Electronic Colloguium on Computational Complexity, Report No. 42 (2003)

List-Decoding Using The XOR Lemma
(Preliminary Version)

LucA TREVISAN®

May 14, 2003

Abstract

We show that Yao’s XOR Lemma, and its essentially equivalent rephrasing as a
Direct Product Lemma, can be re-interpreted as a way of obtaining error-correcting
codes with good list-decoding algorithms from error-correcting codes having weak
unique-decoding algorithms. To get codes with good rate and efficient list decod-
ing algorithms one needs a proof of the Direct Product Lemma that, respectively, is
strongly derandomized, and uses very small advice.

We show how to reduce advice in Impagliazzo’s proof of the Direct Product Lemma
for pairwise independent inputs, which leads to error-correcting codes with O(n?) en-
coding length, O(n?) encoding time, and probabilistic O(n) list-decoding time. (Note
that the decoding time is sub-linear in the length of the encoding.)

Back to complexity theory, our advice-efficient proof of Impagliazzo’s “hard-core
set” results yields a (weak) uniform version of O’Donnell results on amplification of
hardness in NP. We show that if there is a problem in NP that cannot be solved by BPP
algorithms on more than a 1 —1/(logn)¢ fraction of inputs, then there is a problem in
NP that cannot be solved by BPP algorithms on more than a 3/4+1/(logn)¢ fraction
of inputs, where ¢ > 0 is an absolute constant.

*luca@cs.berkeley.edu. Computer Science Division, U.C. Berkeley. Supported by a Sloan Research
Fellowship and a Okawa Foundation Grant.

ISSN 1433-8092

1 Introduction

Yao’s XOR Lemma states that if f: {0,1}" — {0, 1} is a boolean function that is hard to
compute on more than a (1 —¢) fraction of inputs, then computing f(z1) ®--- ® f(zx) on
more than a 1/2 + ¢ fraction of the k-tuples (z1,...,z) is also hard, where ¢ is roughly
(1—6)%. An essentially equivalent direct product lemma states that computing the vector
f(x1),---, f(zx) for more than an ¢ fraction of the (z1,...,x) is hard, where again ¢ is
roughly (1—0)*. At least four proofs of this result are know [Lev87, Imp95, GNW95, IW97).

In this paper we show that any black-box proof of the XOR Lemma or of the Direct
Product Lemma gives a way to derive error-correcting codes with strong list-decoding
algorithms from error-correcting codes with weak unique-decoding algorithms. Applying
this idea directly to the standard form of the Direct Product Lemma would give codes
with very large encoding length and with decoding algorithms producing very long lists.

As we explain below, the encoding length can be reduced by using a derandomized
Direct Product Lemma. By this, we mean a Lemma that says that there is a pseudorandom
distribution D of k-tuples (x1,...,zx) such that D can be sampled using fewer than nk
random bits, and such that if f() is hard to compute on more than a 1—4 fraction of inputs,
then (f(z1),..., f(zx)) is hard to compute more than an ¢ fraction of the times when
(x1,...,zk) is sampled from D. Two derandomized proofs of the Direct Product Lemma
are known. One, by Impagliazzo [Imp95|, works if the z; are pairwise independent. Then
only 2n random bits are needed to sample a k-tuple. On the other hand, the proof only
works for € equal to about 1/(dk). Another proof, by Impagliazzo and Wigderson [IW97],
allows € to be exponentially small in £, and uses O(n) random bits to sample the k-tuple.

Regarding the length of the list, it depends on the amount of advice used in the reduc-
tion that proves the Direct Product Lemma. The proofs of Levin [Lev87] and Goldreich
et al. [GNW95] work even with a relatively small advice, but they require the inputs
to be independent and, as mentioned above, this translates to codes with very long en-
coding length. The derandomized proofs of Impagliazzo [Imp95] and Impagliazzo and
Wigderson [IW97], on the other hand, use substantially large advice.

The main technical contribution of this paper is an advice-efficient version of Impagli-
azzo’s Direct Product Lemma for pairwise independent inputs. Our proof gives a way
to convert, say, the Sipser-Spielman codes into codes over large alphabet with quadratic
encoding length and with list-decoding algorithms that can handle a fraction of errors
arbitrarily close to one, and produce a list of size depending only on the error.

As a main intermediate step, we prove an advice-efficient version of Impagliazzo’s
result about hard-core sets for weakly hard-on-average functions. O’Donnell [0’D02] used
Impagliazzo’s hard core set construction to prove a result about amplification of average-
case hardness for problems in NP, in the non-uniform setting. We use our result to prove
a uniform version of O’Donnell’s results.

1.1 Direct Product Lemma and List Decoding

Known proofs of the direct product lemma, tend have more or less the following form:

For 6 > 0, integer k, and sufficiently large € (typically ¢ is at least some constant
time (1 — &)%), let f : [N] — {0,1} be a function, define F(zy,...,z;) =
(f(z1),..., f(zx)) and let G be a function that agrees with F' on at least an ¢
fraction of inputs.

Then there is an oracle circuit A of size poly(log N, 1/e,1/4, k) that makes at
most poly(1/e,1/6) oracle queries and such that Pr[A%(z) = f(z)] > 1 — 4.

Derandomized proofs have a somewhat different form that we will discuss shortly.

The application to coding theory is as follows. Let C' : M — {0,1}" be an error-
correcting code having an efficient decoding algorithm that can correct up to § /N errors.
For a message M € M and an index z € [N], we denote by C(M)[z] the z-th bit of the
encoding of M.

We define a new code C' : M — ({0,1}*)N* with codewords of length N* over the
alphabet {0,1}*. Let us identify indices of entries of C’ with k-tuples of elements from
[N]; then C' is defined as follows: for a message M,

C'(M)[z1, ..., zp] = (C(M)[z1] -+ C(M)[z])

That is, C'(M) has an entry for every k entries of C(M), and the entry of C'(M)
contains a concatenation of the k bits present in the corresponding k entries of C(M).

Note that if we think of C(M) as a function f : [N] — {0,1}, then C'(M) is the
function F' : [N]*¥ — {0,1}* defined in the direct product lemma.

Let now G € ({0, l}k)Nk be a string having agreement ¢ with C'(M). From the direct
product lemma it follows that there is an oracle circuit A of size poly(log N,1/e,1/4, k)
such that A“ has agreement 1 — § with C(M). Given G, we can then enumerate all
gpoly(log N,1/e,1/6:k) circuits A of that size, and write the corresponding function (or string
of length N) A%. In this list of strings, at least one of them has agreement at least 1 — §
with C(M). We can apply to each of these strings the decoding algorithm of C, and then
we get another list of 2pP0ly(eg N,1/e,1/0k) gtrings and one of them must be M.

We have thus described a list-decoding algorithm for C that can correct a 1—¢ fraction
of errors.

Unfortunately, the encoding length of C' is N*, where N is the length of the encoding
of ', and the list size is only quasi-polynomial in N.

