Electronic Colloquium on Computational Complexity, Report No. 45 (2003)

On the Implementation of Huge Random Objects
(Preliminary Version)

Oded Goldreich*f Shafi Goldwasser*!* Asaf Nussboim*

June 8, 2003

Abstract

We initiate a general study of pseudo-random implementations of huge random objects, and
apply it to a few areas in which random objects occur naturally. For example, a random object
being considered may be a random connected graph, a random bounded-degree graph, or a
random error-correcting code with good distance. A pseudo-random implementation of such
type T objects must generate objects of type T that can not be distinguished from random
ones, rather than objects that can not be distinguished from type T objects (although they are
not type T at all).

We will model a type T object as a function, and access objects by queries into these
functions. We investigate supporting both standard queries that only evaluates the primary
function at locations of the user’s choice (e.g., edge queries in a graph), and complex queries
that may ask for the result of a computation on the primary function, where this computation
is infeasible to perform with a polynomial number of standard queries (e.g., providing the next
vertex along a Hamiltonian path in the graph).

Keywords: Pseudorandomness, Random Graphs, Random Codes, Random Functions, monotone
graph properties, random walks on regular graphs.

*Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, ISRAEL.
Email: {oded, shafi,asafn}@wisdom.weizmann.ac.il.

fSupported by the MINERVA Foundation, Germany.

fLaboratory for Computer Science, MIT.

ISSN 1433-8092

Contents

1

2

8

9

Introduction

Formal Setting and General Observations

2.1 Specification. oL e e
2.2 Implementations L e e
2.3 Known non-trivial implementations
2.4 A few general observations oL
2.5 Objects of feasible size o e e

Our Main Results

3.1 Truthful Implementations
3.1.1 Supporting complex queries regarding boolean functions

3.1.2 Supporting complex queries regarding length-preserving functions

3.1.3 Random graphs of various types
3.1.4 Supporting complex queries regarding random graphs
3.1.5 Random bounded-degree graphs of various types
3.2 Almost-Truthful Implementations
3.2.1 Random codes of large distance
3.2.2 Random graphs of various types

Implementing Random Codes of Large Distance
Boolean Functions and Interval-Sum Queries

Random Graphs Satisfying Global Properties

6.1 Truthful implementations oo
6.2 Almost-truthful implementations

Supporting Complex Queries regarding Random Graphs
Random Bounded-Degree Graphs and Global Properties

Supporting Complex Queries regarding Length-Preserving Functions

10 Conclusions and Open Problems

Bibliography

Appendix A: Implementing various probability distributions

A.1 Sampling the binomial distribution
A.2 Sampling from the two-set total-sum distribution
A.3 A general tool for sampling strange distributions

Appendix B: Implementing a Random Bipartite Graph

Appendix C: Various Calculations

Appendix D: A strengthening of Proposition 2.15

13
13
13
14
14
15
15
16
16
16

17

18

21
22
24

29

32

36

41

42

44
44
45
46

47

47

49

1 Introduction

Suppose that you want to run some experiments on random codes (i.e., subsets of {0,1}" that
contain K = 2™ strings). You actually take it for granted that the random code will have
large (i.e., linear) distance, because you know some Coding Theory and are willing to discard
the negligible probability that a random code will not have a large distance. Suppose that you
want to be able to keep succinct representations of these huge codes and/or that you want to
generate them using few random bits. Being aware of the relevant works on pseudorandomness
(e.g., [16, 5, 29, 12]), you plan to use pseudorandom functions [12] in order to efficiently generate and
store representations of these codes; that is, using the pseudorandom function f : [K] — {0,1}",
you can define the code Cy = {f(i) : i € [K]}, and efficiently produce codewords of Cy. But wait a
minute, do the codes that you generate this way have a large distance?

The point is that having a large distance is a global property of the code, which in turn is a
huge (i.e., exp(n)-sized) object. This global property cannot be decided by looking at polynomially
many (i.e., poly(n)-many) codewords, and so its violation cannot be translated to a contradiction of
the pseudorandomness of the function. Indeed, the substitution of a random function (or a random
code) by a pseudorandom one is not guaranteed to preserve the global property. Specifically, all
pseudorandom codes generated as suggested above may have small distance.!

So, can we efficiently generate random-looking codes of large distance? Specifically, can we
provide a probabilistic polynomial-time procedure that allows to sample codewords from a code of
large distance such that the sampled codewords look as if they were taken from a random code
(which, in particular, means that we do not generate linear codes). The answer is essentially
positive: see Section 4. However, this is merely an example of the type of questions that we deal
with.

We initiate a general study of the feasibility of implementing (huge) random objects. For a
given Type T of objects, we aim at generating pseudorandom objects of Type T. That is, we want
the generated object to always be of Type T, but we are willing to settle for Type T objects that
look as if they are truly random Type T objects (although they are not). We stress that our
focus is on Type T objects that look like random Type T objects, rather than objects that look like
random Type T objects although they are not of Type T at all. For example, we disapprove of
a random function as being an implementation of a random permutation, although the two look
alike to anybody restricted to resources that are polynomially related to the length of the inputs to
the function. Beyond the intuitive conceptual reason for the above disapproval, there are practical
considerations. For example, if somebody supplies an element in the range then we may want to be
guaranteed that this element has a unique preimage (as would be the case with any permutation
but not with a random function).

In general, when one deals (or experiments) with an object that is supposed to be of Type T, one
may assume that this object has all the properties enjoyed by all Type T objects. If this assumption
does not hold (even if one cannot detect this fact during initial experimentation) then an application
that depends on this assumption may fail. One reason for the failure of the application may be
that it uses significantly more resources than those used in the initial experiments that failed to
detect the problem. Another issue is that the probability that the application fails may indeed be
negligible (as is the probability of detecting the failure in the initial experiments), but due to the

'Indeed, for each function f, taken from some pseudorandom ensemble {f, : [2/°1/*°] — {0,1}/*1},, it may hold
that the distance between f,(is) and fs(is + 1) is one, where 7, depends arbitrarily on fs. For example, given a
pseudorandom ensemble {fs} consider the ensemble {f,;} such that f,;(Z) = 0™, fo:(i +1) = 10"~ ! and fsi(z) =
fs(z) for all other z’s.

importance of the application we are unwilling to tolerate even a negligible probability of failure.
We explore several areas in which the study of random objects occurs naturally. These areas

include graph theory, coding theory and cryptography. We provide implementations of various

natural random objects, which were considered before in these areas (e.g., the study of random

graphs [6]).

Objects, specifications, implementations and their quality

Our focus is on huge objects; that is, objects that are of size that is exponential in the running
time of the applications. Thus, these (possibly randomized) applications may inspect only small
portions of the object (in each randomized execution). The object should be viewed as a function
(or an oracle), and inspecting a small portion of it is viewed as receiving an answer to an adequate
query. For example, when we talk of huge dense graphs, we consider adjacency queries that are
vertex-pairs with answers indicating whether the queried pair is connected by an edge. When we
talk of huge bounded-degree graphs, we consider incidence queries that correspond to vertices with
answers listing the neighbors of the queried vertex.

We are interested in classes of objects (or object types), which can be viewed as classes of
functions. (Indeed, we are not interested in the trivial case of generic objects, which is captured by
the class of all functions.) For example, when we talk of simple undirected graphs in the adjacency
predicate representation, we only allow symmetric and non-reflexive Boolean functions. Similarly,
when we talk of such bounded-degree graphs in the incident-lists representation, we restrict the
class of functions in a less trivial manner (i.e., u should appear in the neighbor-list of v iff v appears
in the neighbor-list of). More interestingly, we may talk of the class of connected (or Hamiltonian)
graphs, in which case the class of functions is even more complex. This formalism allows to talk
about objects of certain types (or of objects satisfying certain properties). In addition, it captures
complex objects that support “compound queries” to more basic objects. For example, we may
consider an object that answers queries regarding a global property of a Boolean function (e.g., the
parity of all the function’s values). The queries may also refer to a large number of values of the
function (e.g., the parity of all values assigned to arguments in an interval that is specified by the
query).

We study probability distributions over classes of objects. Such a distribution is called a speci-
fication. Formally, a specification is presented by a computationally-unbounded probabilistic Turing
machine, where each setting of the machine’s random-tape yields a huge object. The latter object is
defined as the corresponding input-output relation, and so queries to the object are associated with
inputs to the machine. We consider the distribution on functions obtained by selecting the specifica-
tion’s random-tape uniformly. For example, a random N-vertex Hamiltonian graph is specified by
a computationally-unbounded probabilistic machine that uses its random-tape to determine such
a (random Hamiltonian) graph, and answers adjacency queries accordingly. Another specification
may require to answer, in addition to adjacency queries regarding a uniformly selected N-vertex
graph, also more complex queries such as providing a clique of size log, N that contains the queried
vertex. We stress that the specification is not required to be even remotely efficient (but for sake
of simplicity we assume that it is recursive).

Our ultimate goal will be to provide a probabilistic polynomial-time machine that implements
the desired specification. That is, we consider the probability distribution on functions induced by
fixing of the random-tape of the latter machine in all possible ways. Again, each possible fixing of
the random-tape yields a function corresponding to the input-output relation (of the machine per
this contents of its random-tape).

