
1

Bounds on Linear Codes for Network Multicast
Ami Tavory†, Meir Feder, and Dana Ron

Dept. of EE - Systems
Tel-Aviv University

Tel Aviv, Israel
E-mail: {atavory , meir, danar}@eng.tau.ac.il

Abstract

Traditionally, communication networks are composed of routing nodes, which relay and duplicate data. Work in
recent years has shown that for the case of multicast, an improvement in both rate and code-construction complexity
can be gained by replacing these routing nodes by linear coding nodes. These nodes transmit linear combinations
of the inputs transmitted to them.

In this work, we deal with bounds on the alphabet size and amount of coding necessary for linear codes for
multicast. We show that known bounds on maximum distance separable codes can be applied to bound the required
alphabet-size. We show upper bounds on the number of “clashes” between flows from source to terminals. Using
this, we show upper bounds on the number of nodes in which coding must be performed, and graph-specific upper
bounds on the alphabet-size. We show how the addition of a small amount of memory to internal nodes can be
used to increase the effective alphabet-size available for coding, and show bounds on the throughput and latency of
this technique. Finally, we show that the above bounds also pertain to a case less considered in previous network-
multicast work, static broadcast, wherein the source transmits the same set of data to terminals at different rates.

Index Terms

Network Information-Flow, Multicast, Alphabet Size, Bounds, Static Broadcast.

I. INTRODUCTION

Work in recent years (e.g., [1], [2], [3], and [4], among others) has shown that for the case of network multicast,
linear coding can increase transfer rate and decrease code construction complexity. In this paper, we consider various
bounds on the alphabet size and amount of coding necessary for such coding.

We show that some graphs have the property that a rate-achieving multicast code for the graph, reduces to the
requirement that processes at terminal nodes can decode, from any subset of a set of values carried by some edges,
the data multicast by the source. Effectively, a set of values carried by some edges is thus a maximum distance
separable (MDS) code. We then use known bounds on MDS to bound the required alphabet-size.

Linear multicast codes are affected by the number of “clashes” between flows from the source to the terminals.
We find upper bounds on the number of these clashes. Using these bounds, we find graph-specific upper bounds
on the required alphabet size, and the number of nodes in which coding must be performed.

It is possible that the alphabet size supported by the network is not large enough for network coding. We show
how the addition of a small amount of memory to internal nodes can be used to increase the effective alphabet-size
available for coding, and find bounds on the throughput and latency of this technique.

Finally, we show that the above bounds also pertain to a case less considered in previous network-multicast work,
static broadcast, wherein the source transmits the same set of data to terminals at different rates. Intuitively, the
larger the min-cut from a source to a terminal, the lesser the time it should have to wait to receive all of the data.
We show a simple scheme for this case, which is asymptotically optimal.

† Also at IBM’s Haifa Research Labs.

Electronic Colloquium on Computational Complexity, Comment 1 on Report No. 33 (2003)

ISSN 1433-8092

2

A. Paper Layout

We continue the introduction with definitions and notations in Subsection I-B, a brief review of the transmission
scheme in Subsection I-C, and a short review of related work in Subsection I-D. In Section II we show an alphabet-
size lower-bound. In Section III we consider “clashes” between the flows from the source to the terminals. In Section
IV we show upper bounds on the number of such clashes. In Section V we discuss the technique of simulating
a large alphabet size by adding node memory, and show bounds on the throughput and latency. In Section VI we
discuss graph-specific upper bounds on the alphabet size. In Section VII we discuss static broadcast. We conclude
in Section VIII.

B. Definitions and Notations.

We consider a network over an acyclic, directed, graph G = (V, E), where parallel edges are allowed. We denote
the number of nodes in G by, n = |V |. When there is no ambiguity, we denote an edge between nodes u, v ∈ V
by (u, v). For any node v ∈ V , we use E− (v) and E+ (v) to denote the set of edges reaching and leaving node v,
respectively. For any edge e ∈ E, we use v− (e) and v+ (e) to denote the tail and head of e, respectively.

Node s ∈ V is the source node, T ⊆ V is the set of terminal nodes, d = |T | is the number of terminal nodes,
and h is the minimum, taken over all t ∈ T , of the size of the minimum cut separating s from t. The capacity of
a link (i.e., edge) e ∈ E, is a single symbol from a field F , with size q = |F|, and the value carried by the link
is denoted by y(e). A process at node s observes a random process X with entropy1 H (X) = h · log(q) per time
unit, and wishes to transmit the information of this process to all t ∈ T .

In some of the work, we explicitly consider a sequential setting, in which, for some N � max {n, q, h} , s
transmits the values which X attains in N consecutive time units. In this setting, we sometimes explicitly consider
a different entropy rate for X .

C. The Transmission Scheme

The transmission scheme in linear multicast was described in [2], [3], and [4], and we repeat the description
here in brief.

We introduce a virtual vertex s′ /∈ V , and h parallel virtual edges from s′ to s, es′

1 , . . . , es′

h (this is done for
notational convenience throughout the paper). The values carried by these h edges, y(es′

1), . . . , y(es′

h), are any h
symbols from F which describe the process X . The code is determined by means of a set of auxiliary functions

me : E−
(
v− (e)

)
→ F , (e ∈ E). (1)

The determination of me will be described in Section III. For any edge e ∈ E s.t. y(e′) has been determined for
all e′ ∈ E− (v− (e)), the value carried by e is

y(e) =
∑

e′∈E−(v−(e))

me(e
′) · y(e′). (2)

We call a code good, if for any t ∈ T , there is a subset Et ⊆ E− (t) s.t. y(es′

1), . . . , y(es′

h) can be reconstructed
from {y(e)} e ∈ Et

D. Related Work

Ahlswede et. al. [1] have shown that a source can multicast information at a rate approaching h to all terminals,
as the symbol size approaches infinity. Li et. al. [4] constructively showed that linear coding can be used for
multicast with rate h and finite symbol-size. Koeter and Medard [2] showed, through an algebraic framework for
network-coding which they developed, that a finite field of size2 O(d · h) is sufficient for rate h multicast, and
showed how to verify the validity of a given code. Sanders et al. [3] showed the first polynomial-time algorithms
for constructing linear codes for multicast, and showed that a field of size O(d) is sufficient for this. Our work is
an extension of [3], and utilizes many of its ideas and notations.

1We use H (·) and log(·) to denote the binary entropy function and logarithm to base 2, respectively.
2We use the order of growth notations O and o as described in [5].

3

u
1
 u
2

v
1
 v
2
 v
m
-
1

w
1
 w
M

v
m
z
1
 z
M

t
1
 t
M

h
-
2

2
 2

v
'
1
 v
'
2
 v
'
m
-
1
 v
'
m

h
-
2

h
-
2

w
m
-
1

t
m
-
1

2

s

z
m
-
1

h
-
2
h
-
2

h
-
2

Fig. 1. Graph construction for the alphabet-size lower-bound.

II. ALPHABET-SIZE LOWER-BOUND

In this section we prove a lower bound on the alphabet size. This proof holds for both linear and nonlinear codes.
Theorem 1: For some graphs, the alphabet size must obey

q ≥
√

2d · (1− o (1)) . (3)

We prove the lower bound by constructing the graph G, which is shown in Figure 1. In this graph, let m by a
number which we will later specify, and let M =

(
m
2

)
.

The graph is constructed as follows. Let3 i ∈ [m] , j ∈ [M], and k ∈ [2], be arbitrary indices. The source s is
connected to nodes u1 and u2 via a single link to each. Both u1 and u2 are connected to all nodes vi. Each node
vi is connected to a corresponding node v′i via a single link. For each pair of nodes in {v′1, . . . , v′m}, there is a
node wj , with links from the nodes of the pair to wj . Each node wj is connected to a terminal tj via 2 links. The
source is connected to each of zj via h− 2 links. Each node zj is connected to tj via h− 2 links.

Clearly, this graph is cycle free, and there is a min-cut of capacity h between s and each of tj . By the Max-Flow
Min-Cut theorem, h symbols can be sent from s to any terminal tj individually. It follows from [1], [2], [3], [4]
that s can multicast h symbols of information to all tj simultaneously.

We define some random processes observed at some of the graph’s nodes.

Zj =
{
y(e) | e ∈ E− (zj)

}
, j ∈ [M] ,

Uk = {y((s, uk))} , k ∈ [2] ,
V ′

i =
{
y(e) | e ∈ E− (v′i)

}
, i ∈ [m] ,

Wj =
{
y(e) | e ∈ E− (wj)

}
, j ∈ [M] ,

Tj =
{
y(e) | e ∈ E− (tj)

}
, j ∈ [M] .

(4)

Lemma 1: For j ∈ [M], the entropies of the processes defined in (4), satisfy

H (U1, U2|Zj , Wj) = 0 (5)

H (U1, U2|Zj) = 2 · log(q). (6)

Proof: From the Max-Flow Min-Cut theorem, we clearly have that

H (Uk) ≤ log(q), (7)

H (Zi) ≤ (h− 2) · log(q). (8)

3For any `, we use [`] to denote {1, . . . , `}.

4

Also,

h · log(q)
(a)
= H (Tj) (9)

(b)

≤ H (Zj , Wj)
(c)

≤ H (Zj , U1, U2)

= H (Zj) + H (U1, U2|Zj)
(d)

≤ H (Zj) + H (U1) + H (U2)
(e)

≤ h · log(q),

where (a) follows from the fact that the process at tj can reconstruct the information of X , (b) and (c) follow
from the data-processing inequality [6], (d) follows from the independence bound on entropy [6], and (e) follows
from (7) and (8).

Combining (7), (8), and (9), we obtain

H (Zj , Wj) = h · log(q), (10)

H (Zj , U1, U2,) = h · log(q), (11)

H (Zj) + H (U1, U2|Zj) = h · log(q). (12)

We obtain (6) from (8) and (12). To obtain (5), note that

H (U1, U2|Wj , Zj) + H (Zj , Wj) (13)

= H (Wj , Zj , U1, U2)

= H (Zj , U1, U2) + H (Wj |Zj , U1, U2)

= H (Zj , U1, U2)
(a)⇒
H (U1, U2|Wj , Zj) = 0, (14)

where (a) follows from (10), and (11).

