
Tight lower bounds for the asymmetric k-center problem

Eran Halperin∗ Guy Kortsarz† Robert Krauthgamer∗

Abstract

In the k-center problem, the input is a bound k and n points with the distance between
every two of them, such that the distances obey the triangle inequality. The goal is to choose a
set of k points to serve as centers, so that the maximum distance from the centers C to any point
is as small as possible. This fundamental facility location problem is NP-hard. The symmetric
case is well-understood from the viewpoint of approximation; it admits a 2–approximation, but
not better.

We address the approximability of the asymmetric k-center problem. Our first result shows
that the linear program used by Archer [Arc01] to devise O(log∗ k)–approximation has integrality
ratio that is at least (1 − o(1)) log∗ n; this improves on the previous bound 3 of [Arc01]. Using
a similar construction, we then prove that the problem cannot be approximated within a ratio
of 1

4
log∗ n, unless NP ⊆ DTIME(nlog log log n). These are the first lower bounds for this problem

that are tight, up to constant factors, with the O(log∗ n)–approximation due to [PV98, Arc01].

1 Introduction

The k-center problem is one of the most fundamental facility location problems. The input to
this problem is a set V of n points and the distance dist(u, v) from every point u to every point
v, together with a bound k. These distances are assumed to obey the triangle inequality, i.e.,
dist(u,w) ≤ dist(u, v) + dist(v, w) for all u, v, w ∈ V . The goal is to choose k of the n points to
serve as centers, so as to minimize the maximum distance from the centers to any point. Formally,
the goal is:

min
C⊆V

max
v∈V

dist(C, v), where dist(C, v) := min
c∈C

{dist(c, v)}.

The problem is NP-hard [GJ79] and therefore it is natural to seek approximation algorithms with
small approximation ratio for the problem. The symmetric case, where dist(u, v) = dist(v, u) for
all u, v ∈ V is well-understood from the viewpoint of approximation. It admits a 2–approximation
[Gon85, HS85, DF85], but not better (by an easy reduction from Set-Cover [HN79, Ple80]).

For the asymmetric case (where the distances obey the triangle inequality but dist(u, v) and
dist(v, u) need not be equal), Panigrahy and Vishwanathan [PV98] devise an O(log∗ n)–approximation
algorithm, where log∗ n is the number of times one has to take the logarithm of n until we get a
constant. Some time later, Archer [Arc01] achieved an O(log∗ k)–approximation, which is based
on a linear programming approach. Archer also claims that a construction found by a computer
shows an integrality ratio of 3 to this linear program.
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1.1 Our results

Our main result is an Ω(log∗ n) hardness of approximation for Asymmetric k-Center. This
result is tight, up to constant factors, with the approximation algorithms of [PV98, Arc01]. Our
results hold even for relatively simple inputs (of Asymmetric k-Center), namely, distances that
arise from a layered digraph by taking for every two vertices their shortest path distance (in the
digraph). Furthermore, our proof shows that approximating Asymmetric k-Center is hard even
for bicriteria (i.e., pseudo-approximation) algorithm that are allowed to use more than k centers,
namely k log∗ n centers. We prove the following theorem

Theorem 1.1. Asymmetric k-Center cannot be approximated within ratio 1
4 log∗ n, unless NP ⊆

DTIME(nlog log log n). This holds even for layered digraphs of constant in-degree and out-degree.

We actually prove the following stronger theorem, which excludes, for example, the possibility of
a bicriteria algorithm that is allowed to use k log∗ n centers when approximating Asymmetric k-Center

within ratio 1
3 log∗ n.

Theorem 1.2. For any 0 < β(n) ≤ α(n) ≤ n, Asymmetric k-Center cannot be approximated

within ratio log∗ α−log∗(β log∗ n)
4 , unless NP ⊆ DTIME(nα), This holds even for layered digraphs of

constant in-degree and out-degree, and even for bicriteria algorithms that are allowed to use βk
centers.

Techniques. Our approach here is inspired by [HK03], in which an integrality ratio (for the
Group-Steiner-Tree problem) due to [HKK+03] is used to prove a hardness of approximation
(for the same problem).