1.2 Reducing the Encoding Length and List Size

In the above use of the Direct Product Lemma, the length of the new code is equal to
the number of possible inputs for the function F', and the size of the list is the number of
possible circuits A.

If we think of the circuit A as a fixed uniform machine taking advice (where the advice
may depend both on f and G), then we only need to enumerate all possible advice strings,
and only the number of advice bits matters to determine the list size. In fact, A may even
be a probabilistic machine with advice, in a model where the advice string may depend
on the random choices of A (but not on the input of A), as in [TV02]. Then we can pick
randomness for A and then enumerate all possible advice strings (this approach leads to
a probabilistic list-decoding algorithm).

In such a model, the proofs by Levin [Lev87] and by Goldreich et al. [GNW95] can
be modified to yield a probabilistic algorithm A that needs only poly(1/e,1/48) bits of
advice, which gives a list-decoding algorithm with a list size that is independent of N.
The encoding length, however, is still N*.

In order to reduce the encoding length, we need to consider derandomized versions
of the Direct Product Lemma. In the derandomized setting, the inputs (z1,...,zx) are

chosen according to a pseudorandom distribution and an input for F() or G() is the seed
used to generate (z1,...,zx) rather than the points themselves.

In the derandomized proof by Impagliazzo [Imp95|, the z; are pairwise independent,
so that the number of inputs of F is only O(N?). Unfortunately the proof is inherently
non-uniform, and, in the coding application, the list size is again super-polynomial.

In the derandomized proof of Impagliazzo and Wigderson, there is a trade-off between
the input length of F' and the amount of non-uniformity. When F has poly(N) inputs,
the amount of non-uniformity is N, and it gets smaller for larger inputs.!

1.3 An Advice-efficient Proof of the Pairwise Independent Direct Prod-
uct Lemma

The main result of this paper is a proof of the Direct Product Lemma for pairwise
independent inputs in which the algorithm A in the reduction uses randomness and
poly(k,1/e,1/6) bits of advice.

The proof by Impagliazzo for the pairwise independent case has two steps. He first
shows that for every function that is “weakly hard” on average there is a “hard core”
subset of inputs on which the function is very hard on average. Then, he uses this result
to prove the Direct Product lemma for pairwise independent inputs. We follow the same
approach and we show show how to reduce advice in both parts of the proof.

The coding-theoretic application of our result is as follows. Starting from a code with
binary codewords of length N and with a unique-decoding algorithm that corrects up to
6N errors, we get a code with codewords of length N2, over the alphabet {0,1}* and with
a list-decoding algorithm that produces a list of size 2POW(1/£:1/0,1/k) and corrects up to a
fraction 1 — ¢ of errors, where ¢ = Q(1/(0k)).

Starting from asymtpotically good codes, such as those of [SS96], where N is linear
in the length of the message and ¢ is a constant, one gets codes with quadratic encoding
length and quasi-linear list-decoding algorithm that can correct a 1 — ¢ fraction of errors,
producing a list of size 2POW(1/¢),

1.4 Comparison with the Constructions of [ABN"92, GI01, GI02, GI03]

The codes obtained from Direct Product Lemmas (derandomized or not) can be seen as
a special case of a general method to obtain error-correcting codes with large minimum
distance from error-correcting codes with smaller minimum distance. The method was
introduced by Alon et al. [ABN92] and used recently by Guruswami and Indyk [GIO1,
G102, GI03].

Suppose we have an error-correcting code C' : M — {0,1}" from which we can correct
a d fraction of errors. Let G = ([N],[N'], E) be a bipartite right-regular graph with N
vertices on the left and N’ vertices on the right, and let k& be the degree of the vertices on
the right. For a vertex v on the right and an index i, denote by I';(v) the i-th neighbor of
v.

Then define a new code ¢’ : M — ({0,1}*)"" as follows.

C'(M)[v] = (CM)T1(v)], -+, C(M) [Tk (v)])

'The main goal in [TW97] is to achieve & = 27 (%) while having the number of inputs for F polynomial

in N for constant é. In the application to pseudorandomness for which the result was meant, it was not a
problem that the circuit A would have size N, The proof by Impagliazzo is “more derandomized” and
uses less advice, but only achieves € = 1/(dk).

The reader can verify that our construction for the case of the standard direct product
corresponds to using the graph G = ([N], [N]¥, E) where a vertex (u1,...,u;) on the right
is adjacent to the vertices u1,...,u; on the left.

In the pairwise independent case the graph is G = ([N],[N]2, E) where a vertex (a, b)
on the right is adjacent to the vertices (a +b), (a +2b), ..., (a + kb) on the left.

We elaborate on this perspective in Section 4 and we show that a simple modification
of one of the algorithms of Guruswami and Indyk leads to the completely derandomized
and completely uniform direct product theorem.

1.5 Uniform Amplification of Hardness in NP

O’Donnell uses Impagliazzo’s result about hard-core sets to prove a result about ampli-
fication of average-case complexity in NP. O’Donnell’s result is as follows: suppose that
for every problem L in NP there is a family of polynomial size circuits that solves L on
a 1/2 + 1/n3~¢ fraction of inputs; then for every balanced? problem L in NP there is a
family of polynomial size circuits that solves L on a 1 — 1/poly(n) fraction of inputs. If
the assumption is strengthened to the existence, for every NP problem, of polynomial size
circuits that solve L on a 1/2 4+ 1/n'/37¢ fraction of the inputs, then the conclusion that
for every NP problem L (not just for balanced ones) there is a family of circuits that solves
L on a 1—1/poly(n) fraction of inputs.

The result refers to circuits because the use of Impagliazzo’s hard core sets makes the
reduction non-uniform.

Using our version of Impagliazzo’s result, we can prove a statement of the following
form:

Suppose that for every problem L in NP there is a probabilistic polynomial
time algorithm that solves L on a 1/2 + ¢ fraction of inputs® for every input
length;

Then for every problem L in NP there is a probabilistic algorithm that, given
n, runs in poly(n) time, produces a list of opoly(1/€,1/9) circuits, and, with high
probability, one of the circuits solves L on a 1 — § fraction of inputs of length
n.

When ¢ and ¢ are at least 1/(logn)¢ for a sufficiently small ¢ > 0, then the list has
polynomial size. We are then faced with the following task: given a list of circuits for an
NP problem, such that one of the circuits works well on average, construct a single circuit
that works well on average.

If the circuits solved the search version of L, then the task would be easy: run the
circuits in parallel, then if at least one of them finds a certificate accept, otherwise reject.

A sensible idea would then be to use the search-to-decision reduction for average-
case NP problem of Ben-David and others [BDCGL92]. The procedure starts from a
language L and defines a new language L' such that a good-on-average decision algorithm
for L' yields a good-on-average search algorithm for L. The problem is that the reduction
transforms an algorithm for L’ that works on a 1 — ¢ fraction of inputs of length n’(n) into

*By balanced we mean that on every input length half of the instances are YES instances and half of
the instances are NO instances.

