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Abstract

We present a novel technique, based on the Jensen-Shannon divergence from infor-
mation theory, to prove lower bounds on the query complexity of sampling algorithms
that approximate functions over arbitrary domain and range. Unlike previous meth-
ods, our technique does not use a reduction from a binary decision problem, but rather
from a multi-way decision problem. As a result, it gives stronger bounds for functions
that possess a large set of inputs, each two of which exhibit a gap in the function value.

We demonstrate the technique with new query complexity lower bounds for three
fundamental problems: (1) the “election problem”, for which we obtain a quadratic
improvement over previous bounds, (2) low rank matrix approximation, for which we
prove the first lower bounds, showing that the algorithms given for this problem are
almost optimal, and (3) matrix reconstruction.

In addition, we introduce a new method for proving lower bounds on the expected
query complexity of functions, using the Kullback-Leibler divergence. We demonstrate
its use by a simple query complexity lower bound for the mean.
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1 Introduction

The increased volume of data generated automatically coupled with the dramatic improve-
ments in storage capability have resulted in the emergence of numerous massive data sets,
like the web, Internet traffic, stock market transactions, etc. The typically restricted access
to these data sets together with their huge size necessitated the invention of new models
of computation. Sampling algorithms—algorithms that query only a few (possibly random)
locations of the input data—are the most traditional and well suited for this task.

In this paper we study lower bounds on the query complerity of sampling algorithms.
Specifically, we develop new techniques for proving lower bounds on the number of queries
a sampling algorithm is required to perform in order to approximate a given function accu-
rately with low probability of error. Our lower bounds are applicable to general functions
over arbitrary domain and range (even infinite or non-metric spaces) and to all types of ap-
proximation. The bounds are stated in terms of simple to calculate properties of functions,
which are based on two information-theoretic measures of distance between distributions:
the Jensen-Shannon divergence [Lin91] and the Kullback-Leibler divergence [KL51]. We
demonstrate the strength of our techniques by deriving new bounds for several natural and
practical problems, including the “election problem”, low rank matrix approximation, matrix
reconstruction, and the mean.

Motivation The standard methodology for proving lower bounds for approximation prob-
lems is via a reduction from a (binary) decision promise problem. A decision promise problem
for a function f is specified by a pair of disjoint subsets of the domain A and B that exhibit
a “gap” in the function’s value; that is, for alla € A and b € B, f(a) is “far” from f(b). The
decision problem is then: given an input x which is promised to be in AU B, decide whether
x € A or x € B. Clearly, any algorithm that accurately approximates f can be used to solve
the promise problem, and thus a lower bound for the promise problem implies a hardness of
approximation result. This methodology has been extensively used in proving lower bounds
for sampling algorithms. Usually, one comes up with two inputs or two distributions over
inputs that exhibit a gap, and shows that any sampling algorithm that uses a small number
of queries cannot distinguish between the two. The “hardness” of such functions arises from
the existence of pairs of inputs that on the one hand exhibit a large gap in the function
value, but on the other hand are very “similar” and therefore are not distinguishable in a
small number of queries.

There are some functions, however, (see examples below) for which every two inputs
that exhibit a gap are easily distinguishable. For such functions the paradigm mentioned
above fails gloriously. The hardness of this type of functions emanates simply from the fact
there are many inputs, each two of which exhibit a gap in the function’s value. (This can
happen, of course, only for functions that have a large range). In this paper we develop
an information-theoretic lower bound technique, which is able to capture the hardnesses
that emanate from both the similarities among “gapped inputs” and the abundance of such
inputs.



Summary of contributions Our main result is a novel technique for proving lower bounds
on the query complexity of sampling algorithms using the Jensen-Shannon divergence. The
technique is applicable to functions over arbitrary domain and range, and forms a “template”
for easily deriving lower bounds for specific functions.

Consider a function f : X" — Y that possesses ¢ inputs xi,...,x, € A", each two of
which exhibit a gap in the value of f (i.e., f(x;) is “far” from f(x;), for all i # j). A simple
information-theoretic argument can show than any sampling algorithm approximating f
would require 2(log ¢/ log | X|) queries. This bound is useless when X is large (e.g., X = R).
Moreover, it does not address the hardness arising from similarities among x,... ,x,. We
prove that any sampling algorithm whose queries on xi,...,x, are i.i.d. (independent and
identically distributed) requires Q(log¢/JS(vx,, ... ,Vx,)) queries to approximate f. Here,
Vx; is the joint distribution of queries and their answers when the algorithm runs on input
x; and JS(-,...,-) is the Jensen-Shannon divergence among these distributions. The log ¢
factor in the lower bound captures the abundance of gapped inputs, and the Jensen-Shannon
divergence factor captures the similarities among them.

Lower bounds for sampling algorithms whose queries are i.i.d. are interesting for two rea-
sons. First, in practice many sampling algorithms use i.i.d. (in fact, uniform) queries. Second,
and more importantly, for wide classes of functions, sampling algorithm with i.i.d. queries
can simulate general, adaptive, sampling with almost no loss of efficiency. For such functions
our methods give general query complexity lower bounds. We extend previous known simu-
lations [BKS01, GT01] to more general classes of functions, including g-symmetric functions
and g-row- and column-symmetric functions (see definitions in Section 4).

Using our technique, we prove new query complexity lower bounds for three fundamental
problems. In the election problem the input is a sequence of n votes to m parties. The
goal is to estimate the distribution of votes among the parties up to an additive factor of e
w.r.t. to statistical (i.e., L1) distance. This problem, which can be more generally viewed as
estimating the distribution of “types” in a given population, is important in database systems
for devising good query optimization plans. Batu et al. [BFR*00] gave an 2(m) lower bound
for the problem, while [BKS01] showed an O(m/€?) upper bound and an £(1/€?) lower bound.
We prove an optimal lower bound of Q(m/e?), yielding up to a quadratic improvement over
the previous bounds.

In the low rank matrix approximation problem, LR My, the input is an m x n real matrix A,
and the goal is to output a rank k£ matrix B, such that ||[A — B||; < [|A — Ag||p +€||A]|5.
Here, A is the best rank k& approximation to A and ||-||; is the Forbenius norm (L, norm
of the matrix when viewed as a vector). This problem is central in information retrieval
applications, such as web search, collaborative filtering, and Latent Semantic Indexing (cf.
[FKV98, AFK'01]). Ay can be computed exactly using Singular Value Decomposition (SVD)
[GV96], however this requires querying the whole input matrix. Frieze, Kannan, and Vempala
[FKV98] and Drineas et al. [DFK*99] showed sampling algorithms for the problem. (Other
algorithms were given also in [AFK*01, AM01, DKR02]). Both algorithms are given some
“advice” about their input in the form of distributions which are close to the row and the
column weight distributions of the input matrix. The algorithm of [FKV98] chooses s rows

and s columns independently according to the advice distribution and queries the resulting
s x s submatrix (s = O(k*/€®)). The algorithm of [DFK*99] chooses O(k/e?) rows according



to the advice distribution and queries all their entries. We prove that: (1) if no advice
is given, then Q(m + n) queries are needed for the problem; and (2) the above mentioned
algorithms are optimal up to polynomial factors with respect to the advice they use.

In the matrix reconstruction problem, the input is an m X n real matrix A, and the goal is
to output any m X n matrix B so that B is close to A. There are two variants of the problem:
in the Forbenius variant, MRy, we need ||A — B||; < €||A|| and in the L, variant, MRo,
we need [|A — BJ|, < ¢|[A]|;. (Recall that for a matrix M, [[M|[, = max) - |[[Mz||,).
The problem is important to collaborative filtering and recommendation systems [DKRO02].
Drineas and Kannan [DKO02] show an algorithm for MR, which uses advice (the same
kind of advice as in [FKV98, DFK*99]). Their algorithm selects O(1/€?) rows and columns
independently according to the advice distribution and queries all their entries. The authors
mention that MR requires Q(mn) queries, and prove that any algorithm solving MR, has
to output at least Q((m + n)log(1/e)) bits. It is not clear whether this lower bound implies
a sampling lower bound, especially when the sampling algorithm is given advice. We prove
that indeed MR requires Q(mn) queries. We then show that the query complexity of MR,
is Q(m + n), even for sampling algorithms that use the kind of advice used by [DK02]. This
confirms that their algorithm is optimal.

A secondary result of this paper is a new technique for proving tight lower bounds on
the expected query complexity of symmetric functions. The Jensen-Shannon technique and
the techniques discussed in [BKSO01] are tight w.r.t. the worst-case query complexity, but
give poor bounds (in terms of the error probability) when applied to the expected query
complexity. Our new technique uses the KL divergence [KL51] between distributions. We
demonstrate its use by an elementary proof for an optimal lower bound on the expected
query complexity of the mean (which was originally proved by Radhakrishnan and Ta-Shma
[RT00]).

Methodology Our lower bounds are based on a reduction from statistical classification
to sampling algorithms. We prove that any sampling algorithm approximating a function f
derives a classifier for the distributions vy, ... ,vx,, where x;,... ,x, is the set of “gapped
inputs”. The classifier uses exactly the same number of samples as the algorithm, and there-
fore a lower bound on its sample complexity yields a lower bound on the query complexity
of the algorithm.

The classification lower bound is proved in two steps. First, we use Fano’s inequality
from information theory to derive a lower bound of 1 — JS(v{ ,... v )/logf on the mis-
classification probability of error (g is the number of samples used by the classifier). (As a
side note, to the best of our knowledge, this lower bound gives an exponential improvement
of the dependence on the number of classes £ over the best previously known bound due to
Lin [Lin91].) We then prove a decomposition property of the Jensen-Shannon divergence:
JSWi, - vi,) <q- JS(Vxy,- -+, Vx,), Which allows us to derive a lower bound on g.

The lower bound via the KL divergence is a direct application of a result from statistical
sequential analysis, called the optimality of the sequential probability ratio test (cf. [Sie85]).

Related work The work most closely related to ours is a previous paper with Kumar and
Sivakumar [BKSO01], which gave query complexity lower bounds in terms of the Hellinger



distance. These bounds give tight results for functions that have few “gapped inputs” and
weak bounds for functions that have many gapped inputs. We note that our Jensen-Shannon
technique is as good as the Hellinger technique even for functions with few gapped inputs,
since the Hellinger distance and the Jensen-Shannon divergence are always at most a constant
away of each other [T.S. Jayram, private communication, October 2002]. The Hellinger
technique, however, has a tighter dependence on the error probability.

Many ad-hoc sampling lower bounds for function approximations appear in the literature
(e.g., [CEG95, DKLR95, SV99, RT00, CCMNO00]). All of them are tailored to specific prob-
lems, and do not present a general technique. Sampling lower bounds in slightly different
settings are given in statistics and learning (e.g., via VC dimension [Vap98, KV94| and the
Cramér-Rao inequality [Van68]). Previous lower bounds on the misclassification error (such
as Stein’s Lemma and Chernoff Bound, and also [Kai67, Tou74, Ziv88, Gut89, Lin91]), are
either applicable only to two-class classification, are stated in an asymptotic form, or are
weaker than the bound we present in this paper.

The rest of the paper is organized as follows. In Section 2 we review the tools from infor-
mation theory, statistics, and combinatorics we use. In Section 3 we describe the sampling
model in detail. In Section 4 we present the simulations of general sampling by i.i.d. sampling
for symmetric functions. In Section 5 we describe the reduction from statistical classification
to sampling. In Section 6 we prove the classification lower bound via the Jensen-Shannon
divergence. In Section 7 we discuss the applications. Finally, in Section 8 we present the
lower bound technique for the expected query complexity.

2 Preliminaries

2.1 Notations and conventions

We denote sets by capital Calligraphic letters (e.g., X, ), Z), elements of sets by lower case
letters (e.g., x,y, z), random variables by capital letters (e.g., X, Y, Z), and distributions by
lower case Greek letters (e.g., u, v, A). Vectors will be denoted by boldface (e.g., x,1,a). [n]
stands for {1,...,n}. All logarithms are to the base of 2. In is the natural logarithm.

Unless stated otherwise, we deal only with finite discrete probability spaces. X ~ p
means that g is the distribution of the random variable X. pu(z) is the probability of
under p.

In order to formulate our lower bound technique in a way that is independent of the
particular notion of approximation used, we use the following abstraction of approximation
[BKS01]: for a function f : X™ — ) and an error parameter € > 0, an approximation notion
is a family of subsets {Af¢(x)}xexn of V. Af(x) is the called the “e approximation set” of
x and includes f(x) and all the values that are considered an e-approximation of f(x). For
example, in additive approximation, As(x) = (f(x) — ¢, f(x) + ¢), and in relative approx-
imation As(x) = ((1 — €)f(x), f(x)(1 +€)). An algorithm A is said to (e, J)-approximate
f, if for all inputs x, Pr(A(x) € As¢(x)) > 1 — 6, where the probability is over the internal
coin tosses of A.



2.2 Statistical distance measures

We use the following measures of distance between distributions:

Definition 2.1. The KL divergence [KL51] and the Jensen-Shannon divergence [Lin91] be-
tween two distributions pu, 4o on X are:

def T
D || 12) = Sy () log 222,

TS (uyp2) L (Drer(n || B522) + Diep (ps || 12342)) .

The Jensen-Shannon divergence can be generalized to measure the mutual distance among
more than two distributions, and with non-uniform weights:

Definition 2.2. For a distribution A on [n], and for distributions py,...,u, on X, let

75 o > A(#) i be the A\-weighted average distribution. The A-generalized Jensen-Shannon
divergence among fi1, ... , ity iS:

JS\(p1y -+ 5 ) def Z)\ “Dger (i || p)-

2.3 Information theory

In the following X ~ px,Y ~ uy, Z ~ pz are random variables on domains X J/ Z, respec-
tively. The entropy of X (or, equivalently, of ux) is H(X) = o D wen Mx (@ )log ( y- The en-

tropy of a Bernoulli random variable with probability of success p is denoted HQ( ). The joint
entropy of X and Y is the entropy of the joint distribution (ux, tty). The conditional entropy
of X given an event A, denoted H(X | A), is the entropy of the conditional distribution of

px given A. The conditional entropy of X given YVis H(X |Y) = o Yy iy (Y H(X | Y =1y).

The mutual information between X and Y is I(X; V)& H(X)—H(X | Y)=H(Y)—H(Y |
X). The conditional mutual information between X and Y given Z is I(X; Y | Z) = H(X |
Z)—-HX|Y,Z)y=H(Y | Z)—H(Y | X, Z). Some basic properties of entropy and mutual
information we are using in this paper are the following. Proofs can be found in Chapter 2
of [CTI1].

Proposition 2.3. Let X,Y, Z be random variables on domains X,Y, Z, respectively.
1. H(X) <log|X|. Fquality iff X is uniform on X.

2. Subadditivity of entropy: H(X,Y) < H(X)+ H(Y). Fquality iff X,Y are indepen-
dent.

3. Data processing inequality: For any function f, I(X; f(Y)) < I(X; Y).
4. Chain rule for mutual information: 1(X; Y, Z)=1(X; Y)+ I(X; Z |Y).
5. I(X; Y) =0 iff X,Y are independent.



