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Abstract

We show that the asymmetric k-center problem is Q(log" n)-hard to approximate unless
NP C DTIME(n?o(e81967))  Since an O(log* n)-approximation algorithm is known for this
problem, this essentially resolves the approximability of this problem. This is the first natural
problem whose approximability threshold does not polynomially relate to the known approxima-
tion classes. Our techniques also resolve the approximability threshold of the weighted metric
k-center problem. We show that it is hard to approximate to within a factor of 3 — ¢ for any
e> 0.

1 Introduction

The input to the asymmetric k-center problem consists of a set V' of vertices of a complete digraph
G, and a weight (or distance) function ¢:V x V — RTU{0}. The weight function ¢ must satisfy
the (directed) triangle inequality, i.e., Yo € V, ¢,, = 0 and Yu, v, w € V| €yy + €y > Cuw- The goal
is find a set S of k vertices (denoted as centers) and to assign all the vertices to these centers, such
that the maximal distance of a vertex from its center is minimized. To state mathematically, we
want to find a subset S C V of size k, that minimizes

max min ¢y,
veV  u€eS

If the function ¢ is assumed to be symmetric as well, the above problem is the (metric) k-center
problem. This is one of the early problems for which approximation algorithms were designed,
and an optimal approximation ratio of 2 is known [9]. Subsequent to the solution of this problem
a significant number of other problems in location theory were solved (see [11]); however the
approximability threshold of the asymmetric case remained open'.
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In a significant step, Panigrahy and Vishwanathan [10] gave an O(log* n) approximation algorithm,
which was subsequently improved by Archer [1] to O(log™ k). In this paper we show that these
results are asymptotically tight, unless NP C DTIME(npOly(loglog”)). This is a lower bound for
a natural problem which does not conform to the known classes of approximation (see [2]). The
result of [8] is already a step in this direction, which shows a poly-logarithmic inapproximability
for the group Steiner problem. However, our paper demonstrates a problem whose approximation
factor is not polynomially related to the known classes. We remark that our result holds even
for weaker assumption. We show that for every constant i, asymmetric k-center is Q(log™ n)-hard

to approximate, unless NP C DTIME(nlOg(i)”). We note here that Halperin, Kortsarz, and
Krauthgamer [7] have independently obtained a similar result.

Our results build on the sequence of recent results leading to a (k—1—¢) hardness for k-hypergraph
covering [6, 5, 3, 4]. The result of [4] can be viewed as a construction of an instance of Set Cover
from an instance of Gap 3SAT(3) with a strong bi-criterion gap. If the formula is satisfiable then a
1/(k—1—c¢) fraction of the sets are sufficient to cover all the elements. If the formula is unsatisfiable
then a fraction 1 — € of the sets cover at most a 1 — f(k, ¢) fraction of the elements

At a high level, our reduction works as follows: Given an instance ¢ of 3-SAT(3), we build a directed
graph, with h 41 = ©(log*(N)) layers of vertices (N is the number of vertices, N = nrtv(loglogn)),
For each pair of consecutive layers 4, (i + 1), there are directed edges from some layer ¢ vertices to
some layer (i 4 1) vertices. This graph is translated into an instance of k-center as follows. The set
of vertices remains the same. For some ¢, consider layer ¢ vertex v and layer (i + 1) vertex u. The
distance ¢(u,v) = co. If there is an edge (v, u) in the original graph, then ¢(v,u) = 1. Otherwise,
c(v,u) = co. The distances between any other pair of vertices are implied by these distances.

Layer 0 of vertices consists of only one vertex, which is connected to every vertex in layer 1. For
any two other consecutive layers 7, (7 + 1), we build a Set Cover instance, where layer ¢ vertices
serve as sets, and layer (i + 1) vertices as elements. There is a directed edge from layer 7 vertex v
to layer 1 4+ 1 vertex u iff the element corresponding to u belongs to the set corresponding to u.

If the formula ¢ is a yes-instance, we are able to cover all the vertices by k& + 1 centers with radius
1, i.e., apart from the vertex at level 0 (which we include in our solution), we will find solutions to
all the Set Cover instances, using in total only & sets.

If ¢ is a no-instance, we will prove that it is impossible to cover all the vertices by k£ + 1 centers
with radius (h — 1). To do this, it is enough to show that it is impossible to choose k vertices in
layer 1 that cover (with radius (A — 1)) all the vertices in layer h, since we can assume that every
solution uses only vertices in layers 0 and 1. Indeed, any solution must contain the layer 0 vertex
(because it is impossible to cover this vertex otherwise), which covers all the vertices, except for
layer h. As we are allowed to use radius A — 1, there is no point in taking any vertex v of some layer
i > 1 to the solution: the predecessor of v in layer 1 can cover (with radius A — 1) all the vertices
v can cover.