We now prove Theorem 1:
Proof: Let

Ez = {e | v− (e) = s ∧ v+ (e) = zj}
Ev′

= {e | v− (e) = vi ∧ v+ (e) = v′i}
. (15)

Consider any fixed values of y(e), e ∈ Ez . It follows from Lemma 1 that y(s, u1), y(s, u2) obtain all values from
F ×F (i.e., (6)), and that given any {e1, e2} ⊆ Ev′

, (y(e1), y(e2)) is sufficient for determining (y(s, u1), y(s, u2))
(i.e., 5)). Thus, y(e′), e′ ∈ Ev′

, is effectively a maximal distance separable (MDS) code. By known bounds on
MDS codes [7],

m =
∣∣∣Ev′

∣∣∣ ≤ q · (1 + o (1)) , (16)

and so

d = M ≤
(

q · (1 + o (1))

2

)
. (17)

5

v
6

v
8

(a)
 s

v
2
v
1

v
3
 v
4

v
5

t
1
 t
2

v
7

v
6

v
8

(b)
 s

v
2
v
1

v
3
 v
4

v
5

t
1
 t
2

v
7

v
6

v
8

(c)
 s

v
2
v
1

v
3
 v
4

v
5

t
1
 t
2

v
7

v
6

v
8

s

v
2
v
1

v
3
 v
4

v
5

t
1
 t
2

v
7

(d)

Fig. 2. Graph constructions illustrating flow clashes.

III. CLASH SETS

Consider the four diagrams in Figure 2. They illustrate four cases in which multicast is possible, since there
is a rate-2 flow from s to t1 and t2. In each of the diagrams, the rate-2 flow from s to t1 runs along two paths:
s → v1 → v3 → v5 → v7 → t1, and s → v2 → v4 → v6 → v8 → t1. The paths through which there is a rate-2
flow from s to t2 are shown in thick black and gray arrows.

In terms of coding, network (a) requires coding, whereas networks (b), (c), and (d) do not. In terms of flows
from s to t1 and t2, the flow paths in (a) “clash” in the sense that flows from the source to different terminals
“merge” into a single edge (namely the edge (v6, v8)), whereas those in (b), (c), and (d) do not. This hints that the
amount of network coding, and through it the alphabet size, depends on the number of “clashes”.

In Subsection III-A we repeat, in brief, the determination of the auxiliary functions me using global coding
vectors [3]. In Subsection III-B we define the clash set and minimal clash set, two sets which are relevant for the
determination of me. We will use these sets in Sections IV, V, VI, and VII.

A. Global Coding Vectors

In this subsection we repeat, in brief, the determination of the auxiliary functions me using global coding vectors
[3].

For any terminal t ∈ T , let Gf
t =

(
V f

t , Ef
t

)
be a subgraph of G composed of h edge-disjoint paths from s′

to t. A subgraph Gf
t can be constructed from G by running any appropriate flow algorithm (see [5]). For any

e ∈ Ef
t \
{
es′

1 , . . . , es′

h

}
, let f−

t (e) denote the immediate-predecessor edge of e on the path in Gf
t containing e. As

an extension, for any e ∈ Ef
t \
{
es′

1 , . . . , es′

h

}
and any T ′ ⊆ T , let f−

T ′(e) denote
⋃

t′∈T ′ f
−
t′ (e).

We associate with each edge e ∈
(⋃

t∈T Ef
ti

)
a global coding vector4 b(e) ∈ Fh. We first set the global coding

vectors for es′

k , (k ∈ [h]), as

b(es′

k) = [0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
h−k

]. (18)

The global coding vector of any other edge e ∈ ⋃i=1,...,d Gf
ti

is set so that it satisfies the invariant

b(e) =
∑

e′∈E−(v−(e))

me(e
′) · b(e′). (19)

Assume the algorithm terminates after ` steps. We generate ` ·d edge-sets, C1
t1

, . . . , C1
td

, , C`
t1

, . . . , C`
td

. Let
j ∈ [`] be an arbitrary step of the algorithm, and let i ∈ [d] be the index of an arbitrary terminal node. Each C j

ti
is

composed of h edges, one from each path between s and ti in Gf
ti

, Initially, we set C1
t1

= · · · = C1
td

=
{
es′

1 , . . . , es′

h

}
.

4We use x to denote a row vector, and x+ to denote its transpose. For a vector x = [x1, . . . , x`], we use len (x) to denote `. For any
i ∈ [len (x)], we use x[i] to denote the element at the ith coordinate of x.

6

At the termination of the algorithm, we have Cm
ti
⊆ E− (ti). At step j an edge ej is chosen so that, for some i,

ej ∈ Gf
ti

and f−
ti

(ej) ∈ Cj−1
ti

. Then, me is set according to an invariant shown below (see Lemma 2), and through
it, b(e). Step j is completed by assigning

Cj
t =





Cj−1
t , f−

t (ej) /∈ Cj−1
t(

Cj−1
t \ f−

t (ej)
) ·⋃ {ej} , f−

t (ej) ∈ Cj−1
t

. (20)

The following lemma was proved in [3].
Lemma 2: Let me be set with the invariant that for j ∈ [`], and i ∈ [d],

Rank
({

b(e) | e ∈ Cj
ti

})
= h. (21)

Then the code is good.

B. Clash Sets and Minimum Clash Sets

In this subsection, we define two sets which are relevant for the determination of mej
, where ej is the edge

chosen in step j.

Definition 1: (Clash Set and Nontrivial Clash Set) Let ej ∈ E be an arbitrary edge.
The clash set (CS) of ej is the set of terminals whose flows pass through ej , i.e.,

T ′(ej) =
{

t | ej ∈ Gf
t

}
⊆ T. (22)

We call the clash set a nontrivial CS (NCS) iff at least two distinct flows merge into ej , i.e.,
∣∣∣f−

T ′(ej)
(ej)

∣∣∣ ≥ 2.

Since we assume that G is an acyclic graph, there is a natural order that can be imposed on any edge e ∈ E. It
follows that ej , can be chosen so that it satisifes

∀t′∈T ′(ej)f
−
t′ (ej) ∈ Cj−1

t′ , (23)

i.e., ej is incorporated in a single step into to all edge sets which will eventually incorporate it. In the remainder
of the section, we assume, without loss of generality, that (23) holds.

The next definition defines a subset of a CS, which is minimum in the sense that it suffices to check condition
(21) in Lemma 2 in relation to it. Example 1 illustrates this definition.

Definition 2: (Minimum Clash-Set) Let ej ∈ E and T ′(ej) ⊆ T be be an edge and its CS, respectively. The
minimum clash-set (MCS) of ej , T ′′(ej), is a minimum subset T ′′(ej) ⊆ T ′(ej) satisfying

∀t′∈T ′(ej)\T ′′(ej)∃t′′∈T ′′(ej)∀e′∈C
j

t′
\f−

t′
(ej)

(24)

Rank
({

b(e′)
}⋃{

b(e′′) | e′′ ∈ Cj
t′′ \ f−

t′′(ej)
})

=

h− 1.
Example 1: Figure 3 shows an example of a CS and an MCS. Diagram (a) shows the graph, and diagram (b)

shows the global coding vectors associated with e′1, e′2, and e′3. As shown in part (c) of the figure, the CS of ej

is T ′(ej) = {t1, t2, t3}. The MCS of ej is T ′′(ej) = {t1, t2}, since b(e′1) and b(e′2) are not linearly dependent, but
b(e′3) is linearly dependent on b(e′1).

Clearly, the size of any MCS is not larger than the possible number of ways to group the distinct global coding
vectors into groups of size h−1 each. We will make use of the following Lemma in the determination of an upper
bound on the alphabet size.

Lemma 3: At step j, the size of any MCS is at most
(∣∣∣
{

b(e) | ∃t∈T e ∈ Cj−1
t

}∣∣∣
h− 1

)
. (25)

7

e
j

e'
1
 e'
2
 e'
3

(b)

(a)
 s

u
1
v
3

(c)

v
2
v
1
 u
2
 u
3

b
(
e'
1
)
=[1,0]

u
4
 u
k
v
4
 v
k

v'
3
v'
2
v'
1
 v'
4
 v'
k
 u'
1
 u'
2
 u'
3
 u'
4
 u'
k

w

1,2,3

t
4
t
1

w'
1,2,3

t
2
 t
3
 t
k

t
1
,t
2

t
3

t
4
,…,t
k
T

T’

T’’

b
(
e'
2
)
=[0,1]
 b
(
e'
3
)
=[2,0]

Fig. 3. Example of a CS and a MCS.

v
13

v
1

v
14
v
13

v
2
v
1

v
3
 v
4

v
6
v
5

v
7
 v
8

v
10
v
9

v
11
 v
12

v

15

v

16

s
(a)

t
1

v
2

v
3
 v
4

v
6
v
5

v
7
 v
8

v
10
v
9

v
11
 v
12

v
14

v

15

v

16

s
(b)

t
1
t
2
 t
2

v
13

v
1

v
14
v
13

v
2
v
1

v
3
 v
4

v
6
v
5

v
7
 v
8

v
10
v
9

v
11
 v
12

v

15

v

16

s
(c)

t
1

v
2

v
3
 v
4

v
6
v
5

v
7
 v
8

v
10
v
9

v
11
 v
12

v
14

v

15

v

16

s
(d)

t
1
t
2
 t
2

Fig. 4. Examples of disentangling for the case d = h = 2.

IV. MINIMUM NUMBER OF NONTRIVIAL CLASH-SETS

Consider again the four networks depicted in Figure 2. Out of all the nodes in all the networks, node v6 in
network (a) is the only one requiring coding, since it is the only one with an NCS.

The question can be asked whether graphs can be built, whose minimal number of NCSs can be made arbitrarily
large. In Figure 4 we see two other graphs with flows for the case d = h = 2. Recall, from Subsection III-B, that
the algorithm from [3] begins by finding two flows, one from s to t1, and one from s to t2. The flows in this case
are more complicated, in the sense that the number of edges which have NCSs is larger than those in Figure 2.
However, the paths can be “disentangled”, resulting in the corresponding flows in diagrams (c) and (d) containing
flows which are isomorphic to those in diagrams (b) and (a) in Figure 2.

In this section we generalize this observation. As we will show in the following sections, the number of NCSs
determines the number of nodes in which coding must be performed, the alphabet size, and the transmission latency
for some settings. Ideally, we would like to show that the required number of NCSs is bounded by a function which
is determined by the number of terminals and the min-cut of each terminal, and does not grow indefinitely with
the graph’s size. We show that this is so for the case of an arbitrary number of terminals, all of which except one
has a min-cut of 2. We also show that if this is so for the case of 2 terminals, each with arbitrary min-cuts, then

8

this is so for the general case as well.
The remainder of the section is organized as follows. In Subsection IV-A we define a “disentangling” transfor-

mation, and state precisely the main results of this section. In Subsection IV-B we discuss its application to the
case d = 2, with one of the flows having an arbitrary rate, and the other having rate 1. In Subsection IV-C we
discuss its application to the case d = 2, with one of the flows having an arbitrary rate, and the other having rate
2. For both these cases, we show that any two such flows can be disentangled s.t. the number of NCSs is bounded
by a function which is dependent on the rates alone, and not on the graph size and topology. While we conjecture
that this is true for the case d = 2, with each flow having an arbitrary rate, we have not proved this. In Subsection
IV-D we discuss, for arbitrary rates, the relationship between the case d = 2 and the case of an arbitrary d.

