitive, and PTAS, APX, poly-APX and exp-APX are closed
under AP-reduction.

Since we will deal with average-case properties of optimization problems, we cannot
separate the problems from the probability functions on their inputs. The pairs consisting of
an optimization problem or a language and a probability function are called distributional
optimization problems and distributional problems respectively.

A distributional problem (L, u1) is efficiently solvable on average if there exists an algo-
rithm whose running time is polynomial on p-average. A function f : Xt — N is polynomial
on p-average, where p is a probability function on X1, if there exist constants k, ¢ > 0 such
that

k(g
> e <

zeX+ |$|

This definition was first stated by Levin in [20]. For a detailed discussion of the various ways
to define functions polynomial on average see for example [16], [5], and [24].

A distributional problem (L,u) belongs to AvgP if L is decidable by a deterministic
algorithm whose running time is polynomial on y-average. Besides AvgP, the best studied
average-case complexity class is DistNP. It consists of all distributional problems (L, u)
where L € NP and p is P-computable. Ben-David et al. showed in [5] that if DistNP C AvgP
then E = NE.

We first extend these notions to classify distributional optimization problems according
to their approximability in average polynomial time.

Definition 1. Let (F, u) be a distributional optimization problem, F € NPO, A an approz-
imation algorithm for F with performance ratio R whose running time is polynomial on
p-average.

(F,p) € AvgPO if R(z, A(z)) =1 for every z € I.

(F,p) € Avg-PT AS if R(z, A(z,¢)) < c for everyz € I,c > 1.

(F,p) € Avg-APX if R(z, A(z)) < ¢ for every z € I and some constant ¢ > 1.

(F,) € Avgi-poly-APX if there ezists a polynomial p such that R(z, A(z)) < p(|z|) for
every x € I.

(F,p) € Avgi-exp-APX if there exists a polynomial p such that R(z,A(z)) < 20(z1) for
every x € I.

(F,) € DistNPO if F € NPO and p is P-computable.

The subscripts denote that the average is taken over the time rather than the ratio. We
skipped the subscript in the definition of the class AvgPO since the parameter on which the
average is taken is clear.

The inclusion structure of these classes is examined in Section 4. Average constant ratio
approximation classes are defined and examined in Sections 5 and 6. In the next section we
show that DistNPO, like DistNP (see [20]), contains complete problems.

3 Reductions and DistNPO-Completeness

In order to define DistNPO-completeness, we present an average-case approximability pre-
serving reduction, a distributional version of the AP-reduction introduced in the previous
section. Though we will speak of an AP-reduction here as well, it will become clear from the
context whether we refer to the distributional or non-distributional version.

Definition 2. Let (Fy,p1), (Fs, pe) be distributional optimization problems, Fy, F» € NPO.
Then (Fi, 1) AP-reduces to (Fa, o) (we write (Fy, p1) < ap (Fa, po) for short) if

Reducibility Fy; AP-reduces to F> via functions f,g and a constant a > 1, and
Dominance pus dominates p1 with respect to f, that means that there exists a polynomial
p such that for every r > 1 and every y € range(f)

p2(y) > > miﬂ?) :

a€lp, . flz,r)=y

Note that the dominance-requirement is the same as for the many-one reduction for distri-
butional decision problems (see for example [16] for further details).

Lemma 1. The AP-reduction for distributional optimization problems is transitive.

Proof. Let (Fi,p1) <ap (Fa, p2) via (f1,91,01) and (Fa, pa) <ap (F3,p3) via (f2, 92, a2).
Since the AP-reduction for non-distributional optimization problems is transitive, it follows
that F1 <ap F3. Let p; and ps be the polynomials verifying the dominance requirements.
Then for all r > 1 and 2 € range(f1 o f2)

p ()
u3(Z) - z.fZ(f;%T))—z (p1(|.z'|)p2(|f1(;v,r)|)) .

