Electronic Colloquium on Computational Complexity, Report No. 40 (2003)

RP is Small in SUBEXP else ZPP equals PSPACE and NP
equals EXP

Philippe Moser*

Abstract

We use recent results from [ABK'02] on the hardness of resource-bounded Kolmogorov
random strings, to prove that RP is small in SUBEXP else ZPP = PSPACE and NP =
EXP. Along the way we improve a result from [IM03] by reducing the time bounds from
exponential to subexponential. More precisely we show that if NP is not small in SUBEXP,
then NP = AM.

1 Introduction

An interesting question in Lutz’s resource-bounded measure theory is whether the zero-one
law holds within EXP, i.e. does every complexity class contained in EXP have either measure
zero or one. Although the answer to this question is currently not known, it has been shown
in [Mel00] and [IMO03] that the zero-one law holds for all three standard probabilistic classes
ZPP, RP and BPP, for Lutz’s resource-bounded measure in E. These results can be interpreted
as "it is likely that RP has measure zero in E, otherwise the unlikely ZPP = EXP is true”.

What happens if the resource time bound of the martingales are reduced, by considering
for instance the measure of [AS94] in the smaller class SUBEXP instead of E. Unfortunately
the proofs of the zero-one laws in [Mel00] and [IM03] do not translate to smaller time bounds.
For instance the proof in [Mel00] relies heavily on the following result from [IW98]: if BPP #
EXP, then every BPP algorithm can be approximated on infinitely many input lengths, by
a subexponential time algorithm, which errs only on a small fraction of inputs. Using this
result, a martingale succeeding on every BPP language can be constructed. The point is
that this martingale needs to bet on every string, to ensure that the small fraction of strings
on which the subexponential time approximation algorithm errs is too small to prevent the
martingale from winning. Since martingales with small time bounds cannot bet on all strings,
the proof of [Mel00] does not carry over to measure on small complexity classes.

In this paper we take another path to give some evidences that RP has measure zero in
SUBEXP. We use recent results from [ABK'02] on the power of Kolmogorov random strings
to prove that RP has measure zero in SUBEXP, otherwise ZPP = PSPACE and NP = EXP.

We also improve a result from [IMO03], by reducing the power of the martingales from
exponential to subexponential time. More precisely we prove that if NP is not small in
SUBEXP , then Arthur-Merlin can be fully derandomized, thus gaining more evidence that
NP = AM.
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2 Preliminaries

We use standard notation for traditional complexity classes; see for instance [BDG95] and
[BDGY0], or [Pap94]. For € > 0, denote by E. the class Ec = J;., DTIME(2"5). SUBEXP is
the class NesgEe. Let us fix some notations for strings and languages. Let sg,s1,... be the
standard enumeration of the strings in {0,1}* in lexicographical order, where sy = A denotes
the empty string. Denote by sgn), sgn), EEIN sgz)_l all strings of size n ordered lexicographically.
A sequence is an element of {0,1}°°. If w is a string or a sequence and 0 < ¢ < |w| then w[i]
and wls;] denotes the ith bit of w. Similarly w[i...j] and w[s; ... s;] denote the ith through
jth bits. We identify language L with its characteristic function xr, where x, is the sequence
such that xz[i] = 1iff s; € L. If wy is a string and wy, is a string or a sequence extending wy,
we write w1 C ws. Denote by ™ =1n {s(()"), e s,(cn_)l}. A language L is said polynomially
dense if there exists a polynomial p, such that |L_,| > 2"/p(n), where L_,, denotes the set
of strings of size n contained in L.

2.1 Pseudorandom Generators

The hardness of a generator is the size of the smallest circuit which can distinguish the output
of the generator from truly random bits. More precisely,

Definition 1 Let A be any language. The hardness HA(Gm,n) of a random generator G, p
{0,1} — {0,1}", is defined as the minimal s such that there ezists an n-input circuit C
with oracle gates to A, of size at most s, for which:
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The A-oracle circuit complexity of a Boolean function f, denoted Size“(f) is defined as the
size of the smallest circuit computing f. It was discovered in [KvM99] that the construction
of pseudorandom generator from high circuit complexity Boolean functions does relativize.

Theorem 1 (Klivans-Melkebeek) Let A be any language. There is a polynomial-time
computable function F : {0,1}* x {0,1}* — {0,1}*, with the following properties. For every
€ > 0, there exists a,b € N such that

F:{0,1}"" x {0,1}bls™ — {0 1}",

and if v is the truth table of a (alogn)-variables Boolean function of A-oracle circuit com-
plezity at least n°®, then the function G.(s) = F(r,s) is a generator, mapping {0,1}°1°8™ into
{0,1}", which has hardness H*(G,) > n.