It should be noted that minimizing the number of NCSs is not the same as minimizing the number of edges
shared between different flows. As noted in [3], the latter problem is equivalent to some problems in Steiner trees
[8], [9]. Approximation schemes for these problems can be found in [8], [10], [11].

A. Disentangling

Before presenting our main result in Theorem 2, we define a disentangling operation, which takes as input flows,
and outputs corresponding flows, whose number of nontrivial clashes is not larger than that of the original flows.

We define precisely the operands of disentangling. Example 2 illustrates the next definition.
Definition 3: (Path set and flow vector) Let P = {e1, . . . , ek} ⊆ E be an ordered set of edges. We say that P

is a path set (PS) between v− (e1) and v+ (ek), if for i ∈ [k − 1], ei ∈ E− (v− (ei+1)). We will also explicitly
consider an empty PS, which is a path set containing no edges, i.e., P = ∅.

We say that R is a flow vector (FV), if it is a vector of edge-disjoint path sets.
Let R1, . . . , Rd′

be FVs. We denote by a length-d′ vector,

c = c
(
R1, . . . , Rd′

)
=
[
len
(
R1
)
, . . . , len

(
Rd′

)]
, (26)

their rate vector. We denote by α = α
(
R1, . . . , Rd′

)
the number of NCSs between all the PSs of the FVs.

Example 2: In diagram (b) of Figure 6, {(v1, v2), (v2, v3), . . . , (v8, v9)} forms a PS P 1 between v1 and v9. In
diagrams (c) and (d) Figure 6, let

P 1
1 = {(v1, v4), (v4, v7), . . . , (v22, v25)} (27)

P 1
2 = {(v2, v5), (v5, v8), . . . , (v23, v26)}

P 1
3 = {(v3, v6), (v6, v9), . . . , (v24, v27)} ,

be path sets, and let P2 be the path identified by thick black arrows. The vector R1 =
[
P 1

1 , P 1
2 , P 1

3

]
, is FV of three

path sets. The vector R2 = [P2], is a FV of one PS. The rate vector of
[
R1, R2

]
, is c = [3, 1], whereas the rate

vector of
[
R2, R1

]
, is c = [1, 3]. In diagram (c), α

(
R2, R1

)
= 7, while in diagram (d), α

(
R2, R1

)
= 2.

We sometimes partition an FV, and deal with each partitioning element separately. We use only partitions whose
elements can be ordered non-ambiguously by any path in the graph. The following definition defines this precisely.
Example 3 illustrates this definition.

Definition 4: (FV partitioning) Let h′ be an arbitrary rate, M ≤ |E| be a number, i ∈ [h′], j ∈ [M] be arbitrary
indices, and R = {Pi} be an FV. A partitioning of R is an ordered set of M FVs {R(j) = {Pi(j)}}, which satisfy
the following. For any i, the Pi(j) form a partitioning of Pi into consecutive sub-FSs (some possibly empty PSs),

and there is no “back” path P ′′ from a partitioning element to any preceding it. I.e.,
·⋃

j Pi(j) = Pi, and

∀j′�j¬∃e′

j∈R(j),e′

j′
∈R(j′),k∈[|E|],P ′′={e′′

1 ,...,e′′

k}
(28)




∧

`∈[k−1]

v+
(
e′′`
)

= v−
(
e′′`+1

)


∧

v−
(
e′′1
)

= v+
(
e′j
)∧

v+
(
e′′k
)

= v−
(
e′j′

)
.

9

v
13
 v
13

v
3

(a)

v
5

v
8
v
7

v

10

v

9

v
11

v
1
 v
2

v
6

v
12

v
4

P
1

1
 P
2

1

v
3

(b)

v
5

v

8

v
7

v
10

v
9

v
11

v
1
 v
2

v
6

v
12

v
4

P
1

1
 P
2

1

v
3

(c)

v
5

v
8
v
7

v

10

v

9

v
11

v
1
 v
2

v
6

v
12

v
4

P
1

1
 P
2

1

v
3

(d)

v
5
 v
8

v

7

v
10

v
9

v
11

v
1
 v
2

v
6

v
12

v
4

P
1

1
 P
2

1

v
13
v
13

Fig. 5. Examples of partitioning.

Example 3: Consider the four diagrams in Figure 5. In each of these let P1 and P2 be the PSs (v1, v3), (v3, v5), . . . , (v9, v11)
and (v2, v4), (v4, v6), . . . , (v10, v12), respectively. Diagram (a) shows a partitioning into 2 elements, indicated by
the dotted line between v6 and v7. Note that as the graph is cycle free, it can always be redrawn s.t. the edges do
not point upward, and partition lines are drawn horizontally, as in diagram (b). Were the diagram not cycle-free,
as in diagram (c) then some edges might need to be drawn point upward, as in diagram (d). Diagrams (c) and (d)
also show a partitioning in which there is a back path (via (v12, v9). As we do not consider these cases, in the
following, we will only draw edges which do not point upward, and partitioning lines which are horizontal.

In the remainder of the subsection, let d′ be an arbitrary number of terminals, and let R1, . . . , Rd′

be flow vectors,
such that for i ∈ [d′], hi = len

(
Ri
)

is the rate of the ith FV.

Given flow vectors, it might be possible to “reflow” them so that they represent flows from the same origins to
effectively the same terminations, but through different paths. Some “reflows” can decrease the number of NCSs,
in which we call them “disentanglements”. We next define these terms. Example 5 in Subsection IV-C illustrates
the following two definitions.

Definition 5: (Reflow) For j ∈ [hi], let the PS in Ri[j] describe a path whose first and last edge are e′ij and ei
j ,

respectively. Let πi be some permutation of the elements of [hi].
A reflow Γ

([
R1, . . . , Rd′

])
is a transformation

Γ :
[
R1, . . . , Rd′

]
→
[
R′1, . . . , R′d′

]
, (29)

s.t. R′1, . . . , R′d′

are flow vectors, the path sets in R′i are from edges e′ij to ei
πi(j)

Definition 6: (Disentangling) A disentangling Γ
([

R1, . . . , Rd′
])

is a reflow s.t.

α
(
R′1, . . . , R′d′

)
≤ α

(
R1, . . . , Rd′

)
, (30)

i.e., the number of NCSs in R′1, . . . , R′d′

is not larger than the number of NCSs in R1, . . . , Rd′

.

Let c = [h1, . . . , hd′] denote the rate vector of the flow vectors. We use γ (c) to denote the minimum guaranteed
number of NCSs obtainable by disentangling. I.e., letting G, s, and T range over all possible graphs, source node
and terminal set, respectively, letting R1, . . . , Rd′

range over all flow vectors for {G, s, T} s.t. their rate vector is
c, and letting R′1, . . . , R′d′

range over all possible reflows of R1, . . . , Rd′

, then

γ (c) = max
G,s,T

max
R1,...,Rd′

min
R′1,...,R′d′

α
(
R′1, . . . , R′d′

)
. (31)

10

The main result we prove in this section concerns the dependency of the minimum number of NCSs on the rate
vector alone.

Theorem 2: For any number of terminals d′

1) γ


[h1, 2, . . . , 2︸ ︷︷ ︸

d′−1

]


 is finite.

2) If for any h′ and h′′, γ ([h′, h′′]) is finite, then γ ([h1, . . . , h
′
d]) is finite.

While we conjecture that for any h′ and h′′, γ ([h′, h′′]) is finite, and so for any h1, . . . , hd, γ ([h1, . . . , hd]) is
finite, we have not proved this, and leave this as a conjecture.

The section continues as follows. In Subsection IV-B we discuss the case c = [h1, 1]. In Subsection IV-C we
discuss the case c = [h1, 2]. In Subsection IV-D we discuss the relationship between the case c = [h1, . . . , hd, 2

d−1]
and the case c = [h′, h′′], where h′ and h′′ are arbitrary.

B. Arbitrary Flow Vector and Rate 1 Flow Vector

In this subsection we discuss disentangling for the case c = [h1, 1], for any h1. We will use this in Subsection
IV-C.

We first define edge relationships in PSs. Example 4 illustrates the next definition.
Definition 7: (PS relationships.) Let P be a PS from v− (e′1) and v+ (e′k), e.g., P = {e′1, . . . , e′k}. We denote

by e
P

4 e′ the fact that edge e is the predecessor of edge e′ along P , i.e., the existence of a sub-PS P ′ ⊆ P from
v− (e) to v+ (e′).

For any group of edges E ′ ∈ E, s.t. E′
⋂

P 6= ∅, we denote by minP (E′) and maxP (E′)),

e′ ∈ E
⋂

P ′
∧
∀e′′∈E′e′′

P

4 e′, (32)

and

e′ ∈ E
⋂

P ′
∧
∀e′′∈E′e′

P

4 e′′, (33)

respectively.

Example 4: In Figure 6 (b), let P 1 be defined as in Example 2. Then (v3, v4)
P 1

4 (v8, v9), and minP 1({(v3, v4), (v5, v6), (v8, v9)}) =
(v3, v4).

Throughout the section we use the following transformation. Let P a and P b be arbitrary paths sets, and let e′, e

be two edges s.t. {e′, e} ⊆ P a
⋂

P b and e′
Pa

4 e. We define the PS D(P a, P b, e′, e), as the PS which runs along
P b until e′, then runs along P a until e, and then resumes running along P b. I.e.,

D
(
P a, P b, e′, e′

)
= (34)

{
e′′ | e′′ ∈ P b

∧
e′′

P b

4 e′
} ·⋃

{
e′′ | e′′ 6= e

∧
e′′ 6= e′

∧
e′

P a

4 e′′
P a

4 e

} ·⋃

{
e′′ | e′′ ∈ P b

∧
e

P b

4 e′′
}

.

Using the above, we now prove the case c = [h1, 1]. Example 5 illustrates the proof of the next lemma.
Lemma 4: For any h1, γ (c) = h1.