Indeed, a key question is how good is the implementation provided by some machine. We con-
sider two aspects of this question. The first (and more standard) aspect is whether one can distin-
guish the implementation from the specification when given oracle access to one of them. Variants in-
clude perfect indistinguishability, statistical-indistinguishability and computational-indistinguishability.
We stress a second aspect regarding the quality of implementation: the truthfulness of the imple-
mentation to the specification, where being truthful means that any possible function that appears
with non-zero probability in the implementation must also appear with non-zero probability in the
specification. For example, if the specification is of a random Hamiltonian graph then a truthful
implementation must always yield a Hamiltonian graph. (A reasonable relaxation of the notion
of truthfulness is to require that all but a negligible part of the probability mass of the imple-
mentation is assigned to functions that appear with non-zero probability in the specification; an
implementation satisfying this relaxation is called almost-truthful.)

Roadmap

In Section 2, we present formal definitions of the notions discussed above as well as basic ob-
servations regarding these notions. These are followed by a few known examples of non-trivial
implementations of various random objects (which are retrospectively cast nicely in our formu-
lation). In Section 3, we state a fair number of non-trivial implementations of various random
objects. These implementations demonstrate the applicability of our notions to various domains
such as functions, graphs and codes. In Section 3 our results are merely stated, while the proofs are
deferred to the corresponding sections. Conclusions and open problems are presented in Section 10.

2 Formal Setting and General Observations

Throughout this work we let n denote the feasibility parameter. Specifically, feasible-sized objects
have an explicit description of length poly(n), whereas huge objects have (explicit description) size
exponential in n. The latter are described by functions from poly(n)-bit strings to poly(n)-bit
strings. Whenever we talk of efficient procedures we mean algorithms running in poly(n)-time.

2.1 Specification

A huge random object is specified by a computationally-unbounded probabilistic Turing machine.
For a fixed contents of the random-tape, such a machine defines a (possibly partial) function on
the set of all binary strings. Such a function is called an instance of the specification. We consider
the input-output relation of this machine when the random-tape is uniformly distributed. Loosely
speaking, this is the random object specified by the machine.

For sake of simplicity, we confine our attention to machines that halt with probability 1 on every
input. Furthermore, we will consider the input-output relation of such machines only on inputs
of some specified length ¢, where £ is always polynomially related to the feasibility parameter n.
Thus, for such a probabilistic machine M and length parameter £ = £(n), with probability 1 over
the choice of the random-tape for M, machine M halts on every ¢(n)-bit long input.

Definition 2.1 (specification): For a fized function £:N— N, the instance specified by a probabilistic
machine M, random-tape w and parameter n is the function M, . defined by letting M, ,(x) be the
output of M on input x € {0, 1}4(") when using the random-tape w € {0,1}°°. The random object
specified by M and n is defined as M, ., for a uniformly selected w € {0,1}*°.

Note that, with probability 1 over the choice of the random-tape, the random object (specified by
M and n) depends only on a finite prefix of the random-tape. Let us clarify our formalism by
casting in it several simple examples, which were considered before (cf. [12, 25]).

Example 2.2 (a random function): A random function from n-bit strings to n-bit strings is spec-
ified by the machine M that, on input x € {0,1}" (parameter n and random-tape w), returns the
idxy, (z)-th n-bit block of w, where idx,(z) is the index of x within the set of n-bit long strings.

Example 2.3 (a random permutation): Let N = 2". A random permutation over {0,1}" = [N]
can be specified by uniformly selecting an integer i € [N!|; that is, the machine uses its random-
tape to determine i € [N!|, and uses the i-th permutation according to some standard order. An
alternative specification, which 1is easier to state (alas even more inefficient), is obtained by a
machine that repeatedly inspect the N next n-bit strings on its random-tape, until encountering a
run of N different values, using these as the permutation. FEither way, once a permutation w over
{0,1}" is determined, the machine answers the input € {0,1}"™ with the output w(x).

Example 2.4 (a random permutation coupled with its inverse): In continuation to Example 2.3,
we may consider a machine that selects m as before, and responds to input (o,x) with w(zx) if
o = 1 and with 7 1(x) otherwise. That is, the object specified here provides access to a random
permutation as well as to its inverse.

2.2 Implementations

Definition 2.1 places no restrictions on the complexity of the specification. Our aim, however, is
to implement such specifications efficiently. We consider several types of implementations, where
in all cases we aim at efficient implementations (i.e., machines that respond to each possible input
within polynomial-time). Specifically, we consider two parameters:

1. The type of model used in the implementation. We will use either a polynomial-time ora-
cle machine having access to a random oracle or a standard probabilistic polynomial-time
machine (viewed as a machine having access to a finite random-tape).

2. The similarity of the implementation to the specification; that is, is the implementation perfect,
statistically indistinguishable or only computationally indistinguishable from the specification
(by probabilistic polynomial-time oracle machines that try to distinguish the implementation
from the specification by querying it at inputs of their choice).

Our real goal is to derive implementations by ordinary machines (having as good a quality as
possible). We thus view implementations by oracle machines having access to a random oracle as
merely a clean abstraction, which is useful in many cases (as indicated by Theorem 2.9 below).

Definition 2.5 (implementation by oracle machines): For a fized function £:N—N, a polynomial-
time oracle machine M and oracle f, the instance implemented by M/ and parameter n is the
function M7 defined by letting M7 (z) be the output of M on input x € {0,1}*™) when using the
oracle f. The random object implemented by M with parameter n is defined as MY for a uniformly
distributed f : {0,1}* — {0,1}.

In fact, M7(z) depends only on the value of f on inputs of length bounded by a polynomial in
|z|. Similarly, an ordinary probabilistic polynomial-time (as in the following definition) uses a
poly(|z|)-bit long random-tape when invoked on input xz. Thus, for feasibility parameter n, the
machine handles ¢(n)-bit long inputs using a random-tape of length p(n) = poly(¢(n)) = poly(n),
where (w.lo.g.) pis 1-1.

Definition 2.6 (implementation by ordinary machines): For fized functions £,p:N—N, an ordi-
nary polynomial-time machine M and a string r, the instance implemented by M and random-tape
r 1s the function M, defined by letting M, (x) be the output of M on input x € {0, l}ﬁ("fl("”')) when
using the random-tape r. The random object implemented by M with parameter n is defined as M,
for a uniformly distributed r € {0,1}7("),

We stress that an instance of the implementation is fully determined by the machine M and
the random-tape r (i.e., we disallow “implementations” that construct the object on-the-fly while
depending and keeping track of all previous queries and answers).

For a machine M (either a specification or an implementation) we identify the pair (M,n) with
the random object specified (or implemented) by machine M and feasibility parameter n.

Definition 2.7 (indistinguishability of the implementation from the specification): Let S be a
specification and I be an implementation, both with respect to the length function £:N—N. We say
that I perfectly implements S if, for every n, the random object (I,n) is distributed identically to
the random object (S,n). We say that I closely-implements S if, for every oracle machine M that
on input 1™ makes at most polynomially-many queries all of length £(n), the following difference is
negligible? as a function of n

P = 1] - PrMEM(Am) = 1]] (1)

We say that I pseudo-implements S if Eq. (1) holds for every probabilistic polynomial-time oracle
machine M that makes only queries of length equal to £(n).

We stress that the notion of a close-implementation does not say that the objects (i.e., (I,n)
and (S,n)) are statistically close; it merely says that they cannot be distinguished by a (com-
putationally unbounded) machine that asks polynomially many queries. Indeed, the notion of
pseudo-implementation refers to the notion of computational indistinguishability (cf. [16, 29]) as
applied to functions (see [12]). Clearly, any perfect implementation is a close-implementation, and
any close-implementation is a pseudo-implementation. Intuitively, the oracle machine M, which is
sometimes called a (potential) distinguisher, represents a user that employs (or experiments with)
the implementation. It is required that such a user cannot distinguish the implementation from
the specification, provided that the user is limited in its access to the implementation or even in
its computational resources (i.e., time).

Indeed, it is trivial to perfectly implement a random function (i.e., the specification given in
Example 2.2) by using an oracle machine (with access to a random oracle). In contrast, the
main result of Goldreich, Goldwasser and Micali [12] can be cast by saying that there exist a
pseudo-implementation of a random function by an ordinary machine, provided that pseudorandom
generators (or, equivalently, one-way function [17]) do exist. In fact, under the same assumption, it
is easy to show that every specification having a pseudo-implementation by an oracle machine also
has a pseudo-implementation by an ordinary machine. A stronger statement will be proven below
(see Theorem 2.9).

Truthful implementations. An important notion regarding (non-perfect) implementations refers
to the question of whether or not they satisfy properties that are enjoyed by the corresponding
specification. Put in other words, the question is whether each instance of the implementation is

2A function g : N — [0, 1] is called negligible if for every positive polynomial p and all sufficiently large n’s it holds
that p(n) < 1/p(n).

also an instance of the specification. Whenever this condition holds, we call the implementation
truthful. Indeed, every perfect implementation is truthful, but this is not necessarily the case for
close-implementations. For example, a random function is a close-implementation of a random per-
mutation (because it is unlikely to find a collision among polynomially-many preimages); however,
a random function is not a truthful implementation of a random permutation.

Definition 2.8 (truthful implementations): Let S be a specification and I be an implementation.
We say that I is truthful to S if for every n the support of the random object (I,n) is a subset of
the support of the random object (S,n).

Much of this work is focused on truthful implementations. The following simple result is use-
ful in the study of the latter. We comment that this result is typically applied to (truthful)
close-implementations by oracle machines, yielding (truthful) pseudo-implementations by ordinary
machines.

Theorem 2.9 Suppose that one-way functions exist. Then any specification that has a pseudo-
implementation by an oracle machine (having access to a random oracle) also has a pseudo-
implementation by an ordinary machine. Furthermore, if the former implementation is truthful
then so is the latter.

