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Abstract

Height restricted constant depth LK is a natural restriction of
GENTZEN’s propositional proof system LK. A sequence (ypn)n of LK-
formulas has polylogarithmic-height restricted depth-d-LK proofs iff the
©n’s possess LK-proofs where cut-formulas are of depth d + 1 with small
bottom fanin and of size quasi-polynomial in n, and the height of the
proof tree is bounded polylogarithmic in n. We will proof a separa-
tion of polylogarithmic-height restricted depth-d-LK proofs from quasi-
polynomial-size tree-like depth-d-LK proofs using the order induction
principle. Our lower bounds technique utilizes HASTAD’s Switching Lem-
mas to obtain so called “cut-reduction by switching”.

We will further explain the connection of height restricted constant
depth LK to theories of relativized bounded arithmetic. Separations of
height restricted constant depth LK in turn yield separations of relativized
bounded arithmetic.

Keywords: Propositional proof systems with height restrictions; Bounded
Arithmetic; Cut-reduction by switching; Hastad’s Switching Lemma

1 Introduction

LK denotes a natural modification of GENTZEN’s sequent calculus for propo-
sitional logic with connectives = and \/, A (both of arbitrary but finite arity).
A sequence (¢y,)n of LK-formulas is ¥4-LK provable iff the ¢,, have LK-proofs
where cut-formulas are of depth d + 1 with small bottom fanin, and are of size
quasi-polynomial® in n. We will put further restrictions on proofs by bounding
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the height of proof trees. (¢,), has polylogarithmic-height restricted ¥4-LK
proofs iff the shortest height of a ¥4-LK derivation tree of ¢,, grows polyloga-
rithmic? in n. In this paper we will show that polylogarithmic-height restricted
¥4-LK is a proper subsystem of quasi-polynomial-size tree-like ¥;-LK — this
extends our results from [4] where we have separated polylogarithmic-height re-
stricted resolution from quasi-polynomial-size tree-like resolution (i.e., the case
d = 0). Our separation will make use of the order induction principle which
can be phrased as minimization in the form that if some propositional variables
among pg, - . . , Pm—1 are false then there is a false one with minimal index. Our
separating tautologies OInd?(m) are then obtained from the order induction
principle by replacing variables by SIPSER functions of depth d in m? new vari-
ables. The separation will be obtained by characterizing the minimal height of
a $4-LK proof of OInd*(f(n)) when f(n) is a function in n which grows super-
polylogarithmically, i.e. faster than (logn)¢ for any ¢ € N. We will call the
function which maps n to the minimal height of a $4-LK proof of OInd*(f(n))
the d-th height complexity of OInd?(f(n)).

Our Main Theorem will be characterizing the growth of the d-th height
complexity of OInd?(f(n)) by f(n)®®). In particular, this implies the sep-
aration of polylogarithmic-height restricted ¥4-LK from quasi-polynomial-size
tree-like ¥4-LK, as (OInd%(n)), has tree-like cut-free-LK proofs of size linear
in m, but our Main Theorem shows that provability in polylogarithmic-height re-
stricted ¥4-LK would imply polylogarithmic upper bounds to the identity func-
tion, hence it cannot be provable in polylogarithmic-height restricted ¥ ;-LK.
Furthermore, for any number-theoretic functions f, g such that g(n) eventually
grows stronger than the maximum of (logn)¢ and f(n)¢ for any ¢ € N, we obtain
that f-height restricted X4-LK is separated from g-height restricted ¥;-LK.

Our lower bounds technique utilizes a method from Boolean complexity
called “HASTAD’s Switching Lemma” to prove a cut-reduction technique which
we will call “cut-reduction by switching”. The utilization of HASTAD’s Switch-
ing Lemma follows [7] where it is applied to oracle computations. In [11] the
same approach is used to reduce the complexity of ¥;-LK refutations.

Height restricted proof systems naturally occur when proofs of bounded
arithmetic theories are translated to propositional proof systems. In the follow-
ing, we will explain this connection a little further.

Theories of bounded arithmetic have been introduced by Buss in [5]. They
are logical theories of arithmetic where formulas and induction are restricted
(bounded) in such a way that provability in those theories can be tightly con-
nected to complexity classes (cf. [5, 12]). A hierarchy of bounded formulas, ¢,
and of theories S C T3 C S3 C T2 C S3... has been defined (cf. [5]). The
class of predicates definable by X% formulas is precisely the class of predicates
in the ith level ¥ of the polynomial time hierarchy. The »¢_definable functions
of S form precisely the ith level of the polynomial time hierarchy of functions,
the latter being given by those functions which are polynomial time computable
with an oracle from X¥_,.

2A function f(n) grows polylogarithmic (in n) iff f(n) € (logn)OM).



S¢+l(a) < polylogarithmic-height ¥4-LK
N N
Ti*'(a) < quasi-polynomial-size tree-like ¥ 4-LK
N

quasi-polynomial-size sequence-like ¥ ;-LK

Figure 1: Translations and separations of S9™(a) and T4 () and related
¥4-LK systems.

