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Abstract

The elimination problem is classical: implicitly express one of the variables occur-
ring in a finite system of polynomial equations as an algebraic function of a designated
subset of the remaining variables. Solutions to this problem by resultants, or more
comprehensively by use of Grobner basis methods are available. In this paper we
show under an assumption that a very direct solution can be carried out using Tarski
algebra. The Tarski algebra approach has two advantages over other, more involved
methods. First, it allows for the direct determination of the possibility of eliminating
variables in terms of deciding a single sentence. Second, assuming that a deep result of
Grigoriev can be extended from sentences to formulas of Tarski algebra, the algorithm
we present is in EXPTIME, while other methods are so far only known to have a
doubly exponential worst case running time.

1 The elimination problem

In this paper we work over R, the field of real numbers. All instances of O-notation indic-
ate absolute, positive constants.

Let x and y denote the variables z,...,z,, and yy,...,y,, respectively. We also let y’
denote yq,...,ys. Given a finite set  of equations P, = 0,..., P, = 0, where P, is an
integer coefficient polynomial in x and y, the elimination problem involves two determin-
ations. Before proceeding to specify these, note that satisfaction of 2 at x,y is equivalent
to PE(x,y+ -+ P2(x,y) = 0. We denote this by Q(x,y) = 0. Observe that an essential
property of R is being used here.

In describing the elimination questions we work with neighborhoods of 0. This restric-
tion amounts to assuming that ©(0,...,0) = 0. This is not a serious restriction, e.g., a
neighborhood of a, b € R” x R® simply requires working with (z; —a;)? 4+ -+ -+ (ys — bs)?.

The formula N (uy, ..., u,,v) denotes

v>0/\u%+----|—u§<v.
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Let z = zy,...,2.. The formula £(x,y,z, u) denotes

N(X7u)/\N(Ya'u)/\N(Z7u)/\Q(X7Y) = O/\Q(X7Z) =0= (yl _ZI)Q—I_' ' +(y5 _28)2 =0.
The elimination questions.

1. Decide whether there exist open balls of radius u about 0, such that if x,y are in
their respective balls, and € is satisfied, then y is uniquely determined by x. This
question can be answered by deciding the sentence

Ju ¥x,y,zE(x,y,2,u) . (1)

2. Assuming Eq. 1, compute an r + 1-variate, integer coefficient polynomial A, and
0 < € such that for N(x, 11, €), A(x,y1) = 0 implicitly defines y; as a function of x.

It is classical that a sufficient condition ensuring Eq. 1 is that Det.J # 0, where J is the
s X s matrix such that

Jij =5~

See [9]. This sufficient condition can be tested in P. Conventional results about polynomi-
als can be used to compute a neighborhood size. However, Eq. 1 expresses the necessary
and sufficient condition for elimination in a neighborhood of 0. Note that if Eq. 1, then in
some neighborhood of 0, y1,...,ys are all functions of x. We will show that this implies
the existence of the polynomial A, and that such a polynomial can be computed.

Both resultants and Grébner basis methods can be used to solve the elimination prob-
lem. A resultant-based approach , with an application to context-free grammar generating
series is presented in [5]. An alternative, Grébner basis method is described in [8]. This
paper also points out that zero-dimensional elimination ideals can obstruct the resultant-
based approach. For a general discussion of elimination theory, see [2]. In any case, these
methods have doubly exponential worst case running time.

2 Tarski algebra

The approach of this paper is based on the first order theory of R, which will be referred
to as Tarski algebra, TA, in honor of Alfred Tarski who was the first to exhibit a quantifier
elimination decision method for the theory. See [10]. We sketch only as much of TA as is
needed to develop a solution to the elimination problem. More detailed treatment can be
found in [7]. Related material is in [3, 6].

TA is first order logic with equality to which are adjoined the finitely many standard
axioms for R, which involve the 0-ary function symbols 0, 1, and the 2-ary function symbols
+, X, with their standard interpretations. Numerals are terms built up in obvious fashion
from 0,1, +, x. Note that integers up to 2" can be expressed by terms of length O(n?), at
worst by using binary notation where 2% is expressed by the term

k
(I+1)x-ox (141).




