
On ε-Biased Generators in NC0

Elchanan Mossel ∗ Amir Shpilka† Luca Trevisan‡

May 14, 2003

Abstract

Cryan and Miltersen [CM01] recently considered the question of whether there can be a pseu-
dorandom generator in NC0, that is, a pseudorandom generator that maps n bits strings to m
bits strings and such that every bit of the output depends on a constant number k of bits of the
seed. They show that for k = 3, if m ≥ 4n + 1, there is a distinguisher; in fact,they show that in
this case it is possible to break the generator with a linear test, that is, there is a subset of bits
of the output whose XOR has a noticeable bias. They leave the question open for k ≥ 4, and
conjecture that every NC0 generator can be broken by a statistical test that simply XORs some
bits of the input. Equivalently, they conjecture that no NC0 generator can sample an ε-biased
space with negligible ε.

We refute the conjecture for k ≥ 5, and we give a generator that maps n bits into cn bits, so
that every bit of the output depends on 5 bits of the seed, and the XOR of every subset of the
bits of the output has bias 2−Ω(n/c4). For large values of k, we construct generators that map n

bits to nΩ(
√

k) bits and such that every XOR of outputs has bias 2−n
1

2
√

k .
We also present a polynomial-time distinguisher for k = 4, m ≥ 24n having constant distin-

guishing probability. For large values of k we show that a linear distinguisher with a constant
distinguishing probability exists once m ≥ Ω(2kndk/2e).

Finally, we consider a variant of the problem where each of the output bits is a degree k
polynomial in the inputs. We show there exists a degree k = 2 pseudo random generator for
which the XOR of every subset of the outputs has bias 2−Ω(n) and which map n bits to Ω(n2)
bits.

∗mossel@stat.berkeley.edu. Miller fellow, CS and Statistics, U.C. Berkeley.
†
amirs@deas.harvard.edu. DEAS, Harvard University and LCS, M.I.T., Cambridge, MA. Supported by National

Security Agency (NSA) and Advanced Research and Development Activity (ARDA) under Research Office (ARO)
contract no. DAAD19-01-1-0506.

‡
luca@cs.berkeley.edu. Computer Science Division, U.C. Berkeley. Supported by a Sloan Fellowship and an

Okawa Foundation Grant.

Electronic Colloquium on Computational Complexity, Report No. 43 (2003)

ISSN 1433-8092

1 Introduction

A pseudorandom generator is an efficient deterministic procedure that maps a shorter random input
into a longer output that is indistinguishable from the uniform distribution by resource-bounded
observers.

A standard formalization of the above informal definition is to consider polynomial-time proce-
dures G mapping n bits into m(n) > n bits such that for every property P computable by a family
of polynomial-size circuits we have that the quantity

∣

∣

∣

∣

Pr
z∈{0,1}l(n)

[P (z) = 1] − Pr
x∈{0,1}n

[P (G(x))]

∣

∣

∣

∣

goes to zero faster than any inverse polynomial in n. The existence of such a procedure G is
equivalent to the existence of one-way functions [HILL99], pseudorandom functions [GGM86] and
pseudorandom permutations [LR88].

What are the minimal computational requirements needed to compute a pseudorandom gen-
erator? Linial et al. [LMN93] prove that pseudorandom functions cannot be computed in AC0

(constant-depth circuits with NOT gates and unbounded fan-in AND and OR gates),1 but their
result does not rule out the possibility that pseudorandom generators could be computed in AC0,
since the transformation of pseudorandom generators into pseudorandom functions does not preserve
bounded-depth. Impagliazzo and Naor [IN96], in fact, present a candidate pseudorandom generator
in AC0. Goldreich [Gol00] suggests a candidate one-way function in NC0. Recall that NC0 is the
class of functions computed by bounded-depth circuits with NOT gates and bounded fan-in AND
and OR gates. In an NC0 function, every bit of the output depends on a constant number of bits of
the inputs. While it is easy to see that there can be no one-way function such that every bit of the
output depends on only two bits of the input,2 it still remains open whether there can be a one-way
function such that every bit of the output depends on only three bits of the input.

Cryan and Miltersen [CM01] consider the question of whether there can be pseudorandom gen-
erators in NC0, that is, whether there can be a pseudorandom generator such that every bit of the
output depends only on some a constant k number of bits of the input.

They present a distinguisher in the case k = 3,m > 4n, and they observe that their distinguisher
is a linear distinguisher, that is, it simply XORs a subset of the bits of the output. Cryan and
Miltersen formulate a conjecture that implies that there is no pseudorandom generator in NC0when
m is superlinear in n. Specifically, they conjecture that for every constant k if m is super-linear
in n then for every generator such that every bit of the output depends on k bits of the input, a
linear distinguisher exist. In order to formulate an equivalent version of the stronger conjecture,
let us introduce the notion of a ε-biased distribution. For ε > 0, we say that a random variable
X = (X1, . . . , Xm) ranging over {0, 1}m is ε-biased if for every subset S ⊆ [m] we have 1/2 − ε ≤
Pr[
⊕

i∈S Xi = 0] ≤ 1/2 + ε. It is known [NN93, AGHP92] that an ε-biased distribution can be
sampled by using only O(log(m/ε)) random bits, which is tight up to the constant in the big-Oh. So
the conjecture of [CM01] can be formulated as stating that there is no ε-biased generator in NC0 that
samples an m-bit ε-biased distribution starting from, say, o(m) random bits and with a negligible ε.

1To be precise, the results in [LMN93] only rule out security against adversaries running in time O(n(log n)O(1)

).
2Finding an inverse can be formulated as a 2SAT problem.

1

Our Results

We first extend the result of Cryan and Miltersen by giving a (non linear) distinguisher for the case
k = 4,m ≥ 24n. Our distinguisher has a constant distinguishing probability, which we show to be
impossible to achieve with linear distinguishers. Our distinguisher uses semidefinite programming
and uses an idea similar to the “correlation attacks” used in practice against block cyphers.

For all k, it is trivial that a distinguisher exist for m ≥ 22k(n
k

)

, and it easy to see that a distin-
guisher exist when m ≥ k

(n
k

)

. We show using a duality Lemma proven in [MOS03] that in fact, a

distinguisher with a constant distinguishing probability exists once m ≥ Ω(2kndk/2e).

Then we present an ε-biased generator mapping n bits into cn bits such that ε = 1/2Ω(n/c4) and
every bit of the output depends only on k = 5 bits of the seed. The parameter c can be chosen
arbitrarily, and may depend on n. The constant in the Ω() notation does not depend on c. The
construction refutes the conjecture of Cryan and Miltersen.

The main idea in the construction is to develop a generator with k = 3 that handles well linear
tests that XOR a small number of bits, and then develop a generator with k = 2 that handles well
linear tests that XOR a large number of bits. The final generator outputs the bitwise XOR of the
outputs of the two generators, on two independent seeds.