6. If X,Y are jointly independent of Z, then I(X; Y | Z) = I(X; Y).

The generalized Jensen-Shannon divergence has an equivalent characterization in terms
of mutual information (see a proof in Appendix A.1, generalizing a previous proof [BJKS02]):

Proposition 2.4. Let D ~ X\, (X1,...,Xp) ~ (1, s pn), 7(d, 21,... ,2n) = xq, and
Xp = n(D, X1,...,X,). That is, Xp is a sample from the distribution pp, where D is
chosen according to X\. Then, JS\(p1, ... ,1n) = I(D; Xp).

2.4 Set designs

A family of subsets Fi,... ,F; C [m] is called a (d, k)-design, if: (1) for all j € [¢], |F;| = d,
and (2) for all j # j' € [£], |F; N Fp| < k. We will use (7, (m))-designs of exponential size,
as given by the following proposition. The proof is a slight modification of the probabilistic
method argument of [NWO94], guaranteeing the sets are of size exactly m/2 (and not just at
most m/2). For completeness, it appears in Appendix A.2.

m

Proposition 2.5. For every m > 18, there ezists a (%, 2tm)-design Fi,... ,F, C [m] of
size £ = 29(m)

2.5 Sequential distributions

A sequential distribution on a domain B is a family of distributions y = {pp }p on B, indexed
by all the finite length sequences b = (by,...,b;) of elements from B. The family is used
to construct an infinite random sequence of elements from B as follows: the first element is
chosen according to pg; if the first ¢ elements chosen are b = (by, ... ,b;), the next element
is selected according to pp.

A sequential distribution induces distributions on all finite length sequences of ele-
ments from B. Given a sequential distribution p and an integer ¢ > 0, the t-wise dis-
tribution induced by p, denoted p;, is the following distribution on Bf: p(bi,...,b;) =
,U‘@(bl) " by (b2) Tt by b (bt)

A sequential distribution p on B is called independent and identically distributed (or “i.i.d.”
in short), if all the distributions in the family are identical to some distribution v on B. We
call v the base distribution of i. Note that for i.i.d. distributions, u; = v* for all ¢.

3 The sampling model

Loosely speaking, a sampling algorithm is a randomized algorithm that has “oracle access”
to its input x € X™. In each oracle call, the algorithm queries an index i € [n|, and gets back
x;. The queries are performed sequentially, and can be chosen adaptively: that is, based on
answers to previous queries the algorithm can choose which index to query next.

Since we are interested in lower bounds for sampling algorithms, we: (1) consider only
the number of oracle calls, or queries, the algorithm performs, and ignore other resources
like time or space; (2) ignore precision issues and assume the algorithm can query even real
numbers at unit cost; and (3) restrict to functions over a fixed input length n.
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Formally, a sampling algorithm is a communication protocol A among three players: Alice,
Bob, and a “referee”. Bob gets the input x € X™; Alice and the referee get random strings
r1 € Ry and ry € Ry, respectively. The protocol proceeds in rounds as follows. Alice begins
each round by sending a query index ¢ € [n] to Bob. The choice of i may depend on Alice’s
random string as well as on the answers to her previous queries. Bob replies with x;. The
referee, after seeing ¢ and x;, applies a “decision function” D : ([n]x X)* xRy — YU{CONT},
which determines the decision of the referee: continue to monitor the communication between
Alice and Bob or stop and output a value. The decision is based on the query indices sent
so far, on their respective answers, and on the referee’s random string. Abusing notation we
will write D(iy,... 4, a1,... a0 7o) instead of D(iy,aq,... 4, at,72).

The round at which the referee decides to stop and output a value is fully determined by
the input x and by the random strings r; and r,. We call this round the stopping time of the
protocol on (x,71,77), and denote it by T'(x,r1,72). The worst-case query cost of the protocol
is maxy ,, r, I'(x,71,72). The expected query cost of the protocol is maxy E [T'(x, Ry, Rs)],
where R; and R, are the random variables corresponding to the random strings of Alice and
the referee.

The output of a protocol A on (x,7,73), denoted Ay (x,71,72), is the value the referee
outputs at the stopping time 7'(x,r1,72). A is said to (e, §)-approximate a function f : X" —
Y with approximation notion Ay, if for all inputs x, Pr(Agu (x, R1, R2) € Af(x)) > 1 —6.

Transcripts The transcript of a protocol at step ¢ is the sequence of ¢ index-answer pairs
(11,1, - - - , i, a;) communicated between Alice and Bob during the first ¢ rounds. Note that
this sequence is fully determined by the input x and by Alice’s random string ;. We thus
denote by A;(x,r1) the transcript of A on (x,7) at step . The subsequence of query indices
i1,--. ,1; is called the index transcript of A on (x,7;) at step ¢, and is denoted by A;(x,71)-
The subsequence of query answers a, ... ,a; is called the answer transcript of A on (x,7;) at
step t, and is denoted by A;(x,r1).

The index transcript at step t is also fully determined by Alice’s random string 7 and
by the answers a = (aq, ... ,a;_1) to her first ¢t — 1 queries. We thus denote it by A;(a, ).

For the analysis of sampling protocols, it would be convenient to think of Alice and
Bob as engaging in an infinite conversation, in which Alice sends queries and Bob replies
with answers. The referee may monitor this conversation for a while and stop when he has
enough information to make a decision. We can thus talk about transcripts of the protocol
at arbitrarily large steps t, even if the referee has made a decision at some step ' < t.

Public coins vs. private coins The most general sampling protocols possible are ones
in which Alice and the referee share the same random string: r; = 7o = r. These are called
public-coin protocols. Unfortunately, our lower bound techniques are applicable directly only
to private-coin protocols, in which Alice and the referee get independent random strings.
Clearly, any private-coin protocol can be simulated by a public-coin one with the same
query cost. A natural question is whether a converse efficient simulation exists. We show
that efficient simulations exist, if either the domain or the range of the function are small.
We do not know of an efficient simulation when the domain and the range are large.



Proposition 3.1. Let A be a public-coin sampling protocol that (e, d)-approzimates a func-
tion f : X™ — Y and whose worst-case query cost is q. Then,

1. There exists a private-coin sampling protocol A" that (€,6 + 0')-approzimates f and
whose worst-case query cost is at most ¢ + O((loglog |X| +log(1/d"))/logn).

2. There exists a private-coin sampling protocol A" that (e, 6)-approximates f and whose
worst-case query cost is at most 2q + O(log |Y|/ logn).

The first simulation is an adaptation of a result by Newman [New91]. The second is the
following simple simulation: Alice of the private-coin protocol simulates both Alice and the
referee of the public-coin protocol. She communicates to the referee when to stop and what
value to output via “dummy” queries.

Index-oblivious sampling A protocol is called index-oblivious, if the referee’s decision
function is of the form D : X* x Ry — {0, 1}, meaning that the referee uses only his random
string and the answer transcript (but not the index transcript) to make his decision. Public-
coin protocols are always, WLOG, index-oblivious, since the referee can recover the query
indices just from the answers to the queries and from his random string (which is the same
as Alice’s random string).

Query distributions Any fixing of the first t—1 query answers a = (a,... ,a; 1) induces
a probability distribution over Alice’s possible choices for the ¢-th query index. We denote
this distribution by &,. Note that the sequence a is fully determined by the sequence i =

(41, - ,4;1) of indices Alice queried in the first ¢ — 1 rounds and by the input x. We can

thus define the distribution puy; def ;- The family of distributions pux = {ux;}:i is called

the index distribution of the protocol on x. iy is a “sequential distribution” on [n] (recall
the definition from Section 2.5). Two index distributions we consider in this paper are the
following:

1. Uniform sampling without replacement: For t = 0,... ,n, and for any ¢ distinct indices
W1y .- y0¢ € [N, fxy,.. i, 18 the uniform distribution on [n] \ {i1,... 4}

2. Uniform sampling with replacement: For any i, jix; is uniform on [n].

Note that uniform sampling with replacement is an i.i.d. sequential distribution, while
uniform sampling without replacement is not.

Any input x and any sequence a of answers to the first ¢ — 1 queries induces a probability
distribution oy » over Bob’s answers in the ¢-th round (which is x, where I is a random index
chosen from &,). The family of distributions ax = {x,a}a is called the answer distribution of
the protocol on x. Any input x and any sequence i = (iy,...,7; 1) of t — 1 indices induces a
probability distribution 1) ; on the possible index-answer pairs that can be produced at the
t-th round of the protocol. The family of distributions ¢x = {t/x;}: is called the index-answer
distribution of the protocol on x. It is easy to verify that if the index distribution of a protocol
on X is i.i.d., then so are the answer distribution and the index-answer distribution.



Sampling with advice A sampling algorithm with “advice” is one in which Alice is given
some prior information about the input x. This information is conveyed to Alice via her
random string: each input x is associated with a probability distribution py, from which
Alice’s random string is selected when Bob gets x.

In such protocols, the distribution of the ¢-th query index depends not only on the

answers a = (a,...,a; 1) to the first £ — 1 queries, but also on the input x. We thus
denote this distribution by &x ». The index distribution of the protocol on x is now defined
def

as flx = {/ix,i}i, Where py; = & x,. Similar adaptations apply to the answer distribution
and to the index-answer distribution.

4 Canonical forms for symmetric functions

In this section we show that, without loss of generality, any sampling algorithm computing a
“symmetric” function has a certain canonical form. Namely, it is private-coin and its index
distribution on any input is uniform with replacement. We extend previously known such
canonical form simulations to a larger class of functions.

4.1 Symmetric functions

Given an input x € X™ and a permutation 7 € S,,, we define the permutation of x according
to 7 to be the input 7(x) which satisfies for all i € [n], 7(x); = X;-13). A symmetric
function is one which is invariant under permutations of its inputs: f(7(x)) = f(x) for all
x and 7. Many natural functions like average, minimum, and median are symmetric. A
generalization of this notion is the following: for some function g : J x S, = Y, f is called
g-symmetric, if for all x and 7, g(f(7(x)),7) = f(x). That is, f(7(x)) is not necessarily the
same as f(x), but with a simple transformation, one can use f(7(x)) to get f(x). Symmetric
functions are g-symmetric with g(y,7) = y. Another interesting sub-class of g-symmetric
functions are ones in which f(7(x)) = 7(f(x)). In this case g(y,m) = 7 '(y). We call
such functions permutation-commutative. The identity function, for example, is permutation-
commutative. Next, we define the notion corresponding to g-symmetric functions, when
dealing with approximations of functions:

Definition 4.1 ((g,¢)-symmetric functions). Let f : X" — ) be a function with ap-
proximation notion Ay .. For a function g : Y x S, — Y, we call f (g, €)-symmetric, if for all
inputs x € A", for all permutations 7 € Sy, and for all y € A (7(x)), g(y,7) € As(x).

We show that any sampling algorithm approximating a (g, €)-symmetric function can
be simulated efficiently by a private-coin algorithm whose index distribution on all input is
uniform with replacement. We present two variants of the simulation: an indez-oblivious
one, which works only if the original algorithm uses at most O(y/n) queries and if g depends
only on its first argument, and an index-aware simulation which works for almost all other
algorithms. (We do not have a simulation for the uninteresting case in which the original
algorithm uses more than n/2 queries).
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Theorem 4.2 (Canonical form for symmetric functions). Let € > 0, let 0 < § < %
and let A be any sampling protocol that (e, )-approzimates a (g, €)-symmetric function f :
X™ — Y. Let q be the worst-case query cost of A and let qr be its expected query cost.
Then, there is a private-coin sampling protocol A that (€,20)-approzimates f and whose
index distribution on all inputs is uniform with replacement. Furthermore,

Low query cost case (q < V26n ): If g depends only on its first argument, then A s
index-oblivious. The worst-case query cost of A is at most q and its expected query cost is
at most (1 — 8)qg + 0q. If in addition ¢ < ¢/2n - qg, then the expected query cost of A is at
most 2qg.

High query cost case (¢ < § — \/%) The worst-case query cost ofA s at most 2q
and its expected query cost is at most 2qg.

The theorem follows from two simulation lemmas. Lemma 4.3 shows how to simulate
any sampling algorithm approximating a (g, €)-symmetric function by a sampling algorithm
whose queries are uniform without replacement. Lemma 4.7 shows how to simulate uniform
queries without replacement by uniform queries with replacement. Proofs of similar lemmas
can be found in [BKS01, Bar(2].

Lemma 4.3 (Simulation by uniform sampling without replacement). Lete > 0, let
0 <d <1, and let A be any sampling protocol that (e, 0)-approzimates a (g, €)-symmetric
function f : X™ — Y. Let q be the worst-case query cost of A and let qg be its expected
query cost. Then, there is a private-coin sampling protocol A that (€,9)-approzimates f and
whose index distribution on all inputs is uniform without replacement. If g depends only its
first arqgument, then A is indez-oblivious. The worst-case query cost of A is at most q and
its expected query cost is at most qg.

Proof. The basic intuition of the proof is the following: given an input x, A selects a random
permutation o € S,, and simulates A on o(z). Every time A would like to query some index
i of o(x), A returns Xs-1(;- Since A (€, d)-approximates f, it is likely to output a value
y € Az (0(x)). A now computes g(y,o). Since f is (g, €)-symmetric, then y € A, (o(x))
implies g(y, o) € Af(x), and therefore A indeed (e, §)-approximates f. The random choice
of o makes the queries of A to x uniform without replacement, regardless of how the queries
of A are distributed.

The above intuition can be made into a formal argument, but unfortunately it gives only
a public-coin protocol, since both Alice and the referee depend on the same randomly chosen
permutation ¢. In order to construct a private-coin protocol, we resort to a more involved
argument, in which Alice makes uniform queries without replacement and the referee has to
“figure out” the permutation to which these queries correspond.

Some notational comments are in order. First, all the operators that appear with a “hat”
refer to the simulating protocol A, while the ones that appear without a hat refer to A.

Second, for a permutation o € S,, and for any sequence i of ¢ distinct indices i1, ... ,i; € [n],
o(i) is the sequence o(i1),...,0(i;). Finally, for an input x and a sequence i of ¢ indices
i1,-..,%, X; is the sequence x;,, ... ,X;,.

Without loss of generality, we assume A is a public-coin protocol. We can therefore
assume that it is index-oblivious. That is, the referee’s decision function D takes as input
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arguments only the public random string and the answer transcript (and not the index
transcript).

Furthermore, we assume: (1) that the worst-case query cost of the protocol is at most n;
and (2) that Alice never queries the same index twice within these n queries. If A does not
satisfy these properties, we can simulate it by a new protocol A that also (¢, 0)-approximates
f, whose query costs are at most those of A, and that satisfies the two properties. The
simulation is simple: suppose there are some input x, public random string r, and step ¢,
such that A does not stop by the ¢-th step when running on (x,r), and such that the ¢-th
index queried, 7;, has already been queried before. Since Alice queried 7; before, she knows
the answer to the query and does not have to wait for Bob to send her this answer. So Alice
of the new protocol A simply “shortcuts” the second query of i;, by answering it on her own,
and immediately moving on to the next query. The referee of A simulates the referee of A
and also makes the same shortcuts. Note that one shortcut can be followed immediately
by another shortcut, and so on, resulting in a a chain of shortcuts. The chain always ends,
when either a new query index is reached, or when the referee decides to stop and output
a value. The referee and Alice can synchronize the chain of shortcuts, since they share the
same random string.