The sufficient condition is also necessary, because the existence of pseudorandom functions (i.e., a
pseudo-implementation of a random function) implies the existence of one-way functions. In view
of Theorem 2.9, whenever we seek truthful implementations (or, alternatively, whenever we do not
care about truthfulness at all), we may focus on implementations by oracle machines.

Proof: First we replace the random oracle used by the former implementation by a pseudorandom
oracle (available by the results of [12, 17]). No probabilistic polynomial-time distinguisher can detect
the difference, except with negligible probability. Furthermore, the support of the pseudorandom
oracle is a subset of the support of the random oracle, and so the truthful property is inherited by
the latter implementation. Finally, we use an ordinary machine to emulate the oracle machine that
has access to a pseudorandom oracle. i

Almost-Truthful implementations. Truthful implementations guarantee that each instance of
the implementation is also an instance of the specification (and is thus “consistent with the specifi-
cation”). A meaningful relaxation of this guarantee refers to the case that almost all the probability
mass of the implementation is assigned to instances that are consistent with the specification (i.e.,
are in the support of the latter). Specifically, we refer to the following definition.

Definition 2.10 (almost-truthful implementations): Let S be a specification and I be an imple-
mentation. We say that I is almost-truthful to S if the probability that (I,n) is not in the support
of the random object (S,n) is bounded by a negligible function in n.

Interestingly, almost-truthfulness is not preserved by the construction used in the proof of The-
orem 2.9. In fact, there exists specifications that have almost-truthful close-implementations by
oracle machines but not by ordinary machines (see Theorem 2.11 below). Thus, when studying
almost-truthful implementations, one needs to deal directly with the ordinary implementations
(rather than focus on implementations by oracle-machines). Indeed, we will present a few examples
of almost-truthful implementations that are not truthful.

Theorem 2.11 There exists a specification that has an almost-truthful close-implementation by an
oracle machine but has no almost-truthful implementation by an ordinary machine.

We stress that the theorem holds regardless of whether or not the (almost-truthful) implementation
is indistinguishable from the specification.

Proof: Consider the specification of a uniformly selected function f : {0,1}" — {0,1} having
(time-bounded) Kolmogorov Complexity® greater than 2"~!. That is, the specification machine
scans its random-tape, looking for a block of 2" bits of (time-bounded) Kolmogorov Complexity
greater than 2", and once found uses this block as a truth-table of the desired Boolean function.
Since all but a negligible fraction of the functions have Kolmogorov Complexity greater than 27!,
a almost-truthful close-implementation by an oracle machine may just use a random function. On
the other hand, any implementation by an ordinary machine (of randomness complexity p) induces
a function f : {0,1}" — {0,1} of (time-bounded) Kolmogorov Complexity at most (O(1) + p(n)) +
logy(poly(n) - 2™) = poly(n). Thus, any such implementation yields a function that violates the
specification, and so cannot be even “remotely” truthful. [l

2.3 Known non-trivial implementations

In view of Theorem 2.9, when studying truthful implementations, we focus on implementations
by oracle machines. In these cases, we shorthand the phrase implementation by an oracle ma-
chine by the term implementation. Using the notion of truthfulness, we can cast the non-trivial
implementation of a random permutation provided by Luby and Rackoff [25] as follows.

Theorem 2.12 [25]: There exists a truthful close-implementation of the specification provided in
Ezample 2.3. That s, there exists a truthful close-implementation of the specification that uniformly
selects a permutation m over {0,1}" and responses to the query = € {0,1}" with the value 7(x).

Contrast Theorem 2.12 with the trivial non-truthful implementation (by a random function) men-
tioned above. Note that, even when ignoring the issue of truthfulness, it is non-trivial to provide a
close-implementation of Example 2.4 (i.e., a random permutation along with its inverse).* However,
Luby and Rackoff [25] have also provided a truthful close-implementation of Example 2.4.

Theorem 2.13 [25]: There exists a truthful close-implementation of the specification that uni-
formly selects a permutation © over {0,1}™ and responses to the query (o,z) € {—1,+1} € {0,1}"
with the value 77 (x).

Another known result that has the flavor of the questions that we explore was obtained by Naor and
Reingold [27]. Loosely speaking, they provided a truthful close-implementation of a permutation
selected uniformly among all permutations having a certain cycle-structure.

3Loosely speaking, the (standard) Kolmogorov Complexity of a string s is the minimum length of a program II
that produce s. The time-bounded Kolmogorov Complexity of a string s is the minimum, taken over programs Il
that produce s, of |II| + log,(time(II)), where time(II) is the running-time of II. We use time-bounded Kolmogorov
Complexity in order to allow for a recursive specification.

*A random function will fail here, because the distinguisher may distinguish it from a random permutation by
asking for the inverse of a random image.

Theorem 2.14 [27]: For any N = 2", t = poly(n), and C = {(c;,m;) : i = 1,...,t} such that
St msc; = N, there exists a truthful close-implementation of a uniformly distributed permutation
that has m; cycles of size ¢;, for i =1,...,t.5 Furthermore, the implementation instance that uses
the permutation T can also support queries of the form (z,i) to be answered by w'(x), for any
xz € {0,1}" and any integer i (which is presented in binary).

We stress that the latter queries are served in time poly(n) also in case i > poly(n).

2.4 A few general observations

Theorem 2.11 asserts the existence of specifications that cannot be implemented in an almost-
truthful manner by an ordinary machine, regardless of he level of indistinguishability (of the imple-
mentation from the specification). We can get negative results that refer also to implementations
by oracle machines, regardless of truthfulness, by requiring the implementation to be sufficiently
indistinguishable (from the specification). Specifically:

Proposition 2.15 The following refers to implementations by oracle machines and disregard the
issue of truthfulness.

1. There exist specifications that cannot be closely-implemented.

2. Assuming the existence of one-way functions, there exist specifications that cannot be pseudo-
implemented.

The hypothesis in Part 2 can be relaxed: It suffices to assume the existence of NP-sets for which it
is feasible to generate hard instances. For details see Appendix D.

Proof: For starters, note that the specification may just disregard the issue of randomness and
invert a one-way function at images of the user’s choice. Certainly, this specification cannot be
pseudo-implemented, because such an implementation would yield an algorithm that violates the
hypothesis (of Part 2). We may easily adapt this example such that the specification gives rise
to a random object. For example, the specification may state that, given a pair of strings, one
should use a random function to select one of these strings, and answer with its inverse under the
one-way function. A pseudo-implementation of this specification can also be shown to contradict
the hypothesis. The above refers to Part 2. Turning to Part 1, we may use a function constructed in
exponential-time that cannot be inverted, except for with negligible probability, by any polynomial-
time machine that uses a random oracle. That is, the specification determines such a function, and
inverts it at inputs of the user’s choice. Observe that a close-implementation of such a function
is required to successfully invert the function at random inputs, which is impossible (except for
negligible probability). W

®Special cases include involutions (i-e., permutations in which all cycles have length 2), and permutations consisting
of a single cycle (of length N). These cases are cast by C = {(2, N/2)} and C = {(N, 1)}, respectively.

SConsider the performance of the specification (resp., implementation) when queried on a randomly generated
image, and note that the correctness of the answer can be efficiently verified. Thus, while the specification always
inverts the one-way function on the given image, the implementation must fail except with negligible probability.

The randomness complexity of implementations: Looking at the proof of Theorem 2.9,
it is evident that as far as pseudo-implementations by ordinary machines are concerned (and
assuming the existence of one-way functions), randomness can be reduced to any power of the
feasibility parameter (i.e., to n¢ for every € > 0). The same holds with respect to truthful pseudo-
implementations. On the other hand, the proof of Theorem 2.11 suggests that this collapse in the
randomness complexity cannot occur with respect to almost-truthful implementations by ordinary
machines (regardless of the level of indistinguishability of the implementation from the specifica-
tion).

Theorem 2.16 (a randomness hierarchy): For every polynomial p, there exists a specification that
has an almost-truthful close-implementation by an ordinary machine that uses a random-tape of
length p(n), but has no almost-truthful implementation by an ordinary machine that uses a random-
tape of length p(n) — w(logn).

Proof: Let g(n) = w(logn). Consider the specification that selects uniformly a string € {0,1}7(")
of (time-bounded) Kolmogorov Complexity at least p(n) — g(n), and responds to the query i € [2"]
with the (1+ (i mod p(n)))-th bit of r. Since all but a exp(—g(n)) = n~“M fraction of the p(n)-bit
long string have such complexity, this specification is closely-implemented in an almost-truthful
manner by a machine that uniformly selects r € {0,1}?(™) (and responds as the specification).
However, any implementation that uses a random-tape of length p’, yields a function that assigns
the first p(n) arguments values that as a string have (time-bounded) Kolmogorov Complexity at
most (O(1) + p'(n)) + logy(poly(n)) = p'(n) + O(logn). Thus, for p'(n) = p(n) — 2g(n), the
implementation cannot even be “remotely” truthful. [l

Composing implementations: A simple observation that is used in our work is that one can
“compose implementations”. That is, if we implement a random object R1 by an oracle machine
that uses oracle calls to a random object R2, which in turn has an implementation by a machine
of type T, then we actually obtain an implementation of R1 by a machine of type T. To state this
result, we need to extend Definition 2.5 such that it applies to oracle machines that use arbitrary
specifications (rather than a random oracle). Let use denote by (M($™) n) an implementation by
the oracle machine M (and feasibility parameter n) with oracle access to the specification (S, n).