The generator uses a kind of unique-neighbor expander graphs that are shown to exist using the
probabilistic method, but that are not known to be efficiently constructable, so the generator is in
NC0 but not in uniform NC0.

Later we present similar constructions for large values of k which output nb
√

kc·(1
2
+o(1))−2.5 bits

whose bias is at most exp

(

−|n|
1−o(1)

2b
√

kc

)

.

Note the gap for large values of k between our constructions that output n(
√

k/2)(1+o(1)) bits, and
the bounds showing a distinguisher exists for generators that output n(k/2)(1+o(1)) bits.

Finally, we begin a study of the question of whether there are pseudorandom generators with
superlinear stretch such that each bit of the output is a function of the seed expressible as a degree-k
polynomial over GF (2), where k is a constant. This is a generalization of the main question addressed
in this paper, since a function depending on only k inputs can always be expressed as a degree-k
polynomial. Furthermore, low-degree polynomials are a standard class of “low complexity” functions
from an algebraic perspective. In our NC0

5 construction of an ε-biased generator with exponentially
small ε and superlinear stretch, every bit of the output is a degree-2 polynomial. We show that, for
degree-2 polynomials, the stretch can be improved to quadratic, which is best possible.

Organization

In section 2 we review the analysis for the case k = 3 of [CM01]. In section 3 we give a distinguisher
for the case k = 4. In section 4 we prove an upper bound on the length of the output of an ε-bias
generator in NC0

k.

In section 5 we construct ε-bias generator for the cases k = 4, 5. The results for larger k are
discussed in section 6. In section 7 we explicitly construct an ε-bias generator such that every bit of
the output is a polynomial of degree 2. Finally we give some open problems in section 8.

2

2 Review of the Case k = 3

In this section we summarize the main result of [CM01]. We first generalize a lemma from that
paper.

2.1 Preliminaries

We say that a function g : {0, 1}n → {0, 1} is balanced if Pr
x

[g(x) = 1] = 1/2. We say that a function

g : {0, 1}n → {0, 1} is unbiased towards a function f : {0, 1}n → {0, 1} if Pr
x

[g(x) = f(x)] = 1/2.

Definition 1 (Affine function) A function g : {0, 1}n → {0, 1} is affine if there are values
a0, . . . , an ∈ {0, 1} such that g(x1, . . . , xn) = a0 ⊕ a1x1 ⊕ . . . ⊕ anxn.

The following lemma was proved by case analysis for k = 3 in [CM01], and the case k = 4 could
also be derived from a case analysis appearing in [CM01] (but it is not explicitly stated).

Lemma 2 Let g : {0, 1}n → {0, 1} be a non-affine function that depends on only k variables. Then

• There exist an affine function on at most k − 2 variables that is correlated with g.

• Let l be the affine function that is biased towards g and that depends on a minimal number
of variables. That is, for some d, l depends on d variables, Pr

x
[g(x) = l(x)] > 1/2, and g is

unbiased towards affine functions that depend on less than d variables.

Then Pr
x

[g(x) = l(x)] ≥ 1/2 + 2d−k.

For example, for k = 3, a non-affine function g is either unbalanced, or it is biased towards one
of its inputs; in the latter case it agrees with an input bit (or with its complement) with probability
at least 3/4.

For k = 4, a function g either is affine, or it is unbalanced, or it has agreement at least 5/8 with
an affine function that depends on only one input bit, or it has agreement at least 3/4 with an affine
functions that depends on only two input bits.

We give the proof of the lemma in appendix A.

2.2 The Case k = 3

Let G : {0, 1}n → {0, 1}m be a generator and let gi : {0, 1}n → {0, 1} be the i-th bit of the output
of the generator. Suppose each gi depends on only three bits of the input.

Suppose that one of the gi is not a balanced function. Then we immediately have a distinguisher.

Suppose that more than n of the gi are affine. Then one of them is linearly dependent of the
others, and we also have a distinguisher.

It remains to consider the case where at least m−n of the functions gi are balanced and not affine.
Let I be the set of i for which gi is as above. Then, by Lemma 2, for each such gi there is a affine
function li that depends on only one bit, such that gi agrees with li on a 3/4 fraction of the inputs.
By replacing gi with gi ⊕ 1 when needed, we may assume that each such gi has high correlation
with one of the bits of its input. By the pigeonhole principle, there is a bit xj of the seed, and a

3

set C, |C| ≥ 1 + (m − n − 1)/n, such that the output of gi(x1, . . . , xn) is correlated to xj for every
i ∈ C. Let c = |C|. We see that the average over x of max{#i ∈ C : gi(x) = 0,#i ∈ C : gi(x) = 1}
is at least 3c/4. If c is a sufficiently large constant, then the restriction of the generator to C has
constant statistical distance from the uniform distribution over c bits, for which that average value
is c/2 + O(

√
c). By the Vazirani XOR Lemma [Vaz86], it also follows that the XOR of some subset

of the bits of C has constant bias.3

While the above analysis uses the same ideas as in [CM01], it is slightly better because we achieve
constant bias instead of inverse polynomial bias.

We state for future reference the following result that follows from the above analysis.

Lemma 3 For every δ > 0 there are constant cδ = O(1/δ2) and εδ = 2−O(1/δ2) such that the
following holds. Let G : {0, 1}n → {0, 1}m, and let G(x) = (g1(x), . . . , gm(x)). Let L be a set of
functions and suppose that each function gi(x) agrees with an element of L or with its complement
with probability at least 1/2 + δ, and that m ≥ 1 + cδ |L|; then there is a set C ⊆ [m] such that
∑

i∈C gi(x) (mod 2) has bias at least εδ.

In particular, we can compute that when we flip 4 random coins, the average of the maximum
between the number of zeroes and ones is 2.75 < 3

4 · 4, so we can set c1/4 = 3. In particular, we
obtain a constant distinguishing probability once m ≥ 4n + 1.

For the next section, it is useful to note that when we flip 10 random coins, the average of the
maximum between the number of zeroes and ones is 6.23 < 5

8 · 10, so we can set c1/8 = 9.

3 Distinguisher for the Case k = 4

In this section we construct a distinguisher for k = 4.

Theorem 4 Let G = (g1, . . . , gm) : {0, 1}n → {0, 1}m be a map such that each gi depends on at
most 4 coordinates of the input and m ≥ 24n. Then there exists a polynomial time algorithm which
distinguish between G and a random string with constant distinguishing probability. More precisely,
the algorithm will output “yes” for the output of the generator G with probability Ω(1), and for a
random string with probability e−Ω(m).

Note that it is easy to construct a distinguisher if any of the gi is unbalanced, or if more than n
of the gi are linear.

If one of the gi is biased towards one of the bits of its input, then it follows from Lemma 2 that
it must agree with that bit or its complement with probability at least 5/8.

Thus, if more than c1/8n = 9n of the functions gi have bias towards one bit, then we can obtain
a distinguisher from Lemma 3.