We next define the protocol A. In this protocol Alice and the referee get independent
private random strings. Alice gets a uniformly chosen permutation Il in S,,. The referee gets
a random pair (R, L), where R has the same distribution as the public random string of the
protocol A and L is a uniformly chosen integer in [n!] (R and L are independent random
variables). Bob, as usual, gets an input x.

For t = 1,... ,n, the t-th query of Alice is II(¢), regardless of the answers to previous
queries. For ¢t > n, Alice queries an arbitrary value (e.g., always 1). This already implies
that the index distribution of A on every input is uniform without replacement.

Before we define the decision function of the referee, we prove that the answer transcript
of A when Alice is given a permutation 7 and Bob is given an input x is identical to the
answer transcript of A when Alice is given a random string r and Bob is given an input
o(x). Here o is some permutation, which depends on x,r, 7, and t.

Claim 4.4. Fiz any input x and any random string r. Let i = (i1,... ,4;) be any sequence

of t distinct indices. Let j = (J1,...,7jt) def Ay(Xiyy - - yX4,_,,7) be the index transcript of

A at step t, when the public random string is r and the answers to the first t — 1 queries
are Xy, ... ,Xi,_,- (By our assumption about A, j consists of t distinct indices.) Then, for
any permutation m satisfying w(1, ... ,t) =1 and for any permutation o satisfying o(i) = j,
Aix,m) = (i,x1), and Ao(x),r) = (0(i),x;).

Proof. The statement A(x,7) = (i,x;) directly follows from the definition of Alice in the
protocol A. We prove the other statement by induction on ¢. The base case, t = 0, is trivial
since the transcripts are all empty at this point. Assume then that the condition holds for
t — 1, and we will show it holds for t.

Fix any i and any o satisfying o(i) = j, where j = (j1,...,j:) = Ay(x4,--- ,X;,_,, 7). Let
i’ and j' denote, respectively, the prefixes of i and j of length ¢ — 1. We have o(i') = j', and
thus can use the induction hypothesis on o to derive: A, 1(o(x),r) = (o(i’),xy). We are
thus left to prove that the ¢-th index queried in A on (o(x),r) is o(i;) and that its answer is
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x;,- Note that o(i;) = j;. By the definition of the sequence j, j; is the ¢-th index queried in A
when the public random string is 7 and the answers to the first t —1 queries are x;,, ... ,x;,_,-
Therefore, j; is exactly the ¢-th index queried in A on (o(x), 7). The answer to this query is
the following: o(x);, = 0(X)sa,) = X, O

For a random string 7, a sequence of ¢ query answers a = (ai,...,q;) is called a final
answer transcript of A on 7, if D(a,r) # CONT but D(a’,r) = CONT for every prefix a’ of
a. That is, if the referee of A sees the sequence of query answers aq,... ,a;, the first step
at which he decides to stop and give an output is . We denote by Z,, the set of all index
transcripts i, for which x; is a final answer transcript of A on r.

For an index transcript i = (i1,...,%) € Zx, , let Px,; be the collection of all per-
mutations 7 that satisfy 7(1,...,¢) = i. Let Sx,; be the collection of all permutations o
that satisfy o(i) = j, where j = A;(xi,,--- ,Xi,_,,7). The following claim shows that both

def def .. . . .
Pxr = {Pxpitiez., and Sk, = {Sxriticz., are partitions of S, with certain properties:

Claim 4.5. Fiz any input x and any random string r. Then, Px, and Sx, are partitions
of S, with the following properties:

1. Vie Ix,'ra |PX,T,i| = ‘SX,Tai|'

2. Vi € Ty, VT € Pyps, Y0 € Supsy Ai(x,7) = (1,x1), and Ay(o(x),7) = (o(i),x3),
where t = |i|.

Proof. The first property is obvious from the definitions of Px,; and Sx,;, since they are
both of size (n — t)!. The second property follows from Claim 4.4. We are left to prove that
Px,r and Sx, are partitions of S,.

We first prove that Py, is a partition of S,. Consider any i # i’. We need to prove
that Px,; and Px,y are disjoint. Let i = (41,...,4;) and i’ = (4,... ,4y). Note that one
final answer transcript cannot be a prefix of another final answer transcript, which implies
that also i cannot be a prefix of i’ and vice versa. Therefore, there exists some position
¢ < min(t,t'), such that (i1,...,41) = (¢},... ,4,_,) and i, # 4. Now, for every m € Py,
7(€) = 1, while for every n' € Py .y, 7'(¢) = ). Therefore, Px,; and Py, y are disjoint.

We next prove that Py, covers S,. Consider any permutation m € S,. Let i be the
shortest prefix of the sequence 7(1),...,m(n), for which x; is a final answer transcript of A
on r. i must exist, because by our assumption about A, it always stops within n steps. Now,
by definition, m € Px ;. Therefore, Py, covers S,, and thus it is a partition of S,,.

We now prove that Sx, is a partition of S,,. Consider any i # i, 1 = (i1,...,4),i =
(¢},...,4y). As before, there must be an ¢ s.t. (i1,... ,%-1) = (¢},... ,4_,) and 4y # 7). Let
i= 000 = Ay, X4 ,7) and let §' = (51,... ) = Au(xir, ... ,xi/tl_l,r). By
definition, for any o € Sy .3, 0(i) = j, and for any o’ € Sk ,v, 0'(i') =j'.

Since the first ¢ indices queried by Alice in A depend only on the public random string
r and on the answers to the first £ — 1 queries, and since (x;,,...,%;,_,) = (X, ... ,x,-/H),
then (j1,...,7¢0) = (41,...,Jj;)- It follows that for all o € Sx,; and for all ¢’ € Sk, .y,
o(i¢) = je = jy; = 0'(i}). But now, since i, # 1, then o # ¢’ for all such o, ¢’. In other words,
Sxri and Sx .y are disjoint.
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We are left to prove that Sy, covers S,. Note that |Sx,| = |Px,| and for all i, |Sx,
|Px.ri|. Therefore, the size of the union of the sets in Sy, is identical to the size of the union
of the sets in Py ,, which we already know to be n!. This implies that S, covers S,. O

We are now ready to define the decision function of the referee. Fix some input x and
some random string 7. Transcripts of A when x is the input are of the form (i,x;), where
i is a sequence of ¢ distinct indices. Given such a transcript, if D(x;,7) = CONT, then we
define D(i,x;, (r,£)) = cONT, for all values of £. That is, the referee of A does not stop as
long as the referee of A would have continued on the given transcript. If D(x;,r) = y for
some y € Y, it means that x; is a final answer transcript of A on r, and thus i € Z,. We
then define ﬁ(i, Xi, (r,¢)) = g(y,0), where o is the {-th permutation (under some arbitrary
order on S,) in Sx ;.

One subtle point that needs to be addressed regards the ability of the referee to know the
set of permutations Sy, ;, even though he does not know x. Sy, ; consists of all the permuta-
tions o that satisfy the condition o(i) = j, where j = (j1,...,jt) = Ae(Xiy,- -, Xi,_,,7). The
referee knows both the string r and the answers x;,,... ,x;, ,, and can therefore reconstruct
the sequence j. Since he knows also the sequence i, he can reconstruct Sx, ;.

Note that the index transcript i is needed in the decision function only in order to select
the permutation o used in the output step. If the function g does not depend on its second
argument (that is, g(y, o) = g(y)), then the referee of A is in fact index-oblivious.

We next prove that the stopping time of A on (x, 7, (r,£)) is identical to the stopping
time of A on (0(x),r), where o is some permutation depending on x, 7,7, and £. Moreover,
if the output of A on (o(x),r) is ¥, then the output of A on (x,m, (1, £)) is g(y, o).

Claim 4.6. Fiz any input X and any random string r. Then,
1. Yi € I, V7 € Py, Yo € Sypsy VU, T(x,7, (1, 0) = T(0(x),7).

2. Vi € Iy, VT € Prps, VU, Apu(x,7, (1,0)) = g(Apu(0(x),7),0), where o is the (-th
permutation in S .

Proof. Fix any i € I, any m € Px,4, and any o € Sx ;. Let ¢ = [i|. Using Claim 4.5, the
first ¢ answers given both in A, when running on (o(x),7), and in A, when running on (x, 7),
are X; = X;,,... ,X;,. dince x; is a final answer transcript of A on 7, A stops exactly at step
t. Now, since A sees the same answer transcript as A, and since it simulates A exactly, it
also stops at step t. We conclude that T'(x, 7, (7, £)) = T(c(x),7) = t.

As for the second part, given any m € Py ., A stops on (x, T, (r, £)) at step ¢ and outputs
g(y, o), where y is the output of A when given a public random string r and after seeing the

answer transcript x;. ¥ = Aoyt (0(x),r) for any o € S 4, by Claim 4.5. O

We now use this claim to prove that A (¢, d)-approximates f using g queries in worst-case
and gg queries on average. Since the random variables II, R, and L are mutually independent,
we can write the success probability of A on an input x as follows:

Pr(Agu (%, 11, (R, L)) € Aj(x))
= Y Pr(Aeu(x,m (r,L)) € A (x)) - Pr(ll =) - Pr(R=r). (1)

reR,meSy
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Pr(Il = 7) = 1/n!, because II is uniform on S,. By Claim 4.5, Py, = {Pxyi}icz., is 2
partition of S,,. We can therefore rewrite the RHS of Equation (1) as:

1 -
- Y Pr(R=r) > Y Pr(Agu(x,m,(r,L)) € Ap.(x)). (2)
reER ieIx,r WEPx,r,i
Using the second part of Claim 4.6, we can rewrite (2) as:

%-ZPI‘(R DI

reER i€Zx o TEPx ,7i

Y Pr(g(Aou(0(x),7),0) € Ape(x)).  (3)

l
’ Uesx,r,i

Using the fact f is (g, €)-symmetric, we can bound (3) from below by:

%-ZPr(R DD

reER i€Zx o TEPx ,7i

Y PrAa(o(®),r) € Ap(o(x).  (4)

eSx,'r,i

‘erl

The terms in the sum over 7 are independent of 7. This sum has |Px, ;| terms, which by
Claim 4.5 is identical to |Sx, i|. We can therefore rewrite (4) as:

PR =) Y Y PrA(o(),7) € Apelo(x)). (5)

reER ieIx,'r‘ Uesx,'r,i

Using the fact that Sy, = {Sx.i}ticz., i a partition of S, we rewrite (5) as:

%.Zpr(R ) 3 Pr(Ban(9(x),7) € Aplo(x))) =

TE’R 0ES,

Y Pr(Au(o(x), R) € Apelo(x).

T oeS,

Each of the probabilities in the sum are at least 1 — §, due to the correctness of A. We
conclude that the success probability of A is at least 1 — 4.

As for the query cost analysis, the worst-case query cost of A is at most the worst-case
query cost of A, since by the first part of Claim 4.6 for all choices of x, 7, r, £, there is some
permutation o, such that the stopping time of A on (x, 7, (r,£)) is identical to the stopping
time of A on (o(x),r).

The analysis of the expected query cost is slightly trickier. Using a similar analysis to
the one of the success probability, we can rewrite the expected query cost of A on x as:

E[T(X,H,(R,L ] - n' ZPr -3 S E [ rL))] (6)

leIx R4 WE’Px , 71

By the first part of Claim 4.6, we can rewrite the RHS of Equation (6) as:

T IPR=n 3 Y e 2 BTk ). 7)

TER 1€Zx,r TE€EPx,p i 0ESx 1 i
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Using now similar derivations to what was done in the analysis of the success probability,
we further rewrite (7) as follows:

1 1
m-zRPr(R:r)-.; SZ .E[T(O'(X),T)] = H'ZRPI"(R:T)' ZS E[T(o(x),r)]
i ) re gESH
= = Y E[T(o(x),R)].

oESy

Each of the terms in the last sum is at most ¢z, since ¢g is the expected query cost of A. It
follows that the whole sum is also at most gg, implying that the expected query cost of A
is at most gg. O

Lemma 4.7 (From samping without replacement to sampling with replacement).
Lete > 0,1let0 < 6 < %, and let A be a private-coin sampling protocol that (€, §)-approzimates
a function f : X" — Y and whose index distribution on all inputs is uniform without re-
placement. Let q be the worst-case query cost of A and let qr be its expected query cost.
Then, there is a private-coin sampling protocol A that (€,20)-approzimates f and whose
index distribution on all inputs is uniform with replacement. Furthermore,

Low query cost case (¢ < V26n): If A is indes-oblivious, then also A is indez-
oblivious. The worst-case query cost ofA 15 at most q and its expected query cost s at most
(1—06)qg+06q. If in addition ¢ < &/2n - qg, then the expected query cost of A is at most 2qp.

High query cost case (¢ < § — \/%) The worst-case query cost ofA 15 at most 2q
and its expected query cost is alt most 2qg.

Proof. 'The main idea of the construction is the following: A uses queries chosen uniformly
at random with replacement to simulate the uniform queries without replacement of A.
There are two basic cases: either the total number of queries ¢ A performs is small (at
most O(y/n)) or not. In the former case, by a birthday argument, ¢ uniform queries with
replacement are very likely to contain no collisions, and are therefore identical to uniform
queries without replacement. In the latter case, A chooses 2q queries with replacement; with
high probability, at least ¢ of them are distinct, and can therefore be used as uniform queries
without replacement for the simulation of A. Note that in the former case A need not know
the indices of the queries selected; this implies that if A was index-oblivious, then so is A.
In the latter case, however, A has to know the indices of the queries chosen, because it needs
to pick the ¢ distinct ones. Therefore, A cannot be index-oblivious even if A is.

The formal proof of the above is given next. We are using similar notations to those
introduced in the proof of Lemma 4.3.

Since A is a private-coin protocol and since its index distribution on any input is uniform
without replacement, we can assume that Alice and the referee get two independent random
strings: Alice gets a uniformly chosen permutation II and the referee gets some random
string R. Alice’s query at the ¢-th step, for ¢t < n, is I1(#).

Low query cost case. We start with the simulation for the case ¢ < v/ 26n. The protocol
A is defined as follows. Alice and the referee are given two independent private random

strings. The random string of Alice is an infinite sequence J of indices J;, Jo, . .. € [n], which
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are chosen uniformly and independently. At the ¢-th step, Alice queries J;, regardless of the
previous queries and their answers. This already implies that the index distribution of A on
all inputs is uniform with replacement.

The random string R of the referee is the same random string used by the referee of
A. Suppose, first, that A is not index-oblivious. Given a transcript (i,a), the referee of A
simulates the referee of A, as long as the index transcript i consists only of distinct indices.
Otherwise, the referee immediately stops and outputs an arbitrary value. Formally, if i
consists of distinct indices, then for all 7 and a, D(i,a,r) = D(i,a, r); otherwise, D(i,a,r) =
Yy, where y € ) is some arbitrary value. If A is index-oblivious, then the referee of A is
identical to the referee of A: for all r and a, D(a,r) = D(a,r).

It is clear from the above description that if A is index-oblivious, then so is A. We
are left to analyze the correctness of A and its query cost. For that we use the following
connection between A and A:

Claim 4.8. Let x be any input and let r be any random string for the referee. Let j =
(41, J2, - - - ) be any random string for Alice, for which the first q indices ji, . .. , j, are distinct.
Let m be any permutation satisfying w(1,...,q) = (j1,...,Jq). Then, T(x,j, r)=T(x,m,r)
and Aout(x,j,r) = Agu(x,m,7).