We remark that we could recast the proofs of the papers [3, 4] to construct the family of Set
Cover instances we need. However, we will not be requiring the full machinery of the hypergraph
constructions. Since we will be required to compute the various parameters of the Set Cover
instance and how the layers interact, we will present the full proof with due apologies to the
readers well familiar with hypergraph hardness constructions. In fact, our construction of the Set
Cover instances is very similar to [3], and many proofs are in the same spirit as in [4].



Finally, we would like to remark that we did not try to optimize the constant in the ©(log* n)
hardness, but our goal was rather to show the simplest construction. In fact, using Set Cover
construction similar to [4], results in a better constant, though more complicated construction. We
defer the optimization of the constant to the journal version.

The rest of this paper is organized as follows. In Section 2 we will present the preliminaries of the
Raz verifier. In section 3 we will present the Set Cover instances we will construct given a formula
. In Section 4 we will complete the reduction to asymmetric k-center. The results will be used
in Section 5 to show tight lower bounds for the weighted (metric) k-center problem. An explicit
construction of the Integrality gap appears in Appendix C.

2 Preliminaries: The Raz Verifier for Gap 3SAT(3)

The 3SAT(3) problem is defined as follows. We are given a 3CNF(3) formula, with n variables
and n clauses. Each clause has exactly 3 different variables and each variable appears in exactly 3
clauses.

An instance ¢ of the problem is defined to be an yes-instance, if there is a satisfying assignment. It
is defined to be a no-instance, if every assignment to ¢ satisfies at most (1 — ¢) fraction of clauses
simultaneously. The following is a well-know fact:

Theorem 1 There is an €, such that it is NP-hard to distinguish between the Yes and the No
instances of 3SAT(3).

We will use the Raz verifier for 3SAT(3). The verifier with £ repetitions works as follows. We
randomly choose £ clauses, and in each clause we randomly choose one of its variables, called a
distinguished variable. Then we send the indices of the clauses to prover 1 and the indices
of the distinguished variables to prover 2. The answer of prover 1 is a 3/-bit string specifying
the assignments to all the variables that appeared in the clauses, which satisfy each one of these
clauses. The answer of prover 2 is an /-bit string specifying the assignments to all the distinguished
variables.

The verifier performs the following test: for every clause C' that was randomly chosen previously, we
check that the assignment to its variables, returned by prover 1, satisfies the clause. Also, we check
that the distinguished variable of C' gets identical assignment in the answers of the two provers.
We do not perform any additional tests. For example, it is possible for the same variable to appear
in two different clauses and to get different assignments: we do not check that.

This proof system can be viewed as follows: There is a set Y of variables, where each variable
y € Y corresponds to a query (with ¢ repetitions) to prover 1. Similarly, there is a set 7 of
variables corresponding to all the possible queries to prover 2. An assignment to y-variable is a
3(-bit string that satisfies all the corresponding clauses, and an assignment to z-variable is an £-bit
string. Let r be some random string, and let y € Y, z € Z be the variables corresponding to the
two queries that are asked, given r. We say that there is a constraint C,(y, z). The constraint is:
the assignments to variables y, z must be consistent. Thus, there is a one-to-one correspondence
between the random strings r and the constraints.



Theorem 2 There is a constant 0 < o < 1, such that:

e For any yes-instance @, there is an assignment to the variables in Y, 7, such that all the
constraints are satisfied.

e lor any no-instance @, no assignment can satisfy a fraction > 2°¢ of constraints.

Notation: We denote the set of all the possible random strings by R. Clearly, |R| = (3n)".
The set of all the possible queries for provers 1 and 2 are denoted by )7 and @,. We denote
Q = |Q1] = Q2] = |Y] = |Z| = n*. Note that for each possible query for prover 1 (prover 2),
there are exactly 3° possible queries for prover 2 (prover 1). We denote the set of all the possible
assignments to variables Y and Z by Ay and Ay, |Ay| = 8¢, |Az| = 2, and denote A = 8, so
|Ay [, |Az] < A.

Consider variables y € Y, z € Z, such that there is a constraint C,(y, z). For every assignment to
y, there is at most one assignment to z that will satisfy the constraint.

3 The Basic Set Cover Instance

Given an instance ¢ of 3-Sat(3), we build the basic Set Cover instance, based on the Raz verifier.
Our final construction of k-center instance uses several such basic Set Cover instances, connected
back-to-back, while different basic Set Cover instances have different parameters.

There are two parameters that determine a basic Set Cover instance:

o d> i—‘l is the number of sets in which each element participates. If ¢ is a yes-instance, then

there is a set cover that uses a fraction ﬁ of sets.

e b - the size of a basic set block - to be described later.
The Set Cover constructed will correspond to the Raz verifier with £ = d".

3.1 The Sets

The sets in our Set Cover instance are divided into variable blocks of sets, each block corresponding
to a variable in the Raz verifier. Each variable block of sets is further subdivided into assignment
blocks of sets, which in turn consist of basic set blocks.

Variable blocks: For each variable z € Y U Z of Raz verifier, there is a variable block B(z) of
sets. The number of such blocks is the total number of variables in Raz verifier, which is 2n’.