Theorem 2.17 Let @) € {perfect,close, pseudo}. Suppose that the specification (Si,n) can be
Q-implemented by (M(52™) n) and that (Sy,n) has a Q-implementation by an ordinary machine
(resp., by an oracle machine with a random oracle). Then, (S1,n) has a Q-implementation by an
ordinary machine (resp., by an oracle machine with a random oracle). Furthermore, if both the
implementations in the hypothesis are truthful (resp., almost-truthful) then so is the implementation
in the conclusion.

Proof: Theidea is to simply replace (S3,n) by its implementation, denoted (I3,), and thus obtain
an implementation (M{2™) n) of (S;,n), which (by combining the machines M and I,) yields a ma-
chine of the type of machine I. This machine inherits the truthfulness (resp., almost-truthfulness)
of the given implementations. The analysis of the “quality” of the resulting implementation relies
on the fact that the resource bounds imposed on the implementation (M (S2.m) n) induce bounds on
the use of (S2,7n) by M. Combined with the hypothesis regarding the “quality” of (I3, n) guarantees
the “quality” of the resulting implementation.

For the sake of clarity, let us spell out the argument for the case of pseudo-implementations:
The first hypothesis asserts that (M52 n) and (Si,n) are computationally-indistinguishable,

10

and the second hypothesis asserts that (Is,n) and (S3,7n) are computationally-indistinguishable.
Our goal is to prove that (MU2™) n) and (S1,n) are computationally-indistinguishable, which (by
the first hypothesis) reduces to proving that (M) n) and (M(5>™) n) are computationally-
indistinguishable. Now suppose, towards the contradiction, that some a probabilistic polynomial-
time machine D distinguishes (M 2™ n) from (M(52") n). Then, combining D and M, we obtain
a machine that distinguishes (I3,n) from (S2,n) (in contradiction to the second hypothesis). The
key point is that the fact that M is probabilistic polynomial-time (because it is an implementation
machine), and so the combined distinguisher is also probabilistic polynomial-time (provided that
so is D). In the case of close-implementations, we rely on the fact that D makes poly(n)-many
queries and each such query is served by poly(n)-many queries of M. W

2.5 Objects of feasible size

In contrast to the rest of this work, we shortly discuss the complexity of generating random objects of
feasible size (rather than huge random objects). In other words, we are talking about implementing
a distribution on poly(n)-bit long strings, and doing so in poly(n)-time. This problem can be cast in
our general formulation by considering specifications that ignore their input (i.e., have output that
only depend on their random-tape, and hence specify a distribution on constant functions). Thus,
without loss of generality, the implementation may also ignore its input, and consequently in this
case there is no difference between an implementation by ordinary machine and an implementation
by oracle machine with a random oracle.

We note that perfect implementations of such distributions were considered before (e.g., in [1,
4, 10]), and distributions for which such implementations exist are called sampleable. In the current
context, where the observer sees the entire object, the distinction between perfect implementation
and close-implementation seems quite technical. What seems fundamentally different is the study
of pseudo-implementations of random objects of feasible size.

Theorem 2.18 There exist specifications of feasible-sized objects that have no close-implementation,
but do have (both truthful and non-truthful) pseudo-implementations.

Proof: Any evasive pseudorandom distribution (see [13]) yields such a specification. Recall that
a distribution is called evasive if it is infeasible to generate an element in its support (except with
negligible probability), and is called pseudorandom if it is computationally indistinguishable from
a uniform distribution on strings of the same length. Thus, by definition, an evasive distribution
has no close-implementation. On the other hand, any pseudorandom distribution can be pseudo-
implemented by the uniform distribution (or any other pseudorandom distribution). Indeed, the
latter implementation is not even almost-truthful (with respect to the evasive pseudorandom dis-
tribution, because even a “remotely-truthful” implementation would violate the evasiveness condi-
tion). To allow also the presentation of a truthful implementation, we modify the specification such
that with exponentially-small probability it produces some sampleable pseudorandom distribution
that has a relatively small support (i.e., ranges over at most 2"/2 strings of length n), and otherwise
it produces the evasive pseudorandom distribution. The desired truthful pseudo-implementation
will always produce the former distribution (i.e., the sampleable pseudorandom distribution). [l

The proof of Theorem 2.18 also establishes the existence of specifications (of feasible-sized
objects) that have have no truthful (or even almost-truthful) implementation, regardless of the level
of indistinguishability from the specification. Turning the table around, ignoring the truthfulness

11

condition, we ask whether there exist specifications of feasible-sized objects that have no pseudo-
implementations. A partial answer is provided by the following result, which relies on a non-
standard assumption (see Footnote 7).

Proposition 2.19 Assuming the ezistence of a collision-free hash function’, there exists a speci-
fication of a random feasible-sized object that has no pseudo-implementation.

Proof: Given a collision-free hash function A : {0,1}?" — {0,1}", consider the uniform distribu-

tion over the set S, {(z,y) €{0,1}"*™™ : h(z) = h(y)}. Then, any implementation fails to hit
the support of this distribution, which in turn is polynomial-time recognizable. Thus, the above
specification (of a uniform distribution over S,,) cannot be pseudo-implemented. [l

Open Problem 2.20 (A stronger version of Proposition 2.19:) Provide a specification of a random
feasible-sized object that has no pseudo-implementation, while relying on a standard intractability
assumption.

Let us digress and consider close-implementations. For example, Bach’s elegant algorithm for
generating random composite numbers along with their factorization [3] can be cast as a (non-
trivial) close-implementation of the said distribution. A more elementary set of examples refers to
the generation of integers (out of a huge domain) according to various “nice” distributions (e.g.,
the binomial distribution of N trials).® In fact, Knuth [21, Sec. 3.4.1] considers the generation of
various such distributions, and his treatment (of integer-valued distributions) can be easily adapted
to fit our formalism. This direction is further pursued in Appendix A. In general, recall that in
the current context (where the observer sees the entire object), a close-implementation must be
statistically close to the specification. Thus, almost-truthfulness follows “for free”:

Proposition 2.21 Any close-implementation of a specification of a feasible-sized object is almost-
truthful to it.

Multiple samples. Our general formulation can be used to specify an object that whenever
invoked returns an independently drawn sample from the same distribution. Specifically, the speci-
fication may be by a machine that answers each query by using a distinct portion of its random-tape
(as coins used to sample from the basic distribution). Using a pseudorandom function, we may
pseudo-implement multiple samples from any distribution for which one can pseudo-implement a
single sample. That is:

Proposition 2.22 Suppose that one-way functions ezxist, and let D = {D,} be a probability en-
semble such that each D,, ranges over poly(n)-bit long strings. If D can be pseudo-implemented
then so can the specification that answers each query by an independently selected sample of D.
Furthermore, the latter implementation is by an ordinary machine and is truthful provided that the
former implementation is truthful.

"We stress that the assumption used here is stronger than the standard assumption that refers to the existence of

an ensemble of collision-free functions (cf. [8]).
8That is, for a huge N = 2™, we want to generate 7 with probability p; def (J:’) /2N. Note 7 € {0,1,...N} has

feasible size, and yet the problem is not trivial (because we cannot afford to compute all p;’s).

12

Proof: Consider first an implementation by an oracle machine that merely uses the random
function to assign each query a random-tape to be used by the pseudo-implementation of (the
single sample of the distribution) D. Since truthfulness and computational-indistinguishability are
preserved by independent samples (cf. [11, Sec. 3.2.3]), we are done as far as implementations by
oracle machines are concerned. Using Theorem 2.9, the proposition follows. [l

3 Our Main Results

We obtain several non-trivial implementations of random objects. For sake of clarity, we present
the results in two categories referring to whether they yield truthful or only almost-truthful imple-
mentations.

3.1 Truthful Implementations

All implementations stated in this section are by (polynomial-time) oracle machines (which use a
random oracle). Corresponding pseudo-implementations (by ordinary probabilistic polynomial-time
machines) can be derived using Theorem 2.9. Namely, assuming the existence of one-way functions,
each of the specifications considered below can be pseudo-implemented in a truthful manner by an
ordinary probabilistic polynomial-time machine.

The basic technique underlying the following implementations is the embedding of additional
structure that enables to efficiently answer the desired queries in a consistent way (which is truthful
with respect to the specification). This additional structure may cause the implementation to have
a distribution that differs from that of the specification, but this difference is infeasible to detect
(via the polynomially-many queries). In fact, the additional structure is typically randomized in
order to make it undetectable, but each possible choice of coins for this randomization yields a
valid structure (and so truthfulness rather than almost-truthfulness holds).

3.1.1 Supporting complex queries regarding boolean functions

As mentioned above, a random boolean function is trivially implemented (and in a perfect way) by
an oracle machine. By this we mean that the specification and the implementation merely serve
the standard evaluation queries that refer to a random function (i.e., query x is answered by the
value of the function at x). Here we consider specifications that supports more powerful queries.

Example 3.1 (answering some parity queries regarding a random function): Consider a specifica-
tion by a machine (and length parameter £ = 2n) that, on input (i,7) where 1 <1 < j < 2", replies
with the parity of the bits in locations i through j of its random-tape. Intuitively, this machine
specifies an object that, based on a random function f : [2"] — {0,1}, provides the parity of the
values of f on any desired interval.