Proof. Suppose, initially, that A is not index-oblivious. For all ¢ < ¢, the ¢-th index Alice
queries in A when given 7 is m(¢) = j;, which is the same index queried by Alice at the ¢-th
step in A when given j. Therefore, the transcript of A on (x,j) at step ¢ is identical to the
transcript of A on (x,7) at step ¢. That is, A,(x,]) = A,(x, 7).

Since the query indices in A,(x, j) are distinct, then, by definition, for all 7 and for all
t < g, D(A(x,j),7) = D(Ay(x,7),7). Since the worst-case query cost of A is at most ¢, it
stops on (x, 7, 7) at some step t < g and outputs D(A(x,7), 7). It follows that also A stops at
the same step on (x,j,7), and outputs the same value. In other words, T(x,j, r)=T(x,m,T)
and Agy(X,J,7) = Aous(x, 7, 7).

The case of an index-oblivious A is proven using the same argument, except for replacing
transcripts by answer transcripts. O

Let E denote the event that Ji, ..., J,, the first g elements of Alice’s random string, are
distinct. We prove:

~

Claim 4.9. The distribution of the random variable A,u(x,J, R) given the event E is iden-
tical to the distribution of the random variable A (x, 11, R). Similarly, the distribution of

the random variable T(x, J, R) given the event E is identical to the distribution of the random
variable T'(x,11, R).

Proof. We prove the claim for the random variables Ay (x,J,R) | E and Ay (x,I1, R). An
identical argument works for the random variables T'(x,J, R) | E and T(x,II, R).

Fix any y € ). Denote by J? the prefix (Ji,...,J,) of J. Let T denote the set of all
sequences j = (ji,...,Jq) of ¢ distinct indices. Since J and R are independent given E, we
can rewrite the probability that Agy (x,J, R) =y given E as follows:

Pr(Au(x,J,R) =y | E) = Y Pr(Aou(x,J,R) =y |3*=j)-Pr(3?=j| E). (8)
JET
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For a sequence j € T, let P; be the set of all permutations 7 satisfying «(1,...,q) = j.
Using Claim 4.8, we can rewrite the RHS of Equation (8) as follows:

ZPr JI=j|F)- P ‘ZPT Agut(x,m, R) = y) =

JjeT wEP;

> Pr(3?=j| E)-Pr(Aeu(x, T, R) =y | TI(1,... ,q) =j). 9)
JET

By a symmetry argument, the distribution of the random variable J? given the event F is
uniform on 7. Similarly, the random variable II(1,... , ¢) is uniformly distributed in 7. We
can thus rewrite (9) as:

ZPI(H(L - aQ) :J) : Pr(Aout(XaHaR) =Y ‘ H(la ce aQ) :J) = Pr(Aout(XanaR) = y)'
JeT

We conclude that Pr(Aout(zc, J,R) =y | E) =Pr(Acu(x,II,R) = y) for all y € ), implying
that the random variables Ay (x,J, R)|E and Ay (x, II, R) have the same distribution. [

We next analyze the correctness of A. Let x be any input. Let E denote the complement of
E. Then,

Pr(AOHt(x,J,R) ¢ Ap(x)) =

= Pr(Bou(x, 3, R) ¢ Ap(x) | E) - Pr(E) + Pr(Aou(x, 3, R) & A (x) | F) - Pr(E)
< Pr(Bou(x, 3, R) ¢ Ay (x) | E) + Pr(E)

= Pr(Aouw(x,II, R) € As.(x)) + Pr(E) (By Claim 4.9)

< 6+ Pr(E). (By the correctness of A)

We next show that Pr(E) < 4, implying that A (¢, 20)-approximates f. Define (‘21) indicator

random variables Xy, such that Xy, = 1 iff J, = J,. Ji,...,J, are not distinct if and
only if ZkeXkZ > 1. The expectation of Zk,l Xy is (g)% < %. Therefore, using Markov’s
inequality, Pr(E) < < d.

We next turn to the analysis of the query cost of A. We begin with the worst-case query
cost. Fix any input x and any random strings j and r. If the first ¢ indices in j are distinct,
then by Claim 4.8, T'(x,j,r) = T(x, 7, 7). The latter is at most ¢, since the worst-case query
cost of A is ¢q. Suppose, then, that there are collisions in the first ¢ indices of j. If A is not
index-oblivious, then A can detect these collisions and stop immediately. Thus in this case
A indeed has worst-case query cost of at most q.

The case that A is index-oblivious is slightly more intricate. Let ji,... ,j, be the first ¢
indices in j (which may consist of repetitions). Define an input x’ as follows: fort =1,... ¢,
x; = X;,; for ¢ <t < n, x; =z, where z € X is some arbitrary value. Let 7 be the identity
permutation. Note that (x;,,...,%;,) = (x],...,X]) is both the answer transcript of A on
(x,j) at step ¢ and the answer transcript of A on (x',7) at step ¢q. Now, since the decision
functions of the referees of A and of A are identical, then when they both get to see the
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above answer transcript and both get the same random string r, then they both stop at the
same step t. t < ¢, because the worst-case query cost of A is at most gq.
As for the expected query cost,

X

maXE[ (x,J R)}

X

= max (B |T(x,3,R) | B| Pr(E) + E [T(x,3, R) | E| Px(E))
< max (E [T(x J,R) | E} (1-Pr(E )+q-Pr(E))

= max (E[T(x,II,R)]- (1 - Pr(E)) +¢-Pr(E)) (By Claim 4.9)
< gu(1—96)+q0.

Note that if ¢ < 3/2n - gg, then ¢ - Pr(E) < ¢*/(2n) < qg. Therefore, in this case the
expected query cost of A is at most ¢g(1 — §) + qr < 2¢p.

High query cost case. We now proceed to the case ¢ < & — \/% . For the description
below we will need to define the following operators on transcripts. Let i = (i1,...,%;) be
an index transcript and let a = (a1, ... ,a;) be a corresponding answer transcript. Let d be
the number of distinct indices among 1,... ,%;, and let ki,... , ks be the positions of the
first occurrences of these indices. We call k1, . .. , k4 the distinct index positions of i. For each
1 < ¢ < d, we denote by DIP,(i) the prefix of kl, ..., kq of length ¢. The d distinct indices,
Ukys-- - 51k, are called the distinct index subsequence of i. For each 1 < ¢ < d, we denote by
DIS,(i) the prefix of 4,,... i, of length £. DIs,(i,a) is the corresponding subsequence of
the transcript: (g, ... , %%, Gk -« 5 Qk,)-

The simulating algorithm A in this case is identical to the simulating algorithm in the
case ¢ < v/20n, except for the decision function of the referee. We thus already know that
it is private-coin and that its index distribution on all inputs is uniform with replacement.

Given a transcript (i,a), the referee extracts the distinct index subsequence: (i',a’) =
DIS4(i,a) (d is the number of distinct indices in i), and runs the referee of A on the transcript
(i",a’). That is, D(i,a,r) = D(i’,a’,r) for all . If the number of queries made so far is
2q, the referee stops, even if the simulation of A has not finished. If the simulation has
not produced an output value thus far, the referee outputs an arbitrary value. Formally, if
li| = 2¢ and if D(i’,a’,r) = CONT, then ﬁ(i, a,r) =y, where y € ) is some arbitrary value.

The above definition immediately implies that the worst-case query cost of A is at most
2q. It also implies that A is not index-oblivious, even if A is, since the referee needs to know
the index transcript i in order to find the positions of the distinct indices.

We are left to analyze the correctness of A and its expected query cost. Similar to Claim
4.8, we now have:

Claim 4.10. Let x be any input, let r be any random string for the referee, and let j =
(J1,J2, - - - ) be any random string for Alice, for which q out of the first 2q elements are distinct.
Let (ki,... ,kqy) = DIP,(j) be the positions of the first occurrences of these q elements. Let
7 be any permutation satisfying 7(1,...,q) = DI1S¢(J) = (Jky,--- »Jk,)- Then, Agu(x,§,7) =
Ayu(x,m,7) and T(x,j, r) = kr, where T =T (x,m,7).
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Proof. For all t < ¢, the t-th index Alice queries in A when given 7 is 7(t) = ji,, which is
the same index queried by Alice at the k-th step in A when given j. Therefore, if (i,a) is
the transcript of A on (x,j) at step kg, then (i',a’) is the transcript of A on (x,7), where
(I',a") = D1sy(i, a).

By the definition of the referee’s decision function, for all 7 and t < ¢, D(Ay, (x,j),7) =
D(A¢(x,7),r). Since the worst-case query cost of A is at most g, it stops on (x,m,7)
at some step ¢ < ¢ and outputs D(Ay(x,7),r). It follows that A stops at step k; on
(x,j,7), and outputs the same value. In other words, T(X 3,7) = krr,r) and Aout (x,§,7) =
Aout (x, T, 7). O

We use 11, J, and R to denote the same random variables as above. We define now E' to
be the event that at least ¢ of Ji,..., Jy, are distinct. We prove:

Claim 4.11. The distribution of the random variable Aout(x,J,R) given the event E 1s
identical to the distribution of the random variable A, (x,11, R).

Proof. Denote by J?? the prefix (J,. .., Ja;) of J. Let S be the set of all sequences in [n],
which contain at least ¢ distinct indices. Recall that for a sequence j € S, DIS,(j) denotes
the subsequence consisting of the first occurrences of the ¢ distinct indices. Let T denote
the set of all sequences in [n]? that consist of ¢ distinct indices.

Fix any y € Y. Since J and R are independent given E, we can rewrite the probability
Pr(Aoy(x,J, R) =y | E) as follows:

Pr(Aou(x,J,R) =y | E) = Y Pr(Aou(x,J,R) =y |3 =j)-Pr(J¥ =j| E). (10)
jes

For a sequence j € S, let P; be the set of permutations 7 that satisfy 7(1,... ,q) = DIS,(j)-
Using Claim 4.10, we can rewrite the RHS of Equation (10) as:

ZPrJ2q:J\E P |ZPr Aows(x, T, R) = y) =

jes TEP;
D Pr(3¥ =j| E) - Pr(Aou(x, T, R) = y | TI(1,... , q) = DI1,(j)). (11)
jes
We next rearrange the terms of the sum and group them according to the value of DIS,(j).
Thus, the RHS of (11) is written as:

Yo PrAe(xTLR) =y |TI(1,...,q) =§)- Y -Pr@=j|E)| =

y'eT je8,DIS,(j)=y
> Pr(Agu(x,ILR) =y | II(L,... ,q) =) - Pr(p1s,(J) =§ | E). (12)
j'eT

By a symmetry argument, the distribution of the random variable D1s,(J) given the event E
is uniform on 7. Similarly, II(1,... ,q) is uniformly distributed in 7. We can thus rewrite
the RHS of (12) as

ZPI(AOm(x,H,R) =y |I(1,...,q9) =5)-Pr(lI(1,...,q) =§) = Pr(Acu(x, I, R) = y).
yer
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We conclude that Pr(Ay(x,J,R) =y | E) = Pr(Agu(x,II, R) = y), for all y € Y, and
therefore the distributions of the random variables Agy(x,J, R)|E and Ay (x, I, R) are
identical. 0

We next analyze the correctness of A. Let x be any input. Let E denote the complement of
E. Then,

Pr(Aoui(x,J, R) & Aj(x)) =

Pr(Aow(x,3, ) & Ap(x) | E) - Pr(E) + Pr(Aow(x,3, R) ¢ Ar.(x) | B) - Pr(E)
Pr(Agu(x, 3, R) & Aso(x) | E) + Pr(E)

Pr(Aou (%, I, R) € Aj(x)) + Pr(E) (By Claim 4.11)

§+ Pr(E). (By the correctness of A)

We next show that Pr(E) < 6, implying that A (¢, 26)-approximates f. Define (%) indicator
random variables Xy, such that Xy, = 1 iff J, = J,. If the sequence Ji, ..., Jy, consists of
at most ¢ distinct values, then ), , Xz, > ¢ (because the way to create the least number of
collisions is to have two occurrences for each of the g values). On the other hand, the expec-

tation of Zk,e Xy 18 (22‘1)% < 2%2‘ Using the pairwise independence of Xy, and Chebyshev’s

inequality we obtain:

IIA

IN

Pr(E) < Pr()_ Xu>gq) < -E %:XM > q— 7)
_ VR[S Xe] s
T g _E)Q ¢ (1_2)2 = 21— )2 n(l_E)Q'

The last expression is at most ¢ for ¢ < n/2 — 1/n/(20).

We next turn to the analysis of the expected query cost of A. The event that the random
infinite sequence J consists of less than n distinct elements has probability measure 0. We
can thus expand the expected query cost of A on any input x as follows:

E [T(X,J,R} Y E [ x,J, R) | D18, (J) =j’] - Pr(pis,(J) = j), (13)
JeT
where T C [n]™ is the set of all n! sequences of n distinct elements.

For any infinite sequence of indices j, which consists of n distinct indices, let (k1,... , k,) =
DIP,(j) be the distinct index positions of j. For every 1 < ¢ < n, we call the difference ky—k;_+
the ¢-th delay of j, and denote it by DELAY,(j). (We define ky = 0). Note that for every
1<t<n, k=Y, DELAY(j).

For a sequence j' € T of n distinct indices, let 7y be the permutation satisfying my(1,...,n)
j’. We know from Claim 4.10 that for all x and 7, and for all j s.t. D1s,(j) =j/, T(x i) =
min(kr,2q), where T' = T'(x, 7y, r). Therefore, T(x,j,7) < kp = Ze | DELAY,(j). We can
thus bound the expected value of T(x, J, R) given the event “Dis,(J) =j"” as follows:

E[T(X,J,Rﬂmsn(J) ] [T(%R)DELAYK | pis,(J) = J} (14)

21



We cannot immediately use linearity of expectation for rewriting the expectation on the RHS
of (14), since the number of summands in the sum is a random variable itself. So we first
expand on the values of R (while exploiting the independence of R and J), and then apply
the linearity of expectation:

T (x,my ,R)
E| ) obeLav,J)|ps,d)=j| =
=1
T(x,m; /,7‘

= ZE Z DELAY,(J) | D1s,(J) =j,R=7r| -Pr(R =)

reR
T(x,m5,7)

= Z Z E [pELAY,(J) | DIS,(J) =§,R=r]-Pr(R=r). (15)

reR (=1

The random variable DELAY,(J) depends only on J and is independent of R. Moreover, for
every choice of j’, by a symmetry argument, E(DELAY,(J) | D1s,(J) = j') = E(DELAY,(J)) =
n/(n—L+1). T(x,my,7) < ¢ <n/2for all x,my,r, because the worst-case query cost of A
is at most n/2. Thus, for all ¢ < T'(x,7y,7), E(DELAY,(J)) < 2. We conclude that the last
expression in Equation 15 can be bounded as follows:

T (x,mjr7)
S Y Elpeiav,d) | pis,) = j,R=r] Pr(R=1) <
reR (=1
< Z-ZT(x,ﬂjI,r)-Pr(Rzr) = 2-E[T(x,7y, R)].
T€R

Substituting this bound back in the expression for the expected query cost of A on x (Equa-
tion 13), we have:

E[T(X,J,R)] - ZE[ (x,3,R) | i, (J) = §/] - Pr(pis, (J) = §)
JeT

< 2. E[T(x,7y,R)]- Pr(ps,(J) =§).
j'eT

By a symmetry argument, the random variable D1s,(J) is distributed uniformly on 7. Thus,
for all j € T, Pr(pi1s,(J) = j') = 1/n!, which is the same as Pr(II = 7), for any 7 € S,,. Also
note that the mapping j' — 7y is a 1-1 mapping from 7 to S,. We thus have:

E [T(X,J,R)} < 2-Y E[T(x,mR)]-Pr(l=n) = 2-E[T(x,T,R)] = 2qz.