It remains to consider the case where at least m− 10n of the functions are balanced, non-linear,
and unbiased towards single bits. Following [CM01], we call such functions problematic. It follows
from Lemma 2 that for each problematic g there is an affine function l of two variables that agrees
with g on a 3/4 fraction of the inputs. Again, by replacing gi by gi⊕1, when needed, we may assume
that all the g′is in P have 3/4 agreement probability with some linear function.

3The Vazirani XOR Lemma is the fact that if X1, . . . , Xt are 0/1 random variables, then they are uniform and
mutually independent if and only if for every non-empty S ⊆ [t] we have Pr[

⊕

i
Xi = 1] = 1/2.

4

Let P be the set of i such that gi is problematic. For each such i we denote by li the linear
function of two inputs that agrees with gi on a 3/4 fraction of the inputs. In the next section we
show how if p = |P | ≥ 14n, one can “break” the generator using correlation attack. Correlation
attacks are often used in practice to break pseudo random generators. The distinguisher below is a
an interesting example where one can actually prove that correlation attack results in a polynomial
time distinguisher.

3.1 The Distinguisher Based on Semidefinite Programming

Given a string r1, . . . , rp ∈ {0, 1}p, consider the following linear system over GF (2) with two variables
per equation.

∀i ∈ P li(x) = ri (1)

We will argue that the largest fraction of satisfying assignments in the system (1) is distributed
differently if r1, . . . , rp is uniform or if it is the output of G. By Markov inequality it follows that,

Lemma 5 If r1, . . . , rp is the output of G, then, for every ε > 0, there is a probability at least ε that
at least 3/4 − ε fraction of the equations in (1) are satisfiable. More formally

Prz∈{0,1}p

[

#{ i | gi(z) = `i(z)} ≥ 3

4
− ε

]

≥ ε

Lemma 6 If r1, . . . , rp is chosen uniformly at random from {0, 1}p, and |P | > (1/2δ2)(ln 2)(n + c),
then the probability that there is an assignment that satisfies more than a 1/2 + δ fraction of the
equations of (1) is at most 2−c.

Proof: Fix an assignment z; then the probability that a fraction at least 1/2 + δ of the ri agree
with li(z) is at most e−2δ2p ≤ 2−c−n. By a union bound, there is at most a probability 2−c that such
a z exists. �

Given a system of linear equations over GF (2) with two variables per equation, it is NP-hard to
determine the largest number of equations that can be satisfied, but the problem can be approximated
to within a .878 factor using semidefinite programming [GW95]. We now prove Theorem 4

Proof of Theorem 4: Fix ε and δ small enough so that .878(3/4 − ε) > 1/2 + δ. We now get a
polynomial time algorithm that is successful if a fraction 3/4 − ε of the equations is holds, and fails
if no more than 0.878(3/4 − ε) of the equations hold. Fixing δ = .158 and ε = 10−4, we obtain the
statement of theorem, where p = 14n. �

3.2 Correlation Attacks

In this section we discuss how our distinguisher for the case k = 4can be seen as a “correlation
attack.”

Correlation attacks are a class of attacks that are often attempted in practice against candidate
pseudorandom generators,4 see e.g. the introduction of [JJ99] for an overview.

4Pseudorandom generators are called “block ciphers” in the applied cryptography literature.

5

The basic idea is as follows. Given a candidate generator G : {0, 1}n → {0, 1}m, where G(x) =
g1(x), . . . , gm(x), we first try and find linear relations between input bits and output bits that are
satisfied with non-trivial probability. For example, suppose we find coefficients ai,j , bi,j and cj such
that each of the equations

∑n
i=1 ai,1xi +

∑m
i=1 bi,1gi(x) = c1 (mod 2)

∑n
i=1 ai,2xi +

∑m
i=1 bi,2gi(x) = c2 (mod 2)

. . .
∑n

i=1 ai,txi +
∑m

i=1 bi,tgi(x) = ct (mod 2)

(2)

is satisfied with probability bounded away from 1/2.

Now we want to use this system of equations in order to build a distinguisher. The distinguisher
is given a sample z = (z1, . . . , zm) and has to decide whether z is uniform or is the output of G. The
distinguisher substitutes zi in place of gi(x) in (2) and then tries to find an x that maximizes the
number of satisfied equations. The hope is that, if z = G(x), then we will find x as a solution of the
optimization problem.

Unfortunately, maximizing the number of satisfied equations in a linear system over GF (2) is an
NP-hard problem, and, in fact, it is NP-hard to achieve an approximation factor better than 1/2
[H̊as97]. In practice, one uses belief-propagation algorithms that often work, although the method
is typically not amenable to a formal analysis.

In Section 3, we were able to derive a formal analysis of a related method because we ended up
with a system of equations having only two variables per equation, a class of instances for which good
approximation algorithms are known. Furthermore, we did not try to argue that, when the method
is applied to the output of the generator, we are likely to recover the seed; instead, we argued that
just being able to approximate the largest fraction of satisfiable equations gives a way to distinguish
samples of the generators from random strings.

4 O(nk/2) upper bound

In this section we state the following theorem which gives an upper bound on the maximal stretch
of an ε-bias generator in NC0

k.

Theorem 7 Let ε > 0, then there exists a constant cε such that if G = (g1, . . . , gm) is an ε biased
pseudo random generator, where each of the gi’s depend on at most k bits, then m ≤ cε2

kndk/2e.

For the proof we will utilize the following lemma from [MOS03].

Lemma 8 ([MOS03]) Let f : {0, 1}k → {0, 1} then for all r

• Either f is a degree r polynomial over F2, or

• f is biased towards an affine function of k − r variables.

Proof of Theorem 7: Set r = dk/2e, s = k − r and Br =
∑r

i=0

(n
i

)

, Bs =
∑s

i=0

(n
i

)

. Note that

there exists a constant c such that Bs ≤ Br ≤ cndk/2e. By lemma 8 every gi is either a degree ≤ r
polynomial, or is biased towards an affine function of at most s variables. Let p be the number of

6

degree ≤ r polynomials and b be the number of functions biased towards an affine function of at
most s variables. Clearly, m ≤ p + b.

Note that the Br monomials of degree ≤ r on the variables x1, . . . , xn form a basis to the vector
space of all degree ≤ r polynomials in x1, . . . , xn. Therefore if p > t, there is a linear dependency
between the g′is. We therefore conclude that

p ≤ Br ≤ cndk/2e. (3)

On the other hand, note that by Lemma 2, if g is biased towards an affine function of at most
s variables, then there exist an affine function ` of at most s variables such that Pr[f = `] ≥
1/2 + 2s−k ≥ 1/2 + 2−k/2. Moreover, there are exactly Bs linear functions on s variables.