3By this, we mean that there is an algorithm A such that for a random z and a random choice of
randomness for A there is a probability 1/2 + € that A is correct on z.

4

an algorithm for L that works on a 1 — O(d - m(n)) fraction of inputs of length n, where
m(n) is the length of witnesses for instances of L of length n and n/(n) is polynomial in 7.
In particular, the reduction gives nothing if applied to an algorithm for L' that succeeds
only on a 1 — 1/polylogn fraction of inputs.

We do not know how to overcome this difficulty, but we show a way of removing
non-uniformity under the stronger assumption that for every NP problem we have an an
algorithm that solves it on slightly more than a 3/4 fraction of inputs.

Our final result is that if for every problem L in NP there is a probabilistic polynomial
time algorithm that solves L on a 3/4 + (1/logn)¢ fraction of inputs of length n; then for
every problem L in NP there is a probabilistic polynomial time algorithm that solves L
onal—1/(logn)¢ fraction of inputs, where c is an absolute constant.

2 An Advice-efficient Version of Impagliazzo’s Hard-Core
Sets

We can abstract Impagliazzo’s main result in his construction of hard-core sets as follows.

Definition 1 (Set-Function Game) Let N be an integer and d,¢ € (0,1/2) be fractions
and f : [N] — {0,1} be a function. Consider the following game: at every step i the first
player produces a set H; C [N] such that |H;| > ¢ and the second player replies with a
function g; : [N] — {0,1} such that g; and f agree on at least an 1/2 + ¢ fraction of
elements of H;. The first player wins at step i if the function g(x) = majority,g;(z) agrees
with f() on at least a 1 — § fraction of the elements of [N].

Lemma 2 (Impagliazzo [Imp95]) There is a strategy for the first player such that for

every strategy for the second player involving 2V o possible functions g, the first player
wins within poly(1/e,1/d) steps.

Impagliazzo uses Lemma 2 in the following way. Suppose that we have a function
f:{0,1}"™ — {0,1} such that for every set H C {0,1}" with |H| > 62" there is a circuit
C of size < s such that C computes f on at least a 1/2 + ¢ fraction of the elements of H.
Then, we can play the set-function game (as a mental experiment) with the first player
using the strategy of Lemma 2 and the second player always replying with a circuit of size
< s. Then, we conclude that f can be computed on a 1 — § fraction of the inputs by a
circuit of size s - poly(1/e,1/d). By contrapositive, if it is impossible to compute f on a
1 — ¢ fraction of inputs using a circuit of size s, then there must be a set H C {0,1}" such
that no circuit of size s - poly(e, §) can compute f on more than a 1/2 + ¢ fraction of the
elements of H.*

The argument is inherently non-uniform, and, in fact, it is not clear how to use Lemma
2 in a uniform setting. The following Lemma gives a way of doing it.

Lemma 3 Let C be a distribution of circuits samplable in time t, f : [N] — {0,1} be a
function and let v, 0,¢ be such that for every subset H C [N], |H| > 0N, we have

Pr [Prif0)=C@)] > 5 +e| 2o

“The Set-Function game in [Imp95] refers not to sets of size § N, but to “measures,” or, essentially,
distributions of min-entropy at least log(d.N). However Impagliazzo also shows a result about “rounding”
measures to sets which implies that Lemma 2 is true as stated.

Then there is a distribution C' of circuits samplable in time t - poly(1/e,1/d) such that

_ _ poly(1/e,1/6)
P, | Prlf@) =)=z 1-6 27

PROOF: As a mental experiment, we are going to run Impagliazzo’s procedure against
samples from C. We need at most ¢ = poly(1/e,1/6) circuits, and, each time, we have a
probability « that a circuit sampled from C is a legal move.

The distribution C’ is thus as follows. We compute the upper bound ¢ = poly(1/e,1/d)
to the number of moves in the strategy of Lemma 2. Then we pick at random ¢ € {1,...,t}
and sample ¢ circuits C1,...,C; independently from C. Finally, we output the circuit
C(z) = majority {C1(z),...,Ci(z)}.

There is a probability at least (1/t)-y* that C computes f on a 1—§ fraction of inputs.

O

The conclusion of the Lemma can be equivalently stated as the existence of a prob-
abilistic algorithm that produces a list of (1/)P°¥(1/€1/9) circuits such that with high
probability one of them solves f on a 1 —§ fraction of inputs. The correct circuit can then
be specified using log(1/7) - poly(1/e,1/6) bits of advice, assuming a non-uniform model
like the one of [TV02], where a randomized machine tosses its random coins, and then
receives an advice that depends on the randomness and on the input length, but not on
the input itself.

3 Advice-efficient Direct Product Lemma for Pair-wise In-
dependent Inputs

For simplicity, in this section we will refer to a specific pair-wise independent generator,
even though the argument could be applied more generally.

Suppose we have a function f : [N] — {0,1} and that [N] is a field (for example, N
is prime and we do operations (mod N)). Then, if we pick a,b € [N] at random, the
elements a + b, a + 2b, ... ,a + kb are pairwise independent.

Define the function f* : [N]? — {0,1}* as

f¥(a,b) = f(a+D), fla+2b),...,f(a+kb).

Then the pair-wise independent Direct Product Lemma of [Imp95] implies that if f is hard
to compute on more than a 1 — § fraction of inputs with circuits of size s, then f* is hard
to compute on more than an ¢ fraction of inputs with circuits of size s-poly(1/k, d), where
e = O(1/6k).

The proof works as follows: suppose that there is a circuit A of size s that computes
f* on more than an ¢ fraction of inputs; then for every H C [N] we show that there is a
circuit that computes f on a 1/2 4 Q(e) fraction of the elements of H, furthermore, C is
of size s + polylog N. Using the results about hard-core sets, we conclude that there is a
circuit of size s - poly(k,1/6) that computes f on a 1 — § fraction of inputs.

Let us now see the proof in detail. The following presentation is taken from [Imp95]
by specializing the analysis given for general r-wise independent generators to the case
of the particular pairwise independent generator considered in this section. At every
step we show how to replace non-uniform choices with random choices, and estimate the
probability that random choices are correct.

Assume ¢ > 128/6k and let v = ¢/256.5 Let A : [N]> — {0,1}* be a function that
agrees with f* on at least an e fraction of the inputs. Let A;(a,b) be the i-th output of
A. Fix a set H C [N] such that |[H| = §N. Our goal is to find a circuit C such that C
computes f on at least a 1/2 + «y fraction of the elements of [N] and such that the size of
C is not much larger than the size of A.

We will give a probabilistic procedure that succeeds with probability
poly(1/e,1/6,1/k).

Define the k£ random variables Fi, ..., F as follows: pick at random a,b € [N] then

e F;=1ifa+14b € H and A;(a,b) = f(a + ib),
e F; = 0 otherwise.

A first observation is that if there is an 4 such that Pr[F; = 1] & §(1/2 £) then our
task of constructing C' is quite easy.