Therefore, we first construct in Section 3 an instance for Asymmetric k-Center in which the
ratio between the integral and fractional solutions to the linear program of [Arc01] is as large as
(1 − o(1)) log∗ n.

We then turn this integrality ratio into a hardness of approximation result in Section 4. In
essence, we turn the aforementioned integrality ratio into a reduction by carefully composing sev-
eral reductions that were designed by Dinur, Guruswami, Khot and Regev [DGKR03] to prove a
hardness result for vertex cover in uniform hypergraphs.

Remark. During the writing of these results, it was communicated to us that Chuzoy, Guha,
Khanna and Naor independently obtained an Ω(log∗ n) hardness for Asymmetric k-Center.

2 Preliminaries

Let G = (V,A) be a directed unweighted graph. For any two vertices, v, u ∈ V , if there is a
path from u to v of length at most r, then we say that u r-covers v and that v is r-covered by u.
Similarly, for sets U1, U2 ⊆ V , we say that U1 r-covers U2 if for every u2 ∈ U2, there is a u1 ∈ U1

which r-covers u2. For every v ∈ V , let Nout(v) := {u | (v, u) ∈ A}, and Nin(v) := {u | (u, v) ∈ A}
be the outgoing and incoming immediate neighbors of v.

We say that G = (V,A) is a layered graph if the set of vertices V can be partitioned into t
sets L1, . . . , Lt, called layers, such that for each arc (u, v) ∈ A there is i ∈ {1, . . . , t − 1}, such that
u ∈ Li and v ∈ Li+1.

The directed graph G = (V,A) induces a distance function dist, where the distance dist(u, v)
from a vertex u to v is simply the length of the shortest path from u to v. We will slightly abuse

2



the definitions and consider a directed graph G as a possible input to Asymmetric k-Center, in
which case the actual input will be the distance function dist(·, ·).

For every number x > 0, let tower(1){x} = 2x. For every i > 1, we define recursively

tower(i){x} = 2tower(i−1){x}. Hence, tower(i){x} = 22·
·2

x

, where the number of 2’s in the tower
is exactly i. By this definition, log∗ n is the maximal i such that tower(i){2} ≤ n.

Similary, for every number x > 0, let log(1) x = log(x). For i > 1, we define recursively
log(i) x = log(log(i−1) x. We call this the iterated logarithm of order i.

3 Integrality ratio

Let the digraph G = (V,A) be an instance of Asymmetric k-Center, and let n = |V |. The
algorithms of both [PV98] and [Arc01] consider the following promise problem as a subroutine to
their algorithm: If the optimal solution equals 1, return a solution whose value is smaller than
α(n); otherwise, return either a solution smaller than α(n) or do not return any solution. Using
this subroutine, [PV98] show how to find an α(n)-approximation to Asymmetric k-Center. In
[PV98] they find a solution to the promise problem with α(n) = O(log∗ n). Archer [Arc01] uses the
following linear relaxation to the problem and gets a solution with α = O(log∗ k).

∑

v∈V

xv ≤ k

∑

{u|(u,v)∈A}
xu ≥ 1 , v ∈ V

0 ≤ xv ≤ 1 , v ∈ V

(1)

In this section we show that this linear program admits a (1−o(1)) log∗ n integrality ratio; that
is, there are graphs with n vertices, in which the linear program is feasible, while no set of k centers
d-covers all the vertices with d < (1 − o(1)) log∗ n. This can be thought of as if the fractional
solution is 1, and the integral solution is at least (1 − o(1)) log∗ n. Clearly, log∗ n ≥ log∗ k.

3.1 The Graph Construction

We describe a probabilistic construction of a directed graph G = (V,A), and show that with high
probability, the integral solution is at least log∗ n, while the linear program corresponding to the
graph is feasible.