Now Lemma 3 implies that there exists a constant c′(ε) such that if s ≥ c′(ε)Br2
k then there is

a ⊕ of a subset of the gi’s such that has an ε bias. It therefore follows that

b ≤ c′(ε)2kBr ≤ cc′(ε)2kndk/2e. (4)

Combining (4) and (3) we obtain that

m ≤ p + b ≤ c(c′(ε)2k + 1)ndk/2e,

as needed. �

5 Constructions for the Case k = 5 and k = 4

5.1 Preliminaries

We will construct a generator mapping 2n bits into cn bits; we think of c as an arbitrarily large
constant (for every c, the construction is possible for every large enough n), although super-constant
c is also achievable.

In fact, we will construct two generators: one will be good against linear tests that involve a
small number of output bits (we call them small tests), and another is good against linear tests that
involve a large number of output bits (we call them large tests). The final generator will be obtained
by computing the two generators on independent seeds, and then XOR-ing their output bit by bit.
In this way, we fool every possible test.

The generator that is good against large tests is such that every bit of the output is just the
product of two bits of the seed. We argue that the sum (modulo 2) of t output bits of the generator
has bias exponentially small in t/c2, where c, as above, is the stretch of the generator.

Then we describe a generator that completely fools linear tests of size up to about n/c2, and such
that every bit of the output is the sum of three bits of the seed. Combined with the generator for
large tests, we get a generator in NC0

5 such that every linear test has bias 2−O(n/c4).

5.2 The Generator for Large Tests

Let us call the bits of the seed y1, . . . , yn.

7

Let K be an undirected graph formed by n/(2c + 1) disjoint cliques each with 2c + 1 vertices.
Then K has n vertices, that we identify with the elements of [n], and cn = m edges. Fix some
ordering of the edges of K, and let (aj , bj) be the j-th edge of K. Define the functions q1, . . . , qm as
qj(y1, . . . , yn) = yaj

ybj
.

Claim 9 For every subset S ⊂ [m], the function qS(y) =
∑

j∈S qj(y) is such that

1

2
−
(

1

2

)1+|S|/(2c2+c)

≤ Pr
y

[qS(y) = 0] ≤ 1

2
+

(

1

2

)1+|S|/(2c2+c)

The proof relies on the following two lemmas. The first one is from [CM01], and it is easy to
prove it by induction on the number of variables, and the second one is standard and it is easy to
prove it by replacing {0, 1} with {−1, 1} and ⊕ with multiplication.

Lemma 10 ([CM01]) Let p be a non-constant degree-2 multilinear polynomial over GF (2). Then
1/4 ≤ Pr[p(x) = 0] ≤ 3/4.

Lemma 11 Let X1, . . . , Xt be independent 0/1 random variables, and suppose that for every i we
have δ ≤ Pr[Xi = 0] ≤ 1 − δ. Then

1

2
+

1

2
(1 − 2δ)t ≤ Pr

[

⊕

i

Xi = 0

]

≤ 1

2
+

1

2
(1 − 2δ)t

We can now prove Claim 9.

Proof of Claim 9. We can see S as a subset of the edges of K. Each connected component
of K has 2c2 + c edges, so S contains edges coming from at least |S|/(2c2 + c) different connected
components, let us call t this number. If we decompose the summation

∑

j∈S qj(y1, . . . , yn) into terms
depending on each of the connected components, then each term is a non-trivial degree-2 polynomial,
and the t terms are independent random variables when y1, . . . , yn are picked at random. We can
then apply Lemma 11, where the Xi are the values taken by each of the t terms in the summation,
δ = 1/4, and t = |S|/(2c2 + c). �

5.3 The Generator for Small Tests

Let A ∈ {0, 1}n×m be a matrix such that every row is a vector in {0, 1}n with exactly three non-zero
entries, and let also A be such that every subset of σ rows are linearly independent. Let A1, . . . , Am

be the rows of A. We define the linear functions l1, . . . , lm as li(x) = Ai · x. Note that each of these
linear functions depends on only three bits of the input.

Claim 12 For every subset S ≤ [m], |S| < σ, the function lS(x) =
∑

j∈S lj(x) is balanced.

Proof: We have lS(x) = (
∑

j∈S Aj) · x, and since
∑

j∈S Aj is a non-zero element of {0, 1}n, it
follows that lS() is a non-trivial linear function, and therefore it is balanced. �

There are matrices with linear σ.

Lemma 13 For every c = c(n) = o(
√

n/(log n)3/4) and for sufficiently large n there is a 0/1 matrix
A with cn rows and n

8

columns such that every row has exactly three non-zero entries and such that every subset of
n/(4e2c2(n)) rows are linearly independent.

This is a standard probabilistic construction Similar calculations have been done several times,
for example in [BKPS98, BSW01, BOT02]. We give the calculation in Appendix B for the sake of
self-containment.

5.4 Putting Everything Together

In order to obtain the generator, we take G1 : {0, 1}n → {0, 1}m to be a generator satisfying Claim
9, and G2 : {0, 1}n → {0, 1}m to satisfy Lemma 13. Then we take G : {0, 1}2n → {0, 1}m defined by
G(x, y) = G1(x) ⊕ G2(y) to fool both small tests and large tests. We thus obtain

Theorem 14 For every c and sufficiently large n, there is a generator in NC0
5 mapping n bits into

cn bits and sampling an ε-biased distribution, where ε = 2−n/O(c4).

5.5 Generator for the case k = 4

When k = 4 we want to replace the generator for small sets by a generator which depends only on
two bits. The construction is essentially the one in [CM01].

The generator is obtained by taking a graph H on cn edges, with girth Ω(log n/ log c) and letting
xi ⊕ xj be an output bit, if (i, j) is an edge of the graph.

Let H be an undirected graph with n vertices, that we identify with [n], having cn edges and
girth γ. Fix some ordering of the edges of H, and let (aj , bj) be the j-th edge of H. We define the
linear functions l1, . . . , lm as li(x1, . . . , xn) = xaj

+ xbj
.

Claim 15 For every subset S ≤ [m], |S| < γ, the function lS(x) =
∑

j∈S lj(x) is balanced.

Proof: We can see S as a set of edges in H, and lS as the function that sums xi for each vertex
i that is incident on an odd number of edges in S. Since |S| < g, the subgraph of H induced by
the edges of S is a forest, and so some vertex must have odd degree (in fact, some vertex must have
degree one). It follows that lS is the sum of a non-empty subset of its inputs, and so it is balanced.5

�

We can let γ be as large as about logc n.

Lemma 16 ([LPS88]) For every c and for sufficiently large n there are explicitly constructible
graphs H with n vertices, cn edges, and girth Ω((log n)/(log c)).

We thus obtain.

Theorem 17 For every c and sufficiently large n, there is a generator in uniform NC0
4 mapping n

bits into cn bits and sampling an ε-biased distribution, where ε = n−1/O(c2 log c).

5Equivalently, we proved that every subset of < γ of the functions li are linearly independent.