It is an open problem of bounded arithmetic whether the hierarchy of the-
ories collapses. This is connected with the open problem of complexity theory
whether the polynomial time hierarchy PH collapses. The hierarchy of bounded
arithmetic collapses if and only if PH collapses provably in bounded arithmetic
(cf. [14, 6, 18]). The case of relativized complexity classes and theories is com-
pletely different. The existence of an oracle A is proven in [1, 17, 8], such that
the polynomial time hierarchy in this oracle PH# does not collapse. Building
on this one can show Ti(a) # Si™ (@) (cf. [14]). Here, the relativized theories
Si(a) and Ti(a) result from Si and T%, resp., by adding a free set variable
a and the relation symbol €. Similarly also, Si(a) # T(«) is proven in [10],
and separation results for further relativized theories (dubbed £%(a)-L™IND —
a definition can be found e.g. in [2, 3]) are proven in [16]. Independently of
these, and with completely different methods, we have shown separation results
for relativized theories of bounded arithmetic using a method called dynamic
ordinal analysis [2, 3]. Despite all answers in the relativized case, all separation
questions continue to be open for theories without set parameters.

Propositional proof systems and bounded arithmetic theories are connected.
In [13, 3.1] it is shown that Ti(a) translates to gquasi-polynomial-size tree-
like ¥o-LK proofs utilizing the PARIS-WILKIE-translation of language [15].
Similarily, it can be shown that provability in T¢*!(a) translates to quasi-
polynomial-size tree-like ¥4-LK proofs. An examination of dynamic ordinal
analysis (cf. [2, 3]) shows that provability in S97'(a) and T¢(a) can be trans-
lated to polylogarithmic-height restricted ¥4-LK proofs. As explained above,
we show a separation of polylogarithmic-height restricted ¥4-LK from quasi-
polynomial size tree-like ¥4-LK using the order induction principle. KRAJICEK
has proven in [11] a super-polynomial speed-up in size between sequence-like and
tree-like ¥4-LK utilizing the weak pigeonhole principle. Therefore, we obtain
translations and separations of bounded arithmetic theories S¢(a) and T¢(a)
and connected proof systems as represented in Fig. 1.

In addition to this, we will extend our results to further bounded arithmetic
theories XY (a)-L™IND and corresponding sub-linear-height restrictions given

by functions n — 2; <(10g(i+1) n)o(l)) for i > 0.



2 The Proof System > ;-LK

Let N denote the non-negative integers 0,1,2,....

We recall the definition of language and formulas of GENTZEN’s proposi-
tional proof system LK. LK consists of constants 0,1, propositional variables
Do, P1,P2 - - . (also called atoms; we may use z,y,... as meta-symbols for vari-
ables), the connectives negation —, conjunction A and disjunction \/ (both of
unbounded finite arity), and auxiliary symbols like brackets. Formulas are de-
fined inductively: constants, atoms and negated atoms are formulas (they are
called literals), and if ; is a formula for i < I, so are A\, ;s and \/,_; ¢i. —p
is an abbreviation of the formula formed from ¢ by interchanging A and \/, 0
and 1, and atoms and their negations. The logical depth, or just depth, dp(p) of
a formula ¢, is the maximal nesting of A and \/ in it. In particular, constants
and atoms have depth 0, the depths of ¢ and -~y are equal, and dp(\/; . ¢:)
equals 1 + max;<7 dp(p;)-

In our setting, cedents ', A,... are finite sets of formulas, not sequences
as in [11], and the meaning of a cedent I' is \/T'. We often abuse notation by
writing ', or I' V ¢ instead of I' U {¢}, or by writing ¢1,..., ¢ instead of
{‘Pla---;‘Pk}-

Our version of LK does not have structural rules as special inferences, they
will be available as derivable rules. LK consists of four inference rules: initial
cedent rule, introduction rules for A and \/, and a cut-rule.

Definition 1. We inductively define that T" is C-LK provable with height n, in
symbols % T, for T a cedent, C a set of formulas and n € N. % T holds iff

(Init) n > 0 and T is an initial cedent, i.e. 1 € ', or z,—x € T for some
variable x.

(A) There are some N\, ;i €T, n' <n such that }%’ T, p; for alli < 1.
(V) There are some \/;.;p; €T, ig < I andn' <n such that }%’ T, i -

(Cut) There are some ¢ € C and ' < n such that }%’ T, and }%I L, —p.
We say that T is cut-free-LK provable with height n iff I% r.

In order to make our definition of X;-LK precise we have to define a fine
structure on constant depth formulas.

Definition 2. Let S,t,d be in N. Eds’t is the set of all formulas ¢ with
i) dp(p) <d+1;
i) if dp(p) = d+ 1, then the outermost connective of ¢ is \/;

i11) all depth > 1 sub-formulas of ¢ have the arity of their outermost connective
bounded by S; and



) all depth 1 sub-formulas of ¢ have the arity of their outermost connective
bounded by t.