Clearly, the implementation cannot afford to compute the parity of the corresponding values in its
random oracle. Still, in Section 5 we present a perfect implementation of Example 3.1, as well as
truthful close-implementations of related random objects. Specifically, we prove:

Theorem 3.2 (see Theorem 5.2): For every polynomial-time computable function g, there exists
a truthful close-implementation of the following specification of a random object. The specification
machine uses its random-tape to define a random function f : {0,1}" — {0,1}, and answers the

query (aa ﬂ) € {07 1}n+n by Q(Zagsgﬁ f(S))

13

3.1.2 Supporting complex queries regarding length-preserving functions

In Section 9 we consider specifications that, in addition to the standard evaluation queries, answer
additional queries regarding a random length-preserving function. Such objects have potential
applications in Cryptography, which are not pursued in this work. Specifically, we prove:

Theorem 3.3 (see Theorem 9.2): There exists a truthful close-implementation of the following
specification. The specifying machine, uniformly selects a function f : {0,1}" — {0,1}", and,
in addition to the standard evaluation queries, answers the inverse-query y € {0,1}" with the set

f(w)-

Alternatively, the implementation may answer with a uniformly distributed preimage of y under f
(and with a special symbol in case no such preimage exists).

Theorem 3.4 (see Theorem 9.1): There ezists a truthful close-implementation of the following
specification. The specifying machine, uniformly selects a function f : {0,1}" — {0,1}", and
answers the query (x,m), where z € {0,1}" and m € [2P°Y(M)] with the value f™(z) (i.e., f
iterated m times on x).

3.1.3 Random graphs of various types

Random graphs have been extensively studied (cf. [6]), and in particular are known to have various
properties. But does it mean that we can provide truthful close-implementations of uniformly
distributed (huge) graphs having any of these properties?

Let us first consider a specification for a random N-vertex graph, where N = 2". Indeed, such
a random graph can be specified by the machine, which viewing its random-tape w as an N-by-N
matrix, answers input (¢, j) € [N] x [N] with the value 0 if i = j, the value w;; if i < j, and wj;
otherwise. But how about implementing a uniformly distributed graph that has various properties?

Example 3.5 (uniformly distributed connected graphs): Suppose that we want to implement a
uniformly distributed connected graph (i.e., a graph uniformly selected among all connected N -vertex
graph). An adequate specification may scan its random-tape, considering each N2-bit long portion of
it as a description of a graph, and answer adjacency-queries according to the first portion that yields
a connected graph. Note that the specification works in time Q(N?), whereas an implementation
needs to work in poly(log N)-time. On the other hand, recall that a random graph is connected with
overwhelmingly high probability. This suggests to implement a random connected graph by a random
graph. Indeed, this yields a close-implementation, but not a truthful one (because occasionally, yet
quite rarely, the implementation will yield an unconnected graph).®

In Section 6 we present truthful close-implementations of Example 3.5 as well as of related speci-
fications (i.e., of uniformly distributed graphs having various additional properties). These are all
special cases of the following result:

Theorem 3.6 (see Theorem 6.2): Let II be a monotone graph property that is satisfied by a family
of strongly-constructible sparse graphs. That is, for some negligible function u (and every N), there
exists a perfect implementation of a (single) N-vertex graph with pu(log N) - N? edges that satisfies
property I1. Then, there exists a truthful close-implementation of a uniformly distributed graph that
satisfies property I1.

9Indeed, the trivial implementation (by a random graph) is almost-truthful, but here we seek a truthful implemen-
tation (because otherwise we cannot derive from it (via Theorem 2.9) even an almost-truthful pseudo-implementation
by an ordinary machine).

14

The proof relies on the following lemma, which may be of independent interest:

Lemma 3.7 (see Lemma 6.3): Let I be a monotone graph property that is satisfied by some N-
vertex graph having € - (1;[) edges. Then, any machine that makes at most q adjacency queries to
a graph, cannot distinguish a random N -vertex graph from a uniformly distributed N-vertex graph
that satisfies I, except than with probability O(q\/€) + gN—(1—o()

3.1.4 Supporting complex queries regarding random graphs

Suppose that we want to implement a random N-vertex graph along with supporting, in addition
to the standard adjacency queries, also some complex queries that are hard to answer by only
making adjacency queries. For example suppose that on query a vertex v, we need to provide a
clique of size logy IV containing v. In Section 7 we present a truthful close-implementations of this
specification:

Theorem 3.8 (see Theorem 7.2): There exists a truthful close-implementation of the following
specification. The specifying machine selects uniformly an N-vertex graph and, in addition to the
standard adjacency queries, answers (Log-Clique) queries of the form v by providing a random
[log, N|-vertex clique that contains v (and a special symbol if no such clique ezists).

Another result proved in Section 7 follows:

Theorem 3.9 (see Theorem 7.3): There exists a truthful close-implementation of the following
specification. The specifying machine selects uniformly an N-vertexr graph G, and in case G is
Hamiltonian it uniformly selects a (directed) Hamiltonian Cycle in G, which in turn defines a
cyclic permutation o : [N]— [N]. In addition to the standard adjacency queries, the specification
answers travel queries of the form (trav,v,t) by providing o'(v), and distance queries of the form
(dist,v,w) by providing the smallest t > 0 such that w = o*(v).

3.1.5 Random bounded-degree graphs of various types

Random bounded-degree graphs have also received considerable attention. In Section 8 we present
truthful close-implementations of random bounded-degree graphs G = ([N], E), where the machine
specifying the graph answers the query v € [N] with the list of neighbors of vertex v. We stress
that even implementing this specification is non-trivial if one insists on truthfully implementing
simple random bounded-degree graphs (rather than graphs with self-loops and/or parallel edges).
Furthermore, we present truthful close-implementations of random bounded-degree graphs having
additional properties such as connectivity, Hamiltonicity, having logarithmic girth, etc. All these
are special cases of the following result:

Theorem 3.10 (see Theorem 8.4:) Let d be fized and II be a graph property that satisfies the
following two conditions:

1. The probability that Property I1 is not satisfied by a uniformly chosen d-reqular N -vertex graph
18 negligible in log N.

2. Property 11 is satisfied by a family of strongly-constructible d-reqular N -vertex graphs having
girth w(loglog N).

Then, there exists a truthful close-implementation of a uniformly distributed d-reqular N -vertex
graph that satisfies property 11.

15

The proof relies on the following lemma, which may be of independent interest:

Lemma 3.11 (see Lemma 8.1): For d > 2, let G = ([N],E) be any d-regular N-vertex graph
having girth g. Let G' be obtained by randomly permuting the vertices of G (and presenting the
incidence lists in some canonical order). Then, any machine M that queries the graph for the
neighborhoods of q vertices of its choice, cannot distinguish G' from a random d-regular N -vertex
(simple) graph, except than with probability O(q*/(d —1)(9~V/2). In the case d =2 and ¢ < g — 1,
the probability bound can be improved to O(q*/N).

3.2 Almost-Truthful Implementations

All implementations stated in this section are by ordinary (probabilistic polynomial-time) machines.
All these results assume the existence of one-way functions.

Also here the basic technique is to embed a desirable structure, but here the embed structure
forces the desired property only with very high probability. Consequently, the resulting implemen-
tation is only almost-truthful, which is the reason that we have to directly present implementations
by ordinary machines.

3.2.1 Random codes of large distance

In continuation to the discussion in the introduction, we prove:

Theorem 3.12 (see Theorem 4.2): For § = 1/6 and p = 1/9, assuming the existence of one-way
functions, there exists an almost-truthful pseudo-implementation of the following specification: The

specification machine uses its random-tape to uniformly select a code C C {0,1}" having cardinality

K % 9 and distance at least on, and answers the query i € [K| with the i-th element in C.

3.2.2 Random graphs of various types

Having failed to provide truthful pseudo-implementations to the following specifications, we provide
almost-truthful ones.

Theorem 3.13 (see Theorem 6.5): Let ¢(N) = (2 £ 0(1))logy N be the largest integer i such that
the expected number of cliques of size © in a random N -vertex graph is larger than one. Assuming the
eristence of one-way functions, there exist almost-truthful pseudo-implementations of the following
specifications:

1. A random graph of Max-Clique ¢(N) £ 1: The specification uniformly selects an N-vertex
graph having mazimum clique size ¢(N) £ 1, and answers edge-queries accordingly.

2. A random graph of Chromatic Number (1 £+ o(1)) - N/e(N): The specification uniformly
selects an N-vertex graph having Chromatic Number (1 + log;1/3 N)-N/e(N), and answers

edge-queries accordingly.

Another interesting question is to provide an almost-truthful pseudo-implementation of a uniformly
distributed graph having a high (global) connectivity property. Unfortunately, we do not know how
to do this. A second best thing may be to provide an almost-truthful pseudo-implementation of a
random graph for which almost all pairs of vertices enjoy a high connectivity property.

16

Theorem 3.14 (see Theorem 6.6): For every positive polynomial p, assuming the ezistence of one-
way functions, there exists an almost-truthful pseudo-implementation of the following specification.
The specifying machine selects a graph that is uniformly distributed among all N-vertex graphs for
which all but at most an e(N) def 1/p(logy N) fraction of the vertez pairs are connected by at least
(1 —e(N)) - N/2 vertez-disjoint paths. Edge-queries are answered accordingly.

Interestingly, the same implementation works for all polynomials p; that is, the implementation is
independent of p, which is only needed for the definition of the specification.