Lemma 2. Avgi-APX is closed under AP-reduction.

Proof. Let (Fi,p1) <ap (Fa,pe2) via (f,g,a) and (Fs, us) € Avge-APX which implies that
there exists an approximation algorithm A that approximates F» within a constant factor ¢
in time ¢ that is polynomial on ps-average. Let f and g be computable in time bounded by
polynomials py and p,. Using A to approximate F; yields an algorithm A’ that approximates
F; within the constant factor 1+a(c—1). The running time of A’ on input z is then bounded
by pr(|z|) + t(f(z,¢)) + pg(|z|) which was shown to be polynomial on pq-average in [16] if
f is computable in polynomial time and ps dominates ;1 with respect to f. O

By the same argument it can be shown that the classes Avg-PTAS, Avgi-poly-APX and
Avgi-exp-APX are closed under AP-reduction as well.

We define hardness and completeness for classes of distributional optimization problems
in the obvious way.

Definition 3. Let C be a class of distributional optimization problems (F,u) where F €
NPO. (F, p) is hard for C with respect to AP-reduction if (F',p') < ap (F,p) for all (F',u') €
C. Furthermore, (F,u) is complete for C if it is hard for C and (F,pu) € C.

The main contribution of this section is to show that DistNPO has complete problems.
This is accomplished by showing that a distributional version of the Universal Maximization
Problem (called MaxzU for short, see [18], [12]) is complete for DistNPO.

Definition 4 (MaxU, pngaxu)-

Input: A tuple (M, z,1%), where M is a nondeterministic Turing machine with a designated
output tape that makes at most two nondeterministic choices in each computation step,
and x is an input for M.

Solution: Any sequence y € {0,1}* of nondeterministic choices of M that corresponds to
a halting computation of at most k steps.

Objective function: The value M(x,y) that M computes on input x following the com-
putation path y.

Probability distribution:

1 1 .\ 1
vty (M, 7, 1%) = <|M|2 2 IM) (W 9) L

Note that MaxU itself is NPO-complete as was shown in [12].

Theorem 1. (MaxU, umaxu) is complete for DistMaxNPO, where DistMaxNPO is the class
of all distributional mazximization problems contained in DistNPO.

Proof. Obviously, (MaxU, unmaxu) € DistMaxNPO since MaxU € MaxNPO and the proba-
bility function pnaxu is P-computable.

Since we have to deal with the problem of reducing any P-computable probability distri-
bution to pymaxy in a way that the dominance-requirement is fulfilled, we first need some tech-
nical details before we can show that any DistMaxNP O-problem reduces to (MaxU, pyaxu)-
The same problem arises when proving DistNP-completeness, and we adapt the technique
used in this context, see for example [16] and [5]. The key to solving this problem is an
efficiently computable encoding of words that reflects — with respect to the given probabil-
ity function — the probability with which the encoded word was chosen. The existence and
properties of such an encoding were stated in the Coding Lemma in [5].

Coding Lemma. Let i be a P-computable probability function. Then there exists a coding
function C\, satisfying the following three conditions.

Compression: |Cy,(z)| <1+ min{|z|, —log, u(z)} for all z € X+.
Efficient Encoding: The function C, is computable in polynomial time.
Unique Decoding: The function Cy, is one-to-one (i.e. Cy(x) = Cy(z') implies x = z').

The function C,,) = 0z if p(z) < 2-121 and C,(z) = 1z otherwise, where z is the
shortest binary string such that p*(z~) < 0.21 < p*(z), has the desired properties. For the
proof see [5], or [4] where a slightly different version of the Coding Lemma is presented.

Next, we can associate with any MaxNPO-problem F' a nondeterministic Turing machine
Mp that, on input z, nondeterministically guesses y and tests (in polynomial time) if y €
Sr(z). If not, it loops infinitely, else computes mp(z,y) and writes that value on its output
tape.