Proof: The proof is by induction on h1. If P 1
⋂

P 2 = ∅, there is nothing to prove. Otherwise, assume the

lemma holds for h1−1. Let P 1
1 , . . . , P 1

h1
be h1 edge-disjoint paths, and let P 2 be a path. If P 2

⋂(·⋃
i∈[h1]

P 1
i

)
= ∅,

11

e'
1

e
1

e'
1

e
1

e'

e

e'

e

P
1

1
 P
2

1
 P
3

1
 P
1

1
 P
2

1
 P
3

1

v
11
v
10

v
20
v
8

v
1

v
3

v
4

v

6

v
5

v
7

v
9

v
4

(c)

v
6

v
9
v
7

v
12
v
11
v
10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27
v
26
v
25

v
1
 v
3
v
2

v
8

v
17

v
5
 v
4

(d)

v
6

v
9
v
7

v
12
v
11
v
10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27
v
26
v
25

v
1
 v
3
v
2

v
8

v
17

v
20

v
5

(a)

v
2

v
11
v
10

v
8

v
1

v
3

v
4

v

6

v
5

v
7

v
9

(b)

v
2

P
1
 P
1

Fig. 6. Path disentangling examples for c = [1, 1] and c = [3, 1].

there is nothing to prove. Otherwise, let e1 = maxP 2
1
(
·⋃

i∈[h1]
P 1

i), and let j1 = P 1
j1 s.t. e ∈ P 1

j1 , and let e′1 =

minP 1

j1
(P 2

1). Defining P ′2 = D
(
P 1, P 2, e1, e′1

)
as in (34), and

P ′′2 =

{
e′′ | e′′ ∈ P ′2

∧
e′′ 6= e′1

∧
e′1

P ′2

4 e′′
P ′2

4 e1

}
. (35)

Since, by definition of e′1, P ′′2
⋂

P 1
j1 = ∅, then by the induction assumption, there is a disentanglement which

can be carried on P ′′2 (i.e., defining j2 as the next PS with which P 1 has an edge in common, and so on), with
α
([

P 1
1 , . . . , P 1

h1

]
,
[
P ′′2

])
≤ h1 − 1 which implies that α

([
P 1

1 , . . . , P 1
h1

]
,
[
P ′2
])
≤ h1.

The induction base runs along similar lines.

Example 5: An example of the induction base can be seen in cases (a) and (b) of Figure 6, where P 1 is a PS
from v1 to v10, and P 2 is the PS indicated by thick arrows from v2 to v11. Following disentangling, the only
nontrivial clash is in E− (v3).

An example of the more general case is shown in cases (c) and (d) of Figure 6. Let P 1
1 , P 1

2 and P 1
3 be defined

as in Example 2. Let P 2 be the PS, in thick edges, from (v3, v6) to (v22, v25). Let R1 =
[
P 1

1 , P 1
2 , P 1

3

]
, R2 =

[
P 2
]
.

In this case, j1 = 1. From the example it is clear that the disentangling can be continued on, with j2 = 2, and
j3 = 3.

C. Arbitrary Flow Vector and Rate 2 Flow Vector

In this subsection we discuss disentangling for the case c = [h1, 2], for any h1. We will consider throughout the
subsection the flow vectors R1 =

[
P 1

1 , . . . , P 1
h1

]
and R2 =

[
P 2

1 , P 2
2

]
. Let i, j ∈ [h1] be arbitrary indices. Clearly,

a large number of NCSs can exist only if P 2
1 clashes nontrivially many times with some P 1

i and/or P 2
2 clashes

nontrivially many with some P 1
j . We will consider the various ways in which this can occur, finding a disentangling

for each case. Specifically, we prove the following.
Lemma 5: For any h1,

γ ([h1, 2]) ≤ 6

(
h1

2

)
. (36)

The first case we consider is when P 2
1 and P 2

2 each clash nontrivially with at most a single path from R1.
Example 6 illustrates the proof of the next lemma.

12

e'
2

e

1

e
2

e'
1

v
20

v
17

v
20

v
4

(a)

v
6

v
9
v
7

v
12
v
11
v
10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27
v
26
v
25

v
1
 v
3
v
2

v
8

v
17

v
5

v
20

v
4

(b)

v
6

v
9
v
7

v
12
v
11
v
10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27
v
26
v
25

v
1
 v
3
v
2

v
8

v
17

v
5
 v
4

(c)

v
6

v
9
v
7

v
12
v
11
v
10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27
v
26
v
25

v
1
 v
3
v
2

v
8

v
5

P
1

1
 P
2

1
 P
3

1
 P
1

1
 P
2

1
 P
3

1
 P
1

1
 P
2

1
 P
3

1

Fig. 7. Single-path clashes for the case c = [3, 2].

Lemma 6: Assume that P 2
1 clashes with P 1

i , P 2
2 clashes with P 1

j , and furthermore, they each do not coincide
with any other path from R1, i.e.,

∀`∈[h1]\{i}P
2
1

⋂
P 1

` = ∅, (37)

∀`∈[h1]\{j}P
2
2

⋂
P 1

` = ∅.

Then α
(
Γ
(
R′1, R2

))
≤ 2.

Proof: If i 6= j, then
[
P 2

1

]
and

[
P 1

i

]
can be viewed as members of flow vectors each of rate 1, and by Lemma

4 they can be disentangled. The same is true of P 2
2 and P 1

j . If i = j, then
[
P 2

1 , P 2
2

]
and

[
P 1

i

]
can be viewed as

members of flow vectors with rates 2 and 1, respectively, and by Lemma 4 they can be disentangled.
Example 6: In diagrams (a) and (b) of Figure 7, let P 1

1 , P 1
2 , and P 1

3 be defined as in Example 2, and let
R1 =

[
P 1

1 , P 1
2 , P 1

3

]
. Let the paths P 2

1 and P 2
2 be the ones shown in thick black and thick grey, respectively.

Diagrams (a) and (b) illustrates the cases i 6= and i = j, respectively.

Consider one of the paths of R2, say P 2
1 , and one of the paths of R1, say P 1

i . Assume that P 2
1 leaves P 1

i at e1,
and returns to it at e2. The next lemma shows that we need only consider such cases where there is an edge on
P 1

i between e1 and e2, s.t. P 2
2 runs on that edge. Example 7 illustrates the proof of the next lemma.

Lemma 7: Assume that there are two edges, e1 and e2, s.t. {e1, e2} ⊆ P 1
i

⋂
P 2

1 , e1

P 2
1

4 e2, and that

¬∃e′e′ ∈ P 1
i

⋂
P 2

2

∧
e1

P 1
i

4 e′
P 1

i

4 e2 (38)

(this is trivially the case if e1 ∈ E− (v− (e2))). Let P ′2
1 = D

(
P 1

i , P 2
1 , e1, e2

)
. Then

α
(
R1,

[
P ′2

1 , P 2
2

])
� α

(
R1,

[
P 2

1 , P 2
2

])
. (39)

Example 7: In diagram (c) of Figure 7, let R1, and R2 be defined as in Example 6. Let the dotted arrow (v8, v20)
represent the fact that P 2

1 leaves P 1
2 at v5 and returns to P 1

2 for the first time in v14, but is unconstrained about what
it does in the interim. Clearly, since there is no edge e′ ∈ P 1

2 on the sub-path P ′ = {(v5, v8), (v8, v11), (v11, v14)},
then P 2

1 can be altered to run along P ′, saving (at least one) NCS.
This is true also when considering e′1 and e′2. Let the dotted arrows (v23, v22) and (v22, v23) represent the fact

that P 2
1 leaves from and returns to P 1

2 at v23, but is unconstrained about what it does in the interim. Then P 2
1 can

be made to run from e′1 directly to e′2, saving (at least one) NCS.

13

Justified by Lemma 7, in the remainder of the subsection we will consider w.l.o.g. only cases in which between
every two occurrences of P 2

1 on what of the paths of R1 there is an occurrence of P 2
2 (and vice versa).

Assume one of the paths of R2, say P 2
1 clashes nontrivially many times with (at least) two paths of R1, say P 1

i

and P 1
j . Note that by Lemma 7, we can assume that P 2

2 clashes nontrivially with (at least) P 1
i and P 1

j many times,
specifically between any two nontrivial clashes of P 2

2 with them. Intuitively, a large amount of “crisscrossing”
between P 2

1 and P 2
2 is excessive, as for the most part, P 2

1 and P 2
2 could run along P 1

i and P 1
j .

We will show that this is indeed the case. To do so, we define the PS D′(P a, P b, P c, e′, e), as the PS which runs
along P b until e′, then runs along P a until e, and then runs along P c. I.e.,

D′
(
P a, P b, P c, e′, e

)
= (40)

{
e′′ | e′′ ∈ P b

∧
e′′

P b

4 e′
} ·⋃

{
e′′ | e′′ 6= e

∧
e′′ 6= e′

∧
e′

P a

4 e′′
P a

4 e

} ·⋃

{
e′′ | e′′ ∈ P c

∧
e

P c

4 e′′
}

.

Note that D′ is a general case of D, since D
(
P a, P b, e′, e

)
= D′

(
P a, P b, P b, e′, e

)
.

The following lemma shows that in the case of “excessive” crisscrossing, a disentangling can be found which
runs along the paths of R1. Example 8 illustrates the statement of the lemma.

Lemma 8: Let P 1
i and P 1

j be two distinct paths from R2. Consider one of the paths of R2, say P 2
1 . Assume that

there are 5 edges, e1, . . . , e5, s.t.
{
e1, e3, e5

}
⊆ P 1

i

⋂
P 2

1 ,
{
e2, e4

}
⊆ P 1

j

⋂
P 2

1 , and e1
P 2

1

4 · · ·
P 2

1

4 e5 .
Then there must exist two pairs of edges, (e′1, e

′
2) and (e1, e2), which satisfy at least one of the following:

1) {e′1, e1} ⊆ P 2
1

⋂
P 1

i , {e′2, e2} ⊆ P 2
2

⋂
P 1

j , and

α
(
R1,

[
P ′2

1 , P ′2
2

])
� α

(
R1, R2

)
, (41)

where

P ′2
1 = D

(
P 1

i , P 2
1 , e′1, e1

)
, (42)

P ′2
2 = D

(
P 1

j , P 2
2 , e′2, e2

)
.

2) {e′1, e2} ⊆ P 2
1

⋂
P 1

i , {e′2, e1} ⊆ P 2
2

⋂
P 1

j , and

α
(
R1,

[
P ′2

1 , P ′2
2

])
� α

(
R1, R2

)
, (43)

where

P ′2
1 = D′

(
P 1

i , P 2
1 , P 2

2 , e′1, e1

)
, (44)

P ′2
2 = D′

(
P 1

j , P 2
2 , P 2

1 , e′2, e2

)
.

Example 8: Consider diagrams (a) and (b) in Figure 8. In these diagrams let R1, and R2 be defined as in Example
6, with the dotted lines explained shortly. PS P 2

1 clashes nontrivially with both P 1
1 and P 1

2 . Since we are only
interested in clashes between P 2

1 and either P 1
1 or P 1

2 , we let dotted arrows indicate only the origin and target of a
transition of P 1

1 , without regard to what P 1
1 does in the interim. W.l.o.g. PS P 2

2 also clashes nontrivially with both
P 1

1 and P 1
2 , once between any two nontrivial clashes of P 1

1 with them. It is also possible that P 2
1 and/or P 2

2 clash
nontrivially with, say, P 1

3 (as in (v18, v21)), although this is immaterial to the disentangling.
Diagram (a) illustrates case 1 in the above. The corresponding disentanglement is shown in diagram (a) of Figure

9.
Diagram (b) illustrates case 2 in the above. The corresponding disen[tanglement is shown in diagram (b) of

Figure 9.