Claim 1 Suppose that Pr[F; = 1] > 6(1/2 +) or Pr[F; = 1] < 6(1/2+). Then
there is a circuit of size polylog N that makes one oracle query to A and solves f on a
1/2+~ fraction of H. Furthermore, there is a probabilistic construction of circuits of size
polylog N that make one oracle query to A. With probability at least y/2, the construction
gives a circuit solves f on a 1/2 + /2 fraction of H.

PROOF: In the following we assume Pr[F; = 1] > §(1/2 +), otherwise one has to repeat
the same argument using the complement of A;() instead of A;(). Considering that a + ib
is uniformly distributed in [/N], and that H has density at least d,

Pr[A;(a +ib) = f(a +ib)|(a + ib) € H]
_ Pr[A;(a+ib) = f(a+1ib) A (a +1ib) € H] S Pr[F; = 1] - 1
- Pr[(a + ib) € H] =) 2
Now, the conditional distribution of (a, b) such that (a+ib) € H can be realized in the

following way: pick a random z € H, then pick (a,b) such that a + ib = z, for example,
pick a random b and set a = x — #b. It then follows that

+7

WP A=) = f)] 2 5+
and we can fix a b such that the probability is at least as large. Then, our circuit C is
just Cjp(z) = A;(z — ib,b). Also, if we pick b at random, and then define the circuit C;
as above, there is at least a probability /2 over the choices of b that the circuit is correct
on more than a 1/2 + +/2 fraction of the elements =z € H. O

It remains to consider the case in which §(1/2 —) < E[F;] < §(1/2 +) for every
i. We note that, of course, E[>_; Fi] = dk(1/2 £+ «). On the other hand, we are going to
argue that), F; is not very concentrated around its expectation, and so the F; cannot be
almost pairwise independent.

Claim 2 Suppose Pr[F; = 1] = 6(1/2 £ v) for all i. Then there are indices i,j such that

E[FFj] — (E[F]E[F)]) > —

SWe are making no attempt to optimize constants.

PRrROOF: First of all, since the (a + ib) are pairwise independent, the number of indices
i such that (a + bi) € H is concentrated around the expectation dk; specifically, there
is a probability at least 1 — O(1/0k) that there are at least 7dk/8 indices ¢ such that
(a +ib) € H, and, by our choice of ¢, this probability is at least 1 — /2. We also know
that there is at least a probability ¢ that A;(a +ib) = f;i(a + ib) for all 7, and so it follows
that there is a probability at least €/2 that >, F; > 76k/8, which at least 6k(3/8 —)
more than its expectation. Now, by our choice of parameters, this would be impossible if
the F; were pairwise independent, and in fact, also impossible if they were almost pairwise
independent (we will do the precise calculation in a moment), therefore we must conclude
that there are indices 7, j such that F; and F} have a noticeable dependency. We will then
show how to exploit such a dependency to construct a circuit that computes f on H with
probability bounded away from 1/2.

To formalize the above argument, let V; = F; —E[F;]. Then, Var[}"; F;] = E[(3; V;)?]-
Also, let X; = a + ib. By Chebyshev inequality,

Pr(Y_ F; > 76k/8) < Var[y,] Var[y, F]

~ k%20%(3/8 —)% — 62k2
And

Var(y_ Fj] = 3 E[V] + Y E[ViVj] < 6k + k(k — 1) max E[ViV]]
' i i#]
Finally, again by Chebyshev inequality,

64 €
Pr[{i: X; € H}| > >1——>1—=
a,(I)'“{Z i € H}Y| > 76k/8] > Sk > 5
And, together with the fact that A is correct on at least an ¢ fraction of the inputs we
get

Pr[>F, > 76k/8] > %
7

And putting everything together we have

16)

< 7. /.
< o2 Ok +k I?%XE[WV}])
which gives

§2¢

max E[V;V;] > 6%
<RIVV]> 28
i#] =39 64

| >
Vv

So there are indices ¢, j such that

&1 < EViVi] = EIFF)] — (EIF] E[F))) < B[F:Fj] -4’ (% - 7) < E[RF] - G - ”)

O
The dependency can be exploited to compute f on H.

Claim 3 Under the same assumption of Claim 2, there is a circuit of polylog N size that
makes one oracle query to A and solves f on a 1/2 4+ 4~/3 fraction of H. There is also a
samplable distribution of circuits of size polylog N with one oracle query to A such that
the distribution produces with probability at least /6 a circuit that solves f on a 1/2 4~
fraction of H.

PROOF: The conclusion of Claim 2 can be rephrased as

1 € 1
Pr[A;(a,b) = f(X:) A Aj(a,b) = f(X;)|Xi, X; € H] > 1 -7+ 64 > 1 +2v
Let us now describe the conditional distribution of a, b such that (a + ib), (a + jb) € H as
follows: we pick at
random z,y € H and then we set a,b such that a 4+ ¢b = z and a + jb = y. Then we
get

Pr{Ai(a,b) = f(z) A Aj(a,) = F0)] = 5 +29 1)

Now we are going to proceed in a way that is slightly more complicated than usual
but that makes the construction of the final circuits simpler. First, observe that if X and
Y are 0/1 random variables then

Pr[X =0AY =0] = —I—i((2Pr[X =0]—1)+(2Pr[Y =0]—1)+ (2Pr[XaY = 0]—1))

] =

And, setting X = f(z) ® A;(a,b) and Z = f(y) ® Aj(a,b) in (1) we get that at least one
of the following three cases must hold

Prlf(s) = Ai(ab)] 2 3+ 2
Prlj) = Aj(a.h] > 5+57 3)
Prlf(z) = Ai(e,)) @ 40D @ f(0)] 2 5+ 57 (@

Now, define the circuit C;;y(x) = A;(a,b) where a,b are such that a + ib = z and
a + jb = y. Then, in the first case, we have

$€£§EH[Ci’j7y(x) = f(z)] >

+ 37

N | =
Wl

and there is at least a choice of y that is at least that good. Furthermore, there is at least
a fraction y/3 of the y € H such that P}'{[Ciyj,y(a:) = f(z)] > $ + 1, and if we pick y at
TE

random in [N] there is at least a probability d/3 that we find such a y.
In the second case, we can proceed similarly.
For the third case, define the circuit C; j .(z) = ¢ ® A;(a,b) ® Aj(a,b). Then,

1

zE}]z;EH[Ci:j,y,f(y) (z) = f(z)] > 5+3

ol i

and if we pick y at random in H and c¢ at random in {0, 1} we have a probability at least
/6 that P}'{[Ci,j,y,c(m) = f(z)] > 3 + 7. If we pick y at random in [N] and c in {0, 1} we
TE

still have a probability at least dv/6. O
Finally, consider the following distribution over circuits: pick at random i,j € [k],
c € {0,1} and y € [N]. Then, with probability 1/2, output the circuit C;,() and with
probability 1/2 output the circuit C; j ().
Then, in each of the cases we have considered, there is a probability Q(de/k?) that
such a circuit computes f on at least a 1/2 + «/2 fraction of the elements of H. Notice

that the distribution is independent of H, and, indeed, the result is true for all H such
that |[H| = éN.