Assignment blocks: Variable blocks of sets are further divided into assignment blocks of sets.
Consider a variable z € Y U Z, and let A, be the set of all the possible assignments to z. For each
subset A C A, there is an assignment block B(z,.A).

letp=1-— di—Q. For each subset of assignments A C A,, we define the normalized weight w(.A)
of A to be the probability of choosing A, when performing the following trial. Each assignment
a € A, is chosen independently with probability p. Thus, w(A) = pMAl(1 — p)l4=\ I We need the

weight of A to be integral, thus we define the (non-normalized) weight of A to be

W(A) = (d - 2)"w(A)

Basic set blocks: FEach assignment block B(z,.A) is further subdivided into W (.A) basic set
blocks. Each basic set block consists of b sets?. To conclude, here is how a variable block of sets
looks like.

Variable block B(x)

Assignment block. W(A) basic blocks b
Correspondsto a

subset of assignments

to x

Figure 1: Variable block B(z)

In each variable block, the total normalized weight of the assignment blocks is 1. Therefore, the
number of basic set blocks belonging to each variable is at most d* = a8

3.2 The Elements

The elements are divided into constraint blocks, corresponding to the constraints in Raz verifier,
and each constraint block is further subdivided into basic element blocks.

Constraint blocks: For each constraint C.(y,2), y € Y, z € Z in Raz verifier, there is a
constraint block of elements B(C). Thus, the number of constraint blocks is (3n)".

Basic element blocks: FEach constraint block is further subdivided into basic element blocks.
Consider the constraint C(y,2),y € Y, z € Z. Let Ay, ..., Ag—1 C Ay be subsets of assignments

®Note: given the assignment block B(x,.4), the corresponding set blocks and their sets do not represent the
assignments a € A. In fact, they do not have any meaning, except that the number of the set blocks is W (.A). Also,
the weights of the blocks do not have any meaning in the final Set Cover construction. It is convenient to use them
in the analysis, and they also correspond to the number of basic blocks in each assignment block.



to y, and B C Az be a subset of assignments to z. Denote A = Ay N---N.Ay_1. Then there is a
basic element block B, (A1, ..., A4—1,B), iff there is no pair of assignments a; € A, a; € B that
are consistent (i.e., a1 and ay satisfy the constraint C.(y, z)).

The number of basic element blocks in each constraint block is at most 248",

Suppose there is a basic element block B, ,(A;,..., A4—1,B). Then for each sequence of sets
V1, ..., Vi1, U, such that v; (for 1 < ¢ < d — 1) belongs to the assignment block B(y,.4;), and
u belongs to the assignment block B(z,B), there is an element e in the basic element block that
belongs to these sets and only to them.

d
The number of elements in each basic element block is at most: (b . dgz) = b? . 498

3.3 Properties of the Basic Set Cover instance

Definition: Given a (partial) solution to the Set Cover instance, we say that a block of elements
is covered iff all its elements are covered.

Definition: Given a block of sets, we say that this block is chosen iff all the sets in this block
are in the solution.

Proposition 1 Consider any solution to a basic Set Cover instance. A basic block is covered iff
one of its corresponding assignment blocks is chosen.

Proof: Suppose there is an element block By (A1, ..., Aj_1,B), such that none of the assignment
blocks B(y,A1),..., B(y, Ad-1), B(z, B) are chosen. Then there are sets v1,...,v4-1, u, such that
foralli:1<i<d-1,v € B(y,Ai), and u € B(z,B), which are not chosen. But then there is an
element in the element block, that belongs to the sets vy,...,v7_1, % and only to them. Thus, this
element is not covered. 0

We can now prove the following:

Theorem 3 (Yes Instance) If the original 3SAT(3) formula ¢ is a yes-instance, then it is pos-
sible to cover all the elements by using a fraction (1 — p) = ﬁ of sets.

Proof: Suppose ¢ is a yes-instance, then there is an assignment A that satisfies all the variables.
For each variable z, take into the solution all the sets in the assignment blocks B(z,.A), such that
the assignment set A does not contain the assignment A(z).

To see that we use only a fraction (1 — p) of sets: consider some variable z € Y U Z and its
assignment A(z). The total normalized weight of all the subsets of assignments to z that do not
contain A(z) is exactly (1 — p) = 715 (since the probability to choose a subset of assignments that
does not contain A(z) is exactly (1 — p)).

Now suppose there is some constraint block B(C,(y,z)) which is not covered, y € Y, z € Z.
Then there is a basic set of elements, corresponding to subsets of assignments Aq,..., As_1, B,



where A; C Ay for 1 < i < d-1, B C Az. Since the basic element set is not covered, all the
corresponding assignment blocks are not chosen. Therefore, all the subsets of assignments A;,
1 <i<d-1 contain A(z) and B contains A(y). But A(z) and A(y) are consistent, and thus, by
the definition of basic element blocks, such a basic element block does not exist. 0

Theorem 4 (No-instance) Suppose ¢ is a no-instance, and we have a solution, where a fraction
§ < % of the basic set blocks are chosen. Then the the fraction of covered constraint blocks is at
most 8§ + 17.