A formula is in Hg’t iff its negation is in Eds’t.
Now we are prepared to say what we mean by ¥;-LK.

Definition 3. Letd € N, f,n: N — N be functions, and (I'y), be a sequence
of tautological cedents.

We say that (Tp)n is (d, f)-LK (or (X4, f)-LK) provable with height n iff
there is a sequence of subsets C,, C Eif(")’f(n) of cardinality bounded by 27(")
such that eventually Ty, is C,,-LK provable of height n(n).

Then X4-LK denotes (X4, (logn)°M)-LK, i.e. (T'y,), is £4-LK provable with
height n ff there is a ¢ € N such that (T'y,), is (d,(logn)¢)-LK provable with
height n.

We will often abuse notation and write I';, is ¥4-LK provable with height
n(n) instead of (T'y,), is X4-LK provable with height n.

Structural rules are not included in the definition of LK. They are obtained
as derivable rules which is stated in the next proposition. It is readily proven
by induction on 7.

Proposition 4 (Structural Rule). Assumen <n',C CC' andT C TV, then
IZT implies % I

The following propositions on (A )-Inversion and (\/)-Exportation are proven

by induction on 7.

Proposition 5 ((A)-Inversion). Assume %F,/\KI i, then |2 T,p; holds
foralli<1I.

Proposition 6 ((\/)-Exportation). Suppose % I, Vicrpi holds, then
%F,‘;DO,---,‘PI—l .

The proof of the next Lemma and Proposition follows the standard one
which can be found e.g. in [2, 3].

Lemma 7 (Cut-Elimination Lemma). Let ¢ € EdS_’:l andC C Eds’t such that
C includes all EdS’t—sub—formulas and all negations of Hg’t—sub—formulas of p. If

2T, and [ A,~p, then WF,A.
Proposition 8 (Cut-Elimination Theorem). Let C C Eds_’:l be closed under
sub-formulas and let C' :=C N (Eg’t U Hg’t). Then [T implies }2—7 r.

We repeat the translation (also called embedding) of provability in S¢(a),
T4(a), and more general of ¥%(a)-L™TIND, to LK from [2, 3]. We do not
introduce language and theories of bounded arithmetic. All what we need from
bounded arithmetic is that formulas translate in a certain way to the language



of LK as described below, and that provability translates in the way described
by the next theorem. Readers not familiar with bounded arithmetic simply
can view these connections to bounded arithmetic as a motivation for studying
the resulting propositional proof systems. For more background on bounded
arithmetic see [5, 12]

There exists a canonical translation due to PARIS and WILKIE [15] from
the language of bounded arithmetic to the language of LK (see [12, 9.1.1], or
[2, 3]). Let ¢ be a formula in the language of bounded arithmetic in which no
individual (i.e. first order) variable occurs free — we call such a formula (first
order) closed. Then [¢] denotes the translation of ¢ to the language of LK,
which for example maps the atom «(t), for ¢ a closed term of value m; € N, to
the propositional variable p,,,, and bounded quantifiers to connectives A resp.
V, eg. [(Vz < t)o(@)] = Ai<p, [¢()] . It follows that a formula ¢(z) from XY

(with 2 being the only variable occurring free in ¢) translates to ([¢(n)]), in

. (log )¢ c
nguasipely i e, in Ei #7008 ™) o1 some ¢ € N.
Let log® (n) be the k-times iterated logarithm applied to n, and 2;(n) the
k-times iterated exponentiation applied to n.

Theorem 9 ([2, 3]). Let p(x) be a formula in the language of bounded arith-
metic, in which at most the variable x occurs free.

i) If S4(a) F ¢(x), then [p(n)] is £4-LK provable with height O (log@) ) .

i) If T¢(a) F (), then [o(n)] is £4-LK provable with height (logn)°M) .
iii) If $5(a)-L™IND + o(z), then [p(n)] is Tq4-LK provable with height
0 (log(m+1) n) . O
Combining this Theorem with the Cut-Elimination Theorem we obtain

Corollary 10 ([2, 3]). Let ¢(z) be a formula in the language of bounded arith-
metic, in which at most the variable x occurs free.

i) If T¢(a) F @(x) or S () F p(z), then [p(n)] is Sq-LK provable with
height (logn)°™M) . In this case we say that [p(n)] is polylogarithmic-
height restricted X4-LK provable.

i) If £b 10 (a)-L™HIND b o(z), then [p(n)] is L4-LK provable with
height 2., ((log(m+1) n)o(l)). In this case we say that [o(n)] is
2m ((log(m+1) n)o(l))—height restricted 4-LK provable. O

3 Cut-reduction by switching

Usual cut-elimination procedures (like GENTZEN or TAIT style cut-elimination)
eliminate outermost connectives of cut-formulas first. In general, the cost of



applying such cut-elimination techniques is an exponential blow-up of certain
parameters of derivations like their height, as seen in the previous section. Later
we want to show that the order induction principle needs a certain height of
LK-proofs. Our lower bounds technique will only work if the heights of the
proofs grow sub-linear. Thus, in order to reduce the degree of cut formulas in
the derivations in Corollary 10 we cannot apply the Cut-Elimination-Theorem
any further — this would result in upper bounds on heights of at least quasi-
polynomial growth.