14

e
4
e
4

e
2
 e
2

e
5
e
5

e
3
e
3

e
1

v
4

v
1

v
26
v
25

e
2
e
1

e'

2
e'
1

v
20

(a)

v
6

v
9
v
7

v
12
v
11
v
10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27

v
3
v
2

v
8

v
17

v
5

P
1

1
 P
2

1
 P
3

1

v
26
v
25

e
2
e
1

e'
2

e'
1

v
20

v
4

(b)

v
6

v
9
v
7

v
12
v
11
v
10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27

v
1
 v
3
v
2

v
8

v
17

v
5

P
1

1
 P
2

1
 P
3

1

e
1

Fig. 8. “Crisscrossing” examples for the case c = [3, 2].

v
26
v
25

e
2
e
1

e'

2
e'
1

v
20

v
4

(a)

v
6

v
9
v
7

v
12
v
11
v
10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27

v
1
 v
3
v
2

v
8

v
17

v
5

P
1

1
 P
2

1
 P
3

1

v
26
v
25

e
2
e
1

e'
2

e'
1

v
20

v
4

(b)

v
6

v
9
v
7

v
12
v
11
v
10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27

v
1
 v
3
v
2

v
8

v
17

v
5

P
1

1
 P
2

1
 P
3

1

Fig. 9. “Crisscrossing”-disentangling examples for the case c = [3, 2].

The following shows how to choose the edges e′1 and e′2 in Lemma 8. Choosing the edges e1 and e2 is similar.
Example 9 illustrates the next procedure.

Let f ′1
1 and f1

1 be two non-consecutive edges s.t. P 2
1 leaves P 1

i at f ′1
1 , clashes nontrivially with P 1

j , and the first
edge where it returns to P 1

i is f1
1 . I.e.,

{
f ′1
1 , f1

1

}
⊆ P 2

1

⋂
P 1

i , (45)

f ′1
1 /∈ E−

(
v−
(
f1
1

))
,

∀e′′∈P 2
1
f ′
1

P 2
1

4 e′′
P 2

1

4 f1 ⇒ e′′ /∈ P 1
i ,

∃e′′∈P 2
1
f ′
1

P 2
1

4 e′′
P 2

1

4 f1.

Let f ′1
2 be the first edge of P 2

1 on P 1
j after f ′1

1 , and let f1
2 be the last edge of P 2

1 on P 1
j before f1

1 . I.e., letting

P ′1
j =

{
e′′ | e′′ ∈ P 1

j

∧
f ′1
1

P 2
1

4 e′′
P 2

1

4 f1
1

}
, (46)

15

g
2

g
2

f
2

1

f‘
2

1

g
1

f‘
1

1

f
1

1

v
20

v
4

(b)

v
6

v
9
v
7

v
12
v
11
v
10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27
v
26
v
25

v
1
 v
3
v
2

v
8

v
17

v
5

P
1

1
 P
2

1
 P
3

1

g
1

f‘

1

1

f
1

1

f
2

1

f‘
2

1

v
20

v
4

(a)

v
6

v
9
v
7

v
12
v
11
v
10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27
v
26
v
25

v
1
 v
3
v
2

v
8

v
17

v
5

P
1

1
 P
2

1
 P
3

1

Fig. 10. Examples of case 1 when finding e′1 and e′2.

then f ′1
2 = minP 2

1
(P ′1

j) and f ′1
2 = maxP 2

1
(P ′1

j).

As mentioned above, we assume w.l.o.g that there is an edge g1 which is on P 1
i between f ′1

1 and f1
1 , s.t. P 1

2

runs through g1, and that w.l.o.g. we assume that g1 is the first such edge between f ′1
1 and f1

1 , i.e.,

g1 ∈ P 2
1

⋂
P 1

i , (47)

f ′1
1

P 1
i

4 g1

P 1
i

4 f1
1 ,

∀g′∈P 2
2
f ′1
1

P 1
i

4 g′
P 1

i

4 f1
1 ⇒ g1

P 1
i

4 g′.

It is possible that there is an edge on P 1
j which is the predecessor of g1 along P 2

2 . If such an edge exists, we

denote it by g2, i.e., g2 ∈ P 2
1

⋂
P ′1

j , and g2

P 2
2

4 g1. Choosing e′1 and e′2 depends on whether g2 exists, and if so, on
its relationship, along the path P 1

j , to f ′1
2 .

1) Assume g2 exists, and it is the successor of f ′1
2 along P 1

j , i.e.,

∃g2∈P 2
2

⋂
P 1

j
f1
2

P 1
j

4 g2

∧
g2

P 2
2

4 g1. (48)

Then we choose e′1 = f ′1
1 and e′2 = g2.

2) Assume that g2 does not exist, or that it does exist but is not the successor of f ′1
2 along P 1

j , i.e.,

¬∃g2∈P 2
2

⋂
P 1

j
f ′1
2

P 1
j

4 g2

∧
g2

P 2
2

4 g1. (49)

Then we choose e′1 = g1 and e′2 = f ′2
1 .

Example 9: In Figures 10 and 11, let R1, and R2 be defined as in Example 2. Diagrams (a) and (b) in Figure
10 show examples of case 1 in the above. Diagrams (a), (b), and (c) in Figure 11 show examples of case 2 in the
above.

The following lemma shows the properties of e′1 and e′2 which we will use for the proof of Lemma 8.
Lemma 9: Let e′1 and e′2 be chosen as described above. Assume that e′1 ∈ P 1

i and e′2 ∈ P 1
j . Let e′′1 and e′′2 be

edges on P 1
i and P 1

j , respectively, s.t. they are successors of e′1 and e′2, respectively. I.e., e′1
P 1

i

4 e′′1 and e′2
P 1

i

4 e′′1

16

g

2

g

2

g
1

f‘

1

1

f
1

1

f
2

1

f‘
2

1

v
20

v
4

(b)

v
6

v
9
v
7

v
12
v
11
v
10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27
v
26
v
25

v
1
 v
3
v
2

v
8

v
17

v
5

P
1

1
 P
2

1
 P
3

1

f
2

1

f‘
2

1

g
1

f‘
1

1

f
1

1

v
20

v
4

(c)

v
6

v
9
v
7

v
12
v
11
v
10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27
v
26
v
25

v
1
 v
3
v
2

v
8

v
17

v
5

P
1

1
 P
2

1
 P
3

1

g

2

g
1

f‘

1

1

f
1

1

f
2

1

f‘
2

1

v
20

v
4

(a)

v
6

v
9
v
7

v
12
v
11
v
10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27
v
26
v
25

v
1
 v
3
v
2

v
8

v
17

v
5

P
1

1
 P
2

1
 P
3

1

Fig. 11. Examples of case 2 when finding e′1 and e′2.

Let P ′2
1 and P ′2

2 be PSs defined by

P ′′2
1 = D′

(
P 2

1 , P 1
i , ∅, e′1, e′′1

)
, (50)

P ′′2
2 = D′

(
P 2

2 , P 1
j , ∅, e′2, e′′2

)
.

Then P ′′2
1

⋂
P ′′2

2 = ∅.
Using Lemma 9, we prove Lemma 8.

Proof: Assume we find e1 and e2 from Lemma 8 by using the “mirrored” version of the technique used for
finding e′1 and e′2. That is, starting from t2 we traverse backward on the 4 paths involved, and the backward paths.
By Lemma 9 there is a min-cut of 2 from s to the e′′1 and e′′2 described above. In particular, these two edges can be
e1 and e2, respectively. By symmetry, there is a min-cut of 2 from t2 to e1 and e2. It follows that the disentangling
maintains a min-cut of 2 from s to t2. The min-cut from s to t1 clearly is unchanged.

Combining all the above, we prove Lemma 5. Example 10 illustrates some points of the proof.
Proof: Let k ∈ [|E|] be arbitrary indices. Starting off with R1 and R2, we create a series of |E| FVs R1

k and
R2

k, defined by

[
R1

k, R
2
k

]
=

{ [
R1, R2

]
, k = 1

Γ
([

R1
k−1, R

2
k−1

])
, 1 � k ≥ |E| , (51)

and set in the following manner.
We first note that at stage k, we may apply Lemma 7 when applicable, obtaining the next stage. If Lemma 7 is

inapplicable, then consider all possible partitioning of R1
k. If a partitioning element can be found to which Lemmas

6 or 8 is applicable, the appropriate lemma can be applied, obtaining the next stage.
Assume that at some stage none of the above can be applied. Choose two arbitrary PSs of R1

k, say P 1
i = R1

k[i],
and P 1

j = R1
k[j]. Consider a partitioning of R1

k s.t. each partitioning element is the maximum one in which P 2
1

does not transition between P 1
i and P 1

j . By the fact that a disentangling is not possible, and by Lemma 8, there are
at most 4 partitioning elements, implying at most 3 transitions between P 1

i and P 1
j . This shows that the number

of NCSs caused by transitions of PSs from R2
k between PSs from R1

k is at most 6
(
h1

2

)
. Note that from the proof

of Lemma 6 it follows that these are the only NCSs.
Thus

α
(
R1

|E|, R
1
|E| = Γ

(
R1, R2

))
≤ 6

(
h1

2

)
. (52)

17

v
4

v
1

v
26
v
25

v
20

v
6

v
9
v
7

v

12

v

11

v

10

v

15

v

14

v

13

v
18
v
16

v
21
v
19

v
24
v
23
v
22

v
27

v
3
v
2

v
8

v
17

v
5

P
1

1
 P
2

1
 P
3

1

1

2

3

4

1'

3'

2'

Fig. 12. Possible partitioning when no disentangling is possible.

Example 10: In Figures 12 let R1 and R2 be defined as in Example 2, with only one of the paths of R2 shown.
As viewed by P 1

1 and P 1
2 , the FV can be partitioned into the 4 elements marked by 1–4. As viewed by P 1

1 and
P 1

3 , however, the FV can be partitioned into the 3 elements marked by 1’–4’.

D. The General Case

In this subsection we discuss the relationship between disentangling for the case c = [h1, . . . , hd′], for any d′,
and h1, . . . , hd′ , and disentangling for the case c = [h′, h′′], for arbitrary h′ and h′′.

The following lemma proves, in conjunction with Subsections IV-B and IV-C, Theorem 2. Example 11 illustrates
the general proof idea.