The graph G is a layered graph. It consists of t + 1 layers L0, L1, . . . , Lt, where t will be
determined later (t will be approximately log∗ n). The arcs in the graph are always directed from
a vertex of Li to a vertex of Li+1 for some i ∈ {0, . . . , t − 1}. The first layer L0 consists of a single
vertex which will be connected to all the vertices of L1. For i ≥ 1, the arcs from layer Li to layer
Li+1 are randomly chosen in the following way. For each vertex v ∈ Li+1, we randomly pick di

distinct vertices in Li to be the set Nin(v), i.e. the set of vertices that have an arc directed to v.
The different choices of Nin(v) for different vertices are independent. The numbers di are defined
recursively by di+1 = 2(di)3 , where d1 = t2. We further choose the size of the set Li to be ni = didt.
Finally, we set the number of centers k to be t · dt.

3.2 The fractional solution

We now show that a fractional solution to the linear program (1) is feasible. For every i ∈ {1, . . . , t−
1} and every vertex v ∈ Li we set xv = 1

di
. Furthermore, we set xv = 1 for the single vertex v ∈ L0.
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Clearly, the set of fractional centers fractionally cover each vertex in the graph, since each vertex
u ∈ Li+1 has incoming arcs from di distinct vertices, each contributing 1

di
to its cover. The number

of centers used in level Li is ni/di = dt, and in level L0 we use exactly one center. Thus, the total
size of the fractional center set is (t − 1)dt + 1 < k, and therefore the constraints of the linear
program are satisfied.

3.3 The integral solution

We now show that with high probability, any choice of k centers will not t-cover the whole set of
vertices. We actually prove a stronger claim. We prove that with high probability, no choice of k
centers t-covers the set Lt. In order to prove this, we show the following.

Lemma 3.1. With high probability, for any choice of a set C ⊆ V \ L0 of k centers, there is a
vertex v ∈ Lt, such that C cannot reach v.

Clearly, if we prove Lemma 3.1, then with high probability, in order to cover Lt, we must use
L0, and thus, the value of the integral solution is t + 1. In the remaining of this section we prove
Lemma 3.1.

Fix a set of centers C ⊆ L1, such that |C| = k. Without loss of generality we can assume that
C ⊆ L1, since we can always replace each center c ∈ Li by a single vertex v ∈ L1 where v can reach
c, and then all the vertices of Lt that are reachable from c are also reachable from v. Let Yi be the
set of vertices in Li which cannot be reached from C. By definition, |Y1| = n1 − k ≥ 2dt. In the
next lemma we show that with high probability this is also true for Yi for i > 1.

Lemma 3.2. If |Yi| ≥ 2dt, then the probability that |Yi+1| < 2dt is at most e−didt.

Proof. Consider a vertex v ∈ Li+1. We bound the probability that v is in Yi+1. Since Nin(v) is a
random set of size di, the probability that v ∈ Yi+1 is

(|Yi|
di

)

(

ni
di

) ≥ (
|Yi| − di

ni − di
)di ≥ (

1

di
)di ≥ 1

2(di)2
,

where the second inequality follows from the assumption that |Yi| ≥ 2dt in conjunction with
ni = didt. Since the neighbors of each of the vertices of Li+1 are chosen independently, |Yi+1|
is dominating a binomial variable Z ∼ B(ni+1,

1

2(di)
2 ). Let µ = E[Z] = ni+1

2(di)
2 ≥ 16d1dt (assuming

d1 > 2). By Chernoff,

Pr(|Yi+1| < 2dt) ≤ Pr(Z < 2dt)

≤ Pr(Z ≤ µ

2
)

≤ e−
µ
8 ≤ e−2d1dt

We now use the union bound to show that with high probability for any choice of a set of
centers C ⊆ L1 of size k we cannot reach Lt.

Lemma 3.3. The probability that there exists a set C ⊆ L1 of k centers that t-covers Lt is at most
e−n1 .
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Proof. As noted above, |Y1| ≥ 2dt. By applying Lemma 3.2, we get that for any fixed set of k
centers C ⊆ L1, the probability that |Yt| < 2dt is bounded by (t − 1)e−2d1dt = (t − 1)e−2n1 . Since
the number of such sets C is bounded by the total number of possible sets of L1, that is 2n1 , we
get by the union bound that the probability that there exist a set C for which |Yt| < 2dt is at most
2n1(t − 1)e−2n1 < e−n1 .