At this point, the reduction of cuts, which is necessary in our proof of
lower bounds, needs a different cut-reduction technique which we will call cut-
reduction by switching. It relies on methods from boolean complexity called
HASTAD’s Switching Lemmas. Cut-reduction by switching will reduce cuts
“inside-out”, but will leave the proof-skeleton unchanged, e.g. the heights will
remain the same. The price will be that not only the cut-formulas are reduced,
but also the formula which is derived. The idea is to find a so-called restric-
tion (i.e. a partial substitution of propositional variables by truth values) for a
given derivation of a formula ¢ such that after applying that restriction to the
proof cut-formulas are sufficiently reduced but the restriction of ¢ is sufficiently
meaningful.

We will follow [7] where such boolean complexity techniques are successfully
applied to reduce the complexity of oracle computations related to definable
functions in bounded arithmetic. In [11] the same approach is used to reduce
the complexity of ¥4-LK refutations.

In order to formulate our Cut-Elimination-by-Switching-Theorem, we need
some notation. Our logarithms are always base 2.

(1) Fix m > 1, d > 0. Let [m] denote the set {0,...,m — 1}. For
Z,Y1,---,Yd € Nlet py y, ...y, be a BOOLEAN variable, and let

Biy(m) = {Pe,yr,ya * TrY15---,Ya <M} .

The cardinality of Bq(m) is m?*!. We shall henceforth use § as an abbreviation
of y1,...,y4 Oor y1,...,y4—1, depending on the context it occurs. Note that
By(m) is the set of variables p, with z < m.

(2) A propositional formula is ¥} iff it is a disjunction of conjunctions of at
most ¢ literals, i.e. if it is in Ef’t for some S. A propositional formula is IT} iff
its negation is ¥}, and it is A! iff it is equivalent to both ¥¢ and IT{. A formula
@ is hereditarily A}, denoted by ¢ € Al iff every sub-formula of ¢ is Af. We
inductively define for d > 0:

goEHi’t@)—'gerg’t
pexyt o peAl
chEf’tﬁcpE \/apiandcpiEA'iforalli<w

i<w
‘pegdsiz‘i’wz \/wiaHdMSSandcpiEHdelforalli<w

i<w



Observe that in case %" we do not assume w < S!

d

(3) We define for z < m some general E;”’l—formulas Dy (z) in m® variables

from Bg(m). They compute SIPSER functions and are defined by

Dim@ = AN 'V o Q7' Q' py

yi<m ya2<m Ya—1<m yg<m

where either Q4= or Q% is /\, depending on whether d is even or odd, respec-
tively, and the other is /.

(4) We are now ready to formulate cut-reduction by switching. The notation
Blp, + ¢, : & € M] denotes the result of simultaneously replacing variable p,
by formula ¢, for all z € M.

Theorem 11 (Cut-Elimination by Switching). Let d € N and € € R with
d>1land0<e< % Let M C N be some infinite set. For m € M, let n,, € N,
t=t(m) =m2=¢, § = S(m) =2', By, a formula with variables in By(m), and
Cm C Eg’t with |Crm| < S. Furthermore, assume that B, [pz — Dygm(z) 1 <
m] is Cmy-LK provable with height 1y, .

Then, for all m € M which are sufficiently large, there is some QQ C [m]
such that

i) [[m]\ Q| > vm -Togm ;
i1) B, [pw +—0:z€ Q] is AL -LK provable with height 1,,.
We now sketch the proof of this Theorem. We go on introducing notations.
(5) Let d,;mn > 1. We have already defined sets By(m) of propositional
variables. They are partitioned into blocks via

(Bd(m))(z,y1,---,yd—1) = {pwaqumayd—lqz :2< m}

for (z,y1,.--,ya-1) € [m]%.

(6) A restriction p on Bg(m) is a map going from Bg(m) to {0, 1, x}:
p : Bg(m) = {0,1,%} .

We should think of p(p) = 0 or p(p) =1 as p is replaced by 0 or 1 respectively,
and of p(p) = = as p is left unchanged. Alternatively, we can think of p as a
partial map going from Bg(m) to {0,1}.

(7) The probability space Rj’m (g) of restrictions p for 0 < ¢ < 1 is given as
follows. Let z < m, 7 € [m]?! and y4 < m.



pER],. () 1 P=Poiya

Meaning: first choose s; g such that s, y = * with probability ¢ and s, 3§ = 0
with probability 1 — ¢; then choose p(p) such that p(p) = s,,5 with probability
g and p(p) = 1 with probability 1 — q.