To prove the theorem we will first start with the following definition:

Definition: Given a variable z, let I(z) be the family of all the subsets of assignments A to z,
such that the assignment block B(z,.A) is not chosen. Define a weight of variable z to be the
sum of the normalized weights of all the assignment subsets in I(z).

Note that if 2V is the total number of variables, and at most a fraction 4 of the basic set blocks are
chosen, then the total weight of all the variables is > (1 —6) - 2V. We will use the following claim.

Claim 1 Let x € X be some variable, and suppose the weight of x is > %. Then there are (d — 1)
subsets of assignments Ay, ..., Aq_1 € I(z) whose intersection size is less than d°.

Proof: Suppose this lemma is not true. Consider the family I(z) of subsets of assignments. Its
normalized weight is > %. In Appendix, section A, we show that such a family must have (d — 1)
subsets whose intersection size is less than d®. 0

Denote by X' the set of variables whose weight is > 1. Let Y/ = X'NY,and 2’ = X' N Z. Let
C’ be the subset of all the constraints between variables in Y/ and in Z’. We start with a simple
claim.

Claim 2 If the fraction of basic set blocks chosen is at most &, then the number of constraints in
C" is at least a fraction (1 — 83) of all the constraints.

Proof: First observe that | X'| > (1 — 26¢) - 2V. Suppose this is not true. Then the total weight of
variables in X' is < (1—24) -2V, and the total weight of all the other variables is < 46V - . Thus,
the total weight of all the variables is less than (1 — §) - 2V, which is not true.

Therefore, |[Y \Y'| <46V, and |7\ Z'| < 46V. Since each variable participates in the same number
of constraints, there is a fraction < 44§ of constraints in which variables in Y \ Y’ participate, and
a fraction < 4§ of constraints in which variables in 7 \ 7’ participate. Thus, there is a fraction
> (1 — 86) of constraints C,.(y, z), where y € Y and z € 7". O

Consider the set of constraints €’ between the variables in Y’ and Z’. Suppose we showed that
for at least a fraction (1 — 1) of constraints in C’, the constraint blocks are not covered. Then a
fraction > (1 — 88)(1 — 1) > (1 — 85 — 1) of the total constraint blocks are not covered, proving
Theorem 4.
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In I(y), weight at least 1/4
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Subset of
assignments

Intersection:
Subset of assignments T(y)
Size at most t

Figure 2: Variable y € Y’

Consider some variable y € Y’. The total normalized weight of assignments in I(y) is at least

% (since y € Y’). By Claim 1, there are (d — 1) assignment subsets Ay, ..., A4y € I(y), whose

intersection size is less than ¢ = d°. We denote this intersection by 7'(y).

If Theorem 4 is not true, we will show that a formula ¢ which is a no-instance will have more than
a fraction > 272¢ of satisfied constraints. Consider some y € Y’. The assignment to y is chosen
uniformly at random from 7'(y).

Consider some z € Z'. We denote by P(z) the set of variables y € Y, such that the constraint
C(y, z) exists and is covered. Given an assignment u to z, count(u) is the number of variables
y € P(z), such that u is consistent with at least one of the assignments in 7'(y). We choose an
assignment u with largest count(u). The following Lemma (on similar analysis lines as in [4]) is
proved in the Appendix B.

Lemma 1 There is an assignment u to z, such that count(u) > m - |P(2)].

Lemma 2 [f the formula ¢ is a no-instance, at least a fraction (1 — %) of constraint blocks corre-
sponding to the constraints in C' are not covered.

Proof: Suppose this is not true. Then there is a fraction > % of constraint blocks whose constraints
are in C', that are covered.

The expected number of constraints in C’ that are satisfied by the assignment chosen in Lemma 1
is:

2 IP() " 22(d - 2)t d 2)t

zeZ!

Since ) ,cz |P(2)] > |c(;—,|, and C’ contains a fraction > (1 — 85) of all the constraints, § < <5, the

107



total fraction of satisfied constraints is:

(1-89) 1
2dt2(d — 2)' = 10di2(d — 2)!

L_ 11
2T pE 2 E

Since £ =d7, and d > é, this fraction is > 27, which contradicts that ¢ is a no-instance. O

3.4 Conclusion

Our basic Set Cover construction has two parameters d, b. It has the following properties:

e In yes-instance: a fraction ﬁ < % of sets is enough to cover all the elements.

e In no-instance: if we use a fraction < ¢ of basic set blocks, § < 11—0, there is a fraction < 85—}—%
of constraint blocks of elements which are covered.

Let M denote the number of basic set blocks in our construction, and let N denote the number
of constraint blocks of elements in our construction. Since M = 2n! - (d — 2)% and N = (3n)",
M > N.