TESy
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4.2 Row-symmetric and column-symmetric functions

For a set X', M, (X) denotes the set of all m x n matrices whose entries are elements of X'.
For a matrix A € M,,«,(X) and for a permutation o € S,,, we denote by og(A) the matrix
obtained from A by permuting its rows according to . That is, the i-th row of og(A) is
the o71(¢)-th row of A. Similarly, for a permutation 7 € S,, m¢(A) is the matrix obtained
from A by permuting its columns according to .

A function f on M,,x,(X) is called row-symmetric, if it is invariant under permuta-
tions of its rows. That is, f(A) = f(ogr(A)) for all A and 0. The rank of a matrix is
an example of a row-symmetric function. Similar to the definitions of g-symmetric func-
tions and permutation-commutative functions, we define g-row-symmetric functions and
row-permutation-commutative functions. The low-rank matrix approximation problem and
the matrix reconstruction problem are permutation-commutative (see Section 7). Again, we
define the corresponding notion for approximation of functions:

Definition 4.12 ((g, €)-row-symmetric functions). Let f : M., (X) — Y be a func-
tion with approximation notion Ay.. For a function g : Y x S,;, = Y, we call f (g, €)-row-
symmetric, if for all input matrices A € M,,x,(X), for all permutations o € S,,, and for all

y € Apc(or(A)), 9y, 0) € Apc(A).

We define(g, €)-column-symmetric functions analogously.

A standard sampling algorithm computing a function over matrices queries one entry of
the input matrix at a time. We call a sampling algorithm that queries a full row of the input
matrix at a time a row-querying sampling algorithm. The query cost of such an algorithm is
the number of full rows it queries.

We prove that any sampling algorithm A approximating a (g, €)-row symmetric function
can be simulated by a sampling algorithm A’ with the following properties: (1) it is row-
querying; (2) its queries are uniform with replacement; (3) it uses private coins; (4) the
number of rows it queries is at most twice the number of queries of A. If the number of
queries used by A is small enough (at most O(y/m)), then A’ is also index-oblivious.

Theorem 4.13 (Canonical form for row-symmetric functions). Let ¢ > 0, let 0 <

§ < %, and let A be any sampling protocol that (e,8)-approzvimates a (g, €)-row-symmetric

funct%on [ Mpyxn(X) = Y. Let q be the worst-case query cost of A and let qg be its
expected query cost. Then, there is a private-coin, row-querying, sampling protocol A that
(€,28)-approzimates f and whose index distribution on all input matrices is uniform with
replacement. Furthermore,

Low query cost case (q < V26n ): If g depends only on its first argument, then A s
index-oblivious. The worst-case query cost of A is at most q and its expected query cost is
at most (1 — 8)qg + 0q. If in addition ¢ < </2n - qg, then the expected query cost of A is at
most 2qg.

High query cost case (¢ < § — \/%) The worst-case query cost ofA 15 at most 2q
and its expected query cost is at most 2qg.

An analogous theorem holds for (g, €)-column symmetric functions.

23



Proof. The theorem follows from the following simple observation: we view each input matrix
A € M«n(X) as an n-dimensional vector va whose entries are elements of X™. That is,
the i-th row of A becomes the i-th entry of va. We denote by f': (X™)™ — ) the function
induced by f and this input transformation. Now it is trivial to verify that since f is
(g, €)-row-symmetric, then f’ is (g, €)-symmetric.

The protocol A that (e, §)-approximates f induces a protocol A’ that (e, §)-approximates
f'. A’ simulates A as follows. When A queries some entry (i,7) of A, A’ queries the i-th
entry of v ; the answer to this query consists of all the entries in the i-th row of A and in
particular (7,7). We conclude that A’ indeed (e, §)-approximates f' and that the number
queries it uses is always the same as the number of queries used by A.

Now, since f’ is (g, €)-symmetric, we can apply Theorem 4.2 and get a new sampling
protocol A, which satisfies all the conditions stated above. A can be viewed also as a
protocol for f that always queries full rows of the input matrix. O

5 Reduction from classification to sampling

In this section we show that any sampling algorithm that approximates a function f derives
a statistical classifier for the query distributions of an appropriately chosen family of inputs
to f. We start by defining statistical classification and then describe the reduction.

5.1 Statistical classification

Loosely speaking, statistical classification is defined as follows. A “black box” contains a
distribution p, which is guaranteed to be one of ¢ known distributions p4,...,us on the
same domain B. (We do not consider here the “Bayesian” scenario, in which there is some
prior distribution on [¢]). A classifier is a randomized oracle algorithm that has to determine
the identity of u. Each oracle call produces a sample from p. At the end of its execution,
the classifier announces a guess for the identity of u. This guess is required to be correct
with probability at least 1 — §, for all possible choices of p (the probability is over both the
samples from p and the coin tosses of the classifier).

Formally, a sequential classifier C' for ¢ sequential distributions uq,... , sy on a domain
B (recall the definition from Section 2.5) is a communication protocol between two players:
Alice and a “referee”. Alice gets as input an index j € [/] and the referee gets a random

string r € R. The referee’s random string is independent of the distributions p, ... , ue. The
protocol proceeds in rounds as follows. The t-th round starts with Alice sending a sample
b € B to the referee. b is chosen according to the distribution 1, where b = (by,... ,b;_1) is

the sequence of previous samples Alice generated from pi;. The referee, after seeing b, applies
a “decision function” D : B* x R — [¢] U {cONT}, which determines his decision: whether
to continue getting samples from Alice, or to stop and declare a decision. The decision is
based on the referee’s random string and on the ¢ samples generated so far.

The stopping time of C on j and r, denoted T'(j,r), is the random variable corresponding
to the step ¢ at which C stops when Alice gets the input j and the referee gets the random
string 7. The worst-case sample cost of C' is max; max, max,, (7T(j,)). Here the maximum is
over the choice of the input distribution j, over the random string of the referee, and over the
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samples drawn from f;. The expected sample cost of C' is max; E [T'(j, R)]. The expectation
is over the random string of the referee and the samples drawn from p;.

The decision of C' on j and r, denoted Coy(4,7), is the random variable D(Cy(;(4), 7).
C is said to be a d-error classifier for py, ..., p, if for all j € [¢], Pr(Cout (4, R) = j) > 1 —14.

The transcript of a protocol at step ¢ is the sequence b = (b, ..., b;) of samples sent by
Alice during the first ¢ rounds of the protocol. Unlike the sampling scenario, the transcript
here is not fully determined by Alice’s input j; it is a random variable, depending on the
distribution p;. We denote this random variable by C,(j). Like in sampling protocols, it will
be convenient to think of Alice as sending an infinite sequence of samples and consider steps
t exceeding the stopping time of the referee.

5.2 The reduction

In the reduction described below, we show that given any private-coin sampling protocol
that approximates a function f and given any collection of inputs, on which f takes very
“different” values, there is a classifier for the query distributions corresponding to these
inputs. We start by defining what it means for two inputs to have “different” f-values:

Definition 5.1 (Disjoint inputs). Let f : X" — Y be a function with approximation
notion Af.. Two inputs x,x’ € X™ are called e-disjoint, if A (x) N A (x") = 0.

Theorem 5.2 (Reduction from classification to sampling). Let A be a private-coin
sampling protocol that (e, d)-approzimates a function f : X™ — Y. Let q be the worst-case
query cost of A and let qg be its expected query cost. Let & = {x1,...,X;} be any set of
inputs to f, each two of which are e-disjoint. Then,

1. There is a 0-error sequential classifier C for the index-answer distributions ¥, , . .. ,¥x,,
whose worst-case sample cost is at most q and expected sample cost is at most qg.

2. If A is index-oblivious, there is a 0-error sequential classifier C for the answer distri-
butions o, ... ,0x,, whose worst-case sample cost is at most q and expected sample
cost is at most qg.

Proof. We start by describing the classifier for the index-answer distributions.

Informally, the classifier C', given an index-answer distribution 1)y;, simulates the sam-
pling protocol A on x;. The role of Alice and Bob in the protocol A is simulated by Alice
alone in C: Alice produces samples from the index-answer distribution 1, ; this distribution
is identical by definition to the distribution of index-answer pairs Alice and Bob produce in
A when given the input x;. Since the random string used by the referee of A is independent
of the random string used by Alice (recall that A is a private-coin protocol), the referee of
C can simulate the referee of A.

In the end of the simulation, A gives some output. C decides that the input distribution
is 1)y, if the output of A belongs to Af(x;). If the output of A does not belong to any of
the sets Afe(x1),...,Af(x¢), C outputs an arbitrary decision (e.g., “1”). Note that C’s
decision is well defined, since the sets Af (x1),..., A (x,) are pairwise disjoint. Since A
produces a value in Ay (x;) with probability at least 1 — 4, the classifier makes the right
decision with the same probability.
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The formal proof of the above is given next. We denote the operators corresponding to
the classifier C' with “hats” and the ones corresponding to A without a hat.

The referee of C' is given a random string R, which has the same distribution as the
random string of the referee of A. The decision function of the referee is defined as follows.
For all r, if D(i,a,r) = CONT, then ﬁ(i, a,r) = CoONT. If D(i,a,r) =y for some y € Y, then
D(i,a,r) = j, where j is the (only) index satisfying y € Ag(x;). If no such j exists, then
ﬁ(i, a,r)=1

We observe that the transcript of C on j and the transcript of A on x; are identically
distributed. Let R' denote the random string given to Alice in the protocol A. By defini-
tion, for any step ¢, the distribution of the random variable A;(x;, R') corresponding to the
transcript of A on (x;, R') at step ¢ is distributed according to 1x; ,/—the t-wise distribution
induced by 1, (recall the definition from Section 2.5). However, ¢ ; is also the distribution
of the random variable Cy(j), corresponding to the transcript of C' on input j at step ¢. Thus,
A¢(x4, R') and Cy(j) have the same distribution.

We use this observation to prove that C' errs with probability at most § on any given
input j. The error probability of C' on j is:

Pr(Cow(j) #4) = Pr(D(Cr;p)(4), R) # 5)- (16)

Since the referee of C' does not output j only if the referee of A does not output a value in
Aj(x;) on the given transcript, we can bound the RHS of (16) as follows:

Pr(D(Cjjpy(1)s R) # ) < Pr(D(Cijpy(4); R) & Ape(x;))- (17)
We expand the RHS of (17) by considering all the possible values of the stopping time:

Pr(D(Cr,py(4): B) & Are(x;)) ZPY JR) ¢ Arc(x;) A T(,R)=1). (18)

The event “I'(j, R) = ¢’ can be rewritten as the disjunction of the ¢t + 1 following events:
“D(Cy(j),R) = coNT”, for £ =0,... ,t —1, and “D(Cy(j), R) # CONT”. By the definition
of D, these are identical to the events “D(Cy(j), R) = conT”, for £ = 0,...,t — 1, and
“D(Cy(j), R) # coNT”. We can thus rewrite the RHS of (18) as follows:

S Pr(A\ D(Cj), B) = coxt A D(C,(j), B) & Age(x;) U{cont}).  (19)
=0 =
Let us denote by P; the predicate that corresponds to the event at the t-th summand of
the above sum. Note that P; is a function only of C;(j) and R (because Cy(j) is a prefix
of Cy(j) for ¢ < t). By our observation above the random variables Cy(j) and Au(x;, R')
are identically distributed. Since R is independent of both Cy(j) and A.(x;, R') (recall that
A is a private-coin protocol), then also the random pairs (Cy(j), R) and (A(x;, R'), R) are
identically distributed. It follows that the event “P;(Cy(j), R)” has the same probability as
the event “P,(A.(x;, R'), R). We can thus rewrite (19) as

iPr(t_/\lD(Ag(xj,R'),R)_CONT A D(Ay(x;,R),R) & Apo(x;) U{conT}).  (20)
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But now, by similar derivations to the ones we did above for C, the expression (20) is exactly
the error probability of A on x;. This probability at most J, due to the correctness of A.
We conclude that the classifier C' also errs with at most that much probability.

We now turn to the analysis of the sample cost. For any value of his random string r,
the referee of C' stops on any given transcript exactly at the same step as the referee of A
would have stopped given r and the same transcript. Since the latter always stops within ¢
steps, then also the referee of C' always stops within ¢ steps. We conclude that the worst-case
sample cost of C' is at most q.

To show that C' has expected sample cost of at most ¢z, we prove that the random vari-
ables corresponding to the stopping times of C on input j and A on input x; are identically
distributed. It would then follow that in particular their expectations are the same.

Fix any step ¢. The event that C stops on j at step ¢ (“T(j, R) =t”) can be written as
some predicate ); which depends only on C;(j) and on R. @ is the disjunction of the ¢ + 1
events D(Cy(j), R) = cONT, for £ =0,... ,t— 1, and D(Cy(j), R) # CONT. Since (Cy(j), R)
has the same distribution as (A(x;, R'), R), then the event “Q.(Ci(j), R)” has the same
probability as the event “Q:(A.(x;, R'), R)”. But now it is easy to verify that this event is
exactly the event that A stops on x; at step ¢ (“T'(x;, R', R) = t”). Since this holds for
all £, we conclude that the random variables T'(j, R) and T(x;, R', R) are indeed identically
distributed. This completes the proof of the first part of the theorem.

The proof of the second part is almost identical to the proof of the first part. Since in
this case the protocol A is index-oblivious, the decision function of the referee takes only
the answer transcript and the random string as inputs (and not the index transcript). This
implies that the decision function of the simulating classifier C' can also take only an answer
transcript and a random string as inputs. Thus, the resulting classifier works for the answer
distributions and not just for the index-answer distributions. O

6 Classification lower bound

In this section we present a new lower bound on the sample complexity of statistical clas-
sification in terms of the Jensen-Shannon divergence. We mention the implication to query
complexity lower bounds of functions in the end of the section.

The lower bound is proved in two steps: first we show a lower bound on the error prob-
ability of the classifier (a.k.a. the “misclassification error”) in terms of the Jensen-Shannon
divergence among the distributions that are being classified. We then prove a decomposi-
tion property of the Jensen-Shannon divergence among i.i.d. distributions. The two steps
together yield a lower bound on the sample cost of classification of i.i.d. distributions.

The following theorem gives a lower bound on the misclassification error of a classifier that
uses g samples to classify sequential distributions p1, ... , tg in terms of the Jensen-Shannon
divergence among fi1 g, - .- , fgq:

Theorem 6.1 (Misclassification lower bound). Let A\ be any distribution on [¢]. The
classification error 0 of any classifier C of sample cost q for sequential distributions piy, - - . , i
on B satisfies:

Hy(6) 4 0log(€ — 1) = H(A) = JSx(p1g, - - - 5 Hheg)-
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Bounding H»(d) by 26log(1/d) gives an explicit bound:

1
> Tno /o log 7 - PEEEY .
02 Q(10g€'10glog£ (H(A) = JSx (1, ’Me,q)))

This is an exponential improvement (in terms of ) over the bound of Lin [Lin91], who showed
5 Z Ll(fl—fl)(H(A) - JSA(ul,q, Tt ’Meaq))Q'

Proof. The proof is based on Fano’s inequality (cf. [CT91]) from information theory, which
gives a lower bound on the error probability of predicting the value of a random variable X
from the observation of another random variable Y:

Theorem 6.2 (Fano’s inequality [Fan52]). Let X and Y be two random wvariables on
domains X and Y respectively. Let g : Y — X be a prediction function, and let 6 =
Pr(g(Y) # X) be the prediction error probability. Then, Hy(0)+dlog(|X|—1) > H(X |Y).