4 Implementing Random Codes of Large Distance

For sufficiently small p,6 > 0, we consider codes having relative rate p and relative distance 0;
that is we consider subsets C' C {0,1}" such that |C| = 2™ and every two distinct codewords (i.e.,

a, f € C) disagree on at least 6n coordinates. Such a code is called good. A random set of K el 9pn
strings of length n is good with overwhelmingly high probability. Thus, for a random function
f K] — {0,1}", setting C = {f(i) : ¢ € [K]|} yields an almost-truthful close-implementation
of a random code that is good, where the specification is requires to answer the query ¢ with the
i-th codeword (i.e., 7 element in the code). Recall that it is not clear what happens when we
replace f by a pseudorandom function (i.e., it may be the case that the resulting code has very
small distance, although most pairs of codewords are definitely far apart). To get a almost-truthful
pseudo-implementation we use a different approach.

Construction 4.1 For k = pn, we select a random k-by-n matriz M, and consider the linear code
generated by M (i.e., the codewords are obtained by all possible linear combinations of the rows of
M). Now, using a pseudorandom function f, : {0,1}¥ — {0,1}", where s € {0,1}", we consider
the code Curs = {fs(v)OVM : v € {0,1}*}. That is, our implementation uses the random-tape
(M, s), and provides the i-th codeword of the code Cips by returning fs(i)®iM, where i € [2F] is
viewed as a k-dimensional row vector (or k-bit long string).

To see that Construction 4.1 is a pseudo-implementation of a random code, consider what happens
when the pseudorandom function is replaced by a truly random one (in which case we may ignore
the nice properties of the random linear code generated by M).'° Specifically, for any matrix M and
any function f : [K] — {0,1}", we consider the code C’]{/[= {f(v)®vM : v € {0,1}*}. Now, for any
fixed choice of M and a truly random function ¢ : [K] — {0,1}", the code C’ﬁ[is a random code.
Thus, the pseudorandomness of the function ensemble {fs}sci0,1}» implies that, for a uniformly
chosen s € {0,1}", the code Cir,s = C]{/} is computationally indistinguishable from a random code.
The reason being that ability to distinguish selected codewords of C]{/} (for a random s € {0,1}")
from codewords of Cg}[(for a truly random function ¢ : [K] — {0,1}") yields ability to distinguish
the corresponding fs from ¢.

To see that Construction 4.1 is almost-truthful to the good code property, fix any (pseudoran-
dom) function f and consider the code Cpy = {f(v)®vM : v € {0,1}*¥}, when M is a random
k-by-n matrix. Fixing any pair of distinct strings v, w € {0,1}*, we show that with probability at
least 273% (over the possible choices of M), the codewords f(v)@vM and f(w)®wM are at distance
at least 6n, and it follows that with probability at least 1 —27% the code Cjs has a distance at least

%Tn particular, note that the resulting code is unlikely to be linear. Furthermore, any n — O(1) > k codewords are
likely to be linearly independent (both when we use a random function or a pseudorandom one).

17

on. Thus, for a random M, consider the Hamming weight of (f(v)®vM)®(f(w)®wM), which in
turn equals the Hamming weight of r@uM, where r = f(v)®f(w) and u = vPw are fixed. The
weight of r@ulM behaves as a binomial distribution (with success probability 1/2), and thus the
probability that the weight is less than én equals exp(—(1 — Hy(6)) - n), where Hy denotes the
binary entropy function. So we need 1 — H(6) - n > 3k to holds, and indeed it does hold for
appropriate choices of § and p (e.g, § = 1/6 and p = 1/9). Specifically, recalling that k = pn, we
need 1 — Hy(6) > 3p to hold. We get:

Theorem 4.2 For any 6 € (0,1/2) and p € (0,1 — Hy(6)), assuming the existence of one-way
functions, there exists an almost-truthful pseudo-implementation by an ordinary machine of the
following specification: The specification machine uses its random-tape to uniformly select a code

C C {0,1}" having cardinality K f 9 and distance at least on, and answers the query i € [K]
with the i-th element in C.

5 Boolean Functions and Interval-Sum Queries

In this section we show that the specification of Example 3.1 can be perfectly implemented (by an
oracle machine). Recall that we seek to implement access to a random function f : {0,1}" — {0,1}
augmented with answers regarding the parity (or XOR) of the values of f on given intervals,
where the intervals are with respect to the standard lex-order of n-bit string. That is, the query
g = (a,8) € {0,1}"*" where 0" < a < 3 < 1™, is to be answered by @ <s<f(s). The specification
can answer this query in the straightforward manner, but an implementation cannot afford to do
so (because a straightforward computation may take 2" = 2lal/2 steps). Thus, the implementation
will do something completely different.

We present an oracle machine that uses a random function f’: U ({0,1}* — {0,1}. Using f’,
we define f : {0,1}" — {0,1} as follows. We consider a binary tree of depth n and associate its ith
level vertices with strings of length ¢ such that the vertex associated with the string s has a left
(resp., right) child associated with the string sO (resp., s1). As a mental experiment, going from
the root to the leaves, we label the tree’s vertices as follows:

1. We label the root (i.e., the level-zero vertex, which is associated with) by the value f’()).

2. For i = 0,...,n — 1, and each internal vertex v at level i, we label its left child by the value
f'(v0), and label its right child by the value f'(v)®f’(v0).

3. The value of f at o € {0,1}" is defined as the label of the leaf associated with c.

By using induction on 7 = 0, ...,7n, it can be shown that the level ¢ vertices are assigned uniformly
and independently distributed labels (which do depend, of course, on the level i — 1 labels). Thus,
f is a random function. Furthermore, the label of each internal node v equals the XOR of the
values of f on all leaves in the subtree rooted at v.

Note that the random function f’ is used to directly assign (random) labels to all the left-siblings.
The other labels (i.e., of right-siblings) are determined by XORing the labels of the parent and the
left-sibling. Furthermore, the label of each node in the tree is determined by XORing at most n+ 1
values of f’ (residing in appropriate left-siblings). Specifically, the label of the vertex associated
with oy ---0; is determined by the f’-values of the strings A,0,010,...,01---0;_10. Actually, the
label of the vertex associated with a17, where a € {A\} U {0,1}/*=10 and j > 0, is determined by

18

the f'-values of j + 1 vertices (i.e., those associated with a, a0, a10...,a17710).

label(al?) = label(al’~") @ label(al’"0)

= label(a) @ label(a0)--- ®labe1(a1j_20) 691abe1(a11—10)
= f(@)@['(a0)- & f(a20)@ f'(a1?"'0)

Thus, we obtain the value of f at any n-bit long string by making at most n+ 1 queries to f’. More
generally, we can obtain the label assigned to each vertex by making at most n+ 1 queries to f’. It
follows that we can obtain the value of ®,<s<gf(s) by making O(n?) queries to f’. Specifically, the
desired value is the XOR of the leaves residing in at most 2n — 1 full binary sub-trees, and so we
merely need to XOR the labels assigned to the roots of these sub-trees. Actually, O(n) queries can
be shown to suffice, by taking advantage on the fact that we need not retrieve the labels assigned to
O(n) arbitrary vertices (but rather to vertices that correspond to roots of sub-trees with consecutive
leaves). We get:

Theorem 5.1 There exists a perfect implementation (by an oracle machine) of the specification of
Ezample 3.1.

The above procedure can be generalize to handle queries regarding any (efficiently computable)
symmetric function of the values assigned by f to any given interval. Clearly, it suffices to answer
queries regarding the sum of these values. We thus state the following result.

Theorem 5.2 There exists a truthful close-implementation (by an oracle machine) of the following
specification of a random object. The specification machine uses its random-tape to define a random
function f:{0,1}" — {0,1}, and answers the query (o, §) € {0,1}"*" by 3, <.<5 f(5).

Note that, unlike in the case of Theorem 5.1, the implementation is not perfect, which is the reason
that we explicitly mention that it is truthful.

Proof: All that is needed in order to extend the “XOR construction” is to label each vertex v
with the sum (rather than the sum mod 2) of the labels of all the leaves in the sub-tree rooted
at v. In particular, internal nodes should be assigned random labels according to the binomial
distribution, which makes the implementation more complex (even for assigning labels to the root
and more so for assigning labels to left-siblings after their parents was assigned a label). Let us
start with an overview:

1. We label the root by a value generated according to the binomial distribution; that is, the

root (of the depth-n binary tree) is assigned the value j with probability (];])/2N, where

N ©9n This random assignment will be implemented using the value f/(\), where here f’

is a random function ranging over poly(n)-bit long strings rather than over a single bit (i.e.,
e UR{0,1} — {0, 1}pelvim).

2. For i = 0,...,n — 1, and each internal vertex v at level ¢, we label its left child as follows, by
using the value f’(v0). Suppose that v is assigned the value T' < 2"~*. We need to select
a random pair of integers (I,7) such that [+ = T and 0 < I,7 < 2"7*"1. Such a pair
should be selected with probability that equals the probability that, conditioned on l+7r =T,
the pair (I,7) is selected when [and 7 are distributed according to the binomial distribution

19

(of 2»="1 trials). That is, let M = 2"~% be the number of leaves in the tree rooted at v.
Then, for [+7 =T and 0 < I,7 < M/2, the pair (I,r) should be selected with probability

M
(M%) - (G-
3. As before, the value of f at a € {0,1}" equals the label of the leaf associated with a.

Of course, the above two types of sampling procedures have to be implemented in poly(n)-time,
rather than in poly(2")-time (and poly(n2" %)-time, respectively). These implementations cannot
be perfect (because some of the events occur with probability 2=~ = 272"), but it suffices to provide
implementations that generates these samples with approximately the right distribution (e.g., with
deviation at most 27" or so). The details concerning these implementations are provided in an
Appendix A.