Let (F,u) € DistMaxNPO and z be an input for F with respect to the probability
function p. Using the encoding function C), and the nondeterministic Turing machine M,

we construct a nondeterministic Turing machine Mg, with input C, (). Given an input w,
it computes z such that C,(z) = w. If no such z exists, it loops infinitely, else simulates Mp
on input z and writes the value computed by Mg on the output tape. Note that every y that
encodes a halting computation of Mg, on input C,(z) also encodes a halting computation
of MF on input z, so y € Sp(z) and the output of Mg, is mr(z,y).

Let gr,gc be the polynomial time bounds for M and the computation of C, re-
spectively. Let p(|z]) = gr(Jz|) + gc(Jz]). So for (F,u) € DistMaxNPO, the functions
f(@) = (Mp,,Cu(z),1702D) for © € Ip, g(z,y) = y for all y € Smaxu(f(z)) and the
constant o = 1 provide the desired reduction to (MaxU, ppaxu)-

That F' AP-reduces to MaxU via f,g and « is easy to verify, so it remains to show that
the dominance-requirement is fulfilled. According to the definition of uyaxy it holds that

z 1 —|Mp,p 71 ~|Cu(z -
et 01 1) = (7270) (i) iy

where | Mg, |>27/MF.l is in fact a constant. Since |Cy(z)| < 1 + min{|z|, — log, u(z)} ac-
cording to the Coding Lemma, we have both |Cy,(z)| < log, 2u~ ' (z) and |C\,(z)| <1+ |z|.
Thus

). 170D ¢ 1 pa) o)
piMaxt (M, Cu(z), 17V*V) > P2(z) 1+ [2])2 2 = P'(|z)

for some polynomial p' and constant c. Since C,, is one-to-one, the function f is one-to-one
as well and the dominance-requirement holds. O

A similar completeness result can be stated for (MinU, pminu) € DistMinNPO, the min-
imization version of MaxU, where uminu = pmaxu- Using an auxiliary maximization or
minimization problem respectively, we can show that (MaxU, umaxy) and (MinU, pminu)
are complete for DistNPO.

Theorem 2. (MaxU, punpaxu) and (MinU, puyvinu) are complete for DistNPO.

Proof. We reduce (MaxU, pyvaxu) to (MinU’, puuinur). The minimization problem MinU’
is defined like MinU except for the objective function which is |22 /M(z,y)] on input
(M,z,1*) and computation path y. Let X = (M,z,1*). The functions required for this
reduction are the identity functions f(X) = X and g(X,y) = y. Since the output of
M is bounded by 2* on computations of length k, there can be no feasible solutions
¥,y € Suminv (f(X)) = Smaxu(X) such that mminu (f(X),y) = mminur (f(X),y") but
mMaxU (X, y) # mataxu(X,y'). Hence (MaxU, imaxy) is AP-reducible to (MinU’, painur)
which is in turn AP-reducible to (MinU, uminu), so (MinU, pminu) is complete for DistNPO.

Similarly, the DistNPO-completeness of (MaxU, umaxu) can be shown. O

4 Average Polynomial Time Approximation Classes

After we have shown that DistNPO has complete problems, we take a closer look at the
inclusion structure of the average polynomial time approximation classes introduced in Def-
inition 1.

The inclusions AvgPO C Avg-PTAS C Avg-APX C Avgi-poly-APX C Avgi-exp-APX
follow immediately.

We show that if DistNP ¢ AvgP, there are distributional optimization problems that are
not even approximable within an exponential factor in average polynomial time, and that
the inclusion Avgi-APX C Avg-poly-APX is strict. If DistNP C AvgP on the other hand,
we show that DistNPO C Avg,-PTAS.

Theorem 3. If DistNPO C Avgi-exp-APX, then DistNP C AvgP.