We define a new function F(z) = 22". Let B denote the size of a constraint block. Note that BN
is the number of elements in our construction, further

B S 2d-8£ . bd . dd-SIf S bd . d2cl-8Z S bd . 223£d — bdF(gdS) S bdF(dQ)

4 The Reduction of GAP3SAT(3) to Asymmetric k-center

Given an instance ¢ of 3SAT(3), we build a directed graph with h 4 1 layers of vertices. For each
pair of consecutive layers i, (i + 1), there are directed edges from some layer i vertices to some
layer (7 + 1) vertices. This graph is translated into an instance of k-center as follows. The set of
vertices remains the same. For some 4, consider layer i vertex v and layer (i 4+ 1) vertex u. The
distance ¢(u,v) = co. If there is an edge (v, u) in the original graph, then ¢(v,u) = 1. Otherwise,
c(v,u) = co. The distances between any other pair of vertices are implied by these distances.

Layer 0 of vertices consists of only one vertex, which is connected to each vertex in layer 1. For
each pair of consecutive layers (i,74 1), 1 < ¢ < h, we build a Set Cover instance denoted by SC;.
In this Set Cover instance, vertices of layer i are viewed as sets and vertices of layer (i + 1) are
viewed as elements. Thus, there are (A — 1) Set Cover instances in our construction. The edges are
directed from layer 7 towards layer ¢ + 1 for all 1.

The vertices of each layer are divided into blocks. The size of block in layer 7 is b;, and b; = 1.

Layer 7 Set Cover instance, SC;, consists of ¢; copies of the basic Set Cover instance with parameters
d;, b;. Layer i blocks of vertices are viewed as basic set blocks of SC;. The constraint blocks of SC;



become layer ¢ 4+ 1 blocks of vertices, which is also the basic set blocks of SC;4y. To achieve this,
we need to fix the sizes b; of blocks appropriately.

For a basic Set Cover instance with parameter d;, denote by M; the number of basic set blocks and
N; the number of constraint blocks. We must make sure that ¢;M; = ¢;,_1N;_1.

Recall that F°(z) = 2%, The function log') n is defined as follows: log") n = log n and log(t1) n =

log(log(i) n). Similarly, we define a function 2() as follows: 2(1) = 2 and 20i+1) = 220
Let r = {@J We define the parameters d; as follows. d; = 2(r) log(r)n, and d; 41 = F(Qd").

The number of layers A is fixed in such a way that dp—; < log(g) n. Thus, h = {%J = O(log™ n).

We fix the number of vertices in layer 1 to be Hh ! M;, where each vertex is a block. Thus the

number of blocks in layer 1 is szl M;. For layer 1 SC instance, SC, we use ¢; = H?:zl M; basic
SC instances with parameters b, d;. Recall that each such SC instance has M; basic set blocks
and Nj constraint blocks. Thus, in layer 2, the number of blocks becomes N; H?;Ql M;. We fix

=N H?;; M;, and so on.

In general, layer ¢ contains B; = H I Hh ' M; blocks. We set ¢; = H A H] T M;. 1t
is easy to see that ¢; N; = ¢;p1 Miyq.

We now bound the size of our construction.

Block sizes: In layer 1, each vertex is a block, i.e., by = 1. From our previous computation, given
b; (the size of basic set blocks of SC}), the size of constraint block is by < F(d?)b%

Claim 3 For alli> 1, b; < F(d}?)).
Proof: For i =2, by < F(d}) and the claim is true. Fix some i > 2.

bipr < F(A)bE < F(d?) (F(d1))™ < F(d?)d¥ < F(d}°)

Size of the construction: The number of vertices in layer A — 1 is at most:

h—1
T ~; - b < (Naca)=tbs < (3m)hmr 1) L (@l ) < ppetulloglogn) , 92088 — ppoly(loglogn)
j=1

(since dj_1 < log® n.)

The total number of vertices is |V/| < hnPotvloslos(n) < prolyloglos(n)  Note that log* n = ©(log* |V]),

and so h = O(log* V).
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Theorem 5 (Yes-Instance) Suppose ¢ is a yes-instance. Let V; denote the number of vertices
in layer i. Then using at most k = 4V} /dy centers we can cover all vertices within distance 1.

’H

k; < 2V1/d§.

Clearly, the claim is true for ¢ = 1. Assume it is true for ¢ — 1, i.e., ki—y < 2V1/di_1. It is enough
kzl. Then

by = :
dz - dz—l sz'—l dz
Nz—l d?f—]
< k;Zqb; - .
- UM, d;
S kz_lF(dzlgl) . di—l . dl/d2d1 (since dz = F(Qdi_l))
< kio/dy

Therefore, the total number of vertices we use in the solution is k =", k; < (1 + 7 )k] < 4Vy/d;.
|

Note that the fraction of vertices used in the layer corresponds to allocatlng centers fractionally
on every vertex to cover all the elements in the next layer. This points to an Integrahty Gap, and
is demonstrated explicitly in the Appendix C.