We can then apply Lemma 3. We summarize the result proved in this section as
follows.

Theorem 4 Let f : [N] — {0,1}, and let ¢, 6, k, and f* : [N]? — {0,1}* be de-
fined as the beginning of this section. Let A be a function that has agreement ¢ with f*.
There is a probabilistic algorithm that runs in 2P°V(1/1/9) . polylog N time and produces
a list of 2°°Y(1/&1/0) oracle circuits; each circuit has size poly(log N,1/e,1/8) and makes
poly(1/e,1/6) oracle queries. With high probability, at least one circuit in the list, when
given oracle access to A, solves f on a 1 — 0 fraction of inputs.

For the coding-theoretic application, let C : M — {0,1}"V be an error-correcting code
with a linear-time decoding algorithm that can correct a § fraction of errors and with a
quadratic time (or better) encoding algorithm. For example, C' could be a Sipser-Spielman
code [SS96]. Assume N is prime, and consider [N] as a field.

Then, for parameters ¢, k as the beginning of this section, define the code C' : M —
({0,1}*)N*. For a message M and for indices a,b € [N], the entry indexed by (a,b) in
C'(M) is the k-bit string

C'(M)[a,b] = (C(M)[a +b]--- C(M)[a + kb))

Let A be a string that has agreement ¢ with C'(M). Then there is a probabilistic
algorithm that runs in 2P°W(1/&:1/9) . polylog N time and produces a list of 2P0 (1/e1/9)
oracle circuits; each circuit has size poly(log N,1/¢,1/6) and makes poly(1/e,1/8) oracle
queries. With high probability, at least one circuit in the list, when given oracle access to
A, defines a string that agrees with C(M) on a 1 — § fraction of entries.

In 2poly(1/&1/9) . Npoly log N time we can compute all the strings defined by all the
circuits in the list, and then apply the unique decoding algorithm to each of them. This
way we get a list of size 2P°W(1/£:1/9) that contains M.

4 Codes and Direct Product Lemmas From Expander
Graphs

As discussed in the introduction, codes obtained from a Direct Product Lemma can be
seen as graph-based constructions of codes in the spirit of [ABN*92, GI01, G102, GI03]. In
fact the converse is also true: if a graph-based construction of codes has a sub-linear time
error-correction procedure, then it also gives a direct product result. In this section we
observe that the decoding procedure for one of the codes in [GI02] has indeed a sub-linear
time decoding procedure, and hence we derive a new direct product result from it. The
result is weak in the sense that it proves only constant average-case hardness, but the
result is completely derandomized, and the reduction is uniform and deterministic.
Consider the following definition.

Definition 5 We say that a k-regular bipartite graph G = ([N], [N], E) is an (g, d)-mizer

if for every subset B of vertices on the right such that |B| > (1/2—¢)N, there are at most
ON wertices v on the left such that |T'(v) N B| > k/2.

10

Lemma 6 There are ezplicit (,0)-mizers with k = poly(1/e,1/6).

In fact, any family of expanders with a poly(1/e,1/4) eigenvalue gap is an (g, §) mixer.
In the Lemma above, “explicit” means that the neighborhood of a vertex can be computed
in time polynomial in log N and in k. The constructions in [LPS88], and, in fact, even
those in [GG81], prove Lemma 6.

Theorem 7 Let f, : {0,1}" — {0,1}, e(n),é(n) > 0 be arbitrary, and G, =
({0,1}",{0,1}", E) be a an ezplicit family of (¢(n),d(n)) mizers of degree k(n).
Define the function F, : {0,1}" — {0,1}%() qs

F(z) = (f(T1(=)), -, f(Tk(2))

Suppose there is a deterministic algorithm A running in time t(n) that solves F,, on a
1/2 + e(n) fraction of the inputs.

Then there is a deterministic algorithm A’ running in time O(t - poly(k,n)) that solves
fn on a1 —46(n) fraction of inputs.

Notice that the new function has the same input length as the original function, and
the result preserves both uniformity and determinism. This is probably the only known
“amplification of hardness” proved with a deterministic reduction.

PROOF: On input z € {0,1}", algorithm A’() finds the k neighbors y1,...,yx of z in G,
and applies algorithm A() to each of them. The results A(y1),...,A(yx) contain each a
prediction of the value f(z). Algorithm A’ returns the value that occurs more often among
such predictions.

Let B C {0,1}" be the set of inputs y such that A(y) # F(y). By assumption,
|B| < (1/2—¢)2". The inputs = € {0,1}" such that A’(z) # f(z) are such that a majority
of their neighbors belong to B. By the mixing property of G, there can be at most §2"
such inputs z. O

By applying a randomness-efficient version of Goldreich-Levin, we can also define a
boolean function f’ : {0,1}Hogk+0(ogl/e) _y 10 1} such that a deterministic algorithm
that computes f’ on a 7/8 4+ O(e) fraction of inputs can be turned into a deterministic
algorithm of comparable complexity that computes f on a 1 — 4§ fraction of inputs, where
n,k,e,0 are as in the above Theorem.

5 Advice-Efficient Amplification of Hardness in NP

In this section we present the results of [0’D02] and explain how to use Lemma 3 instead
of Impagliazzo’s hard core sets in order to derive a uniform reduction.

5.1 O’Donnell’s Proof

Let f : {0,1}* — {0,1} be an NP function and g : {0,1}* — {0,1} be a monotone
function. Then f'(z1,...,z2x) = g(f(z1),..., f(zk)) is still an NP function. O’Donnell
shows that for a proper choice of g and for a certain range of parameters £ and ¢, if there
is a circuit A of size s that solves f’ on an 1/2+¢ fraction of inputs then, for every set H of
density &, there is a circuit C of size s+poly(k,n) that solves f on a 1/2+Q(e/Vk) fraction

11

of inputs from H. In turn, this implies that there is a circuit of size s - poly(1/e,1/4, k)
that solves f on a 1 — ¢ fraction of inputs.

We sketch below a slightly different, and simpler, argument that shows, under the
same assumption, that for every set H of density § there is a circuit of size s + poly(k,n)
that solves f on a 1/2 + ¢/(dk) fraction of inputs H. Our argument is easier to adapt to
the uniform setting.5

Let f:{0,1}" — {0,1} be a function (that we think of as being hard to compute on
more than a 1 — § fraction of inputs) and let H C {0,1}" be a set of size 62" (that we
think of as being a hard-core set for f).

Let us define a random function b : {0,1}" — {0, 1} as follows: for z ¢ H, b(z) = f(z),
while, for x € H, b(z) outputs a random bit. If H is a hard-core set for f, then the
distributions (z, f(z)) and (z, b(z)) are computationally indistinguishable. More precisely,
if we are given a circuit of size s that has distinguishing probability ¢ between the two
distributions, then we get a circuit of size s+ O(1) that computes f on at least a 1/2+¢/4
fraction of the elements of H.