Proof. Let (L, u) € DistNP. Then there exists a nondeterministic Turing machine My, and
a polynomial p such that = € L iff there exists an accepting computation of M that requires
at most p(|z|) steps. My, can be easily modified to a nondeterministic Turing machine M}
that writes its accepting path on an output tape. Using the same technique as in the proof
of Theorem 1, we construct a nondeterministic Turing machine M i ., that expects inputs
C,(z) rather than z, and reduce the question whether z € L to the question whether
Smaxu(Mp, ,, Cu(2), 12'(12D) £ 9, where p/(|z]) = p(|z|) + ¢(|z|) and ¢(|z|) is the polynomial
time bound needed to compute C,,.

If the assumption holds, there exists an Avgi-exp-APX-algorithm for (MaxU, umaxu)
that returns a valid solution for an input (M, x,1*) whenever it exists. This algorithm can
then be used to decide whether Sviaxu(My, ,, Cu(2), 17'(2D)) £) and hence whether z € L.

O

To show that the inclusion Avgi-APX C Avgi-poly-APX is strict if DistNP ¢ AvgP,
we use the maximum independent set problem (MaxIndSet for short). In an undirected
graph G = (V, E) a vertex set V' C V is independent if (u,v) ¢ E for every u,v € V'. To
solve MaxIndSet we need to find an independent set of maximal size in the given graph.
MaxIndSet is trivially approximable within a factor of n in the worst case, where n is the
number of vertices in the graph. It follows that (MaxIndSet,) € Avgi-poly-APX for every
distribution p.

Theorem 4. If DistNP ¢ AvgP, then Avg,-APX C Avg-poly-APX.

Proof. We show that if (MaxIndSet,v) € Avg,-APX, where v will be given below, then
DistNP C AvgP.

For the proof we use DistNP-complete problems and the technique for showing that
MaxIndSet is not approximable within any constant factor unless P = NP (see [14]), which is
based on the PCP-characterization of NP [1]. Let (L,) be complete for DistNP, and suppose
that (MaxIndSet,) is approximable by an algorithm A within a constant ratio d € Nt in
time polynomial on v-average. This algorithm can then be used to decide membership in L
in time polynomial on p-average thus implying DistNP C AvgP.

Since L € NP = PCP(logn,1), there exists a PCP-verifier with error probability less
than ¢ for any positive constant 6 < 1, that requires ¢, logn random bits and ¢, queries for
constants c,, ¢, that depend on §. A PCP-verifier is a probabilistic Turing machine that has
access to a proof via an oracle that, given a proof position as input, returns the corresponding
bit of the proof. For every x € L there exists a proof such that the verifier accepts with
probability 1. If x & L, for every proof the verifier accepts with probability < §.

Using this verifier for § = 1/d, we can construct a graph G for every z in polynomial
time such that if z € L, the size a(G?) of the largest independent set in G¢ is 2°°8™ and

a(GS) < 62¢r198™ if ¢ ¢ L. Every accepting run of the verifier is encoded as a vertex. If two
vertices are not consistent to the same proof, they are connected via an edge. For details of
the original construction see [14].

We set v(G) = 8?u(z) if G = GS and 0 otherwise. We can now decide whether z € L by
first constructing G¢ and then using A to decide whether a(GS) > §2¢-'°8™_ If the running
time t4 of A is polynomial on v-average, the running time tz(z) = |z|' + t4(GS) of this
procedure is polynomial on p-average, where |z|' is the time required to compute G%. O

If DistNP C AvgP, combining a result by Schuler and Watanabe [23] with a recent
result by Buhrman, Fortnow and Pavan [8] shows that then every DistNPO-problem is in
Avg-PTAS.

Theorem 5. If DistNP C AvgP then DistNPO C Avg,-PTAS.