Theorem 6 (No-Instance) If the formula ¢ is a no-instance, then it is impossible to cover all
the vertices with radius h — 1, using k + 1 centers.

Proof: It is enough to prove, that it is impossible to cover all the vertices in layer h by k vertices
in layer 1. Indeed, any solution must contain the vertex in layer 0 (as this is the only way to cover
it). This vertex covers all the vertices within a radius of h — 1, except for the layer h vertices. In
order to cover layer h vertices, there is no point selecting centers in any layer other than 1: if we
choose a center v in some layer ¢ > 1, we can cover all the same vertices by choosing its predecessor
in layer 1.

Define é; = 4/dy, and &; = 208;—1. Note that since d; increases from layer to layer, §; > —. Since
dy = 2(), then for all i, §; < 20/~1. 2%) < E for sufficiently large n.

Lemma 3 Suppose we have a solution that uses a fraction k of vertices in layer 1. Then for each
layer i, the fraction of vertex blocks that are covered is < §;.

Proof: By induction. For i = 1, the fraction of blocks in layer 1 that are in the solution is indeed

5.

Consider some general ¢, and assume the fraction of vertex blocks in layer 7 that are covered by the
solution is < §;.

11



Consider the set cover instance SC;. The fraction of basic set blocks that are covered is §;. The
fraction of basic Set Cover instances in SC; that contain more than a fraction % of covered basic
set blocks is at most 106;.

Consider some other basic Set Cover instance in SC;, and let § < % be the fraction of basic set
blocks that are covered in this instance. Then the fraction of constraint blocks that are covered in
this instance is at most 84 + %.

In total, the fraction of constraint blocks that are covered in layer 7+ 1 is at most 8§; + % +104; <
200; = 8;41. |

|

Theorem 7 There is no constant factor approximation for the asymmetric k-center problem unless

P = NP (use our construction with a constant h). There is no clog®n (also, clog™ k) approzima-
tion for some constant ¢, unless NP C DTTM E (n?°loglos(n)),

We remark that our results also holds for weaker assumptions. In fact, we prove the following.
For every constant 7, there is no ¢;log* n-approximation (for some constant ¢;), unless NP C
DT]ME(nlOg(Z) ™). To see this, use our construction, choosing h to be the largest integer, such that

(3

dp_y < log(i_Q) n. Clearly, h = ©(log* n), and the size of the construction is bounded by n'°8

5 Implications for Symmetric Distance Functions

The same reduction for h = 3 shows several other interesting hardness results for the weighted
versions of metric k-center problem.

The weighted metric k-center is defined as follows: we are given a distance metric ¢ over the vertices
and a weight function w for the vertices. We want to choose a subset S of vertices of weight at
most K so as to minimize

max minc;
JEV  i€eS

where K is part of the input.

The problem is the familiar metric k-center problem for K = k and w(i) = 1 for all i. The weighted
metric k-center problem has a factor 3 approximation algorithm and in what follows we show that
the result is tight.

Theorem 8 [t is NP-Hard to approzimate the weighted metric k-center to a factor less than 3.

Proof: We will construct the same layered instance as in the asymmetric case, but with A = 3
and d; a sufficiently large constant. Since the number of layers are constant the instance can be
constructed in polytime. The edges in this case are however undirected.

12



The vertices in layer 3 have arbitrarily large weight (greater than K suffices) to rule out choosing
them in any solution. The weight of all other vertices is 1.

In the case of the formula ¢ being a yes instance, we can cover all vertices within distance 1 using
at most 4V /d; vertices from layers 0,1 and 2.

If the formula were no instance, allocating the entire budget to the vertices in layer 1 we cannot

cover all the vertices in layer 3. This means that in the case of a no-instance, we cannot cover all
the vertices within distance less than 3. O
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Appendix

A Intersecting Families

This is exactly the same as appeared in [4], with one difference: we need to perform the calculation
of their result in the central lemma.

Suppose we are given some basic set U = [N]={0,1,..., N—1}. We look at the families of subsets
of U.

Definition: A family of sets is called (d,t)-intersecting, if for every d sets in the family, the size of
their intersection is at least ¢.

Each subset S C U has a weight w(S) (also called normalized weight). This weight is exactly the
probability of choosing subset S, where each element of U is chosen independently with probability
p. Thus, w(S) = pl¥l(1 = p)N=I5I. The weight of a family F is the sum of weights of all the sets in
the family, and is exactly the probability of choosing one of the sets in F.

Definition: Let F be a (d — 1,t)-intersecting family. We say that F has the prefix property, if for
each subset S € F, for some 7, |[SN[t+ (d—1)j]| > (d —2)j +t. In this case we say that S has
j-prefix property.

Lemma 4 Let F be a (d — 1,t)-intersecting family. Then there is another (d — 1,t)-intersecting
family F' of the same weight as F, that has the prefiz property.

The following lemma is the central lemma.

Lemma 5 Lett = d°. Let F be a (d — 1,t)-intersecting family with weight > %. Then there are
d — 1 sets in F whose intersection size is less than t.