Define R, (¢) by interchanging 0 and 1:

pE R(;,m (q) 1 P =DPz.g,yq

-
< |
=]

(8) Let p € R:;m (g). We define a transformation [,, which maps formulas
with variables in B4(m) to formulas with variables in By (m):

i) Apply p.

ii) Assign 1 to every py 7. with p(p;,g5,.) = * such that there is some z < 2’ <
m with p(pg,7,.-) = *. Le., all but one variable in a block are touched.

ili) Rename each p, 7. by ps g
For p € Ry, (q) replace 1 by 0.
(9) The following lemma is HASTAD’s second switching lemma, see [9].

Lemma 12 (HASTAD [9]). Let d,i > 1 and v € {+,—}. Let ¢ be a Efjrtl—
formula with variables from Bg(m) and 0 < g < 1. Then

Procry () [Plep & 2] < S°- (6gt)" .

ILe., the probability of a randomly chosen p from Ry, (g) that the formula ¢lg,

is not equivalent to some th -formula is at most S* - (6qt)*.

(10) For the following inductive proof, the previously defined SIPSER func-
tions Dg ,,(x) have to be modified. We define Dy ,,(x) for every < m with



variables from B4(m). They compute modified SIPSER functions (cf. [9, 7]) and
are defined by

» — d—1 d
Dd,m(m) - /\ \/ .- Q Q De,g
y1<m ya<m Yya—1<m  ya<y/ 3 (d+1) mlogm

where either Q4= or Q% is A\, depending on whether d is even or odd, respec-
tively, and the other is \/. Our logarithms are always base 2. Note that for
distinct z, the formulas Dy ,,,(x) contain distinct propositional variables.

(11) The next lemma is also due to HASTAD [9]. We repeat essentially the
version stated by Buss and KRAJICEK [7].

We say that a formula ¢ contains formula v, written as ¢ C ¢, if by renaming
and/or erasing some variables we can transform ¢ into .

Lemma 13. Let m be big (i.e. m > 10%°), d > 1, m := \/%(d—}— 1)m logm,

q:=1/ W and assume q < % Then the following holds:

i) Assumed > 2 and let v(d) = + orv(d) = — if d is odd or even respectively.
For all x < m:

m~2 .

|~

PrpER;,(fn)(q) I:Ddfl,m (z) ;d— Dd,m(m) rgp] <

Le., the probability of a randomly chosen p from IR;,(:Z) (q) that the formula

Da,m(2)lg, does not contain Dy_1,,(x) is at most sm™2.

it) For d =1 we have for all x < m:
_ 1,
Pr.ert, (0 [DLm(x) lep = 1| < g™ -

Le., the probability of a randomly chosen p from Rim (q) that the formula
D1 () is transformed to 1 by |, is at most %m_Q.

For R C [m] with |R| > m we have
1 1,
Pty (o |2 € B s(p) = #} 2 5q-|Rl| 21— zm™ .

Le., the probability of a randomly chosen p from Rfm (q) that for at least

an %q—fmction of R the corresponding variables p, are left unchanged by
p (i.e. are assigned x) is at least 1 — gm™>.

(12) Utilizing this we obtain the following lemmas which immediately proof
our Cut-Elimination-by-Switching-Theorem 11. For the rest of this appendix

fix e € R with 0 < € < 1. Fix some infinite set M C N. For m € M, let
t=t(m) =m2 ¢, S = S(m) =2, and B,, a formula with variables in By(m).

For a set C of formulas let (x)7*(C) denote that C C Ej’t and |C| < S.

10



Lemma 14. Let d > 1, f : N — N some function and C,, be given such that
()7 1 (Cm) and By [py ¢ Day1,m(z) : @ < m] is Cy-LK provable with height
f(m) for allm € M.

Then, for m € M sufficiently large, there is some C,, such that (x)7(C;,)
and By, [ps < Dy m(z) + © <m] is Cl,-LK provable with height f(m).

Lemma 15. Let f : N — N be some function and C,, be given such that
(*)T(Crm) and By, [ps < D1,m(z) : @ <m] is C;n-LK provable with height f(m)
for allm e M.

Then, for m € M sufficiently large, there is some Q = Qn, C [m] such that

i) [[m]\ Q| > v/m -logm ;
it) By, [px «~0:z¢€ Q] is AL LK provable with height f(m).

4 The height complexity of order induction

In this section we will characterize the height complexity of order induction. For
a sequence (7, )n of tautologies we define its d-th height complezity hcqa((Th)n),
also written as hcg(7,), to be the function which maps n to the minimal 7 such
that 7, is ¥4-LK provable with height 5. In the following we will characterize
the d-th height complexity of the order induction principle for some particular
Yq-property (given by the SIPSER functions Dg m(z)).