Proof. (Sketch) In [23] it was shown that DistNP C AvgP implies that every (F,u) €
DistNPO has a randomized p-average polynomial-time approximation scheme, a randomized
algorithm that for every z and ¢ > 1 computes a solution A(z, ¢) such that Pr [R(z, A(z)) <

c] > 2/3 and for every c the running time t.(z) of A is polynomial on p-average.
Buhrman, Fortnow and Pavan proved in [8] that if DistNP C AvgP, efficient pseudoran-
dom generators exist, so the randomized p-average PTAS can be efficiently derandomized.
O

5 Constant on Average Performance Ratio

In order to relax worst-case approximability within a constant factor to average-case ap-
proximability within a constant factor, we introduce functions that are constant on average.
Generalizations of functions that are polynomial on average to some non-polynomial func-
tions that are not constant have already been studied by Cai, Selman, and Ben-David et al.
in [9] and [5]. Their basic idea is that, given functions f : ¥+ - Nand T : N — N, one can
say that f is T on average, if T~'(f(z)) is linear on average. However, this generalization
does not directly capture the notion of functions that are constant on average since constant
functions are not invertible. But we can express constant functions in terms of linear func-
tions nevertheless. Two plausible ways of calling a function f constant on u-average are the
following. Either

1. the function |;c|%f (#) is linear on p-average for some k > 0, or
2. the function |z|f(z) is linear on p-average.

Every function that is constant on average according to the first condition is also constant
on average according to the second condition. But the first condition turns out to be too
strict. If the lengthwise expectation of a function is bounded by a constant, the function
itself is not necessarily constant on average according to that condition. For the second
condition on the other hand, this implication holds. We state this, in a more general form,
in Lemma 3.

So we adapt the definition of functions polynomial on p-average from [9] in order to
define functions that are constant on u-average using the second condition and considering
fY/* for some k > 1 rather than f which ensures several closure properties that are stated
below.

Definition 5. Let u be a probability function on X+. A function f : ¥+ — R is constant
on u-average if there exist constants k,c > 0 such that for every n >0

S M @usa(e) <c.

zez'Z”

Note that it is not sufficient that the expectation over Xt is bounded by c instead of
the expectation over X2" for every n > 0. Else, every polynomial would be constant on
average with respect to the standard probability function ug. But if we consider functions
that depend solely on the length of a word rather than on the word itself, with Definition 5 no
such function is constant on average with respect to pg if it is unbounded, but every function
bounded by a constant is constant on p-average for any distribution u. Furthermore, if two
functions f,g : ¥T — R are constant on u-average for some probability function u, so are
the functions max{f, g}, f + g, f - g and f" for every constant r.

The relationship between functions f whose lengthwise expectation E,[f 1/ k] is bounded
by a constant and functions that are constant on average is stated in the following lemma,
which is often helpful for showing that a function is constant on p-average.

Lemma 3. Let f : X7 — R be a function and u a probability function on XT. If there exist
constants k,c > 0 such that for every n >0

En[fl/k] = Z fl/k(x),“n(w) <g

Texn

then f is constant on p-average.

Proof. Tt is easy to see that for every n > 0

Yo @) =Y wE™) Y @ () < ep(ET)

zeX2n m>n zeX™

and that this inequality is equivalent to the inequality in Definition 5. O

Combining the above lemma with a general upper bound on the expectation of the
performance ratio R of an approximation algorithm yields a sufficient condition for R being
constant on yu-average.

Lemma 4. Let (F,u) be a distributional maximization problem, F' € NPO, and A an ap-
prozimation algorithm for F. Let g : Nt — N be an upper bound on m, that is m(z,y) <
g(|z|) for all x € I, y € S(x). If there exist constants k,c > 1 and thresholds 8,pt(n), 6 (n)
on opt(z) and m(z,A(z)) respectively such that

1. (Bope(n) /04 (n)* <,
2. 1,00 (9"/%(n) — 6508 (1)) Pr,, [opt(z) > Bopy(n)] =0,
3. lim,, Hééf(n) Pr,, [m(z, A(z)) < 8a(n)] =0,

then the performance ratio R of A is constant on p-average.