Proof: Suppose the claim is not true. F is a (d — 1,¢)-intersecting family of weight > %. Let
F' be the corresponding family from previous lemma. The weight of 7’ is also > i, and it has
the prefix property. The weight of F’ is bounded by the probability of choosing some S € F/,
which is bounded by the probability of choosing any subset with a prefix property. Therefore, the

probability to choose a subset with a prefix property must be > i. We show that this is not true.

For some j > 0, we bound the probability of choosing a set with j-prefix property. Let z;, 0 <
i <t+(d—1)j—1 be the random variable indicating whether ¢ is chosen. Clearly, z; = 1 with
probability p. Let X =" z,.

Recall that p=1— 1. Denote § = &=2 —p = (d—l)]m' Observe that u = E[X] = p(t+(d—1)7).

We use Chernoff bound that says that if § < %, then:
Pr[X > (1 +8)] < e 50

14



Therefore,
Pr=Pr(X >t+(d—2)j] < Pr{(X — p) > pd/p) < e #/4" = =P (=104
Summing over all j:

e—5%t/ap

1= e—(a-1)5%/ap

Pr< 26—52(f+(d—1)j)/4p —
J

Asforallz: 0 <z <3, 1—e™®>2 and (d—1)§?/4p < 3,

(71152 d—1d—-2 1 1
1 — (@ 1)5/4p2(d—1)52/8p: g d—3(d—1)2(d—2)228?

Therefore,
Pr < 8d3e=5"t/p

Replacing t = d°, we get:

5%t /4p =

and

1
Pr < 8d3e= % < 1

Contradicting the assumption that the weight of F’is > %.

B Proof of Lemma 1

Proof: (of Lemma 1) Given z € 7', let y € P(z).

Let Aq,...,Aq—1 € I(y) be the subsets of assignments to y that determine 7T'(y), and let B € I(z)
be some subset of assignments to z. Note that none of the assignment subsets Aq,..., Aj_1, B are
not chosen (by the definition of I(y) and I(z)), and yet the constraint C(y, z) is covered. This
means that there is no basic element block corresponding to Ay, ..., A4_1, B, which means that
there are some assignments u € B, a € T'(y) that are consistent.

Consider now z and all the variables y € P(z). We denote by 7”(y) the set of assignments to z
that are consistent with the assignments in 7'(y). Note that since |T'(y)| < t, |T'(y)| < t. For each
B € I(z) and for each y € P(z), there is some u € B, such that u € T'(y).

15
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Figure 3: z and P(z)

Let ¢ be the number of disjoint sets 77(y), y € P(z). The rest of the proof consists of two claims.
In the first claim, we show that ¢ must be small (otherwise, it is impossible that the weight of z is

> %) In the second claim, we show that since there is a small number of disjoint sets T”(y), there

must be at least one assignment u that participates in many such sets.
Claim 4 ¢ < 2(d — 2)*

Proof:

Each B € I(z) must contain a distinct assignment belonging to each one of the ¢ disjoint sets 17" (y).
The normalized weight of I(z) is the probability to choose one of the subsets of assignments in
I(z). This probability is less than or equal to the probability that we choose, for each y € P(z), at
least one assignment in 77(y). As |7"(y)| < t, the probability of choosing one of these assignments
is<1—(1-p)

Therefore, the normalized weight of /(z) is < (1 — (1 —p)!)?, and we know that it is at least .

Assume that ¢ > 2(d — 2)". Then the weight of 7(z) is at most:
o L 22y :
1—(1— t 2({1 2) — - -2 _

A contradiction. O

Claim 5 Suppose we are given a family of n sets of sizes < m, and each element appears in at
most k sels. Then there are more than - disjoint sets in this family.
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Proof: By induction on the number of sets n. If n = 1, the proof is trivially true.

Consider some general n. Take out one of the sets of the family S. The number of sets intersecting
with S (including S) is less than mk. Remove all these sets. By induction hypothesis, the remaining

family has more than ”;:}zk disjoint sets. Now add the set S to the collection of disjoint sets. O

Suppose there is no assignment u to z with count(u) > m |P(z)| = k. Consider the sets 17"(y)
for y € P(z). We have |P(z)| sets of less than ¢ assignments, and each assignment appears in less
|P(2)]

than & sets. Then, by Claim 5, we must have more than =~ = 2(d — 2)! = ¢ disjoint sets which

contradicts Claim 4 O

C An Explicit Integrality Gap

We consider the following L.P:

min r
s.t.
Yoty =k
Sovw=1 YueV
You <7y VO,UEV
youc(v,u) <r Yo,ueV

We remark that our integrality gap construction works as well for the LP considered in [1].

Our construction has the same structure as before. We have h+ 1 layers of vertices, h = O(log™ n),
where n is the total number of vertices. Layer 0 contains only one vertex, which is connected to all
the vertices in layer 1. For all other pairs of consecutive layers, ¢, 141, we build a set cover instance
SC;, where layer ¢ vertices serve as sets, and layer ¢ + 1 vertices are elements. The translation of
this directed graph into an instance of k-center is performed as previously. However, our set cover
instances SC; are constructed differently.