We stress that the sample (or label) generated for the (left sibling) vertex associated with
a = /0 is produced based on the randomness provided by f/(«). However, the actual sample (or
label) generated for this vertex depends also on the label assigned to its parent. (Indeed, this is
different from the case of XOR.) Thus, to determine the label assigned to any vertex in the tree,
we need to obtain the labels of all its ancestors (up-to the root). Specifically, let Si(N, p) denote
the value sampled from the binomial distribution (on NN trials), when the sampling algorithm uses
coins p; and let So(T,p) denote the value assigned to the left-child, when its parent is assigned
the value T', and the sampling algorithm uses coins p. Then, the label of the vertex associated
with @ = o7 --- 0y, denoted label(), is obtained by computing the labels of all its ancestors as
follows. First, we compute label(\) < S1(N, f'(X)). Next, for i = 1,...,t, we obtain label(c - - - 0;)
by computing label(oy ---0;—-10) «— Sa(label(oy -+ 0i—1), f'(01+-0i-10)), and if necessary (i.e.,
o; = 1) by computing label(oy -+ - 0;_11) < label(oy --- ;1) — label(oq - - - 0;-10). That is, we first
determine the label of the root (using the value of f’ at \); and next, going along the path from
the root to o, we determine the label of each vertex based on the label of its parent (and the value
of f at the left-child of this parent). Thus, the computation of the label of «, only requires the
value of f' on |a| + 1 strings. As in the case of XOR, this allows to answer queries (regarding the
sum of the f-values in intervals) based on the labels of O(n) internal nodes, where each of these
labels depend only on the value of f’ at O(n) points. (In fact, as in the case of XOR, one may show
that the values of these related internal nodes depend only on the value of f' at O(n) points.) The
theorem follows. [

Open problems: Theorem 5.2 provides a truthful implementation for any (feasibly-computable)
symmetric function of the values assigned by a random function over any interval of [N] = {0,1}".
Two natural extensions are suggested below.

Open Problem 5.3 (Non-symmetric queries): Provide a truthful close-implementation to the fol-
lowing specification. The specification machine defines a random function f : {0,1}" — {0,1},
and answers queries of the form (a,3) € {0,1}"*" with the value g(f(),..., f(B)), where g is
some simple function. For example, consider g(o1,...,01) that returns the smallest i € [t| such that
00" Oiy|14logy t| -1 = 11+ [logz] (and a special symbol if no such i exists). More generally, consider
a specification machine that answers queries of the form (k,(a,()) by returning smallest i € [t]
such that o; -+ 01k 1 = 1%, where o is the j-th element in the sequence (f(a), ..., f(3)).

Note that the latter specification is interesting mostly for k¥ € {w(logn),...,n + w(logn)}. For
k < ksm = O(logn) we may just make sure (in the implementation) that any consecutive interval

20

of length 2¥mn? contains a run of ke, ones.!! Once this is done, queries (referring to k < kgy,) may
be served (by the implementation) in a straightforward way (i.e., by scanning at most two such
consecutive intervals, which in turn contain 2¥=¥1n? = poly(n) values). Similarly, for k > ki, =
n + w(logn), we may just make sure (in the implementation) that no pair of consecutive intervals,
each of length 5n, has a run of min(kg, 2n) ones.

Open Problem 5.4 (Beyond interval queries): Provide a truthful close-implementation to the
following specification. The specification machine defines a random function f : {0,1}" — {0,1},
and answers queries that succinctly describe a set S, taken from a specific class of sets, with the
value @ocsf(a). In Example 3.1 the class of sets is all intervals of [N] = {0,1}", represented by
their pair of end-points. Another natural case is the class of sub-cubes of {0,1}"; that is, a set
S is specified by an n-sequence over {0,1,%} such that the set specified by the sequence (o1, ...,00n)
contains the n-bit long string oy - -- o, if and only if a; = o; for every o; € {0,1}.

In both cases (i.e., Problems 5.3 and 5.4), even if we do not require truthfulness, the implementation
may be easily distinguished from the specification if the former answers the compound queries in
a non-consistent manner. At least, a potential implementation seems to be in trouble if it “lies
bluntly” (e.g., answers each query by an independent random bit).

6 Random Graphs Satisfying Global Properties

Suppose that you want to run some simulations on huge random graphs. You actually take it
for granted that the random graph is going to be Hamiltonian, because you have read Bollobas’s
book [6] and you are willing to discard the negligible probability that a random graph is not
Hamiltonian. Suppose that you want to be able to keep succinct representations of these graphs
and/or that you want to generate them using few random bits. Having also read some works on
pseudorandomness (e.g., [16, 5, 29, 12]), you plan to use pseudorandom functions [12] in order to
efficiently generate and store representations of these graphs. But wait a minute, are the graphs
that you gemerate this way really Hamiltonian?

The point is that being Hamiltonian is a global property of the graph, which in turn is a huge
(i.e., exp(n)-sized) object. This global property cannot be checking the adjacency of polynomially
many (i.e., poly(n)-many) vertex-pairs, and so its violation cannot be translated to a contradiction
of the pseudorandomness of the function. Indeed, the substitution of a random function (or a ran-
dom graph) by a pseudorandom one is not guaranteed to preserve the global property. Specifically,
it may be the case that all pseudorandom graphs are even disconnected.'? So, can we efficiently
generate huge Hamiltonian graphs? As we show below, the answer to this question is positive.

In this section we consider the implementation of various types of huge random graphs. We
stress that we refer to simple and labeled graphs; that is, we consider graphs without self-loops
or parallel edges, and with labeled vertices (i.e., the 3-vertex graph consisting of the edge (1,2)
is different from the 3-vertex graph consisting of the edge (1,3)). In this section, implementing a

"That is, the random function f : [N] — {0,1} is modified such that, for every j € [N/2F=n?] the interval
[(7— 1)2ksmn2 +1,.., j2ks’“n2] contains a run of ksm ones. This modification can be performed on-the-fly by scanning
the relevant interval and setting to 1 a random block of ksm locations if necessary. Note that, with overwhelmingly
high probability, no interval is actually modified.

2Indeed, for each function fs taken from some pseudorandom ensemble {f; : [2"] x [2"] — {0,1}}s, it may hold
that f,(vs,u) = fs(u,vs) = 0 for all uw € [2"], where v, depends arbitrarily on f,. For example, given a pseudorandom
ensemble {f,} consider the ensemble {f; ,} such that f,.(v,u) = fs.(u,v) = 0" for all u’s, and f;.(z,y) = fs(z,y)
for all other (z,y)’s.

21

graph means answering adjacency queries; that is, the answer to the query (u,v) should indicate
whether or not v and v are adjacent in the graph. Recall that the implementation ought to work in
time that is poly-logarithmic in the size of the graph, and thus cannot decide “global” properties
of the graph. That is, we deal with graphs having N = 2" vertices, and our procedures run in
poly(n)-time.

As in Section 3, we present our results in two categories referring to whether they yield truthful
or only almost-truthful implementations. In the case of truthful implementations, we show close-
implementations by (polynomial-time) oracle machines (which use a random oracle), while bearing
in mind that corresponding pseudo-implementations by ordinary (probabilistic polynomial-time)
machines can be derived using Theorem 2.9. In contrast, in the case of almost-truthful implemen-
tations, we work directly with ordinary (probabilistic polynomial-time) machines.

6.1 Truthful implementations

Recall that a random graph (i.e., a uniformly distributed N-vertex graph) can be perfectly im-
plemented via an oracle machine that, on input (u,v) € [N] x [N] and access to the oracle
[+ [N] x [N] — {0,1}, returns 0 if u = v, f(u,v) if v < v, and f(v,u) otherwise. (Indeed,
we merely derive a symmetric and non-reflexive version of f.)

Turning to a less trivial example, let us closely-implement a random Bipartite Graph with IV
vertices on each side. This can be done by viewing the random oracle as two functions, fi and fs,
and answering queries as follows:

e The function f; is used to closely-implement a random partition of [2N] into two sets of equal
size. Specifically, we use f to closely-implement a permutation 7 over [2N], and let the first

part be § & {v:m(v) € [N]}. Let xs(v) “1ifv e S and xs(v) 410 otherwise.

e The query (u,v) is answered by 0 if xg(u) = xs(v). Otherwise, the answer equals fo(u,v) if
u < wv and fo(v,u) otherwise.

The above implementation can be adapted to closely-implement a random Bipartite Graph (see
details in Appendix B). Viewed in different terms, we have just discussed the implementation of
random graphs satisfying certain properties.

We now turn to Example 3.5 (which specifies a uniformly distributed connected graph). In
continuation to the discussion in Section 3, we now present a close-implementation that is truthful:

Construction 6.1 (Implementing a random connected graph): Use the oracle to implement a
random graph, represented by the symmetric and non-reflexive random function g : [N] x [N] —
{0,1}, as well as a permutation © over [N|, which in turn is used to define a Hamiltonian path
7(1) — 7(2) — -+ — w(N). Along with 7, implement the inverse permutation = 1, where this is
done by using Theorem 2.13.1% Answer the query (u,v) by 1 if and only if either g(u,v) = 1 or
(u,v) is on the Hamiltonian path (i.e., |7 1(u) — 7 1(v)| = 1).