An hybrid argument shows that the distributions

T1,22y--- ,.Ik,f(fl'l),f(l'Q), T ,f(CCk)

and
T15T2y-+- 3Tk, b1($1), bg(.’EQ), ey bk(wk)

are also computationally indistinguishable, if H is a hard-core set. (The functions b; are
independent copies of the function b that we previously defined.) More precisely, if we are
given a circuit of size s that has distinguishing probability ¢ between the two distributions,
then we get a circuit of size s + O(nk) that computes f on at least a 1/2+ ¢/(dk) fraction
of the elements of H.

If g : {0,1}* — {0,1} is a function computable by a circuit of size poly(k), then the
distributions

T13X2y- -+ ,-Tk,g(f(xl),f(-TZ),- .- af(mk))

and
T1,T2,. -, Tk, 9(b1(21), b2(22), - - - , (7))

are still computationally indistinguishable if H is a hard-core set.

O’Donnell shows that if f is a balanced function, then for every e, there is a k =
poly(1/e,1/6) and a function g : {0,1}¥ — {0,1} computable by a circuit of size O(k)
such that the distributions

T1,T2y -+ ,xkag(b(xl)ab(xZ), s 1b(xk))

and
L19L2yy Tk, T

(where 7 is a random bit) have statistical distance at most €. Notice that this is a purely
information-theoretic result, that uses only the fact that f is balanced and that H has
density 4.

Then we get that the distributions

5A similar argument appears in [STVO01].

12

L1, L2y - - awkag(f(xl)af(mQ)a' .- 7f($k))

and
L1y L2y Ty T

are computationally indistinguishable, which means that the function f'(z1,...,zx) =
g(f(z1), f(za),..., f(zk)) is very hard on average.

5.2 Our Result

In this section we prove a version of O’Donnell result with bounded non-uniformity.
We will proceed as in [0’D02], with a careful use of non-uniformity. First, we state
formally the information-theoretic part of the argument of [O’D02].

Theorem 8 ([O’D02]) For everye,d > 0 there is a k = poly(1/e,q/d) and a function g :
{0,1}* — {0,1} such that the following holds. Let f : {0,1}™ — {0,1} be a function e/k-
close to balanced, H C {0,1}" be of density ¢, b{, . .,b£ :{0,1}" — {0,1} be independent
random functions such that b{(w) = f(x) for x ¢ H and b{(w) outputs a random bit if
x € H. Then the distributions

T1y--- ,.’L‘k,g(b{(xl), LR b]j;(w))

and
T1,..., Tk, T

have statistical distance at most 2e, where the z; are uniform and independent in {0,1}"
and r is uniform in {0,1}.

The proof of Theorem 8 uses the following notion.

Definition 9 For a string z € {0,1}*, denote by Ns(z) the random variable obtained by
flipping each bit of x independently with probability §.

The mnoise stability of a function g : {0,1}* — {0,1} at parameter §, denoted
NOISESTAB;s(g) is defined as

No1sESTAB;(g) = Prlg(z) = g(Ns())]
where T is uniform.
The following two results give a proof of Theorem 8.

Lemma 10 ([O’D02]) For every €,6 > 0 there is a k = poly(1/e,1/d) and a function
g:{0,1}* — {0,1} such that NOISESTABy (g) < 1/2 + € for every § < §' < 1.

Lemma 11 ([0O’D02]) Let f : {0,1}" — {0,1} be a balanced function, H C {0,1}"
be of density 0, b{,...,b,{ : {0,1}™ — {0,1} be independent random functions such that
b{(a;) = f(z) forz ¢ H and b{(w) outputs a random bit if v € H. Let g : {0,1}F — {0,1}
be a function such that NOISESTAB;/5(g) < 1/2 + 2¢2. Then the distributions

1y g, g0 (21), ..., b (2))

13

and
Llyee-sLksT
have statistical distance at most €, where the x; are uniform and independent in {0,1}"

and r is uniform in {0,1}.

In order to prove Theorem 8, we just need to take into account the fact that f is not
perfectly balanced.

PROOF: [Of Theorem 8] Choose k and g so that NOISESTAB;/5(g) < 1/2+2¢2. Let f' be a
balanced function that differs from f only on a ¢/k fraction of inputs. Fix an arbitrary set

H of density 6 and define the random functions b{ 0,---, bi() and b{’(), ceey b,’:l() relative
to H as in the statement of Lemma 11.
Since the distributions (z, f(z)) and (z, f'(z)) have statistical distance ¢/k, it follows
that the distributions
T1y- e Ty b (21), .., b (21)

and ’)
T1y. s, b (1), b (k)
have statistical distance at most ¢, and so also the two distributions

T1y- e Ty g (0] (1), -, bl (2)) (5)

and ’ ,
wl""a$kag(b{ (‘Tl)’"'abi (.’L'k;)) (6)

have statistical distance at most ¢.
On the other hand, the statistical distance between the distribution (6) and

T1yenny ThyT (7)

is at most € because of Lemma 11 and our choice of g. Using the triangle inequality, we
get that the statistical distance between the distributions (5) and (7) is at most 2. O

Now we are left with the reduction to the information-theoretic case.

Lemma 12 Let g : {0,1}* — {0,1} be as in Theorem 8, f : {0,1}"* — {0,1} be £/k-close
to balanced and A be a polynomial-time algorithm such that

Pr{A(m, ., o5) = g(f (1), flog)] > 3 +3e

Then there is a polynomial time samplable distribution of circuits C such that for every
set H C {0,1}" of density 0 we have

9 9

Pr |Pr[C(z) = > — | >

Fr |\ BrlC@ =@ 2 35| 2 G

PROOF: [Sketch] The proof proceeds as in the overview of Section 5.1. Fix an arbitrary
subset H of density 4, and define k£ independent random functions b1,...,b; as in the
statement of Theorem 8. Define an algorithm A’ such that A'(zy,...,zk,71,...,7%) =
A(z1,...,2k) ® g(r1,...,7%). Then, from our assumptions, we get that

Pr(A/(a1,.., 5, f(m1), o (ox) = 0> 5+ 3¢

14

and also
1
PI‘[A’(.’L‘l, ey Ty bl(.rl), e ,bk(.’L‘k)) = 0] = PI‘[A(.’L‘1, . ,xk) = g(b1 (.’L‘1), . ,bk(l‘k))] S §+2€

because otherwise we would have a statistical test that would contradict the fact that the
distribution (z1,..., Tk, g(b1(x1),...,bg(zk))) is 2e-close to the distribution (z1, ..., zg,).
This implies that

Pr[A(z1,...,zk, f(z1),..., f(z)) = 0] — Pr[A'(z1,..., 7k, b1(x1),. .., bp(zk)) = 0] > €
Then we can define hybrid distributions Dy, ..., Dy, where the distribution D; is
(@1, ok, f(@1),- -+, (@), i1 (Tig), - - -5 b (@)

And there is a probability at least 1/k that if we pick 7 at random we get an 4 such that
Pr[A(D;) = 0] — Pr[A(Di11) = 0] > /k

Given such an 7, we can get a probabilistic construction of a circuit such that on average the
circuit agrees with f on a 1/2 + ¢/(dk) fraction of inputs. The probabilistic construction
picks x1,...,Ti—1,%i+1,.--,Zk at random and needs 2k — 1 bits of non-uniformity. By
Markov’s inequality, if we pick z1,...,2Zi—1,%+1,...,%r at random and then the non-
uniformity in the right way, there is at least a probability £/(20k) that the circuit computes
fonal/2+¢e/(20k) fraction of H. If we pick 4, z1,...,2Zj—1,%it1,-..,Zr and the non-
uniformity at random, the overall success probability is still at least £/(0k? - 22¢~1). O

We get our amplification of hardness result by using the above lemma and Lemma 3
(our uniform version of Impagliazzo’s hard core result).