Since ni = didt, the total number of vertices n is 1 + n1 + . . . + nt ≤ 2d2
t , and thus, n1 >

√
n.

Hence, the probability to cover Lt by centers that do not contain L0 is at most e−
√

n, and this
completes the proof of Lemma 3.1.

By the definition of di, one can verify that that log∗ dt = t + Θ(1) + log∗ d1 = t + log∗ t + Θ(1).
Since n ≤ 2d2

t , we get that t ≥ log∗ n − log∗(log∗ n) − Θ(1).

4 Hardness of approximation

In this section we prove Theorem 1.1, i.e., that Asymmetric k-Center cannot be approximated
within ratio 1

4 log∗ n, unless NP ⊆ DTIME(nlog log log n). In essence, we turn the integrality ratio
presented in Section 3 into a reduction, by carefully composing several Max-k-Cover reductions;
the Max-k-Cover reductions that we use follow almost immediately from the hardness result for
vertex cover in uniform hypergraphs (a special case of Set-Cover) due to Dinur, Guruswami,
Khot and Regev [DGKR03].

Terminology. Set-Cover is the following problem: Given a bipartite graph H = (A,B,EH),
the goal is to find a subset S ⊆ A of minimum size, such that all the vertices of B are covered by S.
(A vertex is covered by S if it is adjacent to at least one vertex of S.) Let Set-Cover(H) denote
the size of a set cover of B, measured as fraction of the vertices of A.

The maximization variant of Set-Cover called Max-k-Cover, is the following problem:
Given a bipartite graph H = (A,B,EH ) and an integer k, the goal is to find a subset S ⊆ A
of size k that maximizes the number of vertices in B that are covered by S. Let k-Cover(H)
denote the largest fraction of vertices in B that can be covered by k vertices from A.

4.1 The Max-k-Cover reduction

We now state the hardness result of [DGKR03] and some of its parameters (such as gap location
and degree). We will then show that this result yields a hardness result for Max-k-Cover with
parameters (such as gap location and size) that are very useful for us.

Theorem 4.1 ([DGKR03]). Let L be any NP language. Then for every fixed k ≥ 3 and ε > 0
there is a polynomial time algorithm (i.e., reduction) that, given an instance x for L, computes an
instance H = (A,B,EH) for Set-Cover, such that if x ∈ L then Set-Cover(H) ≤ 1/(k − 1− ε)
and if x /∈ L then Set-Cover(H) ≥ 1 − ε.

Additional properties. The reduction of [DGKR03] has a few additional properties that will
be important for us. First, the parameters k, ε need not be fixed; they can part of the input to
the reduction and may depend on n := |x|, and then the reduction’s running time is polynomial
in the output size. To this end, an inspection of the reduction gives the crude estimate |A| ≤
2kO(1/ε3)

nO(1/ε2). Furthermore, the degree of vertices in A is at most ∆k,ε := tower(2){O(k2/ε3)}
and hence |EH | ≤ ∆k,ε|A|. It is also easy to verify that the degree of vertices in B is exactly k (and
in particular, at least 1), and thus |B| ≤ |EH |.
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Using these properties, we now obtain a hardness for Max-k-Cover, which guarantees that
for a NO instance, using even almost all the vertices of A, one must miss (i.e., not cover) a non-
negligible fraction of B.

Corollary 4.1. Let L be any NP language. Then there is an algorithm (i.e., reduction) that, given
an instance x for L together with r ≥ 3, computes in time that is polynomial in the output, an
instance H = (A,B,EH ) for Set-Cover such that if x ∈ L then 1

r |A|-Cover(H) = 1 and if

x /∈ L then (1 − 1
r )|A|-Cover(H) ≤ 1 − 1/ tower(2){rO(1)}.