9

6 ε-biased generator for large k

In this section we construct an ε-biased generator in NC0
k, for large k, which outputs nΩ(

√
k) bits.

More precisely,

Theorem 18 Let k be a positive integer. There exist an ε-bias generator in NC0
k from n bits to

nb
√

kc·(1
2
+o(1))−2.5 bits whose bias is at most

exp

(

−|n|
1−o(1)

2b
√

kc

)

Proof: Let k′ = (b
√

kc − 5)2, n′ = b
√

n
2 c

2
. We have that

k > k′ + 10
√

k′

k′ > k − 12
√

k
n

2
≥ n′ >

n

2
−

√
2n

Let X = {x1, ..., xn′}, Y = {y1, ..., y
′
n}. Let f1(X), . . . , f(m

d)(X) be the outputs of the generator

against long tests with the parameters m =
√

n′, d =
√

k′. Let h1(Y), . . . , h
n′k′ (Y) be the outputs

of the generator for small tests on Y , given the parameter t =
√

k′. Note that

n′k′
>

(
√

n′
√

k′

)

=

(

m

d

)

Our generator G will output the functions

∀1 ≤ i ≤
(

m

d

)

gi(X,Y) = fi(X) + hi(Y)

Notice that as we have more hi’s than fi’s we don’t use most of the hi’s. Clearly, each output of the
generator depends on k′ + 10

√
k′ < k input variables.

From lemma 20,23 we get that the bias of any non trivial linear combination of the outputs is at
most

exp

(

−|n′|
1
2d

2d

)

Thus our generator takes 2n′ ≤ n inputs and outputs

(

m

d

)

≥
(

e2n′

k′

)

√
k′
2

= nb
√

kc·(1
2
+o(1))−2.5

and has an exponentially small bias. �

10

6.1 The Generator for Large Tests

We introduce new parameters which will simplify the presentation of the construction. Let d ≈
√

k,
m ≈ √

n.

Consider the following bi-partite graph G = (L,R,E) where |L| = m, |R| =
(m

d

)

. Identify the

vertices of L with the numbers 1, ...,m and the vertices of R with
([m]

d

)

, the set of all subsets of [m]

of size d. The edges of G are all pairs (i, S) such that i ∈ [m], S ∈
([m]

d

)

and i ∈ S.

For a set of vertices, V , we denote with N(V) the set of neighbors of V . For a vertex i let
deg(i) = |N(i)|.

The following claim is obvious

Claim 19 For any set of right vertices V ⊂ R we have that |N(V)| ≥ d|V |
1
d

e .

Proof: Any set of t left vertices has
(t
d

)

right neighbors. The result follows from the inequality

|V | ≤
(|N(V)|

d

)

≤
(

e|N(V)|
d

)d

�

Our construction will assign a monomial of degree d, in the input variables, to each edge. We
think about the vertices of L as representing disjoint subsets of the input variables and each edge
leaving such input set corresponds to a monomial in its variables. The right vertices, R, correspond
to the output bits. Each output is the sum of monomials that label the edges that fan into it. We
now give the formal construction.

Let X =
⊔m

i=1 Xi be a partition of X = {x1, ..., xn} to m disjoint sets each of size m.6

We assign the set Xi to the i’th vertex of L. Let Mi be the set of all multilinear monomials of
degree d in the variables of Xi. We have that

|Mi| =

(

m

d

)

>

(

m − 1

d − 1

)

= deg(i)

Therefor we can assign to each edge leaving i a different monomial from Mi.

Each right vertex corresponds to an output bit. For a right vertex j the j’th output is the sum
of all monomials that were assigned to the edges adjacent to j. Thus each output is the sum of d
monomials each of degree d. Hence each output depends on d2 input variables. Denote with fj the
j’th output. We now show that any large linear combination has a small bias.

Lemma 20 In the notations above any linear combination (over GF (2)) f =
∑

j∈J fj has bias at
most

exp

(

−|J|
1
d

2d

)

Proof: The proof is essentially the same as the proof of claim 9 and follows from the following easy
claims.

6We assume for simplicity that n = m2, otherwise we take m = b√nc and n′ = m2. Since n′ ≥ n− 2
√

n our results
will not change much if we consider n′ instead of n.

11

Claim 21 f can be written as the sum of at least N(J) polynomials of degree d, each in a different
set of variables.

Proof: The set of outputs J , has N(J) left neighbors. The edges connecting the set J to a neighbor
i ∈ N(J) are labeled with polynomials of degree d in Xi. �

From the Schwartz-Zippel lemma [Sch80, Zip79] we get

Claim 22 The bias of any polynomial of degree d is bounded above by 1
2d .

Thus according to Lemma 11 we get that the bias of f is at most

1

2

(

1 − 2

2d

)N(J)

≤ 1

2
· exp

(−2N(J)

2d

)

≤ exp

(

−|J|
1
d

2d

)

This finishes the proof of lemma 20 �

This finishes the construction of the generator for large tests. We now describe the generator for
small tests.

6.2 The Generator for Small Tests

Similar to the k = 4, 5 cases this generator will output only linear functions. We will have the
property that any small set of these linear functions is linearly independent. This kind of construction
is standard and follows from unique neighbor property of expanding graphs.

The formulation we need is proven in appendix B.

Lemma 23 Let t be positive integer t and ∆ = 10t. There exist a mapping from n bits to nt bits
such that every output depends on ∆ input variables, and such that any linear combination of at
most

√
n outputs is linearly independent.

7 A degree 2 generator

In this section we consider a variant of the problem presnted in the paper. Suppose that we require
that every output bit is a degree k polynomial in the input bits. It is clear that if we want the output
to be ε-biased, then the number of output bits m is at most the dimension of degree k polynomials
in n variables

∑s
i=k

(n
i

)

= O(nk).

Clearly this is a relaxation of the problem described above. In particular any upper bound here
will imply an upper bound for NC0

k. The problem is also of independent interest, as low degree
generators are “simple” in an intuitive sense.

In this section we construct a generator of ε-biased set such that every output is a polynomial of
degree 2 in the input variables. We show that unlike the k = 2 case we can output Ω(n2) bits. In
particular we prove

Theorem 24 For every 1 ≤ m ≤ n there exists an ε-bias generator G = (g1, ..., gt) : {0, 1}n 7→
{0, 1}t, t = bn

2 c · m, such that gi is a degree 2 polynomial, and the bias of any non trivial linear

combination of the gi’s is at most 2
n−2m

4 .

We begin by studying the bias of a degree 2 polynomial, over GF (2).