Consider now the classifier C that uses at most ¢ samples to classify p, ... , ue. For each
d=1,...,¢ let By ~ pqq4 denote the random variable corresponding to the first ¢ samples
drawn from 4.

If we select an index d € [¢] according to A and run the classifier with u4 as input, we
can recover d with probability at least 1 — §. Therefore, if D ~ X is the random variable
corresponding to the choice of d, the decision function of the referee in the classifier C' induces
a prediction function g¢ : B x R — [¢], which predicts the value of D based on ¢ samples
drawn from pp and based on the random string of the referee. Thus, the prediction error,
Pr(gc(Bp, R) # D), is at most 0. Here, Bp denotes the random variable w(D, By, ... , By),
where 7(d, by, ... ,bs) = bg. R is the random variable corresponding to the random string
used by the classifier’s referee. Using Fano’s inequality, we have the following lower bound
on J:

Hy(6) + 6 log(¢ 1) > H(D | go(Bp, R)).

We now expand the conditional entropy, using the information theory properties mentioned
in Proposition 2.3. By the definition of mutual information,

H(D | go(Bp, R)) = H(D) — I(D; gc(Bp, R)).
By the data processing inequality,
I(D; gc(Bp, R)) < I(D; Bp, R).
By the chain rule for mutual information,
I(D; Bp,R)=1(D; R)+I(D; Bp | R).

Since D and Bp are jointly independent of R, then I(D; R) = 0 and I(D; Bp | R) =
I(D; Bp). We conclude:

Ho(6) + 6log(¢ — 1) > H(D)— I(D; Bp).

We complete the proof by noting that I(D; Bp) = JSx\(u14; - - - , tey) (Proposition 2.4). O

28



Proposition 6.3 (Decomposition of Jensen-Shannon). Let py, = v{,... e, = v} be
i.1.d. distributions on B?. Then,

JS)\(,U’I,q:"' 7/LE,(1) < q'JS)\(Vla"' al/f)'

Proof. Let Bj ~ pjq and X; ~ v;. Since p;, = v{, B; = X; that is, B; consists of ¢ inde-
pendent copies of X;. Also, let D ~ X\, Bp = (D, By,...,B;),and Xp = (D, Xy,...,X,),
where 7(d,z1,...,2) = x4. From Proposition 2.4 we have that JSy(p14,---,Hee) =
I(D; Bp) and JSy(v1, ... ,v) = I(D; Xp),

By the definition of mutual information, I(D; Bp) = H(Bp) — H(Bp | D). By the
subadditivity of entropy, H(Bp) < ¢ - H(Xp). Note that conditioned on D = d, Bp = X].
Therefore,

H(Bp|D) = S A@HXY = STMd)-q-H(Xs) = q-H(Xp | D).

The next to the last equality follows from the fact the joint entropy of independent random
variables is the sum of their entropies. We thus have:

I(D; Bp) < q-H(Xp)—q-H(Xp|D) = q-I1(D; Xp).

We can now immediately derive the sample complexity lower bound for classification:

Theorem 6.4 (Classification sample cost lower bound). Let py,... ,u, be sequential
i.9.d. distributions on B with base distributions vy, ... , v, respectively. Let \ be any distri-
bution on [€]. Then, the worst-case sample cost q of any d-error classifier C for py,. .. ,

satisfies:
1

JS)\(Ula'-- :l/ﬁ)

(H(A) — dlog(£ — 1) — Ha(d)).

Choosing A to be uniform on [¢] gives: g > Q(#ﬂm (1 =19)).
Using the reduction from classification to sampling, we obtain the following query com-

plexity lower bound:

Theorem 6.5 (Main theorem). Let A be any private-coin sampling algorithm that (e, §)-
approximates a function f : X™ — Y. Let q be the worst-case query cost of A. Let § =
{x1,...,%X¢} be any set of pairwise e-disjoint inputs, such that the indez-answer distributions
of Aonxy,...,xgarealli.i.d. Letvy,, ..., Vx, bethe base distributions of these index-answer
distributions. Let A be any distribution on S. Then,

1
q >
JSA(Uxyy - - 5 Vx,)

(H(X) — dlog(f — 1) — Hy(9)).

If A is index-oblivious, an analogous lower bound holds with the answer distributions replac-
ing the index-answer distributions.
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7 Applications

All the proofs appearing in this section share the same basic framework. Therefore, we start
the section with a “recipe” (or a “meta-proof”), which shows how to use our main theorem
to derive specific lower bounds for specific functions. In the proofs of the actual applications
we thus provide only the components that are unique to each applications.

7.1 The lower bound recipe

We next describe the recipe for obtaining query complexity lower bounds for specific func-
tions. The recipe described below is applicable to (g, €)-symmetric functions f : X" — ),
for which g depends on both of its arguments. Slight modifications (mentioned below) are
necessary when either g depends only on its first argument, or when f is a (g, €) row/column
symmetric function over matrices.

Our goal is to show a lower bound on the worst-case query cost ¢ of any sampling
algorithm A that (e, 0)-approximates f.

We first argue that, WLOG, ¢ < § — \/%. Because, if not, then ¢ > Q(n), which is the
best possible up to constant factors (there is always an algorithm that computes the function
exactly with n queries).

1. Prove that f is (g, ¢)-symmetric. It then follows from the second part of Theorem 4.2
that there exists a private-coin sampling algorithm A of worst-case query cost 2¢q that (e, 26)-
approximates f and whose index distribution on all inputs is uniform with replacement. Since
this index distribution is i.i.d., then so is the index-answer distribution of A. We denote by
vy the base of the index-answer distribution of A on input x.

2. Construct a family of pairwise disjoint inputs. We have to come up with some
collection of inputs & = {xy,...,X.}, such that for all j # j', x; and x;» are e-disjoint. The
choice of & depends on the particular f at hand.

3. Bound the dissimilarity among inputs in §. We need to pick some distribution A
on [/] and prove an upper bound of v on JSy(vx,, ... ,Vx,)-

It now immediately follows from Theorem 6.5 that 2¢ > %(H()\) —2§log(£—1)—Hy(26)),
which gives us the lower bound on gq.

When g depends only on its first argument When g depends only on its first argument
(e.g., when f is e-symmetric) and when the lower bound we are shooting for is at most
O(y/n), we can get an improved lower bound by using the answer distributions instead of
the index-answer distributions.

Formally, we first argue that, WLOG, ¢ < v/26n. Because if not, then ¢ > Q(y/n),
which is better than the lower bound we are aiming at. We can then apply the first part of
Theorem 4.2 and conclude that there is a private-coin, indez-oblivious, sampling algorithm
A of worst-case query cost g that (e, 20)-approximates f and whose index distribution on all
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inputs is uniform with replacement. Since the index distribution of Ais i.i.d, then so is its
answer distribution. We denote now by vy the base of the answer distribution of A on x.

We next construct a set S of pairwise e-disjoint inputs as before and show JS) (v, , ... , vx,)
is at most ~y, for some choice of A (note that now we bound the dissimilarity among the answer
distributions and not among the index-answer distributions). Finally, we apply Theorem 6.5.
Note that since A is index-oblivious, we can apply the theorem with the answer distributions
rather than the index-answer distributions.

When f is row/column symmetric . When f : M, (X) — Visa (g, €) row-symmetric
function over matrices, we think of f as a function of the form f : (X™)™ — ) and apply
the recipe described above. What we get is a lower bound on the query cost of row-querying
sampling algorithms that (e, 0)-approximate f. But since any entry-querying algorithm for f
of worst-case query cost ¢ can be simulated by a row-querying algorithm of worst-case query
cost at most ¢, the same lower bound holds for entry-querying algorithms. An equivalent
arguments holds for column-symmetric functions.

Specialized recipe for our applications The above recipe is general and works for any
(g, €) (row / column) symmetric function. It turns out, however, that in all of the applications
we consider in this paper the particular ways in which we construct the family of disjoint
inputs & and bound the dissimilarity among its inputs are almost the same. We thus next
elaborate on Steps 2 and 3 of the recipe above. We caution that this part of the recipe is
not necessarily applicable to any (g, €) (row/column) symmetric function.

2.1. Choose an “abundance parameter” and a “similarity parameter”. We pick
an integer ¢ and a real number v > 0. The aimed lower bound will be Q(;j - (1 =29)).

2.2. Find an appropriate mapping from subsets of [{] to inputs of f. We find a
mapping (which depends on the particular f) from subsets of [¢] of size ¢/2 to inputs of f
that satisfies two properties:

1. Disjointness: For any two subsets F,F’ whose intersection size is at most %t, the
corresponding inputs x, x’ are e-disjoint.

2. Entropy invariance: For any two subsets F, F', H(vx) = H(vyx), where x, x" are the
inputs corresponding to F, F'.

Using such a mapping we can construct a large set of pairwise e-disjoint inputs as follows.
Let Fi,...,F; be a (£, 11t)-design of size £ = 2% (Proposition 2.5). The set of pairwise
e-disjoint inputs is the family S = {xy,... ,x,} of inputs corresponding to Fi,... , Fy.

We next show how to prove JS)(vx,, ... ,Vx,) <7, for A which is the uniform distribution
on [¢]. We prove that JSy(vx,,- .. ,,) < JSx(Vy,,--- ,Vy,.), and show the latter is at most
Y. ¥Yi,---,ye are the inputs corresponding to the family of all the £* = (t;2) subsets of [t]
of size t/2. A\* is the uniform distribution on [¢*]. We thus need to prove that:

Claim 7.1. JS\(Vx,,--- s Ux,) < IS (Vyyy-en s Uy, ).
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In order to prove the claim, we need to verify the following fact. The proof of this fact
depends on the particular f we are dealing with. Let vy, and vy,. denote, respectively, the

A-weighted and A*-weighted average distributions of vy ,... vy, and vy, ... ,vy,.. Then,

3.1. Show that H(vy,.) > H(vx,)-

Proof (of Claim 7.1). Let D ~ X, D* ~ X*, Xp ~ vy,, and Yp- ~ vy,,.

By Proposition 2.4, JS\(vx,, ... ,vx,) = I(D; Xp)and JSx-(vy,, ... ,vy,.) = I(D*; Yp-).
Using the fact given in Step 3.1, H(Xp) = H(w,) < H(vy,.) = H(Yp-). Therefore,
I(D; Xp) = H(Xp)— H(Xp | D) < H(Yp:)— H(Xp | D). By the definition of condi-
tional entropy and the fact \ is independent of vy, for all j, H(Xp | D) = %Zje[e] H(vy,)-
Similarly, H(Yp- | D*) = &

jeler] H (l/yj). Using the entropy invariance property, all the

entropies appearing in both sums are identical. Therefore, H(Xp | D) = H(Yp- | D¥).
Thus, I(D; Xp) < H(Yp.) — H(Yp. | D*) = I(D*; Yp-). 0
To obtain the dissimilarity upper bound, we need to bound JS)«(vy,,... ,vy,.):
3.2. Show that JS\-(vy,,...,1y,.) < 7.

It follows that also JS)(vx,, ... ,¥x,) < 7, and therefore, by Theorem 6.5, 2¢ > % - (log £ -

(1—28) — Hy(26)) = Q(L - (1 — 26)).

Remark: When we apply the above recipe to functions over matrices, we denote the input
matrices corresponding to the design by A4,...,A, and the inputs corresponding to the
family of all subsets of [t] of size ¢/2 by By, ..., By.

7.2 The election problem

The input for the election problem, EP, is a sequence x € [m]™ of n votes to m parties. The
vote frequency of party i € [m], v;(x), is the number of votes party i gets in x. EP(x) is the

vote distribution V & (v1(x)/n, ... ,vn(x)/n). We consider additive approximation w.r.t.
statistical distance (i.e., half of the L, distance). That is, u € Agp (x), iff ||z — V4[| < e

Theorem 7.2. Let 0 < € < 55, 0 < 6 < %, and n > Q(m?/e* - 1/6). The worst-case query

cost of any sampling algorithm A that (e, §)-approzimates EP is at least Q(m/e? - (1 — 26)).

Proof. We use the lower bound recipe described in Section 7.1.

1. Symmetry. It is easy to verify that EP is an e-symmetric function. In other words
it is (g, €)-symmetric for the function ¢(y, 7) = y, which depends only on its first argument.
Moreover, by the restriction on n the lower bound we are shooting for is O(y/n). We can
thus use the distribution v, on [m], which is the base of the answer distribution induced by
uniform queries with replacement to x. Observe that v, happens to be exactly the same as
Vx — the vote distribution corresponding to x.

2.1. Abundance and similarity parameters. We choose t = m and v = O(1/¢?).
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2.2. Mapping subsets of [m] to inputs of EP.  Given a subset F C [m] of size m/2,
we associate with it any input x (say, the first in some order on ™), whose vote distribution
is the following: Vi (i) = 2% for i € F and Vi (i) = £2% for i ¢ F. If we think of F as a
collection of half of the parties, x is some population in which the parties in F collectively
get % + 12¢ of the votes and the parties not in F get % — 12¢ of the votes. The votes to the
parties in F are distributed evenly among them and the votes to the parties not in F are
distributed evenly among them. We need to show that this mapping satisfies the disjointness
and entropy invariance properties.

Disjointness.  Let F,F' C [m] be two subsets of size m/2, such that |F N F'| < Lm.

Let x,x’ be the corresponding inputs. Then, |[Vy — Vie|| > Vi(F\ F') = Ve (F\ F) >
1424e _ 1-24¢\ _ 48¢ _ : ot . .

|F\F'|- (7€ = =) = 51 - 7¢ = 2¢. Since the statistical distance respects the triangle

inequality, it follows that x and x’ are e-disjoint.

Entropy invariance. Recall that the answer distribution vy is exactly V. By definition,

for any input x induced by a subset F C [m]| of size m/2, the entropy of V, depends only

on the size of F and not on its identity. Therefore, for all F, F', H(Vy) = H(Vy).

3.1. Prove that H(vy,.) > H(vx,). vx, = %Zﬁzl V; can be written as the following
convex combination: vy, = (1 — 24e¢) - Uy, + 24¢ - F', where U, is the uniform distribution
on [m], F' is the distribution of a uniformly chosen element from F;, and J is a uniformly

chosen index of a set in the design. Formally, F (i) = 27{;' for i € [m], where f; is the

¢
number of sets in the design that contain 4. Similarly, vy , = % 25*:1 Vy; can be written as
(1—24€) - U, + 24¢- F*, where F* is the distribution of a uniformly chosen element from F3.
and J* is a uniformly chosen index of a set in the family of all subsets of [m] of size m/2.
Clearly, F* = Up,, and therefore vy,, = Uy,. It follows immediately that H(vy,,) > H (vx,.),

because both distributions share the same domain ([m]), and vy,, is uniform on that domain.