Lemma 13 Let g : {0,1}* — {0,1} be as in Theorem 8, f : {0,1}* — {0,1} be £/k-close
to balanced and A be a polynomial-time algorithm such that

Pr{A(z, .. zk) = g(f (@), Flze)] > % +2

Then there is a polynomial time samplable distribution of circuits C such that

Pr |Pr[C(z) = >1—§| >27pov(/e1/9)
Pr | PriC(z) = f(z)] 2 >
Finally, we want to generalize the result from the almost-balanced case to the general

case. We can do so by using the same padding technique adopted in [O’D02]. The reader
is referred to [O’D02] for details.

Theorem 14 For every polynomial time computable functions €,§ the following holds.
Suppose that for every language L in NP there is a probabilistic algorithm A such that
for every input length n we have

1
L Pr [A() = L)) 2 5 +¢(n)

Then for every language L in NP there is a probabilistic algorithm A’ that on input n runs
in poly(n,1/e(n),1/8(n)) time and outputs a circuit, and

P P =L >1— > 2—POIY(1/5(")a1/5("))
JPr | Pr [0() = L] 21— ()| >

15

Notice that the conclusion of the theorem could be stated equivalently as the existence
of a probabilistic algorithm running in time polynomial in n and in 2P°W(1/&1/9) that
produces a list of 2PW(1/£1/9) circuits such that one of them solves f on at least a 1 — 4
fraction of inputs.

6 Uniform Amplification of Hardness in NP
In this section we prove the following result.

Theorem 15 There is a constant ¢ > 0 such that the following is true. Suppose that
for every NP problem there is a probabilistic polynomial time algorithm that, on every
input length, succeeds on a 3/4 + 1/(logn)¢ fraction of inputs. Then for every balanced
NP problem there is a probabilistic polynomial time algorithm that, on every input length,
succeeds on a 1 —1/(logn)¢ fraction of inputs.

Given the results of the previous section, the assumption of Theorem 15 implies that,
for every language L in NP, we have a probabilistic algorithm that, on input n, runs in
poly(n) time and produces a list of poly(n) circuits of poly(n) size such that at least one
of them solves L on at least a 1 — ¢ fraction of inputs, where § = 1/(log n)*"). We would
like to be able to recognize such a circuit. Unfortunately, we do not know how to do that.
On the other hand, under the assumption of the theorem, we are able to solve a slightly
weaker promise problem, and solving the promise problem will be enough to prove the
conclusion of the theorem.

Theorem 16 For every function 6(n) there are function y(n),o(n) such that y(n) <
8(n)¥Y) and o(poly(n)) < 8(n)*Y) and the following happens.

Suppose that for every balanced language L in NP there is a probabilistic polynomial
time algorithm that solves L on a 3/4 + o(n) fraction of the inputs of length n.

Then for every balanced language L in NP there is a probabilistic polynomial time
probabilistic algorithm A such that

e For every circuit C that solves L on at least a 1—4(n) fraction of the inputs of length
n, Pr[A(C) accepts | > 3/4.

e For every circuit C that solves L on fewer than a fraction 1 — y(n) of the inputs of
length n, Pr[A(C) accepts | < 1/4.

Of course the probability of success can be amplified from 3/4 to 1 — 27 ".

PROOF:[Of Theorem 16] First of all, we use random sampling to estimate the fraction
Pr[C(z) = 1]. Since L is balanced, if C is a circuit that solves L on a > 1 — § fraction of
inputs, then Pr[C(z) = 1] has to be between 1/2—4§ and 1/2+ 4. Using random sampling,
we make sure that we keep with high probability C if |Pr[C(z) = 1] —1/2| < 4 and we
reject C' with high probability if | Pr[C(z) = 1] — 1/2| > 26.

Now we need to carefully select parameters for the rest of the argument to work. Let
a,b be such that, in Lemma 10, we have k < 1/(g% - §*). We are going to set y = §'/%
and € = §'/4¢, so then we get that there is a function g : {0,1}* — {0,1} such that
NOISESTAB, < 1/2+¢ for every v' > 7, and furthermore k& < V/1/6. We may also assume
that v > 34. Finally, we fix o so that o(kn) > e(n) + 6(n)(2k + 1).

16

Now we come to the interesting part of the proof. Define the circuit D(zy,...,zx) =
9(C(z1),...,C(zx)) and the language L' such that L'(z1,...,zx) = g(L(z1),. .., L(zg)).
Let Az be the algorithm that solves L’ on a 3/4 + o(kn) fraction of inputs.

Clearly, if C and L agree on a > 1 — ¢ fraction of inputs, then D and L' agree on a
> 1 — ko fraction of inputs, and D and Ajs agree on a > 3/4 4+ o — ké > 3/4 + ¢ fraction
of inputs.

We would like to argue that if C' and L agree on less than a 1—+y fraction of inputs, then
this disagreement is amplified when we look at D versus L', due to the noise-sensitivity of
g- Due to the first step, in the following we may assume that C' is 2d-close to balanced.

Let h be the closest balanced function to C. Then h is 26-close to C, and also h has
disagreement at least v — 2§ with L.

Consider now the distributions

T1y--- ,.Zk,h(.’ﬂl),- .- ,h(iL'k)

and
Z1y.. 2k, C(21),...,C(xk)

It is immediate to see that they are 2kd-close, so in particular, the distributions

9(L(21), - -, L(=x)), g(h(1); - - ., hxx)) (8)

and
9(L(z1), ..., L(zk)), 9(C(z1), ..., Clak)))

are also 20k-close.

Now, consider the distribution (8): it is the same as the distribution (z, N4(z)) where z
is uniform in {0, 1}*, « is the disagreement between h and L, and N, () is the distribution
obtained by flipping independently each bit of z with probability c.”

By the noise stability of g, then, the distribution (8) is made of two bits that are equal
with probability at most 1/2 4+ €. By the closeness between (8) and (9) we get that

Prg(L(r1), -, L) = 9(Cl@r), -, Olan))] < 5 + e + 20k

In turn, this implies that D and Ay can agree at most on a 3/4—o(kn)+e+26(n)k <
3/4 — ¢ fraction of inputs.