12

7.1 The Bias of Degree 2 polynomials

Let P (x1, ..., xn) be a degree 2 polynomial. P is also called a quadratic form over GF (2). We say that
a matrix A represents P with respect to a basis of GF (2)n, {vi}n

i=1, if for every vector v =
∑n

i=1 xi ·vi

we have that
P (v) = xtAx

(x = (x1, ..., xn)). Notice that we can always find an upper triangular matrix that represents P ; let

P (a1, ..., an) =
∑

1≤i≤j≤n

αi,jaiaj

Define

A(P)i,j =

{

αi,j i ≤ j
0 i > j

Clearly P (
∑n

i=1 ei · xi) = xtA(P)x and A(P) represents P with respect to the standard basis.

There is a relation between the rank of a quadratic form and the rank of a matrix that represents
it.

Theorem 25 The bias of a degree 2 polynomial P is at most

2
−
(

1+
rank(A+At)

4

)

for any matrix A that represents P .

We give the proof in appendix 7.2. Theorem 25 shows that in order to output m polynomials of
degree 2, such that any non trivial linear combination of them is almost unbiased we need to find
matrices A1, ..., Am such that for any non trivial combination of them, B =

∑m
i=1 αiAi (αi ∈ GF (2)),

we have that rank(B + Bt) is high.

7.2 Proof of theorem 25

The following claim is trivial.

Claim 26 P ≡ 0 iff there exist a symmetric matrix that represents P w.r.t. some basis iff any
matrix that represents P is symmetric.

The proof of theorem 25 will follow from the following claims.

Claim 27 For any quadratic form P on n variables, there exist a basis of GF (2)n ei, fi i = 1, ..., r
and gj j = 1, ..., s such that 2r + s = n and n elements in GF (2), ai, bi i = 1, ..., r, cj j = 1, ..., s,
such that for

v =
r
∑

i=1

xiei +
r
∑

i=1

xr+ifi +
s
∑

j=1

x2r+jgj

we have

P (v) =

r
∑

i=1

(aixi
2 + xixr+i + bixr+i

2) +

s
∑

j=1

cjx2r+j
2

Such a basis is called “a canonical basis for P”.

13

Proof: See the proof of theorem 5.1.7 in [Hir79]. �

Claim 28 Let P be a quadratic form on n variables. Let A represent P with respect to the standard
basis and D represent P with respect to the canonical basis. Then

rank(D) ≥ rank(A + At)

2

Proof: Let B be the matrix whose columns are e1, ..., er , f1, ..., fr, g1, ..., gs written w.r.t. the
standard basis. We have that

∀x ∈ GF (2)n xtDx = xtBtABx

In other words
∀x ∈ GF (2)n xt(D − BtAB)x = 0

Therefor there exist a symmetric matrix S such that

D − BtAB = S

or
D = Bt(A + (B−1)tS(B−1))B

As (B−1)tS(B−1) is a symmetric matrix we get by the next claim (claim 29) that

rank(D) ≥ rank(A + At)

2

�

Claim 29 For upper diagonal matrix A with zeros on the diagonal, and any symmetric matrix S we
have that

rank(A + S) ≥ rank(A + At)

2

where At is the transpose of A.

Proof: Let r = rank(A + S). As S = St we get

rank(At + S) = rank(At + St) = rank((A + S)t) = rank(A + S) = r

Hence
rank(A + At) ≤ rank(A + S) + rank(At + S) = 2r

�

Proof of theorem 25. Clearly the bias of P does not change if we calculate it w.r.t. to a canonical
basis, {vi}n

i=1, for P . In such a basis we have that

P (
n
∑

i=1

vi · xi) =
r
∑

i=1

(aixi
2 + xixr+i + bixr+i

2) +
s
∑

j=1

cjx2r+j
2

First notice that if for some 1 ≤ j ≤ s cj 6= 0 then P is unbiased. Otherwise we note that for every i
the bias of (aixi

2 + xixr+i + bixr+i
2) is at most 1

4 . Therefor according to lemma 11 we get the bias

of P is at most
(

1
2

)r+1
. As we assume that ∀j cj = 0 we see that

r ≥ rank(D)

2

The theorem now follows from claim 28. �

14

7.3 Linear Space of Matrices of High Rank

In this subsection we construct a linear space of matrices with the property that for every non zero
matrix in the space, A, we have that rank(A + At) is high.

Such a construction was first given by Roth [Roth91], and later simplified by Meshulam [Mes95].
The construction that we give here is taken from [Shp02] and is similar to the one in [Mes95].

Theorem 30 For any positive natural numbers n ≥ m there exist t = b n
2 c · m matrices A1, ..., At ∈

Mn(GF (2) such that for every non trivial combination of them B =
∑t

i=1 αiAi we have that

rank(B + Bt) ≥ n − 2m

By combining theorem 25 and theorem 30 we can construct our generator.

The Generator

Theorem 31 For every 1 ≤ m ≤ n there exists an ε-bias generator G = (g1, ..., gn) : {0, 1}n 7→
{0, 1}t, t = bn

2 c · m, such that gi is a degree 2 polynomial, and the bias of any non trivial linear

combination of the gi’s is at most 2
n−2m

4 .

Proof: Let A1, ..., At be the matrices guaranteed by theorem 30. Define gi(x) = xtAix. Consider
any non trivial linear combination

g(x) =
t
∑

i=1

αigi(x) = xt

(

n
∑

i=1

αiAi

)

x

According to theorem 30, we have that rank(g) ≥ n − 2m. Theorem 25 shows that the bias of g is

at most 2
n−2m

4 . �

7.4 Proof of theorem 30

Denote with F = GF (2n) the field with 2n elements. F is a linear space over GF (2) of dimension
n. We will abuse notation and think about each y ∈ F both as a field element and as a vector in
GF (2)n. Fix a basis to F over GF (2) of the form 1, x, x2, ..., xn−1 for some x ∈ F. Each element,
y ∈ F, can be viewed as a linear transformation of F over GF (2) in the following manner:

∀z ∈ F y(z) = y · z .

Thus for every y ∈ F there is a corresponding matrix Ay ∈ Mn(GF (2)), that represents y over the
basis we chose. We denote A = Ax (the same x as in the basis).

Let ϕ : F 7→ F be the Frobenius transformation, that is ϕ(y) = y2. Let ϕ(k) = ϕ ◦ ϕ... ◦ ϕ, k

times. That is ϕ(k)(y) = y2k

. It is easy to see that ϕ is a linear transformation of F over GF (2). We
denote with B the matrix that represents ϕ over our basis. That is, by abusing notations,

∀y ∈ F By = y2

Let V ⊂ Mn(GF (2)) be the linear space spanned by the matrices

V = span{ Ai · Bj | i = 0, ...,n − 1 , j = 0, ...,m − 1 }

15

Lemma 32 V is a linear space of matrices of dimension nm such that for any 0 6= E ∈ V we have
that

rank(E) > n − m

Proof: Let 0 6= E ∈ V . We want to calculate dim(ker(E)). For any y ∈ F we think about Ey also
as an element of GF (2)n. It is clear that

Ey =

n−1
∑

i=0

m−1
∑

j=0

αi,jA
i · Bj

 y =

n−1
∑

i=0

m−1
∑

j=0

αi,jA
i(y2j

) =

n−1
∑

i=0

m−1
∑

j=0

αi,jx
iy2j

.