3.2. Bounding the dissimilarity. We are left to prove that JSx-(vy,,...,vy,.) <
O(e?). By definition, JSx: (ty,, .. ,vy,.) = & i1 Dr(vy, || vy,.)- Recall that vy, = Up,
and that vy, = V4. The bound follows from a simple calculation showing that Vj € [¢*],

Drr(Vy, | Un) < O(). a

7.3 Low rank matrix approximation

Theorem 7.3. Let k <min{%, 7}, 0 <e < ﬁ, and 0 < 6 < % The worst-case query cost

of any sampling algorithm A that (e, §)-approzimates LRMy, is at least Q((m+n)- (1 —27)).

Proof. We prove that the worst-case query cost of A is at least Q(m-(1—26)). An analogous
argument shows that it is also at least Q(n- (1 —2d)). We resort again to the recipe described
in Section 7.1.

1. Symmetry. We start by proving that LRMj is e-row and e-column permutation
commutative. Since we are dealing with real-valued matrices, any row permutation of a
matrix A can be written as the product XA of a row permutation matrix ¥ and of A.
Similarly, any column permutation of A can be written as the product AII, where II is a
column permutation matrix.
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Let A be any m x n matrix, let ¥ be any row permutation matrix, and let Il be any
column permutation matrix. Pick any B in the e-approximation set of X AIl. That is,
|ZAII — B||, < ||[SAII — (SAI)i|| + €||[ZAII|| 5. We need to show that X~'BII™! is in
the e-approximation set of A.

Note that for any matrix M, any row permutation matrix U, and any column permutation
matrix V, (1) UMV has the same rank as M; (2) [[UMV||, = [[M]|z; (3) U ! and V!
are also permutation matrices; and (4) (UMV);, = UM,V. It follows that S~'BII~! is a
rank £ matrix and

|A —x'BIIY||, = |[SAIl - B[,
< |IBAIL - (SAI[, + €| |[SATI]],
= [[ZAI - SA; + €[|All

A = Agllp +ellAllp-

We can thus use the distribution v on [m] x R", which is the base of the index-answer
distribution induced by uniform queries with replacement to rows of A. Thus, v is uniform
on the rows of A.

2.1. Abundance and similarly parameters. We choose ¢t = 2k and v = 2k/m.

2.2. Mapping subsets of [2k] to inputs of LRMj.  Given a subset F C [2k] of size
k, we map it to an input matrix A, all of whose entries are 0, except for the diagonal of its
top left 2k x 2k submatrix, which consists of the characteristic vector of 7. We next show
the mapping satisfies the disjointness and entropy invariance properties:

Disjointness.  Let F,F' C [2k] be two subsets of size k, such that |F N F'| < k. Let
A, A’ be the two corresponding input matrices. Note that both A and A’ are of rank k, and
therefore in order to be e-disjoint it suffices that ||A — A’||, > €(||Al|; + ||A||). Indeed,
|A||p = ||A!|| = Vk, while [|A — A'||% = |F\ F'| + |F'\ F| > k/6. The assertion follows

1
now from the fact ¢ < oI

Entropy invariance. For any A, va is uniform on rows of A, and thus H(va) = log m.

3.1. Prove that H(vg,.) > H(va,). Let O,ey,... e, denote, respectively, the all-zero
and the standard unit vectors in R". Recall that the base distribution v, is uniform on rows
of A. Thus, if A was obtained from a subset F by the mapping, then v, is uniform on the
following set of pairs: all the pairs (i, e;) with 1 < i < 2k and i € F, all the pairs (i,0) with
1 <i<2kandi¢F,and all the pairs (i,0) with i > 2k.

va, can be written as the following convex combination: va, = (1 —2£).U 4+ 2. F.
U is the uniform distribution on pairs of the form (i,0), where ¢ > 2k. F is a distribution
on pairs of the form (i,e;), i € [2k], and (,0), ¢ € [2k], defined as follows: F'((i,e;)) = ZJ;&
and F((z,0)) = KQ_,C];”:, where f; is the number of sets in the design that contain . Similarly,
vB,. = (1—2).U+ 2. F* where F* is uniform on the 4k pairs (i, €;), i € [2k], (i,0),i € [2k].

The following fact is standard in information theory (cf. [CT91], Chapter 2, Exercise
#19): if p is a convex combination au; + (1 — a)us of two distributions with disjoint
supports, then H(u) = aH (1) + (1 — o) H(pe) + Ho(a). Note that U and F have disjoint

supports, and thus H(va,) = (1 — 2). HU) + % - H(F) + Hy(%). Similarly, H(vs,.) =
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(1—2).HU)+ 2. H(F*) + Hy(%). H(F*) > H(F), because F and F* share the same

m

support, and F* is uniform on this support. We conclude that H(vg,.) > H(va,)-

3.2. Bounding the dissimilarity. We are left to prove that JSx-(vg,,...,vB,.) <
O(k/m). Note that vg,. assigns probability 1/2m to all the pairs of the form (i, e;), i € [2k],
probability 1/2m to all the pairs (7,0), 7 € [2k], and probability 1/m to all the pairs (i,0),

i > 2k. Therefore, Vj € [*], Dicv(vs; || vi,.) = 2k log {52 = 2k/m. O

For an input matrix A, the weight of A®, the i-th row of A, is ||A(i) ‘ |Z, and its relative

weight is the ratio ‘ |A(i) ‘ |§ /||A||%. We denote by Pa the distribution over rows of A induced
by their relative weights. We similarly define the relative weight of a column and the column
weight distribution Qa. We show that even if the algorithm is given the ezact (row or
column) weight distribution as advice, it still requires Q(k/€e?) queries.

Theorem 7.4. Let k < %, 0 < € < \/%—8, and 0 < 0 < 1. Any private-coin sampling
algorithm A that (e,0)-approzimates LRMy and whose queries on input A are in a set of

rows that are chosen independently according to Pa has worst-case query cost of at least
Q(min {k/€e*,m} - (1 —9)).

An analogous statement and proof hold for algorithms whose queries are in a set of
columns that are chosen independently according to Q4.

Proof. Since the queries of A are in a set of rows that are chosen independently according to
PA, we can simulate it by a private-coin, row-querying, sampling algorithm A of worst-case
query cost at most ¢ whose index distribution on any input matrix A is i.i.d. with base
distribution Pa. It thus suffices to prove a lower bound on the worst-case query cost of A.

We use the recipe of Section 7.1. In this case we can skip the step of proving the
function is row-symmetric, because the theorem itself considers only algorithms whose index
distribution on a given input matrix A is fixed and i.i.d. The base distribution of this
index distribution is Pa. The index-answer distribution of A on A is also i.i.d., with a base
distribution on [m] x R™, which we denote by v4.

2.1. Abundance and similarity parameters. We choose t = 2(k — 1) and v =
O(max {€%, k/m}).

2.2. Mapping subsets of [2(k—1)] to inputs of LRM;. Let r & max {48¢m, 2(k — 1)}.
For simplicity, we assume 2(k — 1) divides r. Given a subset F C [2(k — 1)] of size k — 1,
we map it to an input matrix A, all of whose entries are 0, except for the following: (1)
the 2k-th column of A starts with r 0’s and ends with m — r 1’s; (2) consider the top left
r x 2(k — 1) submatrix of A and divide it vertically into r/2(k — 1) 2(k — 1) x 2(k — 1)
submatrices. The diagonals of these submatrices are the characteristic vector of F.

Disjointness. Let F,F’ C [2(k — 1)] be two subsets of size k — 1, such that |F N F'| <
%(k —1). Let A, A’ be the two corresponding input matrices. Note that A and A’ are
of rank k; thus, it suffices to prove that |[A — A’|[, > e (||Allp + ||AY]|5): [|A — A'||% =

sty - (F\F|+ F\F) > i - 551 = £ > dém, while |||, = [|A]],. < vim.
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Entropy invariance.  All the matrices obtained by the mapping have m — /2 rows of
weight 1 and the rest are of weight 0. Thus, for all such A, H(va) = log(m —r/2).

3.1. Prove that H(vg,.) > H(va,).- Let ey,...,e, denote the standard unit vectors

in R". Let s & m —r /2. va, can be written as the following convex combination: va, =
(1—5:)-U+4;- F. U is the uniform distribution on palrs of the form (i, ey ), where i > r. F
is a dlstrlbutlon on pairs of the form (i +2d(k —1),e;),1 € [2(k—1)],0<d <r/(2(k-1)),
defined as follows: F((i + 2d(k —1),e;)) = 2fl , where f; is the number of sets in the design
that contain 7. Similarly, vg,, = (1 — 5;) - U + = - F*, where F* is uniform on the r pairs
(1+2d(k—1),e),i€2(k—1),0<d<r/(2(k 1))

va, and vg,, are convex combinations of distributions with disjoint supports. Therefore,
H(va,) = (1— ) H(U) + & - H(F) + Hy(&) and H(vn,.) = (1 £)- H(U) + £ - H(F") +
Hy(3:). We have H(F*) > H(F), because F and F* share the same support, and F* is
uniform on this support. Hence, H(vg,.) > H(va,).

3.2. Bounding the dissimilarity. We are left to prove that JSx-(vg,,...,vB,.) <
O(max {€®,k/m}). For every matrix A induced by a subset F, va is uniform on the set
of pairs (i +2d(k —1),e;), fori € F,d =0,...,r/(2(k —1)) — 1 and (i,eq), i > r. vg,.
assigns probability 1/2s to all the pairs of the form (i + 2d(k — 1),€;),i € [2(k — 1)],d =
0,...,7/(2(k—1)) and probability 1/s to all the pairs of the form (7, es), i > r. Therefore,
for each j € [(*], Dgr(vs, || vB,.) =% - Llog ((1/5)) = r/2s. Note that 2s = 2(m —1r/2) > m.
Therefore, JSx(vB,, ... ,vB;) <1/m S O(maX {e?, k/m}). O

7.4 Matrix reconstruction

Theorem 7.5. Let 0 < € < ﬁ and 0 < § < % Any sampling algorithm A that (e, 0)-

approzimates MRy has worst-case query cost of at least Q(mn - (1 — 20)).

Proof. We use the recipe described in Section 7.1.

1. Symmetry. It is easy to verify that MRy is e-permutation commutative. We can
then use the distribution 4 on [mn] X IR, which is the base of the index-answer distribution
induced by uniform queries with replacement to entries of A. Thus, v is uniform on entries
of A.

1. Abundance and similarly parameters. @We choose t = mn and v = 1.

2.2. Mapping subsets of [mn] to inputs of MRp. We think of each matrix as
a vector (we span the rows of the matrix one after the other to form an mn-dimensional
vector). Given a subset F C [mn] of size mn/2, we map it to an input matrix A, which is
the characteristic vector of F.

Disjointness. Let F, F' C [mn] be two subsets of size mn/2, such that |FNF'| < Smn.

Let A, A’ be the two corresponding input matrices. ||A Al =|F\F|+|F\Fl>m
while 6(||A||F + ||A/]|p) = 26,/TF < /T for € < \/_ Thus, A and A’ are e-disjoint.

Entropy invariance. For any A, v, is uniform on entries of A; thus H(va) = log(mn).

12’
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3.1. Prove that H(vg,.) > H(va,)- Both v, and vg,, are distributions on pairs of
the form ((a,b),0) and ((a,b), 1), where a € [m] and b € [n]. vg,. is uniform on this support
and therefore, H(vg,.) > H(va,).

3.2. Bounding the dissimilarity. For any j € [¢*], vg, is uniform on the set of
pairs ((a,b),1) with (a,b) € F; and ((a,b),0) with (a,b) ¢ F;. vg,. is uniform on all the
pairs ((a,b),1) and ((a,b),0), where a € [m] and b € [n]. Therefore, Dy (vs, || vB,.) =
mn-%-log%zl. O

In the following Pa and (Qa denote the weight distributions of the rows and columns of
a matrix A.

Theorem 7.6. Let 0 < € < \/QL@ and 0 < 6 < 3. Then,

1. Any sampling algorithm A that (e, 6)-approzimates MRy has worst-case query cost of
at least Q((m +n) - (1 — 29)).

2. Any private-coin sampling algorithm A that (¢, 0)-approzimates MRy and whose queries
on tnput A are in a set of rows that are chosen independently according to Pa has
worst-case query cost of at least Q(m - (1 — 20)).

3. Any private-coin sampling algorithm A that (€, 0)-approzimates MRy and whose queries
on mput A are in a set of columns that are chosen independently according to Qa has
worst-case query cost of at least Q(n - (1 — 20)).

Proof. We begin with the proof of Part (1). Let ¢ be the worst-case query cost A. We first
show that ¢ > Q(m - (1 — 26)) and then show that ¢ > Q(n - (1 — 2J)) (the two proofs are
different this time). As usual, we use the recipe of Section 7.1.

1. Symmetry. It is easy to verify that MRj is e-row permutation commutative. We can
then use the distribution v4 on [m] x IR", which is the base of the index-answer distribution

induced by uniform queries with replacement to rows of A. Thus, v is uniform on rows of
A.

2.1. Abundance and similarly parameters. We choose {t = m and v = 1.

2.2. Mapping subsets of [m] to inputs of MRy. Given a subset F C [m] of size m/2,
we map it to an input matrix A, which is all-zero, except for the first column, which is the
characteristic vector of F.

Disjointness.  Let F,F' C [m] be two subsets of size m/2, such that |F N F'| < Lm.
Let A, A’ be the two corresponding input matrices. [|A — A’|[2 = |F\ F'| + |F'\ F| > .
On the other hand, €(|[Al[, + [|A'|[;) = 2¢y/%. Thus, [[A - A'll, > €(||A]|p + [|A]|5)
whenever € < ﬁ, implying A and A’ are e-disjoint.

Entropy invariance. For any A, v is uniform on rows of A; thus H(va) = logm.

3.1. Prove that H(vg,.) > H(va,). Both va, and vg,. are distributions on pairs of

the form (4,0) and (7, e;), where ¢ € [m]. vg,. is uniform on this support and therefore,
H(vg,.) > H(va,)-
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3.2. Bounding the dissimilarity. vg,. is uniform on the following set of pairs: (¢, e;)
for i € [m] and (7,0) for i € [m]. For each j € [¢*], vg, is uniform on the set of pairs (7, e;)
for i € F; and (i,0) for i ¢ F;. Thefefore, Dxr(vg, || vB,.) = m - = - log 1/1(/27;;) = 1. Thus,
JS,\*(I/B“... ’UBZ*) =1.

We conclude that 2¢g > Q(m - (1 — 26)). We now prove that g > Q(n - (1 — 20)).

1. Symmetry. It is easy to verify that MRy is e-column permutation commutative.
We can then use the distribution va on [n] x R™, which is the base of the index-answer
distribution induced by uniform queries with replacement to columns of A. Thus, v, is
uniform on columns of A.