Lemma 10:

γ ([h1, . . . , hi, hi+1]) ≤ (53)

γ ([h1, . . . , hi]) +(
∑

i

hi

)
· γ ([h1, . . . , hi]) ·

(
γ

([
∑

i

hi, hi+1

])
+ hi+1

)
.

Example 11: In diagram (a) of Figure 13, we see the case of c = [3, 3, 2].
Assume we first perform a disentangling on the flows from s to t1 with s to t2. The result is shown in diagram

(b), with the flows from s to t1 shown in thick-edged paths. The graph can then be redrawn to appear as in (c). In
this diagram, all edges are drawn in parallel. Dotted edges represent that one edge feeds directly into another. In
diagram (c) it can be observed that the disentangling result can be partitioned, so that in each partitioning element,
the paths are disjoint, and their number is fixed. A partitioning element is caused by either the merging or the
splitting of two PSs from s to t1 and to t2.

When next performing a disentangling of the two first flows and the flow from s to t3, as in diagram (a) of
Figure 14, the partitioning form of the graph becomes useful. In diagram (b), we can see that the flow from s to
t3 can be disentangled with each partitioning element separately. The flow from s to t3 views each partitioning
element as a flow with rate that can range between 3 and 6.

In the remainder of the subsection we formalize and generalize the argument in Example 11.

18

e
8

e
1
 e
2
 e
3

e
5

t
1

e
4

e
6

e
7

t
3

s

t
2

e
9

e
1
 e
2
 e
3

e
5

e
4

e
6

e
8

e
9

(a)

t
1

s

t
2

(b)
 (c)

e

7

Fig. 13. Disentangling of flows of s to t 1 with s to t2.

t
1

t
3

s

t
2

(a)
 (b)

1

2

3

4

5

6

7

Fig. 14. Disentangling of flows of s to t 1 and to t2 with s to t3.

We next define a compound FV, a partitioning of it, and discuss one partitioning in particular. Example 12
illustrates the next definitions.

Definition 8: (Compound FV) Let d′ FVs be given, and let i ∈ [d′] be an arbitrary index. The compound FV
(CFV) of these FVs is a d′-dimensional vector of ordered sets, with a total of Πi (hi + 1) entries, one corresponding

to each choice from

(
{0}

·⋃
[h1]× · · · × {0}

·⋃
[hd′]

)
. An arbitrary element of W , say W [j1, . . . jd′] is set s.t.

W [j1, . . . jd′] = (54){
e′′ |

∧

i

{
e′′ ∈ Ri[ji] , ji 6= 0
∀j′

i 6=ji
e′′ /∈ Ri[j′i] , ji = 0

}
.

It should be noted, that while W [j1, . . . jd′] is an ordered union of PSs, it is not, in general, a PS itself.

We define a partition of W in the same way it is defined for a FV. That is, the partitioning of W induces a
partitioning on each Qj1,...,jd′

, and there are no “back” paths from a partitioning element to any of its predecessors.
We consider in particular the following partitioning of W . We traverse along the graph using breadth-first search

[5], breaking edge ties by the order of the edges in E. A new partitioning element begins only by an edge e which
satisfies one of the following. Either (at least) one of the PSs leaves a different PS at e, or (at least) one of the
PSs merges into a different PS at e. It can be seen that the partition elements each contain only edge-disjoint PSs,
and the number of PSs in each partition element is at most

∑
i hi.

Example 12: Consider diagram (a) in Figure 13. Following a disentangling of the flows of s to t1 with s to t2,
W is a 2-dimensional vector. Since e2 is used for both the second path of the flow from s to t1 and the second

19

path of the flow from s to t2, then e2 ∈W [2, 2]. Since e5 is used for the second path of the flow from s to t1, but

is not used by any path of the flow from s to t2, then e2 ∈W [2, 0] and e2 /∈W [2, 1]
·⋃

W [2, 2]
·⋃

W [2, 3].
The result of the above-mentioned partitioning on W is shown in diagram (c) of Figure 14.

We now prove Lemma 10.
Proof: The proof is by induction on i, the length of the rate vector c. For i = 1 there is nothing to prove.

Assume the lemma holds for i. We perform a disentangling on R1, . . . , Ri, find the CFV of the result, and find
the partitioning mentioned above. By the induction assumption, at this point there are at most

γ ([h1, . . . , hi]) (55)

NCSs. As mentioned above, each partition element consists of at most
∑

i hi edge-disjoint paths, and each partition
element can be attributed to either a merging or splitting of PSs. Since a PS merge is equivalent to the existence
of an NCSs, the number of merges is at most γ ([h1, . . . , hi]). Between any two PS merges, any PS split increase
the number of PSs by 1. As the number of paths is at most

∑
i hi, the number of path splits between any path

merge is at most
∑

i hi. It follows that the number of partitioning elements is at most

(γ ([h1, . . . , hi]))

(
∑

i

hi

)
. (56)

Assume we disentangle Ri+1 with each of the partitioning elements. This can be viewed as a disentangling of
two flow vectors, the first of which has a rate in the range {mini hi, . . . , }, and the second has a rate of hi+1. By
the induction assumption, then, a disentangling with any partitioning element would result in at most

γ

([
∑

i

hi, hi+1

])
(57)

NCSs.
When the PSs of Ri+1 leave a partitioning element they possibly merge with the PSs of its successor. This results

in at most hi+1 NCSs. Combining this with (55), (56), and (57), proves the theorem.

V. BOUNDS ON LARGE-FIELD SIMULATION BY NODE MEMORY

We saw in Section II that there is a lower bound on the coding alphabet size. If the alphabet size supported by
the links, q, is not large enough for the given multicast requirements, the addition of memory in the nodes can
be used to simulate a large alphabet size. In this subsection we describe this technique, and show bounds on its
latency and bandwidth.

Consider a network W ′ over a graph G, specified source node s, and terminal group T , with the following
attributes. The links of W ′ transmit symbols over a field F ′ of size q′ = |F ′|. At its source node, s, a process X ′

is observed, which attains every kth time unit an independent value of entropy h · log(q′). Assume that q′ is large
enough for linear multicast of h symbols from F ′. Let

k = k(q, q′) =
⌈
logq(q

′)
⌉
. (58)

In the graph G, if the minimum of min-cuts is h, then the multicast rate is clearly h·log(q′)
k

).
Consider now a network W over the same G, s and T , but with the following attributes. The links of W transmit

symbols over the field F of size q′ = |F|. At its source node, s, a process X is observed, which attains every
time unit an independent value of entropy h · log(q). Since the value that X attains in every k time units has
entropy h · log(q′), and since the minimum of min-cuts is h, it might be expected that in network W , information
can be multicast at a rate h·log(q′)

k
as well. It might be the case, though, that q might not be sufficiently large for

multicasting to h terminals.
It is clear that, in network W , if each node accumulates every k consecutive symbols (using node memory), a

code over F ′ can be simulated. We show in Subsection V-A an upper bound on the throughput and total latency
for this scheme. We show in Subsection V-A that, in general, each such node induces some latency on any path
on which it resides.

20

A. An Upper Bound on Bandwidth and Latency

Let c = [h, . . . , h︸ ︷︷ ︸
d

] and γ (c) be defined as in Section IV. The following shows that k · γ (c) is an upper bound

on the latency
Theorem 3: By adding in each node an additional

k ·
(

max
v∈V

∣∣∣∣∣E
− (v)

·⋃
E+ (v)

∣∣∣∣∣+ 1

)
(59)

units of memory over F , a good multicast code can be built, s.t. at every time unit each link carries a symbol from
F , and whose latency and throughput for sending N H(X)

k
information are

k ·min(n, γ (c)), (60)

and

N H(X)
k

N + k ·min(n, γ (c))

N→∞−→ H (X)

k
, (61)

respectively.

Proof: By the assumption that there is a multicast code over a field F ′, there is a set of elements (each from
F ′) me which constitute a valid code. Let v ∈ V be any node. Assume that v has enough memory to accommodate
the
∣∣E− (v) + E+ (v)

∣∣ length− k vectors

yv(e−1), . . . , yv(e−
|E−(v)|

), yv(e+
1), . . . , yv(e+

|E+(v)|
), (62)

each of whose elements is from F .
Let i ∈

[∣∣E− (v)
∣∣], and j ∈

[∣∣E+ (v)
∣∣] be arbitrary indices. At time unit d, the process at node v does the

following. For and dk = d (mod k):

• If d < k then y
(
v(e+

j)
)

is set to 0.

• If d ≥ k
∧

dk 6= 0, then the dk entry of yv(e−i) is set to y(e−i), and y(e+
j) is set to the dk entry of yv(e+

j).
• If d ≥ k

∧
dk = 0, v interprets each vector yv(e−i) as an element from F ′. It performs over F ′ the appropriate

operations specified by me, and writes the appropriate results, in vector form, in yv(e+
j).

It follows that for any d for which dk = 0, the field elements from F ′ described by yv(e−1), . . . , yv(e−
|E−(v)|

), are
the same as y(e1), . . . , y(eE−(v)) in the code over F ′ at time d. Since this is true, in particular, for all t ∈ T ⊆ V ,
the code over F is valid as well.

Clearly, in the above scheme, each node has an initial latency of k time units from the time it receives the first
symbol, until the time it outputs its first symbol. On each path from s to any t ∈ T , there is an initial latency
which is at most the sum of the latencies along the paths. This proves (60). Following the initial latency, whenever
dk = 0, h · log(q′) are reconstructed at each terminal. Combining, this proves (61).

B. A Lower Bound on Latency

For any node v ∈ V which requires coding, consider an edge e+ ∈ E+ (v), and the input edges e−1 , . . . , e−
|E−(v)|

∈
E− (v). As seen from (2) in Subsection I-C, the linear transmission scheme requires the calculation of the dot product

y(e+) = (63)

[y(e−1), . . . , y(e−
|E−(v)|

)] · [me+(e−1), . . . , me+(e−
|E−(v)|

)].

Let the fields F ′ and F be defined as in the previous subsection, and let all the elements in (63) be taken from
F ′. In Subsection V-A a latency-incurring scheme for calculating (63) was shown. In this subsection we show that
any scheme, linear or non-linear, implementing the general form of (63) incurs latency.

21

b
1

x
1

b
2

x
2

b
h'

x
h'

b
i.
x
i

i

Fig. 15. Circuit for dot-product calculation over F ′.

Let i ∈ [d] be an arbitrary index, mi be d arbitrary elements from F ′, xi be d variables from F ′, and y be
a variable from F ′. Consider the circuit in Figure 15, which calculates y =

∑
i mi · xi using elements from F ′.