Let m; denote the number of vertices in layer 7, and let m = m; &~ y/n. Set cover instance SC; has
two parameters s; and ¢; and is constructed as follows. We divide all the sets in layer ¢ into m;/s;
disjoint collections of s; sets. Let S be some such a collection of s; sets. For each ¢;-tuple of sets in
S, there is an element in layer 7 + 1, which is covered by these sets, and only by them.

The recursive formula for s; is: s; = 300, and for ¢ > 1, 5,41 = 2(2%9)
The values of ¢; are: ¢4 = 100, and for ¢ > 1, ¢;41 = 2.

Observe that the number of sets increases from layer to layer. We start with m ~ /n sets, and
the recursive formula is: m;;; = 5= - (Zl) Therefore, for each 2, m; > m. We choose h to be the

largest possible integer, such that m > 2%,
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The Fractional Solution

In the fractional solution, the vertex at level 0 gets value 1. For layer #: each vertex gets a value of
. It is easy to see that thls solution is feasible. Consider layer 7 + 1 vertices By the construction,

each element corresponding to any such vertex is covered by exactly ¢; sets. Therefore, with Welght

c%- on each layer 7 vertices, all the vertices at layer ¢ + 1 are completely covered.

Now we compute total fraction of open centers used by the fractional solution (k), which is the

maximal number of centers we are allowed to use in any integral solution.

We open one center in layer 0. In layer 1, the total sum of fractions on the vertices is 2. We show

100
that for each ¢, 7 > 1, the value of the fractional solution at layer 7 is less than Therefore,
k< 2.
> 50

__m___
100.2:—1*

By the recursion formula,

m2:m||
S5

J<i
m i
- % 2

m o
< Top. 21 ()

m 2
< Tog. 21 ()"
_ m ] 2251'—1.2251'—1

100 - 21
< 9@
= 100271

Observe that s; = 22771 > (235i-1). Therefore, m; < To097=T - 2% = {gg.97=1 - Ci- Since the value of
the fractional solution at layer 7 is exactly 7, we have that this value is at most %= . In total,
the fractional solution uses at most £ centers.

The Integral Solution

We show that it is impossible to cover all the vertices with £ = 5 centers within the radius A — 1.
Again, it is enough to show that choosing any subset of k layer 1 vertices leaves some layer A
vertices uncovered.

Fix some such solution. For each 7, 2 > 1, let a; be such that the fraction of vertices that are not

covered at layer i is QL For example, a; = %. We call such vertices, that do not have ancestors at
: .

layer 1 which are in the solution, “good vertices”. We prove the following lemma:
Lemma 6 For alli > 1, a; < 2%-1,
Observe that if this lemma is true, then the number of vertices in layer r that are not covered is
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at least m/2°=1 > 1. Therefore, the proof of this lemma will complete the proof of the integrality
gap.

Proof: The proof is by induction. We can define sy = loglog s, > 1, which is consistent with the
recursive definition of s;. Since ay =50/19 < 1, ay < 2°°, and the claim is true for i = 1.

Assume the claim is true for i. We prove it for i+1. First, observe that s; = 22~ and by induction
hypothesis, a; < 2%-1. Also, recall that ¢; = 2%-1. Therefore, s; >> «;, and also s; >> «;¢;. The
number of good vertices in layer 7 is at least Z+. In the set cover instance for layer 7, all the level 4
vertices are divided into m;/s; collections of s2 vertices each.

s,-

What is the smallest possible number of collections that have less than 2 good vertices? In the

worst case, we put 5”“ — 1 good vertices in each set, and pack the 1ema1n1n ”, vertices into
! 2cv
2 ’L
g 2;”_9_. Therefore, at least a fraction Ta- of collections has
292

72 good vertices (It is important here that s > 2a;, so that this number is at least 1).

Consider any such collection S of vertices. We denote b; = 2a;. Therefore, the fraction of good
elements in S is at least 1 . Let S be the corresponding collection of vertices in layer i 41 (i.e., all
the vertices that have dlrected edges from Vertlces in S). We denote by b;4q the number such that

more than

the fraction of good vertices in S’ is at least — bt . Then the total fraction of good vertices in layer

1+ 1 is at least W Therefore, a; 41 < 2aub;41.

The next claim states that b1 < ehici

To complete the proof of the lemma,

a1 < 20bi4
< 2a;ehc

= 20;¢%7i%

< 28011'01'

< 28.225i—1
< 2214

We want to prove that a;1; < 2%. It is enough to see that (2?%-! +3) < s; = 227 which is

clearly true.

Finally, we prove the following claim:

Claim 6 b;4; < ehici

Proof: For the sake of convenience, in this proof only, we denote s; = s, b; = b, ¢; = ¢. The
fraction of good vertices in S’ is:
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The latter is true since s >> be.
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