We can use random sampling to estimate the agreement between Ay and D, and then
we are able to distinguish between the case in which the agreement is < 3/4 — ¢ and the
case in which the agreement is > 3/4 + 6. O

The proof of Theorem 15 is now mostly a matter of fixing parameters. We fix a ¢’ small
enough so that, in Theorem 14, under the assumption that every problem in NP can be
solved on a 3/4 fraction of inputs, then for every problem L in NP there is an algorithm
Ajgt that constructs in polynomial time a list of circuits such that at least one of them
solves the problem on a 1—1/(logn)¢ fraction of inputs. Then we apply Theorem 16 with

"For this to be true, we need both L and h to be balanced. Then, the number of inputs on which
L(z) # h(z) is equally split between YES instances and NO instances. If we had not used the balance
condition, and we had argued directly about C and L, it could have been that L(z) and C(x) are more
likely to be different conditioned on, say, L(z) = 0. On the other hand, in the distribution N;(z), the noise
is generated independently of z, and a zero bit is equally likely to be flipped as a one bit.

17

6 =1/(logn)¢, and we see that there are functions o,y = §*(1) such that if every problem
in NP can be solved uniformly on a 3/4 + o fraction of inputs then for every problem L in
NP there is an algorithm Ayt that is able to distinguish circuits that solve the problem
on > 1 — § fraction of inputs from circuits that solve the problem on < 1 — fraction of
inputs.

Finally, we get a good uniform algorithm for L as follows. On input x of length n,
we run Aj(n) to get a list of possible circuits, then we run algorithm Agis; on each of
the circuits. Let C be the first circuit that is accepted by Agist; then we output C(z).
Since the generation of the circuit was independent of z, and since with high probability
the circuit solves L on a 1 — v fraction of inputs, then the whole algorithm has a success
probability close to 1 — . To complete the proof of Theorem 15 we just need to choose ¢
small enough so that o(n),y(n) < 1/(logn)¢ for sufficiently large n in the above argument.

7 Conclusions

Guruswami and Indyk [GI0O1, GI02, GIO3] present, among several other results, error-
correcting codes with linear-time encoding algorithms and linear time list-decoding algo-
rithms that correct a 1 — ¢ fraction of errors. As in our case, their construction starts from
codes with a unique decoding algorithm.

The Guruswami-Indyk construction in [GI03] is better than ours in any respect: shorter
encoding length, faster encoding time, comparable decoding time and list size.

Sudan’s [Sud97] list-decoding algorithm for Reed-Solomon codes gives codes that de-
code a 1 — ¢ fraction of errors while creating a list of size only poly(1/¢). Furthermore,
using concatenation, one can have alphabets of size poly(1/e) (while in our case the al-
phabet has size 2PO(1/ 5)) and quasi-linear or linear encoding length. The decoding time
is polynomial in [Sud97], but it has been improved to quasi-linear in [Fen99, Ale02].

The main point of this paper, therefore, is not to present an improved, or even compet-
itive, construction of list-decodable codes, but rather to show that results from complexity
theory, with little manipulation, yield codes with reasonably non-trivial properties. Quite
possibly, a new technique could be extracted by better understanding the algorithm pre-
sented in this paper, which could be used more directly to devise improved list-decoding
algorithms. In any case, this connection gives a new way of looking at the list-decoding
problem, and a new language to describe and analyze algorithms.

Within complexity theory, the observations and results of this paper are a challenge
to come up with a direct product theorem for almost pairwise independent inputs. Such a
result would give codes with quasi-linear, and possibly linear, encoding length.

The Direct Product Lemma should be provable with only O(log(1/£6)) bits of advice,
which would lead to list-decoding algorithm with near-optimal list size. It is an interesting
open question to prove such a result.

There is a lot of room for improvement in our uniform amplification of hardness result
for NP. One approach to try and improve our results would be to devise an even more
advice-efficient version of Impagliazzo’s results.

18

Acknowledgements

I thank Madhu Sudan, Ryan O’Donnell, Salil Vadhan and Venkatesan Guruswami for
helpful discussions.

References

[ABN+92]

[Ale02]

[BDCGL92

[Fen99]

(GG81]

[GT01]

[GI02]

[GI03]

[GNW95]

[Imp95]

[TW97]

[Lev87]

N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construction of asymptot-
ically good, low-rate error-correcting codes through pseudo-random graphs.
IEEFE Transactions on Information Theory, 28:509-516, 1992.

Michael Alekhnovich. Linear diophantine equations over polynomials and soft
decoding of reed-solomon codes. In Proceedings of the 43rd IEEE Symposium
on Foundations of Computer Science, pages 439-448, 2002.

Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the
theory of average case complexity. Journal of Computer and System Sciences,
44(2):193-219, 1992.

G.L. Feng. Two fast algorithms in the sudan decoding procedure. In Pro-
ceedings of the 37th Allerton Conference, pages 545-554, 1999.

O. Gabber and Z. Galil. Explicit construction of linear sized superconcentra-
tors. Journal of Computer and System Sciences, 22:407-425, 1981.

Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of
efficiently decodable codes. In Proceedings of the 42nd IEEE Symposium on
Foundations of Computer Science, pages 658-667, 2001.

Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes
for unique decoding and new list-decodable codes over smalle alphabets. In
Proceedings of the 34th ACM Symposium on Theory of Computing, pages
812-821, 2002.

Venkatesan Guruswami and Piotr Indyk. Linear time encodable and list
decodable codes. In Proceedings of the 35th ACM Symposium on Theory of
Computing, 2003.

O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR lemma. Technical
Report TR95-50, Electronic Colloquium on Computational Complexity, 1995.

R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Pro-
ceedings of the 36th IEEE Symposium on Foundations of Computer Science,
pages 538-545, 1995.

R. Impagliazzo and A. Wigderson. P = BPP unless E has sub-exponential
circuits. In Proceedings of the 29th ACM Symposium on Theory of Comput-
ing, pages 220-229, 1997.

Leonid Levin. One-way functions and pseudorandom generators. Combina-
torica, 7(4):357-363, 1987.

19

[LPS8S]

[0’D02]

[S596]

[STVO1]

[Sud97]

[TV02]

A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8:261-277, 1988.

Ryan O’Donnell. Hardness amplification within np. In Proceedings of the
3jth ACM Symposium on Theory of Computing, pages 751-760, 2002.

M. Sipser and D. Spielman. Expander codes. IEEE Transactions on In-
formation Theory, 42(6):1710-1722, 1996. Preliminary version in Proc. of
FOCS’94.

M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without
the XOR lemma. Journal of Computer and System Sciences, 62(2):236-266,
2001.

M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction
bound. Journal of Complexity, 13(1):180-193, 1997. Preliminary version in
Proc. of FOCS’96.

Luca Trevisan and Salil Vadhan. Pseudorandomness and average-case com-
plexity via uniform reductions. In Proceedings of the 17th IEEE Conference
on Computational Complezity, pages 129-138, 2002.

ECCC

ISSN 1433-8092

20 http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