The terms of TA are in fact polynomials. It is easy to see that the length of the usual
sparse notation for an integer coefficient polynomial is polynomially related to the length
of its corresponding TA term. It is now straightforward to define the length |F| of a TA
formula F’ to be the sum of the lengths of all of its terms, and all logical symbols. Since
all formulas are TA formulas, the modifier TA will usually be dropped.

An atomic formula has the form P €0, where P is a term, and < € {=,<,>,<,>}. In
fact, by Theorem 2, we can restrict ourselves to < € {=,>}. It is worth noting that our
arguments do not depend on excluding occurrences of <, etc.

If formula /' has the free variables zy,...,z2,, then the set of tuples (ay,...,a;) € R"
such that F(ay,...,ap) is called its extension. Two formulas in the same free variables
are equivalent if their extensions coincide.

Collins established the next result, showing that it is the number of distinct variables,
rather than simply formula length that most sensitively influences time complexity of TA
quantifier elimination. See[1].

Theorem 1 (Collins) A quantifier-free formula F', equivalent to a given prenex formula

F can be computed in time |F 290)

time, where r is the number of distinct variables.

Note the separation of the number of variables from the overall formula size in terms of
effect on the worst case time. This separation is refined further by the next result.

A TA formula is said to be a G-formula if it is in prenex, and all of its atomic formulas
have the form P > 0, where, of course P is a term. The next result is due to Grigoriev.
The result is stated in terms of sentences, but it is a plausible conjecture that it extends to
formula generally. See [4]. In stating this theorem, 3; (V;) abbreviates a list of existentially
(universally) quantified variables, and P is a quantifier-free formula. Our statement of this
result combines the time bound with Lemma 13 of the paper.

Theorem 2 (Grigoriev) A G-sentence F'= 31Vy -3, P can be converted into an equi-
valent quantifier-free sentence

VAN P,

my m2

where the wy,, . m, are lists of rationals substituting for the variables. in time |F|To(a),
where r is the number of distinct variables, and a is the number of quantifier alternations.

We make the assumption that Theorem 2 extends to formulas. In this case. P(wm, .. m,)
may contain free variables.

Observe that the atomic formula P = 0 can be expressed as the G-formula P >
0AVz 2 x 2 — P > 0, where z does not occur in P. However, it is not clear that
any prenex formula can be converted into an equivalent G-formula without increasing



the quantifier alternation by an unbounded amount. In our application, it will be easy
to express everything necessary in terms of G-formulas and maintain an O(1) bound on
quantifier alternation.

The next lemma enables us to go from the assertion that a neighborhood exists to actually
computing a suitable radius for them. Notation is drawn from Theorem 2

Lemma 1 Let F be a G-formula in a single free variable such that
JuVvu>0Avsv <u= F(v),

i.e., F'(v) in some neighborhood of 0, then a positive rational o can be computed in |F|To(a)
time such that Yv v-v < a = F(v).

Proof : By Theorem 2, I’ is equivalent to a quantifier-free formula F’ in a single free
. . . Ofa o . Ofa

variable. I can be computed in time |F'|" ) This implies of course that |F'| < |F|" @,

Now, I is equivalent to a DNI expression X = \/; A; X ;, where each X ; is an atomic

formula of one of the two forms
>0
P 0
and each P occurs in F’|so |P| < |F'|. Note that we do not actually construct the DNF
expression, we use it in our argument.

Consider a clause X; = /\j X j, and its constituent atomic formulas. Observe that the
extension of atomic formula P > 0 is an open set, while that of P = 0 is a finite set of
reals. Both sets could be empty. The extension of a clause, then is either an open set,
or a finite set of reals. By assumption, at least one clause extension must be a nonempty
open set, and the finite union over all these nonempty open sets is a subset of the exten-
sion of X. It follows from the standard topology of R that at least one clause extension
must contain a neighborhood of 0. Again, by topology, the extension of at least one
X;,; must contain a neighborhood of 0. The sentence JuVv u > 0 A v*v < u = X; ;(v)

(

expresses this fact, and so a suitable X; ; of form /7 > 0 can be determined in |F|7”O “ time.