The principle OInd(m) of order induction for m is given by

OInd(m) := /\ (( /\ py) —>pm) - wé\mpz

z<m y<z

(of course A — B is an abbreviation of \/{—A4, B}). The meaning is easily un-
derstood if we consider its contraposition which expresses minimization: if some
variables among po, ..., pm—1 are false then there is a false one with minimal
index. We extend the complexity of OInd(m) by replacing variables p, by the
SIPSER function Dy () from the previous section:

OInd*(m) := Olnd(m)[p, & —Dam(z) : z <m] .

Observe that m in OInd%(m) also controls the width of the SIPSER functions.
In the following we will determine the d-th height complexity of OInd?(f(n)
for functions f : N — N which grow super-polylogarithmically, i.e. f(n) =
(logn)~™). This is satisfied for example for f(n) = 2;((logl*" n)?) for i > 1.

It is easy to show that OInd%(m) is cut-free-LK provable with height O(m).
E.g., use induction on k to show that

- /\ (/\pj —>pi), /\ pi, {—pi 11 < k}
i<m j<i i<m

is cut-free-LK provable with height H (k) for k = m,...,0, with H(k) := 3(m+
1 — k). Furthermore, -y, ¢ is cut-free-LK provable with height 2i for every ¢

11



of depth 4. Thus, OInd(f(n)) [ps < ¢7 : = < f(n)] is cut-free-LK provable of
height O(f(n)), for any function f : N — N and any sequence of constant depth
formulas ¢? for z < f(n) and n € N. Hence for any fixed d,i € N we obtain

hea (OInd'(f(n))) = O(f(n) .

The next theorem states the lower bound for At-LK derivations of the order
induction principle. It is sometimes called “Boundedness Theorem”.

Theorem 16 (Boundedness). If OInd(m) is A% -LK provable with height 1,
thenm <n-t .

We will give a detailed proof of this Theorem in the next subsection. But be-
fore we do this we combine the Boundedness Theorem with Cut-Elimination by
Switching to obtain a lower bound on the height complexity of order induction.
With rng(f) we will denote the range of a function f.

Theorem 17. Let d € N with d > 1. Let f be some number-theoretic function
which grows super-polylogarithmically, i.e. f(n) = (logn)“"). Then, the d-th
height complezity of (OInd®(f(n)))n has lower bound f(n)?M:

hea(OInd?(f(n)) = f(n)®V .

Proof. Let n(n) := hcg(OInd?(f(n))). Assume for the sake of contradiction that
the assumptions of the Theorem are satisfied, but 7(n) # f(n)?® or, equiva-
lently, f(n) # n(n)°M). By definition, there is ¢ € N with ¢ > 1 such that for
n € N there is C,, C Eds’t with |C,| < S letting ¢ = t(n) = (logn)¢, S = S(n) =
2¢, such that OInd%(f(n)) is Cp,-LK provable with height n(n). Furthermore,
by assumption, rng(f) must be unbounded, and, as f(n) = (logn)“®), there is
some Ny € N such that f(n) > (logn)*® for all n > Nj.

We will construct some infinite subset M of rng(f) which can be used to
apply Cut-Elimination by Switching. To this end let mg be given. We will
construct some m; > mg which we will put into the set M. Fix some ng > Ny
with (logno)%¢ > mg. As f(n) # n(n)°® there must be some n; > ng satisfying
f(n1) > n(n1)*. Let my := f(ny). Then (logn;)® < m% and my > myg. Hence
Cn, C Zg’t and |Cp,| < S for £ := m% and S := 2%, Put m; into the set M and
define Cy,, := Cp; and 1y, = n(n1).

Then, the prerequisites of the Cut-Elimination by Switching Theorem are
satisfied, and we obtain some large m € M, some set () C [m] not too big (i.e.

[[m] \ Q| > v/m -logm > +/m) and a Ai-LK derivation of
Olnd(m)[p, + 1 : z € Q]

of height 7n,,. By pruning and renaming of variables this derivation can be
transformed into a A!-LK derivation of OInd(m — |Q|) of height 7,,, hence
the Boundedness Theorem yields m — |Q| < 1 - t = Ny - m%, which together
with the largeness condition on @ rewrites to 7, > mi. By construction of M
there is some n such that n(n) = 9, and m = f(n) > n(n)*, contradicting the
previously obtained m < n(n)?. O
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S¢(a) < polylogarithmic-height ¥4-LK

¥ N
sR3T () < 9lloglogm)®® paioht 3, 1K
N N
s5,,(a)L3IND < 2 ((log(3) n)0<1>)-height $4-LK
¥ N

Figure 2: Separation of £,  (a)-L™'IND and corresponding %4-LK proof
systems

Together with the previously obtained upper bound this shows
Corollary 18. For functions f : N — N with f(n) = (logn)“") we have

hcd((’)Indd(f(n))) = f(n)°O . O

Having characterized the height complexity of order induction, the sepa-
ration of bounded arithmetic theories follows straight forwardly. We define a
general I1%(a)-formula A*%(a,z) in the language of bounded arithmetic by