Proof. Given an instance x for L, denote n := |x| and apply Theorem 4.1 with k := 2r and
ε := 1/3r. If x ∈ L then all of B can be covered using a subset of A whose size is at most
|A|/(k − 1 − ε) ≤ |A|/r, and thus 1

r |A|-Cover(H) = 1.
Suppose now that x /∈ L, and assume for contradiction that there exists a subset S ⊆ A of size

(1 − 1
r )|A| = (1 − 3ε)|A| that covers at least a 1 − ε/∆k,ε fraction of B. It then follows that S can

be extended into a set cover of B by greedily adding to it at most ε
∆k,ε

|B| ≤ ε|A| vertices (of A),

and thus Set-Cover(H) ≤ (1 − 3ε) + ε = 1 − 2ε, which contradicts Theorem 4.1. We conclude
that (1 − 1

r )|A|-Cover(H) ≤ 1 − ε/∆k,ε ≤ 1 − 1/ tower(2){rO(1)}.

Remark. In the resulting graph H, we have |A| ≤ 22O(r4)
nO(r2) and |B|/|A| ≤ ∆2r,1/3r ≤

tower(2){rO(1)}. Our intended application requires a Set-Cover instance similar to H, but with
a predetermined size s for |A|. Assuming that s ≥ 3r|A|, we achieve this by essentially taking
a disjoint union of a suitable number of copies of H, as follows. Given s, we construct a graph
H ′ = (A′, B′, EH′) by taking bs/|A|c disjoint copies of H and letting A′ be the union of all the
copies of A, and similarly letting B ′ be the union of all the copies of B; if |A| does not divide s
then we add to A′ new vertices so that its size will be exactly s. Notice that the fraction of these
added vertices in A′ is less than |A|

s ≤ 1
3r . In addition, the degree of every vertex in A′ is at most

∆k,ε, and therefore |B ′|/|A′| ≤ ∆2r,1/3r ≤ tower(2){rO(1)}. It is easy to verify that if x ∈ L then

Set-Cover(H ′) ≤ |A′| 1 + 1/3r

k − 1 − ε
≤ 1

r
|A′|,

and thus 1
r |A′|-Cover(H ′) = 1. If x /∈ L then

Set-Cover(H ′) ≥ 1 − ε

1 + 1/3r
> 1 − 2ε,

and similarly to the proof of Corollary 4.1, we get that (1 − 1
r )|A′|-Cover(H ′) ≤ 1 − ε/∆k,ε ≤

1 − 1/ tower(2){rO(1)}. Finally, we can assume without loss of generality that |B ′| ≥ |A′|, simply
by duplicating |B ′| sufficiently many times. (In fact, this property already holds in the reduction
of [DGKR03].)

4.2 Our reduction

Our reduction starts from an arbitrary NP language L. Given an instance x for L, let us assume
throughout that n := |x| is sufficiently large. Similarly to the integrality ratio construction (Sec-
tion 3) we construct a layered digraph G = (V,E) with t layers L0, L1, . . . , Lt (for t that we will
later choose to be Θ(log∗ n)). The arcs in this digraph are always directed from a vertex of Li to
a vertex of Li+1 for some i ∈ {0, . . . , t − 1}. The first layer L0 consists of a single vertex v0 that
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has arcs connecting it to all the vertices of L1. As described below, every two successive layers
Li, Li+1 for i ≥ 1 essentially form a copy of the graph H from Corollary 4.1, constructed with
certain parameter ri.

The motivation for this construction is that if x ∈ L then each layer Li+1 is covered by |Li|/ri

centers from layer Li, while if x /∈ L then, the phenomenon that occurs in the integrality ratio
instance occurs here too, namely, for every choice of k centers in L1 there is some non-negligible
fraction of L2 that is not reached, and continuing iteratively we get that some vertices of Lt cannot

be reached. Let L1 consist of N := nlog(4) n vertices; we will see later that the size of every layer
(and thus of V ) will be at most O(N log log N). Set r1 := 8(log∗ N)2 and ri+1 := tower(3){ri} for
i = 1, . . . , t − 1. Hence, ri = tower(3i−3){r1}.

Now, for each i = 1, 2, . . . , t − 1 (iteratively) construct the digraph induced on layers Li, Li+1,
as follows. Apply Corollary 4.1 (and the remark following it) with parameter ri and with s = |Li|
to create a graph H ′

i = (A′
i, B

′
i, EH′

i
). To see that this is possible, recall that |L1| = N , and that

for i ≥ 2, the size of Li is determined by the previoues iteration; we will also verify later that
s = |Li| ≥ 3ri|Ai|.