That is, Ey is a polynomial of degree 2m−1 in y. Therefore it has at most 2m−1 roots. As E is a
linear transformation, we get that its roots are a linear space. Since there are at most 2m−1 roots,
the dimension of ker(E) is at most m − 1. Hence rank(E) ≥ n − m + 1. �

Proof of theorem 30 Let V be the space guaranteed by lemma 32 in Mbn
2
c(GF (2)) of dimension

t = bn
2 c · m Let E1, ..., Et be a basis for V . Let Ai be a n × n matrix of the following form

Ai =

(

0 Ei

0 0

)

Where the 0 stands for the all zero matrix in Mbn
2
c(GF (2)). For any non trivial combination B =

∑t
i=1 αiAi we get

B =

t
∑

i=1

αiAi =

(

0
∑t

i=1 αiEi

0 0

)

=

(

0 E
0 0

)

where E =
∑t

i=1 αiEi. Since {Ei} is a basis and not all the αi’s are zero then 0 6= E ∈ V . Therefore
rank(E) ≥ bn

2 c − m + 1. We get that

rank(B + Bt) = rank

(

0 E
E 0

)

= 2 · rank(E) ≥ 2(bn

2
c − m + 1) ≥ n − 2m

�

8 Conclusions

Several questions remain open.

Even for the case k = 3, we only know how to break the generator assuming that the output
length is a sufficiently large constant multiple than the seed length. It is not clear whether there is
a linear test, or even a polynomial time algorithm, that breaks the case k = 3 when, say, m = n + 1.

It is still open whether there can be an ε-biased generator with negligible ε in the case k = 4. We
conjecture that this is not the case for sufficiently large linear stretch, but we do not have a strong
feeling about what happens for very small stretch.

The main open question is whether our generator for the case k = 5 can be broken by a polynomial
time algorithm and, in general, whether polynomial time algorithms can break all NC0 generators.

Another important open problem which may be more accesible it to understand the right asymp-
totics for ε-biased generators for large k. It is tempting to conjecture that either the upper bound

nO(k) or the lower bound nΩ(
√

k) are actually tight.

16

Acknowledgements

We wish to thank David Wagner suggesting the relevance of correlation attacks. A.S. would also like
to thank Avi Wigderson for helpful discussions.

References

[AC00] Noga Alon, Michael Capalbo. Explicit Unique-Neighbor Expanders. Proceedings of the 43rd
IEEE Symposium on Foundations of Computer Science, pages 73-79, 2000.

[AGHP92] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple constructions of almost k-wise
independent random variables. Random Structures and Algorithms, 3(3):289–304, 1992.

[BKPS98] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. On the complexity of
unsatisfiability proofs for random k-cnf formulas. In Proceedings of the 30th ACM Symposium
on Theory of Computing, 1998.

[BOT02] Andrej Bogdanov, Kenji Obata, and Luca Trevisan. A lower bound for testing 3-colorability
in bounded degree graphs. In Proceedings of the 43rd IEEE Symposium on Foundations of
Computer Science, pages 93–102, 2002.

[BSW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow: Resolution made simple.
Journal of the ACM, 48(2), 2001.

[Cap01] Michael Capalbo. Explicit Constant-Degree Unique-Neighbor Expanders, 2001.

[CM01] Mary Cryan and Peter B. Miltersen. On pseudorandom generators in NC0. In Proceedings
of MFCS’01, 2001.

[CRVW00] Michael Capalbo, Omer Reingold, Salil Vadhan and Avi Wigderson. Randomness Con-
ductors and Constant-Degree Expansion Beyond the Degree/2 Barrier. Proceedings of the 34th
Symposium on the Theory of Computing, 659-668, 2000.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal
of the ACM, 33(4):792–807, 1986.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Technical Report
TR00-090, ECCC, 2000.

[GW95] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115–
1145, 1995. Preliminary version in Proc. of STOC’94.

[H̊as97] J. H̊astad. Some optimal inapproximability results. In Proceedings of the 29th ACM Sym-
posium on Theory of Computing, pages 1–10, 1997.

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[Hir79] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Oxford University Press, 1979.

17

[IN96] R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as subset
sum. Journal of Cryptology, 9(4):199–216, 1996.

[JJ99] T. Johansson and F. Jonsson. Improved fast correlation attacks on stream ciphers via convo-
lutional codes. In Proceedings of EUROCRYPT’99, 1999.

[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform and
learnability. Journal of the ACM, 40(3):607–620, 1993.

[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8:261–277,
1988.

[LRVW03] Chi-Jen Lu and Omer Reingold and Salil Vadhan and Avi Wigderson Extractors: Opti-
mal Up to Constant Factors. To appear in proceedings of the 35th Annual symposium on the
theory of computing (STOC).

[LR88] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM Journal on Computing, 2(17):373–386, 1988.

[Mes95] . R. Meshulam. Spaces of Hankel matrices over finite fields, Linear Algebra Appl. 218, 73–76,
1995.

[MOS03] E. Mossel, R. O’Donnell and R. Servedio (2003) Learning Juntas. To appear in proceedings
of the 35th Annual symposium on the theory of computing (STOC).

[NN93] J. Naor and M. Naor. Small-bias probability spaces: efficient constructions and applications,
1993.

[Roth91] Ron Roth. Maximum rank array codes and their application to crisscross error correction,
IEEE Trans. on Info. Th. 37, 328–336, 1991.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4):701–717, 1980.

[Shp02] A. Shpilka. On the rigidity of matrices. Manuscript, 2002.

[Vaz86] U. Vazirani. Randomness, Adversaries and Computation. PhD thesis, University of Califor-
nia, Berkeley, 1986.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and algebraic
computation (EUROSAM ’79, Internat. Sympos., Marseille, 1979), pages 216–226. Springer,
Berlin, 1979.

18

A A Fourier lemma

In this section we prove Lemma 2 via the Fourier representation of the function. For a boolean
function f : {0, 1}k → {0, 1} we write F for the function F : {±1}k → {±1} defined as

F ((−1)x1 , . . . , (−1)xk) = (−1)f(x1 ,...,xk)

For a set S ⊂ [k], we let uS : {±1}k → {±1} be defined as uS(X) =
∏

i∈S Xi. It is well known that

{uS}S⊂[k] is an orthonormal basis. We write F (x) =
∑

S F̂ (S)uS(x) for the representation of F in
the basis uS .

We now prove Lemma 2.

Proof:

• Let f : {0, 1}k → {0, 1} be a non-affine function. We prove that there exists a set S of size at
most k − 2 such that F̂ (S) 6= 0. This implies that F is correlated with uS and therefore that
f is correlated with ⊕i∈Sxi as needed.