10

Proof. For every k > 1 and n > 0 the expectation En[Rl/ k] is bounded above by

Eo[RV¥] = 3" RY* (2, A(2)) () < (9% (n) = 050 (n) Pry, [0pt(3) > fope(n)]
zeXn

Bopt (n)

0a(n)

This bound is obtained by splitting the sum and using the threshold values and g as bounds.

If the conditions hold, lim,,_,, E,[R'/*] = ¢ and E,[R'/*] can be bounded by a constant.
Applying Lemma 3 concludes the proof. O

1/k
+ Oiéf(n) Pr, [m(z, A(z)) < 0a(n)] + (> Pr, [m(z, A(z)) > 0a(n)].

A similar sufficient condition can be given for minimization problems as well.

We illustrate the usefulness of this lemma by analyzing the greedy algorithm for approx-
imating MaxIndSet as an example. Given G = (V, E) as input, this algorithm picks a vertex
from V', deletes all its neighbours, picks the next vertex from V, deletes all its neighbours
and so on, until V is empty.

Let o, denote the size of the maximum independent set in a random graph G € G, p,
o, the size of the independent set found by the greedy algorithm, g(n) = 1 — p(n), and
b= —Ing(n). In [21] McDiarmid showed that the performance ratio of the greedy algorithm
is bounded with high probability by 2(1 — §)~! for every & such that 0 < § < 1 by proving
the following.

Fact 1. If lim np(n) = co then
n— 00

lim Pryja, <20 Innp(n)] =1 and

n—oo

lim Pr,[o, > (1 —8)b~ Innp(n)] =1 for every § with 0 < § < 1.

n—oo

But this result does not already imply that the performance ratio of the greedy algorithm
for MaxIndSet is constant on average as well. To prove this, we need to show that the
probabilities of the optimal value being too large and the value of the solution found being
too small converge to 0 fast enough so that Lemma 4 holds. Reviewing the proofs in [21]
yields the following result.

Theorem 6. Let ug be a probability function on random graphs according to the G, ,-model
such that p(n) > n~1=%) for some ¢ > 0 and lim p(n) = 0. Then the performance ratio of
n—oo

the greedy algorithm for MaxIndSet is constant on ug-average.

Proof. In [21] it was shown for fope(n) = 2b~'lognp(n), and 0a(n) = (1 —)b~ lognp(n)
for some § € (0,1) that

fopt

Prpan > Oopt] < (")q(n)(2), and
oopt
Prolon < 4] < O <6—<np<n>)5/(p(n)oA>) _
With g(n) = n, further examination of this proof yields
1/6+1+2b_1(2—1n1n np(n)) -0

lim_g(n) Pra[ois > fopr] = lim (np(n)

n—oo

11

and for every 6 € (0,1) with ¢ = (2 + 2¢)e™!

D)
T}eréo Oopt Prpfon, < 0a] = 711520 (exp (cln np(n) — %)) =0
which proves that condition 2 and 3 of Lemma 4 hold. Condition 1 of Lemma 4 holds for
some § € (0,1) since Gopt(n)/0a(n) = 2/(1—46) is bounded by a constant. Applying Lemma 4
for £k = 1 concludes the proof. O

Using functions that are constant on average, we define the following average case ap-
proximation classes.

Definition 6. Let (F,u) be a distributional optimization problem, F € NPO, A an approz-
imation algorithm for F with running time T and performance ratio R.

(F,p) € Avg,-APX if R is constant on p-average and T is bounded by a polynomial.
(F,p) € Avg,-APX if R is constant on p-average and T is polynomial on u-average.

6 Average Constant Ratio Approximation Classes

In this section we examine the inclusion structure of average case approximation classes
obtained by relaxing the requirements on the performance ratio from worst case to average
case.