Let P > 0 be the selected formula. It is clear that the required o can be computed in
PTIME from P. O

3 A Tarski algebra solution

We can now prove, using notation from Theorem 2,

Theorem 3 If Theorem 2 extends to formulas, the elimination problem can be solved in
EXPTIME.

Proof : First, note that £(x,y,z,u), and associated formulas that are inputs to the
decision method have O(1) alternations of quantifiers, and O(1) atomic formulas. This
means that they can be converted to G-formula and retain O(1) alternations. From this



point on, we set @ = O(1).

That Eq. 1 can be decided in the indicated times follows directly from Theorem 2.
Assuming Eq. 1, by Theorem2 and Lemma 1, a rational § can be computed such that

\v/x’ y’ Z(‘:(X’ y7 Z’ 5) Y

and § requires n' bits.

By the Theorem 2, and the upper bound on the bit size of &,
vy',z€(x,y,2,9)

can be converted into an equivalent quantifier-free formula g(x, y1) in time

Now we use the form of c‘f(x, y1) provided by Theorem 2. An equivalent DNF formula
X =V;A\; Xi; can clearly be constructed by brute force in time polynomial in the num-

ber of clauses, which is, directly from the time bound, my---m, < n’'” . Bach Xij is

an atomic formula of form Q(ay,...,a, B1,...,0,) > 0, where ay, ..., a; are rationals
Y Y Y Y Y - Y Y Y

substituted for ys,...,ys, and By,..., 3, are rationals substituted for zy,...,2,, and @

occurred in the quantifier-free formula £(x, y1).

Each clause X; = A; X;; has no more than @ conjuncts, so picturing a clause
Xi=(@1 20 A---A(Qy2>0),

where b < a we can expand X; as

VIA@r>0) A\ =0).
!

g h

Note that in some cases there may only be strict inequality conjuncts, or equality con-
juncts. This expansion results in a new DNF expression equivalent to X consisting of at
most 2% times as many clauses as in X.

Consider a clause A, (Qn > 0) A /\f(Qf = 0). We use the fact in some neighborhood of
0, say N, if (a1,...,a,,b),(a1,...,a,,¢) € N, then é(a, b) and f:’(a, c¢) imply that b = c.
Thus the functional dependence of y1 on x is enforced solely by the subclause A((Q; = 0).
This follows from the fact that for fixed x, the set of gy; such that ¢Q > 0 is open, and a
finite intersection of open sets is again open. The subclause of the equality formuals is
equivalent to )¢ ch = 0. For each such atomic formula A, decide whether first

JoVxIy; N (y1,v) AN (x,v) = A(x, 1) ,
that is, A is not vacuous, and second
JoVw N (x,v) AN (y1,v) AN A, 11) ANAx,w) =y = w .

These formulas can be recast as G-formula and retain O(1) alternations. Thus, the time
to find an A that passes both tests (and we have shown one must exist) is still bounded
above by n’'” . Now a = O(1), and n O = groW-logn 2”0(1), which is EXPTIME. O



4 Conclusion

Based on a conjecture concerning Theorem 2, an EXPTIME algorithm for the elimination
problem has been given. In addition, Tarski algebra provides a framework for dealing
with complex algebraic problems with conceptual clarity, since TA captures a substantial
fragment of our intuition about R.

There is the question of whether Theorem 2 does extend to formulas, in the indicated
form. Due to the quite involved nature of Grigoriev’s argument in [4], the author is unable
to convince himself that this extension holds. However, Lemma 10 of that paper suggests
that the conjecture is at least plausible, since it is given in terms of fromula equivalence.
That elimination is in EXPTIME on this assumption may provide sufficient motivation to
an expert in algorithmic algebra to verify (or disprove) the conjecture.
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