(Vy1 < @) (Fy2 < a)... (Q" 'ya—1 < a) (Q%a < a) a((z,y1,---,Ya))

where either Q¢! or Q7 is V, depending on whether d is even or odd, re-
spectively, and the other is 3. It is quiet easy to see that for any term t(x)
the formula OInd(t,~A*%(t,.)) is provable in T¢*!(a) and translates to LK
as OInd%(t(n)). Now, the d-th height complexity of OInd%(¢(n)) is t(n)?™) by
Corollary 18, hence OInd(t, ~A*?(t,.)) cannot be provable in S9! () because
translating this (Corollary 10) would yield polylogarithmic upper bounds to the
d-th height complexity of @Ind®(¢(n)) which is impossible for e.g. t(n) = n.
Similarly, we obtain for d > 0 and m > 1 a separation of X%, (a)-L™IND
from 2% ., (@)-L™IND because the latter can prove OInd*(t(n)) for t(n) =

2 ((log(m+1) n)2) which again has its d-th height complexity bounded by
t(n)¥Y), but provability in ¢ +m (@)-L™TIND would result in a weaker up-
per bound of ¢(n) of the form 2, ; ((log(m) n)o(l)) .

4.1 The proof of the Boundedness Theorem

For this subsection we fix t € N, t > 1. By [ ¢ we denote that ¢ is A'i—LK
provable with height . A formula ¢ will always be one from LK. We want to
prove the Boundedness Theorem, i.e.

K Olnd(n) = n<n-t.

13



Before we can do this we first have to fix some suitable notations.

Let ¢ be an LK-formula. For a set M C N we define ¢[M] to be the result
of replacing p; by 1if i € M, and by 0if i ¢ M. Then let M F ¢ iff [M] is
true.

For two sets Mt, M~ C N we define [MT, M~] to be the set of all subsets
M of N that contain M* but are disjoint from M ~:

[Mt,M™] = {M:M*"CMCN\M}.

Definition 19. For a formula ¢ and a truth value v € {0,1} we define that
(M*,M7™) fizes ¢ to v iff MT and M~ are disjoint subsets of N (this implies
[M*,M~] # 0) and the truth of ¢ is fivzed on [MT,M~] to v, i.e. o[M] =v
for all M € [M*,M~]. We say that (M, M) fizes ¢ iff (M*, M) fizes ¢
to some truth value v € {0,1}.

A true Al-formula ¢ can always be fixed to 1 by a pair M+, M~ which is
small, i.e. the cardinality of M+ and M~ together is bounded by ¢, denoted by
|M*|+ |M~| <t In addition, M+, M~ will respect any satisfying assignment
of ¢:

Lemma 20. Let ¢ € Ai and My C N such that My F . Then there are
M* C My and M~ C N satisfying |[MY| + |M~| < t, MyN M~ = ( and
(M+,M~) fizes ¢ to 1.

Proof. The assumption ¢ € A! particularly implies ¢ € A%. Hence, ¢ is equiva-
lent to some \/, g A, <; 0y for some S and some literals 6,,. From the assump-

tion My F ¢ it follows that there is some zo < S such that Mo F A, _;6z0y -
Fix such an zg < S. Let

Mt = {i : 04, = p; for some y < t}
M~ :={i : 04y, = —p; for some y <t} .
Then the assertion follows. O

The following Lemma is the main technical part for proving the Boundedness
Theorem 16. Let

OProg(m) = J\ (( N py) —>pz)

z<m y<z
hence OInd(m) has the form - OProg(m) VvV A, ,, Pz-
Lemma 21. [ - OProg(n),p, =m<n-t .

Proof of the Boundedness Theorem 16. Assume [ OInd(n). By applying
first (V)-Exportation and then (A)-Inversion from Section 2 we obtain
Kk = OProg(n), pp—1. Hence, the above Lemma shows n — 1 < 7 -t and the
assertion follows. O
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Proof of the above lemma. Assume for the sake of contradiction that
K - OProg(n), pm and n-t<m .

For a finite set M C N let enas denote the enumeration function of N\ M. Let
R7(M) be the set {a : a <enp(y)}UM.

We will construct by recursion on I sets A; C AL, Mﬁ,M[ C Nforl =
n,...,0 satisfying the property G(I, A;, M;", M;”) given by

i) Ik~ OProg(n), A; .

i) M+ M7 <t-(n—1)

iii) all ¢ € A;, which are not variables, are fixed by (Ml+, M) to 0.
iv) RHY(MP E A, .

v) R MY NM =0 .

For | = 0 the assertion follows. Because, if we have constructed Ay C
Al Mgfo, M, C N which satisfy G(0, Ag, My, M, ), then G(0,Ag, Mg, My) i)
shows s = OProg(n), Ay , hence Ay must be an axiom. But this contradicts
G(0,Ag, M, M) iv) and the assertion follows.