2.2 Measure on SUBEXP

In this section we describe the fragment of Lutz’s measure theory that we will need. For a
more detailed presentation of this theory we refer the reader to the survey by Lutz [Lut97].
The measure on resource-bounded complexity classes is obtained by imposing appropriate
resource-bound on a game theoretical characterization of the classical Lebesgue measure.
A martingale is a function d : {0,1}* — [0, oo[ such that,

d(w) = w (1)



for every w € {0,1}*.

This definition can be motivated by the following betting game in which a gambler puts
bets on the successive membership bits of a hidden language A. The game proceeds in
infinitely many rounds where at the end of round n, it is revealed to the gambler whether
sp € A or not. The game starts with capital 1. Then, in round n, depending on the first
n — 1 outcomes w = x4[0...n — 1], the gambler bets a certain fraction e,d(w) of his current
capital d(w), that the nth word s, € A, and bets the remaining capital (1 — €,)d(w) on
the complementary event s, ¢ A. The game is fair, i.e. the amount put on the correct
event is doubled, the one put on the wrong guess is lost. The value of d(w), where w =
XxA[0...n] equals the capital of the gambler after round n on language A. The player wins
on a language A if he manages to make his capital arbitrarily large during the game. We
say that a martingale d succeeds on a language A, if d(A) := limsup,, 4,4 d(w) = oo,
where we identify language A with its characteristic sequence x 4. The success set S°[d] of a
martingale d is the class of all languages on which d succeeds. Strategies satisfying Equation 1
with the equality sign replaced by ”>” are called supermartingales.

In [AS94], Lutz’s resource-bounded measure theory [Lut92] was generalized to small com-
plexity classes. For the sake of completeness, let us recall the definitions of [AS94] adapted
to the class SUBEXP. To define a measure on E,, with a > 0, supermartingales computed
by Turing machines with random access to their inputs were considered in [AS94], that is
on input w, the machine can query any bit of w to its oracle. In order to allow such Turing
machines to compute the lengths of their inputs w without querying their oracles, they also
have access to s|,(; this convention is denoted by M™(sy|)-

It is widely believed that random access subexponential time Turing machines are too
strong to define a measure on subexponential time classes, because it is not clear whether the
whole class has not measure zero relatively to subexponential-time computed supermartin-
gales. Therefore the concept was weakened in [AS94] by bounding the number of recursive
queries such a Turing machine is allowed to make. Let M be a random access Turing machine
and n € N. Define the query set Gurn C {1,2,...,2""1 — 1} such that for every string
w € {0,1}* coding for words of size up to n, M can compute M (s|,)) querying only input
bits in G-

A measure notion on SUBEXP was introduced in [AS94] by considering subexponential-
time random access Turing machines with subexponential size query sets.

Definition 2 Let a > 0. A class A of languages is said to have E?—measure zero if there
ezxists a supermartingale d, such that d(w) is computable in time 2", with 0 < § < « and
n = |5‘w||, by a random access Turing machine with query set of size 2"6, and such that

A C S=[d].

Such a supermartingale is called an E,-computable supermartingale.

It is implicit in [AS94] that this measure notion satisfies all three measure axioms; i.e.
first every single language L € E, has Ey,-measure zero, second E, has not E,-measure zero,
and ”easy” infinite unions of sets of E,-measure zero have E,-measure zero. More precisely,

Definition 3 Let o > 0. X = |J,5, X; is an E,-union of E,-measure zero sets if there exists
an indezed supermartingale d such that X; C S*°[d;], where d;j(w) = d(i,w) is computable in
time 21° + q(i), for some polynomial q, with 0 < § < o and n = |s)y||, by a random access

Turing machine with query set of size on’.



It is implicit in [AS94] that the third axiom holds for the measure notion on E, .

Theorem 2 [AS94] Let X = J,», Xi be an Ey-union of E,-measure zero sets. Then X has
E.-measure zero. B

2.3 Resource-Bounded Kolmogorov Complexity

Let us give the basic notions on resource-bounded Kolmogorov complexity that we will need.

Definition 4 (Levin) Let U be a universal Turing machine. Define Ki(z) to be min{|d| +
logt: U(d) =z in at most t steps}.

There is a similar definition of space-bounded Kolmogorov complexity.

Definition 5 Let U be a universal Turing machine. Define K S(z) as min{|d| + s : U(d) =
T in space at most s}.

It was shown in [ABK02], that any polynomially dense set of strings with high time-bounded
Kolmogorov complexity is complete for EXP under nondeterministic Turing reductions.

Theorem 3 Let R € EXP be a polynomially dense set and 0 < § < 1 such that r € R implies
Ki(r) > |r|°. Then NP® = EXP.

A similar result for space-bounded Kolmogorov complexity was also shown in [ABK*02].