Finally, let us choose t = b0.3 log∗ Nc and set the number of centers to be k := tN/r1. Let us now
upper bound |V | and show that t ≥ 1

4 log∗ |V |. Since |Li+1| ≤ ∆2ri,1/3ri
|Li| ≤ tower(3){ri}|Li| =

tower(3i){r1}|Li|, we get that |V | ≤ ∑t
i=0 |Li| ≤ tower(3t−2){r1}N . By our choice of t we get that

|V | ≤ N log(4) N , and thus t ≥ 1
4 log∗ N .

It remains to verify that s = |Li| ≥ 3ri|Ai|. To see this, notice that |Ai| ≤ tower(3){ri} · nO(r2
i )

while tower(3){ri} ≤ log(4) N , and thus |Ai| ≤ nlog(6) n. The claim now follows since |Li| ≥ |L1| = N .

4.3 YES instance

We now show that if x ∈ L then the resulting graph G has a set of k = tN/r1 centers that 1-covers
G. By the assumption x ∈ L, for every two consecutive levels Li, Li+1 with i ≥ 1 there is a subset
of Li of size at most |Li|/ri that 1-covers Li+1. In addition, all of L1 can be covered by the single
vertex v0 ∈ L0. Clearly, taking all these vertices as centers yields a 1-cover of all of G. Now

notice that |Li|
ri

≤ |Li−1|
ri−1

, since ri
|Li+1|
|Li| ≤ ri · tower(2){rO(1)

i } ≤ ri+1. It follows that the number of

centers at each layer Li is at most |Li|
ri

≤ |L1|
r1

= N
r1

, and thus the total number of centers is at most
1 + (t − 1)N/r1 ≤ k.

4.4 NO instance

We now show that if x /∈ L then G has no set of k centers that (t − 1)-covers all of G. It would
then follows that the value of this Asymmetric k-Center instance is at least t ≥ 1

4 log∗ |V |). We
will actually prove a stronger claim, stated as follows.

Lemma 4.2. If x /∈ L then for every choice of k centers in G, there is a vertex of Lt that is not
(t − 1)-covered.

Proof. Consider a set of k centers and assume for contradiction that Lt is (t − 1)-covered. Since
G is a layered graph with non-zero in-degree, we can replace each center c with a center v ∈ L1

that (t− 1)-covers all the vertices of Lt that are (t− 1)-covered by c. (Notice that the vertex of L0

cannot be used to (t − 1)-cover Lt.)
By the assumption x /∈ L, and since the graph induced on L1 ∪ L2 is just H ′

1, we know that

these k ≤ tN/r1 ≤ (1 − 1
r1

)|L1| centers 1-cover at most 1 − 1/ tower(2){rO(1)
1 } ≤ 1 − 1/r2 fraction
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of the vertices of L2. Continuing inductively, for every i = 2, . . . , t, since the graph induced on
Li ∪Li+1 is similar to the graph H ′

i, the fact that at most 1 − 1/ri fraction of Li is (i − 1)-covered

by these centers implies that at most 1− 1/ tower(2){rO(1)
i } ≤ 1− 1/ri+1 fraction of the vertices of

Li+1 are i-covered. We therefore conclude that at most 1−1/rt fraction of Lt are (t−1)-covered by
these centers. Since 1/rt > 0, we get that Lt is not (t− 1)-covered by these centers, as desired.

The proof of Theorem 1.1 now follows immediately from Section 4.3 and Lemma 4.2.
We note that the proof given here for Theorem 1.1 can be easily modified to achieve hardness

of (1
2 − o(1)) log∗ n. The current choice of parameters is made so as to simplify the exposition.
Theorem 1.2 follows from the observation that the size of the reduction is dominated by the

last layer, and if we are given the option of using βk centers, then r1 must increase proportionally
to β. Therefore, β and α determine the parameters of the first and last layers in the graph, while
the hardness result is proportional to the number of layers. A full description of this extension is
omitted from this version.
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