We consider a circuit calculating the same function, but using elements from F . We do not restrict the circuit to
calculate functions which are linear in F .

Let f(D) be an irreducible polynomial of degree k over a finite field GF (q). Since any field F ′ must be [12]
isomorphic to the field formed by considering the set of all polynomials of degree k − 1 or less over GF (q), and

defining the addition and multiplication operations,
F ′

+ and
F ′

∗ , as

g1(D)
F ′

+ g2(D) = g1(D) + g2(D) mod f(D), (64)

g1(D)
F ′

∗ g2(D) = g1(D) · g2(D) mod f(D),

it suffices to consider this field only. Let j ∈ [k] be an arbitrary index. As in this field, each element c is a
polynomial,

c(D) =
∑

j

cj ·Dj−1, (65)

we can represent any element by its coefficients c
F ′

↔ c = [c1, . . . , ck], e.g., we represent y by [y1, . . . , yk], and mi

by [mi,1, . . . , mi,k].

Let
F ′∑

i mi
F ′

∗ xi denote m1
F ′

∗ x1

F ′

+ · · ·md
F ′

∗ xd. Viewed over elements from F ,
F ′∑

i mi
F ′

∗ xi is a function
with d · k inputs, and k outputs. Let x′

i,j be d · k be variables from F , y′j be k variables from F , and y′ be a
variable from F . Let the following functions (linear or otherwise)

X ′
i,j : F j → F , (66)

Y ′
j : Fd·j → F ,

Yj : F j → F ,

be defined s.t.

X ′
i,j(xi,1, . . . , xi,j) = x′

i,j , (67)

Y ′
j(x

′
1,1, . . . , x

′
d,1, , x

′
1,j , . . . , x

′
d,j) = y′j ,

Yj(y
′
1, . . . , y

′
j) = yj .

A corresponding circuit is shown in Figure 16. In this circuit, at time unit j the circuit has x1,1, . . . , xd,1, , x1,j+1, . . . , xd,j+1

as inputs, and outputs y′1, . . . y
′
j+1, s.t. there is a bijection

F ′∑
i
mi

F ′

∗ xi ↔
[
y′1, . . . y

′
k

]
. (68)

We next show that this is, in general, not possible.

22

x'
1

1

x'
1

2

x'
1

k

x'
2

1

x'
2

2

x'
2

k

x'
h’

1

x'
h’

k

x'
h’

k

y'
1

y'
2

y'
k

b
h'

b
1

Fig. 16. A latency-free circuit over F for dot-product calculation over F ′.

Theorem 4: For some values of mi, xi, any functions corresponding to (66), (67), and (68), do not calculate the
dot-product properly. That is,

∃m1,...,md
∃x1,...,xd

(69)
F ′∑

i

mi
F ′

∗ xi
F ′

=
[
Y1(y

′
1), . . . ,Yk(y

′
1, . . . , y

′
d)
]
.

Proof: Let M = {m1, . . . , md}. Assume the lemma does not hold. Then we show that

0
(a)
= (70)

H
(
y1|y′1, M

) (m)

≥

H

(
y1|
∑

i

xi,1 ·mi,1, M

)
(c)
=

H (y1|x1, . . . , xd, M) +

H

(
x1, . . . , xd|

∑

i

xi,1 ·mi,1, M

)
−

H

(
x1, . . . , xd|y1,

∑

i

xi,1 ·mi,1, M

)
(d)

0,

which is clearly impossible.

23

In the above, (a) follows from the assumption that y1 can be determined by y′1 (via Y1).
We show that inequality (m) follows from the data processing inequality [6]. It is easy to show that for an

arbitrary general M , y1 attains all q possible values. Conversely, y′1 can attain at most q values. From equality (a),
it follows that there is a bijection y1 ↔ y′1. Let x1,1, . . . , xd,1 be set. Note that y1 is uniquely determined (from (a))
by y′1, y′1 is completely determined, via Y ′

1, by x′
1,1, . . . , x

′
d,1, and x′

1,1, . . . , x
′
d,1 are determined, via X ′

1,1, . . . ,X ′
d,1

by x1,1, . . . , xd,1. It follow that y1 is independent from any xi,j where j 6= 1. Hence. since x1,1, . . . , xd,1 are set,
we may as well assume that xi ↔ [xi,1, 0, . . . , 0︸ ︷︷ ︸

k−1

], in which case

y1 =
∑

i

xi,1 ·mi,1. (71)

Since (as shown before), y1 can attain q values,
∑

i xi,1·mi,1 can attain at most q values, and by (71), y1 is determined
by
∑

i xi,1 ·mi,1, there is a bijection y1 ↔
∑

i xi,1 ·mi,1. It follows that there is a bijection y′1 ↔
∑

i xi,1 ·mi,1,
and so y′1 →

∑
i xi,1 ·mi,1 → y1 form a Markov chain.

Equality (c) follows from the definition of conditional entropy.
To show inequality (d), it suffices to show that

H

(
x1, . . . , xd|

∑

i

xi,1 ·mi,1, M

)

 (72)

H

(
x1, . . . , xd|y1,

∑

i

xi,1 ·mi,1, M

)
.

Fix xi,1 and M . Let X ′ be the set of all values that x1, . . . , xd can attain in this case. Let X ′′ be the set of all
values that (x1, . . . , xd) can attain if y1 is given as well. We will show that X ′′ X ′. Let {x′

1, . . . , x
′
d} ⊆ Fd be

a set of elements s.t.


∑

j

y′j ·Dj−1


 = (73)

F∑
i


(x′

i ·D
) F∗



∑

j

mi,j ·Dj−1




 ,

for some y′1, . . . , y
′
k s.t. y′1 6= 0 (which is certainly possible to find given a free choice of mi). Letting xi =

[xi,1, x
′
i, 0, . . . , 0︸ ︷︷ ︸

k−2

], then (x1, . . . , xd) ∈ X ′ \X ′′.

VI. GRAPH-SPECIFIC UPPER BOUNDS ON ALPHABET-SIZE

An upper bound on the alphabet size as a function of terminal-set size was shown in [3]. Application of the
disentangling transformation from Section IV possibly reduces the NCSs to the point where a smaller alphabet size
can suffice.

In this subsection, we show how the MCS determines the alphabet size needed for setting mej
, where ej is the

edge chosen in step j.

Lemma 11: Let T ′′(ej) be the MCS of ej . If mej
is set so that

∀t′′∈T ′′(ej) (74)

Rank
(
{b(ej)}

⋃{
b(e′′) | e′′ ∈ Cj

t′′ \ f−
t′′(ej)

})
= h,

then the code is good.

Proof: We prove, by induction on j ∈ [`], that for i ∈ [i], (21) holds. By Lemma 2, it will follow that the
code is good.

24

(b)
(a)
 (c)
s

v
1
 v
2

t
1
 t
2
 t
3

s

v
1
 v
2

t
1
 t
2
 t
3

s

v
1
 v
2

t
1
 t
2
 t
3

Fig. 17. Static broadcast possibilities.

The induction base, i.e., j = 1, holds trivially by the determination of the global coding vectors between s′ and
s. Assume that (21) holds for j − 1, and that b(ej) is set so that (74) is satisfied. Clearly then, b(ej) 6= 0. For any
t′′ ∈ T ′′(ej), (21) holds by definition. For any t′ ∈ T ′(ej), there is a t′′ ∈ T ′′(ej), and a matrix Be′

e′′ , s.t.

[b(e′1), . . . , b(e
′
h−1)] = [b(e′′1), . . . , b(e

′′
h−1)] ·Be′

e′′ , (75)

for e′1, . . . , e
′
h−1 = Cj

t′ \ f−
t′ (ej), and e′′1, . . . , e

′′
h−1 = Cj

t′′ \ f−
t′′(ej). It follows that b(ej) 6= 0 cannot be a linear

combination of b(e′1), . . . , b(e
′
h−1), since, by (75) it would be then also be a linear combination of b(e′′1), . . . , b(e

′′
h−1),

which would contradict (74).

The following is a slight variation of a lemma in [3]:
Lemma 12: If at step j of the algorithm, |T ′′(ej)| ≤ q, then mej

can be set so that (74) is satisfied.

Using Lemma 12, we find an upper bound on the alphabet size as a function of the number of “flow-path clashes”:
Theorem 5: Let m be the number of “clashes”, once the flows are found, i.e.,

m =
∣∣∣[`]
⋂
{j}

∣∣T ′(ej)
∣∣ ≥ 2

∣∣∣ . (76)

Then the sufficient alphabet-size is bounded by

qmax =

{
2 , h = 1

min
{

d,
(
h+m
h−1

)}
, h ≥ 2

(77)

Proof: The case of h = 1 is trivial, and so we consider only h ≥ 2. the upper bound of d was proven in [3].
Prior to the first clash,

∣∣{b(e)} ∃t∈T e ∈ C1
t

∣∣ = h, and each clash increments the size of this set by at most 1. The
theorem now follows by Lemmas 3 and 12.

The upper bound in Theorem 5 can probably be lowered. Our main point is that a reduction in the number of
NCSs can reduce the required alphabet size.

VII. STATIC BROADCAST

Let i ∈ [d] be a terminal index. Assume that the size of the min-cut from s to ti is hi. In the previous sections
we have focused on the sender transmitting at rate equal to the size of the minimum of min-cuts separating s from
all t ∈ T . In this section we discuss static broadcast [13], [14], wherein h1 ≥ · · · ≥ hd = h, but regardless of the
difference in min-cut sizes, s wishes to broadcast a static (i.e., fixed, identical) set of data to all ti.

Intuitively, if hj and hk satisfy hj
 hk, then the terminal tj should be able to receive and decode the information
before the terminal tk. This might necessitate encoding the source, in some cases. Consider cases (a) and (b) in
Figure 17. In case (a), each terminal can indeed receive the same number of symbols as the min-cut from s to it.
In case (b), if the same symbols are sent to t1 and t3, then t2 does not receive information at the rate indicated by
the min-cut from s to it. For the case of a sequential transmission, we show that there is an asymptotically optimal
transmission scheme, based on retransmission of random linear combinations of past values.

Let α (N, c, h1) be defined as

α (N, c, h1) = (78)

N · h1 +

c · logq (N · h1)
(
ln
(
c · logq(N · h1)

)
+ 1
)
.

25

In this section X is a process with entropy H (X) = h1 · log(q) per time unit. Assume that the values that X attains
between times 1 and N � h1 are to be transmitted to all t ∈ T . The main result in this section is the following
theorem.