The inclusions Avg,~APX C Avg, (-APX and Avg,-APX C Avg, (-APX are obvious. A
closer look at the nature of Avg,-APX-algorithms yields the following theorem.

Theorem 7. If DistNPO C Avg,-APX, then P = NP.

Proof. In [2] it is stated that NPO C exp-APX implies P = NP. So it remains to show that
DistNPO C Avg,-APX implies NPO C exp-APX. Since every Avg,.-APX-algorithm returns
a valid solution whenever it exists, the performance ratio of such an algorithm is bounded
by 2°(2D) for some polynomial p in the worst case. So if (F,u) € DistNPO is in Avg,-APX,
it follows that F' € exp-APX. O

For NP-optimization problems that belong to poly-APX, membership in Avg,-APX or
Avg, -APX already induces membership in Avg,-APX if their probability functions are
well-behaved. Note that poly-APX contains — among others — those NP-optimization prob-
lems whose objective function is polynomially bounded, and for which at least a trivial
solution can be computed in polynomial time for every x € I.

Theorem 8. Let (F,u) be a distributional optimization problem with F € poly-APX and
w(XE2™) > n=% for some s > 0. If (F,) € Avg, -APX then (F,pu) € Avg,-APX.

Proof. Since F € poly-APX, there exists an approximation algorithm A with polynomial
running time ¢4 such that R(z, A(z)) < |z|' for some [> 1. Since (F,pu) € Avg:-APX,
there exists an approximation algorithm B for F' with running time ¢ and performance
ratio Rp (x, B(w)) such that ¢p is polynomial on u-average and Rp is constant on p-average
via constants r,d > 0, that is for every n > 0

3" RY"(z,B(@))pzn(z) < d.
zeZZ"

12

Cai and Selman proved in [9] that if u(X2") > n~* there exist k,c > 0 such that for every
n>0

1/k
Z tB (w),u>n(x) <ec

e X2 2)

Now, simulate B on input z for |z|?* steps. If B succeeds, return the solution computed
by B. Otherwise run A on input z and return the solution computed by A. This procedure
requires O(|z|?* +ta(z)) steps.

If the simulation of B on input z succeeds within |z|** steps, the performance ratio of
B’ is constant on p-average via r,d > 0, otherwise it is bounded by |z|'. Define for every
n > 0sets Ssp = {z € £2"||z|/ < t}/*(z)|x| 1} and Ts, := £2"\ S5, For every n > 0
and ' = max{r,[}

|2k

1/k
1 t T
> R B @)@ < YR @ B@)ia@) + 3 E D)
TEXZN wETZ" Z'ESZn
<d+e,
and thus the performance ratio of B’ is constant on u-average. O

By the same technique we can construct an Avg,-APX-algorithm from an Avg,-APX-
algorithm if the other conditions hold. But there are (F, u) € DistNPO with F' € poly-APX
but (F,u) ¢ Avgi-APX unless DistNP C AvgP; this follows from the proof of Theorem 4,
since the distribution v used in that proof is P-computable.

The “reversal” of this construction, however, seems to be hard, since it requires measuring
the quality of the solution computed so far. One has to check if this solution is close enough
to the optimum or if a better solution is required. For the latter case we need another
algorithm that may need more than polynomial time but computes a solution close enough
to the optimum. In order to decide whether a solution is good enough or not, either the value
of an optimal solution has to be computed, which is not possible in general unless P = NP, or
the input instances for which the polynomial-time approximation algorithm succeeds must
share some property that can be checked easily. The average polynomial-time algorithms for
approximating the minimum graph colouring problem presented by Coja-Oghlan and Taraz
in [10] at this year’s STACS give a nice illustration of this technique.

However, in [6] and [17] it is shown that the task of determining a “good” instance for
the greedy algorithm for finding a maximum independent set is hard for the class of sets
solvable via parallel access to an NP-oracle. Thus it seems unlikely that a “reverse” version
of Theorem 8 or a slightly weaker statement might hold in general.