Theorem 4 Let R € PSPACE be a polynomially dense set and 0 < § < 1 such that r € R
implies KS(r) > |r|°. Then ZPP® = PSPACE.

3 RP is small else RP = PSPACE and NP = EXP

To prove our main result we will need the following theorem which essentially says that if RP
is not small in E., then P contains a dense set of strings with great Kolmogorov complexity.

Theorem 5 Suppose RP has E.-measure non zero, for some € > 0, then there exists a poly-
nomially dense set R € P and 0 < § < 1, such that for every r € R, Ki(r) > |r|° and
KS(r) > |r]°.

Proof. To prove Theorem 5, we will need the following lemma.

Lemma 1 If RP has E.-measure non-zero, then there exists 0 < v < 1, and a language L
in RP, and a probabilistic polynomial time Turing machine M deciding L such that: For all
but finitely many m € N, L(:nf,l is non-empty and for all but finitely many m € N, for every
T € L(:";,)l, every random string t such that M(z,t) = 1 has great Kolmogorov complezity, i.e.
K(t) > |z|" and KS(t) > |z|7.

Proof. Consider the sum of the following two martingales d; and ds (enforcing the two
conditions above). For every string’s size n, d; only bets on the n strings sg") to 351"21. On

(n)

input (w, s},,) where s, = s;’ with 4 < n, di checks that there is no element of L in the



(n)

range sy ' to s

(n)

i

1@1, and if so d; wagers 2¢/2" that sgn) ¢ L, else dy stops betting on n-sized

is the first element of L in the range, d; loses
i—1 o5 ;
2 g
|22—n—2—n| =1/2".
=0

Since ), ,1/2" converges, by starting with a finite amount of money we ensure that d;
never goes broke, and its total losses are finite. On the other hand, each time there is no

x € L between s(()n) and s dy wins 2™/2"™ = 1. Thus, if this happens infinitely often, d;’s

n—1°

strings. If s

wins grow arbitrarily large. It is easy to see that d; can be computed in gn</* steps, and that
the query set is polynomial-sized.

The second martingale dy only bets on the n first n-sized strings s(()n) to 37(1"_)1, for every
length n. Fix an enumeration of polytime probabilistic Turing machines so that M; always
halts within n/ steps where j < log 4, and a deterministic universal Turing machine U. On in-
put (w, s),) where s, € {s(()n), oo ,sﬁfi)l}, do simulates the first logn probabilistic machines
on all random strings for inputs of length at most logn. Let M; be the first such machine
that agrees with L on all such inputs, making errors only when z € L, and then on less than
1/4 of its random strings, i.e. decides L correctly (RP-wise) on all inputs smaller than logn.
dy simulates U on all programs d of size smaller than n”, during 2"" steps, where 0 < v < 1
will be determined later. For every string ¢ output during U’s simulation, check whether
Mi(s|w‘,t) = 1. If there is such a ¢, dy bets half its current capital that s),,| € L. Otherwise,

do does not bet.

Claim 1 Let L € RP. Let M;, be the first probabilistic poly-time machine deciding L. Then
(m)

if there are infinitely many lengths m, such that there exists © € Ly, and a random string t
with Ky(t) < |z|7, such that M;,(z,t) = 1, then L € S*°[ds].

After a finite amount of time d» will always pick ¢ = 4y3. Thereafter for each length m such
that there exists = € L(:"f,)L and a random string ¢ with low Kolmogorov complexity, such that
M;,(z,t) =1, d2 will always bet half its current capital that € L. Since M;, has one-sided
error, this bet will be correct, and dy’s total stake will be multiplied by 3/2. Otherwise, do
does not bet, so will never lose (once i = ig). So if there are infinitely many such lengths m,
do’s capital grows unbounded.

The running time of ds is less than 2"6/4, since on input (w, s‘w|) as above, there are logn
machines to simulate on all inputs of size logn, where each machine runs in time smaller than
(logn)losloen je. takes time logn)!°= 5™ 4 1o simulated by trying all random seeds and
taking a majority vote. Next do needs to simulate U on 2"" programs during 2" steps. Thus
da(w) can be computed in time 2"6/4, by an appropriate choice of y, with 0 < v < 1. The
query set of da is equal to Qg,(n) = {sén), - ,s;n_)l} U U;Ofln L_;, hence polynomial-sized.

This proves Lemma 1, since if RP does not have E.-measure zero, there must be a language
L € RP such that d; + d2’s capital does not grow unbounded on L.

The proof of Theorem 5 then follows. Let L and M be as in Lemma 1, and suppose M

runs in time n*. Consider the set R of random strings ¢ such that M(z,t) = 1 for some
T € L(:")L, where n* = |t|. Because L € RP, R is polynomially dense. Moreover if t € R, then
M(z,t) = 1 for some z € L™ therefore Ki(t) > |z|” > |t|"/*. Putting 6 := v/k ends the
proof. O



We are now ready to prove our main result stating that if RP is not meager in E., then
ZPP = PSPACE and NP = EXP.