Theorem 6: There is a transmission scheme in which the source transmits between times 1 and α(N,c,h1)
h

, s.t.
with probability at least 1− d

N ·h1
c−1 , each ti can reconstruct the N values of X at rate

N · h1

α(N,c,h1)
hi

N→∞−→ hi. (79)

The fact that, in general, information can be multicast to any terminal at rate equal to its min-cut, was observed
in [4]. The result here is presented in the general context of static broadcast, and offers a conceptually-simple
constructive coding-scheme which has a far lower computational complexity for both G an N .

For the proof of Theorem 6, we first compose a graph G′ = (V ′, E′) from G = (V, E), by adding edges from
s to t ∈ T , so that the minimum of the set of min-cuts separating s from any t ∈ T is h1. That is,

V ′ = V, (80)

E′ = E
·⋃
(

·⋃

i

{
eti

1 , . . . , eti

h1−hi

}
)

, (81)

where for any j ∈ [h1 − hi], v−
(
eti

j

)
= s and v+

(
eti

j

)
= ti (e.g., G and G′ are the graphs in cases (b) and (c),

respectively, in Figure 17). We then find [3] a global coding assignment (as described in Subsection III-A) for G′,
and then discard all edges in E ′ \ E. It should be noted that the addition of edges from s to ti cannot introduce
NCSs, and so the results from Sections V and VI can be directly applied.

Let

x = x1,1, . . . , x1,h1
, , xN,1, . . . , xN,h1

(82)

be a length-(N · h1) vector, s.t. for any ` ∈ [N], {x`,1, . . . , x`,h1
} describes the value of X observed at time unit

`. For j′ ∈
[

α(N,c,h1)
h

−N
]
, we generate h1 vectors,

aj′,1, . . . , aj′,h1
, (83)

each of length N · h1, s.t. each vector is distributed i.i.d. from5 UN ·h1

F . At time j, s transmits the h1 symbols
{

xj,1, . . . , xj,h1
, j ≤ N

aj−N,1 · x+, . . . , aj−N,h1
· x+ , N < j ≤ α(N,c,h1)

h

.

Let ti be a terminal node, and let Gf
ti

be the flow graph from s to ti described in Subsection III-A. Let
{
bi
1, . . . , b

i
hi

}

denote the set of global coding vectors on edges in Gf
ti

⋂
E terminating in ti, i.e.,

{
bi
1, . . . , b

i
hi

}
= (84){

b(e) | e ∈ E− (ti)
∧

e ∈ Ef
ti
\
{
eti

1 , . . . , eti

h1−hi

}}
.

In the remainder, let j be an index s.t. N < j ≤ α(N,c,h1)
h

, and let j′ = j −N . The hi values observed by ti are
then

[bi
k] · [aj′,1

+, . . . , aj′,h1

+]
+ · x+, (85)

for k ∈ [hi].

From (85) we see that the [bi
k] · [aj′,1

+, . . . , aj′,h1

+]
+ serve as “random global coding vectors” for x. We next

find their joint distribution.

5For any m, we signify that the distribution of an m-rate vector with elements from F is uniform over all qm possibilities, by Um

F .

26

Lemma 13: The distribution of

[bi
k+1] · [aj′,1

+, . . . , aj′,h1

+]
+

(86)

given

[bi
1
+
, . . . , bi

k

+
]
+ · [aj′,1

+, . . . , aj′,h1

+]
+
, (87)

is UN ·h1

F .
Proof: The proof is by the following series of inequalities:

N · (h1)
2 · log(q) = H

(
[aj′,1, . . . , aj′,h1

]
)

(88)
(a)
= H

(
[bi

1
+
, . . . , bi

h1

+
]
+ · [aj′,1

+, . . . , aj′,h1

+]
+
)

(b)

≤ H
(
[bi

1
+
, . . . , bi

k

+
]
+ · [aj′,1

+, . . . , aj′,h1

+]
+
)

+H
(
[bi

k+1] · [aj′,1
+, . . . , aj′,h1

+]
+|

[bi
1
+
, . . . , bi

k

+
]
+ · [aj′,1

+, . . . , aj′,h1

+]
+
)

+H
(
[bi

k+2
+
, . . . , bi

h1

+
]
+ · [aj′,1

+, . . . , aj′,h1

+]
+
)

≤ N · (h1)
2 · log(q).

In the above, (a) follows from the fact that the algorithm in [3] constructs the set
{

b(e) | e ∈ Ef
ti

}
, so that its rank

is h1, and so there is a bijection

[aj′,1
+, . . . , aj′,h1

+]
+ ←→ (89)

[bi
1
+
, . . . , bi

h1

+
]
+ · [aj′,1

+, . . . , aj′,h1

+]
+
.

Inequality (b) follows by the fact that conditioning cannot increase entropy [6].

Let N ′
i = N · hi, Ñi = N ′

i − hi + 1, and Ai be the matrix
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1,1 . . . s1,h1

...
...

...
shi,1 . . . shi,h1

.
s
Ñi,Ñ1

. . . s
Ñi,N ·h1

...
...

...
s
N ′

i ,Ñ1
. . . sN ′

i ,N ·h1

sN ′

i+1,1 · · · · · · · · · · · · sN ′

i+1,N ·h1

...
...

...
...

...
...

sα(N,c,h1),1 · · · · · · · · · · · · sα(N,c,h1),N ·h1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where each empty entry represents 0, the entries in the first N ′
i rows are set so that each batch of consecutive hi

rows are linearly independent, and the entries in the remaining rows are set randomly i.i.d. over GF (q). Note that
ti observes Ai · x+. The next lemma (whose proof is in the appendix) shows that with high probability, ti can
recover x.

Lemma 14: Ai contains a non-singular (N · h1)× (N · h1) sub-matrix, with probability at least 1− 1
(N ·h1)

c−1 ,

To prove Theorem 6, we use Lemmas 13 and 14, and the union bound taken over all terminals.

27

VIII. CONCLUSIONS AND FUTURE WORK

In this work we have shown bounds on the alphabet size required for linear codes for network multicast. We have
also considered the number of nodes where coding is required. For this, we have defined the notion of nontrivial
clash set that determine the number of coding nodes, and led to upper bounds on the alphabet size.

As seen from this analysis, the required alphabet size for a given grpah can be reduced by disentangling. It
is also evident that there are classes of graphs for which the alphabet size can be smaller than that suggested at
previous work. Characterizing these classes and determining for a given graph (network) its class can be helpful
in designing an efficient multicast linear code for that network.

Another issue we plan to consider is the question of rate in cyclic networks with small alphabet-size. Previous
work ([1], [2], [3], [4]) has dealt with cyclic graphs by means very similar to a TTL (time to live) ([15]). By
reserving some of the information in each transmitted symbol for storing the number of nodes it had encountered,
nodes can discard transmitted symbols they have already encountered. It has been noted, both in the theoretical
work mentioned above, and in practice, that this is negligible for symbols taken from large alphabets (e.g., IP
packets). We will examine the effect of cycles on small alphabet sizes as well.

IX. ACKNOWLEDGEMENTS

Thanks to V. Dreizin, E. Erez, and Prof. S. Litsyn of the department of EE - Systems in Tel-Aviv University,
for useful discussions.

APPENDIX

In this section we prove Lemma 14 from Section VII.
Proof: Let N̂ = c · logq(N · h1), and let SN ′

i+1, . . . , SN , be a partition of the rows of Ai’s rectangular part,
s.t.

|Sj | = (90){
1 , N ′

i + 1 ≤ j ≤ N · h1 − N̂ + 1
N̂

N ·h1−j+1 , N · h1 − N̂ + 2 ≤ j ≤ N · h1
.

Let s1, . . . , sN ′

i
be the vectors in the first rows of Ai. We choose N · h1 − N ′

i vectors sj ∈ Sj , so that sj

maximizes Rank
({

s1, . . . , sj−1, sj

})
. Let Vj be the event

∀s∈Sj
(91)

Rank
({

s1, . . . , sj−1, sj

})
= Rank

({
s1, . . . , sj−1

})
.

Then

P




⋃

j=N ′

i+1,...,N ·h1

Vj


 ≤

N ·h1∑

j=N ′

i+1

P (Vj) (92)

≤
N ·h1∑

j=N ′

i+1

(
qj−1

qN ·h1

)|Sj |

≤
N ·h1∑

j=N ′

i+1

q−N̂

≤ 1

(N · h1)
c−1 .

We now verify the total number of vectors by summing the number of vectors generated within each group.

α (N, c, h1) =
∑

j=N ′

i+1,...,N ·h1

Nj = (93)

N · h1 − N̂ + 1 + N̂
N̂−1∑

k=1

1

k
≤

N · h1 +

c · logq (N · h1)
(
ln
(
c · logq(N · h1)

)
+ 1
)
.

28

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp.
1204–1216, 2000.

[2] M. Médard and R. Koetter, “An algebraic approach to network coding,” IEEE/ACM Trans. Networking, to be published.
[3] P. Sanders, S. Egner, and L. Tolhuizen, “Polynomial time algorithms for network information flow,” in Proc. 15th ACM Symposium on

Parallel Algorithms and Architectures (SPAA’03), 2003.
[4] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. Inform. Theory, 2002.
[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. Cambridge, MA: MIT Press, 2001.
[6] T. M. Cover and J. A. Thomas, Elements of Information Theory, ser. Wiley Series in Telecommunications. New York, NY, USA:

John Wiley & Sons, 1991.
[7] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. New York, NY: North Holland Mathematical Library,

1977.
[8] B. Carr and S. Vempala, “Randomized meta-rounding,” Random Structures and Algorithms, vol. 20, no. 3, pp. 343–352, 2002.
[9] K. Jain, M. Mahdian, and M. R. Salavatipour, “Packing steiner trees,” in Proc. 14th ACM SIAM Symposium on Discrete Algorithms

(SODA’03), 2003.
[10] K. Jansen and H. Zhang, “An approximation algorithm for the multicast congestion problem via minimum steiner trees,” in Proc. 3rd

International Workshop on Approximation and Randomized Algorithms in Communication Networks (ARANCE’02), Rome, Italy, Sept.
2002.

[11] S. Vempala and B. Vöcking, “Approximating multicast congestion,” in Proc. 10th International Symposium on Algorithms and
Computation (ISAAC’99), Chennai, India, 1999, pp. 367–372.

[12] R. Gallager, Discrete Stochastic Processes. Boston: Kluwer Academic Publishers, 1995.
[13] M. Feder and N. Shulman, “The static broadcast channel,” in Proceedings of the International Symposium on Information Theory

(ISIT’00), Italy, 2000.
[14] N. Shulman and M. Feder, “Communication over an unknown channel via common broadcasting,” Ph.D. dissertation, Faculty of EE -

Systems, Tel-Aviv University, Tel Aviv, Israel, June 2003.
[15] “Rfc 791 internet protocol,” IETF, 1981. [Online]. Available: http://www.ietf.org/rfc/rfc0791.txt

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