References

1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof Verification and Hardness
of Approximation Problems. In Proc. 88rd FOCS, pages 14-23. IEEE Computer Society Press,
1992.

2. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complezity and Approzimation. Springer Verlag, 1999.

13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.
23.

24.

. J. Balcdzar, J. Diaz, and J. Gabarré. Structural Complexity I. Springer Verlag, second edition,
1995.

. J. Belanger and J. Wang. On the NP-isomorphism with respect to random instances. Journal
of Computer and System Sciences, 50:151-164, 1995.

. S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Average Case Complexity.
Journal of Computer and System Sciences, 44:193-219, 1992.

. H. L. Bodlaender, D. M. Thilikos, and K. Yamazaki. It is Hard to Know when Greedy is Good
for Finding Independent Sets. Information Processing Letters, 61(2):101-106, 1997.

. B. Bollobés. Random Graphs. Academic Press, 1985.

. H. Buhrman, L. Fortnow, and A. Pavan. Some Results on Derandomization. In Proc. 20th
STACS, volume 2607 of LNCS, pages 212-222. Springer-Verlag Berlin, 2003.

. J.-Y. Cai and A. L. Selman. Fine Separation of Average-Time Complexity Classes. SIAM

Journal on Computing, 28(4):1310-1325, 1999.

A. Coja-Oghlan and A. Taraz. Colouring Random Graphs in Expected Polynomial Time. In

Proc. 20th STACS, volume 2607 of LNCS, pages 487-498. Springer-Verlag Berlin, 2003.

P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. Structure in Approximation Classes. STAM

Journal on Computing, 28(5):1759-1782, 1999.

P. Crescenzi and A. Panconesi. Completeness in Approximation Classes. Information and

Computation, 93:241-262, 1991.

D.-Z. Du and K. Ko. Theory of Computational Complezity. John Wiley and Sons, 2000.

U. Feige, S. Goldwasser, L. Lovész, S. Safra, and M. Szegedy. Approximating Clique is almost

NP-complete. In Proc. 32nd FOCS, volume 32, pages 2-12. IEEE Computer Society Press,

1991.

G. Grimmet and C. McDiarmid. On Colouring Random Graphs. Mathematical Proc. of the

Cambridge Philosophical Society, 77:313-324, 1975.

Y. Gurevich. Average Case Completeness. Journal of Computer and System Sciences, 42:346—

398, 1991.

E. Hemaspaandra and J. Rothe. Recognizing When Greed Can Approximate Maximum Inde-

pendent Sets is Complete for Parallel Access to NP. Technical Report Math/Inf/97/14, Fakultét

fiir Mathematik und Informatik, Friedrich-Schiller Universitdt Jena, 1997.

M. W. Krentel. The Complexity of Optimization Problems. Journal of Computer and System

Sciences, 36:490-509, 1988.

B. Kreuter and T. Nierhoff. Greedily Approximating the r-Independent Set and k-Center

Problems on Random Instances. In Randomization and Approzimation Techniques in Computer

Science, volume 1269 of Lecture Notes in Computer Science. Springer Verlag, 1997.

L. Levin. Problems, Complete in “Average” Instance. In Proc. 16th STOC, page 465. ACM

Press, 1984.

C. McDiarmid. Colouring Random Graphs. Annals of Operations Research, 1:183-200, 1984.

C. Papadimitriou. Computational Complezity. Addison Wesley, 1994.

R. Schuler and O. Watanabe. Toward Average-Case Complexity Analysis of NP Optimization

Problems. In Proc. 10th Conference on Structure in Complezity Theory, pages 148-159. IEEE

Computer Society Press, 1995.

J. Wang. Average-Case Computational Complexity Theory. In L. Hemaspaandra and A. Sel-

man, editors, Complezity Theory Retrospective II, pages 295-328. Springer Verlag, 1997.

14