Theorem 6 For every e > 0, RP has E.-measure zero, else ZPP = PSPACE and NP = EXP.

Proof. Suppose RP has E.-measure non-zero, for some € > 0, then by Theorem 5, P contains
a polynomially dense set R of strings with high K; and K'S complexity. Since NP = NP and
ZPP = ZPP%, Theorem 3 and 4 end the proof. i

4 Derandomization of AM if NP is not small

The following result says that if NP is not small in E,, then NP = AM.
Theorem 7 Suppose NP has E,-measure non zero, for some o > 0. Then NP = AM.
Proof. In order to prove Theorem 7, we will need the following lemma.

Lemma 2 If NP has Ey-measure non-zero then there is a language L in NP and a nondeter-
ministic polynomial time Turing machine M deciding L such that: For all but finitely many
m € N, L(:TT)L is mon-empty and for almost every m € N, for every x € L™= every non-
deterministic witness t such that M(z,t) = 1, has great SAT-oracle circuit complezity, i.e.
SizeSAT(t) > |z|7.

Proof. The first property is easily verified by constructing the appropriate martingale d
similarly to Lemma with K(t) < |z|” or KS(t) < |z|?, 1. For the second property consider
the following martingale d, which only bets on the n first n-sized strings sé") to ssb"_)l, for every
length n. Fix an enumeration of nondeterministic Turing machines so that M; always halts
within n/ steps where j < logi. On input (w, s),,) where s, € {s(()"), o ,s(n@l}, d simulates
the first log n nondeterministic machines on all nondeterministic witnesses for inputs of length
at most logn. Let M; be the first such machine that agrees with L NP-wise on all such inputs,
i.e. decides L correctly (NP-wise) on inputs smaller than logn. Next d constructs all circuits
with oracle gates for SAT of size smaller than |z|” on logilog |z| inputs, where 0 < v < 1 will
be determined later, and computes the truth table ¢ for each. If M;(z,t) = 1 for any such ¢,

d bets half its current capital that x € L. Otherwise, d does not bet.

Claim 2 Let L € NP. Let M;, be the first nondeterministic poly-time machine deciding L.
Then if there are infinitely many lengths m, such that there erists © € L(:W;r)b and a random
string t, such that M;,(z,t) = 1, and t viewed as a function of loglt| inputs has circuit

complezity less than |z|7, then L € S*[d].

After a finite amount of time d will always pick i = i5. Thereafter we have that for each
length m such that there exists z € L(:T;”T)L and a nondeterministic witness ¢ with small circuit
complexity, such that M;,(z,t) = 1, do will always bet half its current capital that z € L.
Since M;, decides NP-wise, this bet will be correct, and d’s total stake will be multiplied by
3/2. Otherwise, d does not bet, so will never lose (once i = ip). So if there are infinitely
many such lengths m, d’s capital grows unbounded. The running time of dy is less than
2””“, since on input (w, 3|w‘) as above, there are logn machines to simulate on all inputs
of size logn, where each machine runs in time smaller than (logn)°8l°8™ je. takes time

2(logn)" 818" 4, 1o simulated by trying all nondeterministic witnesses and taking a majority



vote. Next d needs to construct 27”7 circuits of size at most n” and construct their truth
table. Since evaluating a SAT gate of size at most n7 takes time 20(""), d(w) can be computed

in time 2"a/4, by an appropriate choice of v, with 0 < v < 1. The query set of d is equal to

Qd,(n) = {s(()n), e 1351@1} U U;O:gln L_;, hence polynomial-sized. |
This proves Lemma 2, since if NP does not have E,-measure zero, there must be a language
L € NP such that d; + d’s capital does not grow unbounded on L. O

The proof of Theorem 7 then follows, let L and M be as in Lemma 2, where M runs in
time n?. Let L' € AM be any language and N a probabilistic nondeterministic Turing machine
deciding it, and assume that on input of size n, N runs in time n¢. For € = y/d let a and b be as
in Theorem 1 and pick m so that m? > n®, where e = eac. For every x among s(()m), e ,s%n_)l
nondeterministically guess a witness ¢ for machine M on input z. Check whether M(z,t) =1
— we know that there is at least one such witness for at least one such z, and every such
witness has circuit complexity at least m” = n¢ — if so use Theorem 1 to construct from
t a pseudorandom generator from O(logn) bits to n® bits secure against circuits of size n®
with oracle gates to SAT. Use the outputs of this pseudorandom generator to simulate the
nondeterministic Turing machine N for L’. This has expected nondeterministic polynomial

time, and never errs for sufficiently large inputs, so L' € NP. O
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