2.1. Abundance and similarly parameters. We choose t =n and v = 1.

2.2. Mapping subsets of [n] to inputs of MR,. Given a subset F C [n] of size n/2, we
map it to an input matrix A, all of whose rows are identical and equal to the characteristic

vector of F multiplied by the scalar ﬁ

1 1

Disjointness. Let F, 7’ C [n] be two subsets of size n/2, such that |F N F'| < &n. Let
A, A’ be the two corresponding input matrices. Note that ||A||i~ =[|[A[p=m-3

All the rows of B A — A’ are identical and equal to the following:

mn 27

0 ifbe FNF orbg FUF'
By = { s HOEF\F
——L ifbe F\F

Take x € R" to be the following unit vector:

—L ifbe FI\F

X = 7 Otherwise

Then, Va € [m], (Bx)2 = % - - . (|[F\F'| + |[F'\F|)? > L5 - (&)? = ;1. Therefore,

n mn? 12 144m

IB|j5 > ;. It follows that [[A — A'|[, > €(||Al|, + [|A’||,) (implying A and A’ are

e-disjoint) as long as € < \/%ﬁ.

The rest of the argument is identical to the proof that ¢ > Q(m - (1 — 24)), and is thus
omitted. This completes the proof of Part (1).

Identical mappings of subsets to inputs derive similar lower bounds for row-querying algo-
rithms that query according to Pa and to column-querying algorithms that query according
to Qa- In the first mapping the weight of all the non-zero rows in each input matrix is 1,
and therefore P simply selects uniformly at random from the set of non-zero rows. In the
second mapping the weights of all non-zero columns are identical and equal to \/? , implying
an algorithm that uses QQa picks a non-zero column uniformly at random. This changes the
analysis above only marginally, and we therefore do not repeat it. O

8 Expected query complexity

In this section we prove a lower bound on the expected query complexity via the KL di-
vergence. The lower bound is based on the reduction from statistical classification and on
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a lower bound on the expected sample cost of two-class classification. The latter is a well-
known result from statistics called the optimality of the sequential probability ratio test (cf.

[Sie85]):

Theorem 8.1 (Lower bound for deterministic classifiers). Let 0 < § < 1/e. Let
1o, 1 be i.i.d. sequential distributions on a domain B with base distributions vy,v1. Then,
the expected sample cost qg of any deterministic 0-error classifier C for pg, u1 satisfies:

1
2-min{Dgr(vy || 1), Drr(v1 || o)}

1
g > -(1—26)-10g5.

The proof appears in [Sie85, DKLR95]. For completeness, we give it in Appendix A.3.
The above lower bound holds only for deterministic classifiers, but can easily be extended
to randomized classifiers:

Corollary 8.2 (Lower bound for randomized classifiers). Let 0 < § < 1/e. Let g, p1
be i.i.d. sequential distributions on a domain B with base distributions vy, vi. Then, the
expected sample cost qg of any (randomized) §-error classifier C' for pg, u1 satisfies:

1

8 -min{ Dy (po || 1), Drcr(p1 || o)}

1
g > -(1—85)-10g5.

Proof. For b = 0,1, let ¢ o) [T'(b, R)] be the expected sample cost of C' when running

on input b. The expectation is over both the random samples from p, and the random

string R of the referee. For each possible value r of the referee’s random string, let ds, dof

Pr(Cou(b,7) #b) and gy, ) [T'(b,7)] be the error probability of the classifier and its

expected sample cost, respectively, when running on input b and when the referee gets r
as the random string. The probability and the expectation here are only over the random
samples from p;. We have for b =0, 1,

Eopr] < 6, Elawzr] = .

By Markov’s inequality, for less than 1/4 of the values of r, 6, > 46, and for less than 1/4 of
the values of r, g5, > 4¢. Therefore, there is at least one choice of r such that both d, < 44
and ¢, < 4¢q, for b =0, 1.

Let C. be the deterministic sequential classifier induced by C' and the fixing of the referee’s
random string to r. Note that d;, is the error probability of C, on input b and ¢, is its
expected sample cost on input b. Applying now Theorem 8.1 to C.., we obtain:

1 1
- (1 —86) - log —
2 Drn(n g 789 loe

dq, > 35

O

Using now the reduction from classification to sampling, we deduce the following lower
bound on the expected query cost of index-oblivious sampling algorithms:
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Theorem 8.3 (Expected query cost lower bound). Let 0 < 6 < 1/e. Let A be an
index-oblivious sampling algorithm that (e,0)-approximates a function f : X™ — Y. Let x
and y be any pair of e-disjoint inputs, such that the answer distributions of A on x and 'y
are i.i.d. with base distributions vx and vy. Then, the expected query cost qg of A satisfies:

1
8 -min{Dxr(vx || vy), Drr(vy || vx)}

1
e > (1 —86) - log —.

86

The theorem is meaningful only for index-oblivious algorithms, since the KL divergence
between the index-answer distributions (as opposed to the answer distributions) of any two
different inputs is always infinite. The bound is yet useful for symmetric functions, for which
index-oblivious algorithms are the best possible.

We next demonstrate the technique by an optimal lower bound on the expected query
complexity of the mean. Given zy,...,z, € [0,1], the average of O (1/€-log(1/d)) uni-
formly chosen samples from z1, ... ,x, is within € of % >; x; with probability at least 1 — ¢
(Chernoff-Hoeffding bound). Canetti et al. [CEG95] proved that this bound is tight w.r.t.
worst-case query complexity. Radhakrishnan and Ta-Shma [RT00] (implicitly) extended to
the expected query complexity. We provide an elementary proof for the latter (albeit, we
need to restrict n more than [RT00] do):
Theorem 8.4. Let 0 < e < 1, 0 < 6 < L andn > Q(% -3 -log'(1/6)). Then, the
expected query cost of any sampling algorithm A that (e, 6)-approzimates the mean is at least

(3 -log5).

Proof. Let g be the worst-case query cost of A and let ¢r be its expected query cost.
WLOG, ¢ < ¢g - O(log(1/6)) (cf. [BKSO01, Bar02]). Using the restriction on n, we can
therefore assume that ¢ < v/26n and ¢ < ¥2n-qg. Because, if ¢ > /20n, then g5 >
Q(q/log(1/6)) > Q(Vén/log(1/8)) > Q(1/€* - log(1/6)) , which is what we wanted to
prove. Similarly, if ¢ > /2n - qg, then g5 > Q(q/log(1/6)) > Q(¥/n-qg/log(1/6)), im-

plying gp > Q(y/n/log??(1/8)) > Q(1/é* - log(1/5)).

Using the above restrictions on ¢ and using the fact the mean is e-symmetric, we get
from the first part of Theorem 4.2 that there exists a private-coin, index-oblivious, sampling
algorithm A of expected query cost at most 2¢z that (¢, 28)-approximates the mean and
whose index distribution on any input is uniform with replacement. Let us denote by vy the
base distribution of this algorithm’s answer distribution on input x.

Consider the two inputs x and y. x has (% + €)n 0’s and rest are 1’s; y has (% —€e)n 0’s
and the rest are 1’s. Since the mean of x is 1/2 — € and the mean of y is 1/2+¢, x and y
are e-disjoint.

Note that the answer distribution on x, vy, is a Bernoulli distribution with probability
of success % — €. Similarly, the answer distribution on y, vy, is a Bernoulli distribution with
probability of success £ + €. A simple calculation then shows that Dy (vx || vy) < O(€?).
The lower bound now follows from Theorem 8.3. 0
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A Some proofs

A.1 Jensen-Shannon divergence

Proposition 2.4 (restated) Let D ~ \, (X1,...,X,) ~ (1, tin), 7(d, 21, ... ,2n) =
x4, and Xp = w(D, X1,...,Xy). That is, Xp is a sample from the distribution up, where
D is chosen according to X\. Then, JS\(p1,-..,1n) = I(D; Xp).

Proof. We start by stating three facts from information theory used in the proof. For two
distributions y and v, we denote by (u, V) their joint distribution, and by p x v their product
distribution (i.e., (u X v)(x,y) = p(x) - v(y)). The mutual information between two random
variables X and Y, (X,Y) ~ (u,v), has the following characterization in terms of the KL
divergence (cf. [CT91]):

I(X;Y) = Dgr((u,v) || 1 x v).

For a distribution p and an event A, we denote by u|A the conditional distribution of
given the event A. For joint distributions p = (ux,uy) and v = (vx,vy) on X x Y, let
(X,Y) ~ pand (W,Z) ~ v. The conditional KL divergence between px and vy given puy
and vy is defined as:

Dicr(px iy | vxloy) =D iv(y) - Drcr(px{Y =y} || vxl{Z = y}).
yey
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The chain rule for KL divergence is:

Dir(p || v) = Drr(py || vw) + Drr(px|py [| vx|vy).

We next use the above facts to prove the proposition. Note that the distribution of Xp is
exactly the A-weighted average distribution Y " , A(¢)x;. Let us denote this distribution by
iy The distribution of p, given the event {D = i} is exactly ;. Thus,

I(D; Xp) = Dgr((A ) [| Ax p)
(KL divergence characterization of mutual information)

= Drr(A I A) + Drr(uald | 1)
(Chain rule for KL divergence)

= 0+Z)\ “Dgp(pa{D =i} || 1a)

(Definition of conditional KL divergence)

= Z/\ “ Dier(pa || pr)

= JS/\(Nla ST
]
A.2 Set designs
Proposition 2.5 (restated) For everym > 18, there ezists a (%, 5ym)-design Fi,. .. , Fy C

[m] of size £ = 2%,

Proof. Following [NW94], we construct the design sequentially, where at the /-th step we
greedily choose a subset F;, that intersects each of the previously chosen subsets Fi,... , Fp_y
at less than %m positions. We show that such a choice is possible as long as ¢ is small enough.
Unlike [NW94], we need to make sure the sets we choose are not multi-sets.

In order to prove the existence of F; we choose a random subset X of size m/2 (according
to some distribution to be specified shortly) and prove that with positive probability X
intersects each of Fi,... ,F,_; in less than %m positions. Let Y be a random subset of [m]
chosen by picking m/2 elements of [m] uniformly and independently. Note that |Y| may be
smaller than m/2. X will be the union of Y and the first 5 — |Y| elements of [m] that do
not belong to Y.

Note that for any 1 < j </ -1, |F;NX| < |FNY|[+ (F — |Y]). Therefore,

7
—m) < Pr(|Y\<— +ZPr FinY| > 5m

11
r(dy X

4

In order to bound Pr(|Y| < @) we define (™/?) indicator random variables Z;, where
Z; » = 1 iff the i-th element and the 7’-th element chosen to be included in Y are the same.

Let Z =3, s Zi» be the total number of collisions. Note that if [Y'| < % then Z > %. Since
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the probability of a collision is %, E[Z] = (mQ/ 2) . % The Z; ;’s are pairwise independent,
and therefore VAR [Z] = (m2/ 2)L(1- 1) < E[Z]. We then apply Chebyshev’s inequality and
use the fact § < E[Z] < %

9-VAR[Z] < 81

Pr(Z>") < Pr|Z-E[Z]|>E[Z]/3) < F7 S

6

Fix some 1 < j < ¢ —1. Note that E[|F; N Y|] = m/4. Therefore, by Chernoff bound,
Pr(|F;NY|> Lm) < e ™8 Thus, as long as £ < (1 — ). e™/? 41 X is as wanted
with positive probability. O

A.3 Optimality of the sequential probability ratio test

Theorem 8.1 (restated) Let 0 < § < 1/e. Let po, 1 be i.i.d. sequential distributions
on a domain B with base distributions vy,v,. Then, the expected sample cost qg of any
deterministic §-error classifier C' for g, p1 satisfies:

1
2 -min{Dgr(vo || v1), Drr(vi || vo)}

1
g > -(1—2(5)-10g5.

Proof. Since C'is a deterministic classifier, its referee does not have a random string. Thus,
his decision function is of the form D : B* — {0,1} U {coNT}. The sample cost of C' on
input b € {0,1} is E [T'(b)], where the expectation is over the samples from y,. Our goal is to
prove a lower bound on max {E [T'(0)],E [T(1)]}. We will prove a lower bound on E [T'(0)].
A similar argument works for E [T'(1)].

Let By, Bs,... denote the infinite sequence of random variables on the domain B ob-
tained by drawing samples according to py. By, Bs, ... are independent and are distributed
according to vy. Similarly, let B, B}, ... denote the infinite sequence of samples from p,.
By, Bs, ... are independent and are distributed according to v.

We define L; to be the “log-likelihood ratio” of vy and v, w.r.t. the i-th sample from py:

1Z0) (Bz)
141 (Bz) )

Li: In

Note that for all i, E [L;] = In2- Dy, (v || v1). Define G % 37O L., We use Wald’s identity
=1

(cf. [Sie85]) to analyze the expectation of G:

Theorem A.1 (Wald’s identity). Let X, Xo,... be an infinite sequence of independent
and identically distributed random variables with mean . Let S be a random variable on
{0,1,2,...}, for which the event {S = k} is independent of Xyy1, Xgio,... for all k (S is
called a stopping time random variable). We further assume E[S] < oco. Then,

ZXi]:u-E[S].

E
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Note that the event “T'(0) = t” depends only on By, ... , B, and is therefore independent
of Lyi1, Lyya,. ... Therefore,

E[G] = E[T(0)]-1n2- Dy (v || ). (21)

Let Ay denote the set of all finite sequences b € B* for which D(b) = 0 and let .4; denote
the set of all sequences b € B* for which D(b) = 1. Let A = A;U.A;. We can rewrite E [G]
as follows:

E[G] = Y E[G|Bi=bi,...,B,=b]-Pr(Bi=by,...,.B =)
b=(b1,...,b:)EA
|b] b
l/()(bi)
= 2.2 In [ 1w
beA i=1 vi(bi) -1
|b| b
I, w(b») ( )
= In|==————7]" In v (b
bg;o (Hlt;l v1(bi) 111 b§1 Lb|1V H

We next use the “log sum inequality” (cf. [CT91], Chapter 2), which states the following:

Theorem A.2 (Log sum inequality). For non-negative ay,... ,a, and by, ... by,
n n
D im1 Ui
a; ln—Z > a; | In =2
Samtt > (Ya)n gt

|b|
> (Z Hi'i'luo(bi)> ‘In (Zb%n 1”°(b)>

beAo > bed, I’ ‘1”1(1’)
P ((Bl, .. BT(O)) Ao)
Pr((B{, .. B’T(l)) Ao)

= PI‘((Bl, Ce ,BT(O)) € .A()) -In (23)

Note that the event “(Bi,...,Brpq)) € Ay is identical to the event “Cyy(0) = b7, for
b € {0,1}. Similarly, the event “(B, ..., Bj,) € A,” is identical to the event “Cou(1) = 0.
We can therefore rewrite the RHS of Equation 23 as follows:

Pr(Ciuy (0) = 0) 10
Pr(cout( )_O) ~ (1 6) 1 .

Pr(Cou(0) = 0) - In

Similarly,

e e

beA;
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Let a = Pr(Coy(0) = 1) and b = Pr(Coyi(1) = 1). Note that 0 < a < §, while1 —§ < b < 1.
Therefore, aln(a/b) > alna. The function f(a) = alna gets a minimum at @ = 1/e. Since
we assume ¢ < 1/e, its minimum in the interval [0, §] is at @ = §. Therefore, Pr(Cyy(0) = 1)-

In % > §Ind. We conclude that

1_6—(51n1 >

1 1

Combining this lower bound and Equation 21, we obtain:

E[T(0)] > (1= 25) - log %

2 . DKL(VO || 1/1)

An identical argument shows that:

E[T(1)] > (11— 25) - log%.

2- DKL(VI || l/o)
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