Look at the function f ⊕⊕k
i=1xi. Since f is non-affine, this function is not a constant function.

This function has the Fourier representation

u[k]F =
∑

S

F̂ ([k] \ S)uS .

It therefore suffices to prove that u[k]F has a coefficient F̂ (S) 6= 0 with |S| ≥ 2. We will prove
that any function which depends on more than one bit, has a non-zero coefficient with |S| ≥ 2.

Indeed, assume the contradiction

F = a0 +
∑

i

aiU{i}

For a ± vector X, write X i for the vector where the i’th coordinate of X is multiplied by
−1. Note that for all i and all X, it holds that F (X) − F (X i) ∈ {0,±2}, which implies that
ai ∈ {0,±1}. Parsavel identity implies that

∑

a2
i = 1. We therefore conclude that F (X)

depends on one bit as needed.

• Note that f is correlated with ⊕i∈Sxi if and only if F̂ (S) 6= 0. Moreover,

Pr[f(x) = ⊕i∈Sxi] =
1 + F̂ (S)

2
.

The claim will therefore follow once we prove that if

F =
∑

|S|≥d

F̂ (S)uS ,

and F̂ (S) 6= 0 for a set S of size d, then |F̂ (S)| ≥ 2d+1−k.

19

By looking at u[k]F instead of F , it suffices to prove that if

F =
∑

|S|≤k−d

F̂ (S)uS , (5)

and S′ is a set of size k − d such that F̂ (S′) 6= 0, then |F̂ (S′)| ≥ 2d−k+1. In order to prove the
above claim, fix an X and look at the expression

A(X) =
∑

T⊂S′
(−1)|T |f(XT),

where XT is X where the coordinates at T are flipped (multiplied by −1). It is then clear that
A obtains an integer value in the interval 2 × [−2k−d−1, 2k−d−1].

On the other hand, since for every set S which doesn’t contain S ′ and for all X, it holds that

∑

T⊂S′
(−1)|T |uS(XT) = 0.

It follows that for all X
A(X) = 2k−dF̂ (S′)uS(X).

We therefore conclude that |F̂ (S′)| obtain its values in 2−d+k+1 × [−2k−d−1, 2k−d−1]. In par-
ticular, since F̂ (S′) 6= 0, it follows that |F̂ (S′)| ≥ 2−d+k+1 as needed.

�

B Small tests via expansion

In this section we prove lemmas 13 and 23.

Let G = (L,R,E) be a bi-partite graph. G has the b - right unique neighbor property, if for any
set V ⊂ L, |V | ≤ b we have that there exist a vertex u ∈ R such that |N(u) ∩ V | = 1.

Assign the n input variables to the different vertices in R. For every vertex v ∈ L the corre-
sponding output is the linear function

`v(X) =
∑

i∈N(v)

xi

Lemma 33 If G has the b-right unique neighbor property then any linear combination, ` =
∑

v∈B `v,
of b = |B| outputs is linearly independent.

Proof: We have that
` =

∑

v∈B

`v =
∑

i:|N(i)∩B|=odd

xi

The right unique neighbor property guarantees that there is an input variable that belongs to exactly
one output. Therefore ` is not zero. �

20

Note that we actually need the odd-neighbor property, but our calculations show that the graphs
that we use have the stronger unique-neighbor property. The problem of constructing explicit ex-
panders with the unique neighbor property was extensively studied in recent years and many new
constructions were found [AC00, Cap01, CRVW00, LRVW03].

However, none of these construct the graph that we need. Thus we only prove the existence of
such a graph instead of giving an explicit construction. Our proof actually show that if we pick a
random graph (with the correct parameters) then w.h.p. it will have the unique-neighbor property.

The existence of graphs with the unique neighbour property will follow from the existence of
certain expanders. We say that a bipartite graph (L,R,E) is (σ, α)-expanding if for every subset
S ⊆ L of vertices on the left, if |S| ≤ σ then |Γ(S)| > α · |S|, where Γ(S), defined as

Γ(S) = {v ∈ R : ∃u ∈ S such that (u, v) ∈ E}

is the neighborhood of S.

Lemma 34 If |Γ(S)| > ∆|S|/2 for all sets S ⊆ L of size at most σ, then G has the σ-right unique
neighbour property.

Proof: If there is no unique neighbour, then by counting edges |Γ(S)| ≤ ∆|S|/2. �

We need the following two lemmas

Lemma 35 For every c(n) = o(
√

n/(log n)3/4) and sufficiently large n there is a (σ, 3/2)-expanding
graph ([c(n) · n], [n], E) with σ = n/(4e4c2(n)) such that every vertex on the left has degree 3.

Note that Lemma 35 implies Lemma 13 via lemmas 34 and 33.

Proof of Lemma 35: We construct the graph at random by connecting each vertex on the left to
three distinct randomly chosen vertices on the right. (For different left vertices the random choices
are independent.)

Fix a size s, 3 ≤ s ≤ n/(2e2c), and consider the probability that there is a subset S ⊆ [cn] of s
vertices on the right whose neighborhood is contained into a set T ⊆ [n] of 3s/2 vertices on the left.
This probability is less than (3s

2n)3s. The number of possible choices for S is
(cn

s

)

and the number of
possible choices for T is

(n
3s/2

)

, and, by a union bound, the probability that the construction fails to
satisfy the required property is at most

σ
∑

s=3

(

cn

s

)

·
(

n

3s/2

)(

3s

2n

)3s

(6)

and using the inequality
(n
k

)

≤
(

ne
k

)k
we can see that Expression (6) is at most

σ
∑

s=3

(ecn

s

)s
·
(

2en

3s

)3s/2

·
(

3s

2n

)3s

(7)

≤
σ
∑

s=3

(

2e2c
√

s√
n

)s

(8)

= O

(

(

c√
n

)3

+

(

c√
n

)4

· (log n)3

)

= o(1) (9)

21

Where the last line can be verifier by breaking the sum in Expression (8) up into the the term
s = 3, which is O((c/

√
n)3), the terms s = 4, . . . , 2 log n, each of which is at most O(c

√
log n/

√
n)4,

and the remaining terms, each of which is at most 1/n2. �

Similarly we can prove.

Lemma 36 There exists a family of bi-partite graph Gn = (Ln, Rn, En) with |L| = nt, |R| = n,
∀v ∈ L deg(v) = ∆, such that Gn has the nε-right unique neighbor property.

One should think about the parameters in the following way t ≈
√

k, ∆ = 10t, ε = 1
2 .

Proof of Lemma 36: Let |R| = n, |L| = nt. Connect every vertex in L to a randomly chosen multi
set of size ∆ of right vertices (that is we allow multiple edges between two vertices). As in lemma 35
we get that w.h.p. any set S, such that |S| ≤ nε, has at least 2∆

3 |S| neighbors. Lemma 34 implies
that S has a unique neighbor. �

Combining lemmas 33, 36 we get Lemma 23.

22

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