We now prove the assertion by backwards-induction from [ = 75 to
0. To start the induction for I = 5 let A, := {pn} and M} :=
M, = 0. Then G(n,A,, M}, M,") i), ii), iii), v) immediately follow. For
G(n, Ay, M.}, M,") iv) observe that &y (n - t) =1 -t < m, hence m ¢ R"(0).

For the induction step /41 ~» [ assume that we have constructed Ay ; C Al
M, M, C N satisfying G(I+ 1, Ayq, ML, M7 ). We will consider the last
inference in G(I+1, Ay41, MlJfH, M) i) which leads to KL - OProg(n), iy -
Let R* abbreviate RUTD (M lfrl). In order to simplify sub-cases, we first argue
that it is enough to find some ¢» € At and M+, M~ C N satisfying the following
property:

I) [&-OProg(n), A1, .
IT) (M, M) fixes 9 to 0.
IIT) (M*|+|M~|<t.
IV) Mt C R* .

V) R*NnM~ =0 .

Then, A; := Ay U{o}, Ml+ = Ml'_’;_l UM, M = My UM~ will satisfy

property G(I, Ay, M;", M;"), because G(I,A;, M;", M, ) i) and ii) are obvious;
and for G(I, Ay, M;", M;") iii), iv) and v) we observe

A) RM(MF) C© RMFE(ML) U Mt = R*.  This follows, because
epufap(7) < @ (7 + 1), hence RY(M U {a}) C R™!(M) U {a}.
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B) V) and the induction hypothesis G(I+1, Ajy1, M}, M,

M; =0, hence G(I, Ay, M;t, M;") v) follows using A).

) v) imply R*N

C) A) and B) show 0 # [M;",M;]. By construction [M;",M;"] C

[M}} |, M), hence (M;F, M) fixes all ¢ € Ayyq which are not variables,
to 0.

Furthermore, [M;", M;"] C [M*, M ], hence II) implies that ¢ is fixed to
0 by (M;", M;"). Thus, G(I, Ay, M;+, M) iii) follows.

D) Utilizing B) and A) we obtain R"*(M;"),R* € [M;", M;"] hence G(I +
1, A4, Mlﬁ_l, M) iv) shows that (M;", M) fixes every formulain A;iq
to 0. In particular, RU"¢(M;") ¥ Ayy1, which shows G(I, Ay, M;", M) iv).

Now we distinguish sub-cases according to the last inference which leads
to }l.Jr—l—'OProg(n),AHl . In the sub-cases, we either construct v, M,
M~ satisfying I) to V), or we directly construct A;, M;", M, satisfying
G(I, Ay, M;t, M), depending which is easier.

(A) There is some ¢ = A;_;¢; € Ayyq such that I = OProg(n), Ay, p; for
all j < J. By induction hypothesis G(I+1, A;41, Mlﬁ_l,Mljrl) iv) we have
that R* ¥ ¢. Thus, there is some jo < J such that R* ¥ ¢ ;.

Let 9 := j,, then ¢ € A% [= I)]. By Lemma 20 there are some M+ C R*
[= IV)]and M~ CNsuch that R*N M~ =0[= V)], |[M+|+|M~| <t
[= III)] and (M*,M™) fixes ¢ to 0 [= II)].

(V) The first sub case is that = OInd(n) is not the main formula of the
inference. ~ Then, there is some ¢ = Vj <y%7 € Ay such that
li.—'(’)Prog(n),AHl,gojo for some jo < J. By induction hypothesis
Gl + 1, A1, Mt , M) iv) we have that R* ¥ ¢, thus also R* ¥ ¢j,.

11 Mg
Now the same argumentation as in the (/\)-case can be applied.

Now assume that the main formula is = OInd(n). Then, there is some
x < n such that

}L- - OPrOg(n):AH-la ( /\ py) A—pg .

y<z

A) Assume, there is some y < « such that y ¢ R'(M},).
By (A)-Inversion we obtain I%—'OProg(n),AHl,py. Let A; =
Al_,_l,py [=> g(l,Al,Mf,Mf) i)]7 Ml+ = Mlﬁ-l and Mf =
M7, [= G, ALM', M) i), ). Now RM(M') C R*
[= G(I, Ay, M;", M;") v)], hence, using the assumption y ¢ RV (M),
we obtain RV (M;T) ¥ Ay [= G(1, Ay, M;T, M) iv)].

B) Now assume that A) does not hold, hence y € R"*(M;} ) for all
y < z. This implies € R"*H(MY,) C R*. Because, enpy(y) ¢
RY(M), hence y € RY(M) for all y < z implies enpr(y) > x, hence
eny (v + 1) > z and in sequel z € R7*T1(M).

16



By (A\)-Inversion we obtain [ = OProg(n), Ajy1,ps. Let ¢ := —p,
[= T)], M+ = {g} and M~ := § [ II), III), IV), V)].

(Cut) There is some ¢ € A! such that [ —OProg(n),Am1,¢ and

X = OProg(n), Aiy1, . W.lo.g. we may assume R* ¥ ¢. The same
argumentation as in (/\) yields the assertion.

O
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