Clearly, the above implementation is truthful. (Indeed, it actually implements a random Hamilto-
nian graph.) The implementation is statically-indistinguishable from the specification, because it
is unlikely to hit an edge of the “forced Hamiltonian path” when making only poly(log N) queries.
(A proof of the latter statement appears below.) A similar strategy can be used for any monotone
graph property that satisfies the following condition:

13That is, we use a truthful close-implementation of Example 2.4. In fact, we only need 7 !, and so the truthful
close-implementation of Example 2.3 (as stated in Theorem 2.12) actually suffices.

22

(C) The property is satisfied by a family of strongly-constructible sparse graphs. That is, for
some negligible function p (and every N), there exists a perfect implementation of a (single)
N-vertex graph with u(log N) - N2 edges that satisfies the property.

We have:

Theorem 6.2 Let IT be a monotone graph property that satisfies Condition C. Then, there exists a
truthful close-implementation (by an oracle machine) of a uniformly distributed graph that satisfies
property II.

We comment that Condition C implies that a random N-vertex graph is statistically-indistinguishable
from a random N-vertex graph having property II. This fact, which may be of independent interest,
is stated and proved first.

Lemma 6.3 Let Il be a monotone graph property that is satisfied by some N-vertex graph having
€ - (];]) edges. Then, any machine that makes at most q adjacency queries to a graph, cannot
distinguish a random N -vertex graph from a uniformly distributed N -vertex graph that satisfies 11,
except than with probability O(g\/€) + gN~(1—o(W),

Proof: Asin [15, Sec. 4], without loss of generality, we may confine ourselves to analyzing machines
that inspect a random induced subgraph. That is, since both graph classes are closed under
isomorphism, it suffices to consider the statistical difference between the following two distributions:

1. The subgraph of a uniformly distributed /N-vertex graph induced by a uniformly selected set
of t & q + 1 vertices.

2. The same vertex-induced subgraph (i.e., induced by a random set of ¢ vertices) of a uniformly
distributed N-vertex graph that satisfies property II.

Clearly, Distribution (1) is uniform over the set of ¢-vertex graphs, and so we have to show that

approximately the same holds for Distribution (2). Let T def (];]) and M def €T, and let Gy be an
N-vertex graph with M edges that satisfies property II. Consider the set of all graphs that can be

obtained from Gy by adding TEM edges. The number of these graphs is

(T—M> _ M reM-0()-bog, T
o(

T-M
3 T-M)

That is, this set contains at least a 2~ (M+OL)+(og2T)/2) — 9-€¢'T fraction of all possible graphs,

where ¢ % ¢ + ((logy T)/2T). Let X = X1 --- X7 € {0,1} be a random variable that is uniformly
distributed over the set of all graphs that satisfy property II. Then X has entropy at least T — ¢'T
(i.e., H(X) > T — €T). It follows that & > H(X;|X;_1---X1) > 1 — €. Note that the index
i ranges over all unordered pairs of elements of [NV]. We are interested in the expected value of
Yec{(up)u<ves) H(Xe|Xe—1--+ X1), where S is a uniformly selected set of ¢ vertices. Using the
linearity of expectation, we have that

ES Z H(X6|Xefl T Xl)] > (1 _ El) . (;)

ec{(u,v)u<veS}
Thus, for a random t-subset S, letting Ys = (X)) (uv)u<ves; We have Eg[Ys] > m — €', where

m & (3) and " 4l e, Tt follows (see Appendix C) that the statistical difference of Yg from the

uniform distribution over {0,1}™ is at most O(v/¢"), which in turn equals O(tve +T—(1—o(1)).
The lemma follows. W

23

Proof of Theorem 6.2: Let H = ([N], E) be a graph satisfying Condition C. In particular,
given (u,v) € [N] x [N], we can decide whether or not (u,v) € E in polynomial-time. Then, using
the graph H instead of the Hamiltonian path in Construction 6.1, we implement a (random) graph
satisfying property II. That is, we answer the query (u,v) by 1 if and only if either g(u,v) =
1 or (u,v) is an edge in (the “forced” copy of) H (i.e., (7~(u),7~!(v)) € E). Since I is a
monotone graph property, the instances of the implementation always satisfy the property II,
and thus the implementation is truthful. Furthermore, by Condition C and the fact that = is
a close-implementation of a random permutation, the probability that a machine that queries the
implementation for poly(log IV) times hits an edge of H is negligible in log N. Thus, such a machine
cannot distinguish the implementation from a random graph. Using Lemma 6.3 (with e = p(log N)
and ¢ = poly(log N)), the theorem follows. W

Examples: Indeed, monotone graph properties satisfying Condition C include Connectivity,
Hamiltonicity, k-Connectivity (for every fixed k)4, containing any fixed-size graph (e.g., contain-
ing a triangle or a 4-clique or a K33 or a 5-cycle), having a perfect matching, having diameter at
most 2, containing a clique of size at least log IV, etc. All the above properties are satisfied, with
overwhelmingly high probability, by a random graph. However, Theorem 6.2 can be applied also to
(monotone) properties that are not satisfied by a random graph; a notable example is the property
of containing a clique of size at least VN.

6.2 Almost-truthful implementations

We start by noting that if we are willing to settle for almost-truthful implementations by ordinary
machines then all properties that hold (with sufficiently high probability) for random graphs can
be handled easily. Specifically:

Proposition 6.4 Let II be any graph property that is satisfied by all but a negligible (in logs N)
fraction of the N-vertex graphs. Then, there exists an almost-truthful close-implementation (by an
oracle machine) of a uniformly distributed graph that satisfies property II.

Indeed, the implementation is by a random graph (which in turn is implemented via a random
oracle). Note, however, that it is not clear what happens if we replace the random graph by a
pseudorandom one (cf. Theorem 2.11). Furthermore, the proof of Theorem 2.11 can be extended
to show that there exist graph properties that are satisfied by random graphs but do not have an
almost-truthful implementation by an ordinary machine.’® In light of the above, we now focus on
almost-truthful implementations by ordinary machines.

Max-clique and chromatic number. We consider the construction of pseudorandom graphs
that approximately preserve the max-clique and chromatic number of random graphs.

1n fact, we may have k = k(N) = p(log N) - N for any negligible function p. The sparse graph may consist of
edges between each of the IV vertex and each of k(/V) designated vertices.

!5The proof of Theorem 2.11 relates to the Kolmogorov Complexity of the function (or graph). In order to obtain
a graph property, we consider the minimum value of the Kolmogorov Complexity of any isomorphic copy of the said
graph, and consider the set of graphs for which this quantity is greater than N?/4. The latter property is satisfied by
all but at most 2V /4. (N < gN?/3 graphs. On the other hand, the property cannot be satisfied by an instance of an
implementation via an ordinary machine. Thus, any implementation (regardless of “quality”) must be non-truthful
(to the specification) in a strong sense.

24

Theorem 6.5 Let ¢(IN) = (2 £ 0(1))logy, N be the largest integer ¢ such that the expected number
of cliques of size i in a random N -vertexr graph is larger than one. Assuming the existence of
one-way functions, there exist almost-truthful pseudo-implementations, by ordinary machines, of
the following specifications:

1. A random graph of Max-Clique ¢(N) £ 1: The specification uniformly selects an N -vertex
graph having mazximum clique size ¢(N) £ 1, and answers edge-queries accordingly.

2. A random graph of Chromatic Number (1 £+ o(1)) - N/¢(N): The specification uniformly

selects an N-vertex graph having Chromatic Number (1 + log;1/3 N)-N/c¢(N), and answers
edge-queries accordingly.

That is, we are required to implement random-looking graphs having certain properties. Indeed, a
random N-vertex graph has the above two properties with probability at least 1 — N =09 (cf. [6]).
Thus, a random graph provides an almost-truthful close-implementation (by an oracle machine)
of a uniformly selected graph having each of these properties, but it is not clear what happens
when we replace the random oracle by a pseudorandom function. (In fact, one can easily construct
pseudorandom functions for which the replacement yields a graph with a huge clique.) Note that
Theorem 6.5 does not follow from Theorem 6.2, because the properties at hand are not monotone.'®
Thus, a different approach is needed.

Proof Sketch: We start with Part 1. We define the adjacency function g : [N] x [N] — {0,1}
of a graph by XORing a pseudorandom (symmetric and non-reflexive) function f with a k-wise
independent function & (i.e., g(u,v) = f(u,v)®h(u,v)), where k el 52 (and n = logy N). Recall
that such k-wise independent functions can be constructed based on kn random bits. The resulting
function ¢ is both pseudorandom and k-wise independent (analogously to the construction in [18]).
Now, the key observation is that the standard analysis (of the size of the max-clique in a random
graph) merely refer to the expected number of cliques os fize ¢(N)=%2 and to its variance. Thus, this
analysis only depends on the randomness of edges within pairs of (¢(N) + 2)-subsets of vertices;
that is, a total of 2 - (C(N2)+2) < (¢(N) +2)?2 = (4 + o(1)) - n? vertex-pairs. Hence the analysis
continues to hold for g (which is 5n2-independent). It follows that g provides an almost-truthful
pseudo-implementation of a random N-vertex graph with max-clique size ¢(N) + 1.

We now turn to Part 2. Let g’ be the complement of a pseudorandom graph as in Part 1.
We now define the adjacency function g : [N] x [N] — {0,1} of a pseudorandom graph by taking
the bit-wise conjunction of the pseudorandom graph ¢’ (from above) with a function h' selected
uniformly in a set H' (defined below); that is, g(u,v) = 1 iff ¢’(u,v) = A'(u,v) = 1. Intuitively, each
function h’' € H' forces a cover of [N] by N/¢(N) independent sets (each of size ¢(N)), and so the
chromatic number of g is at most N/¢(IN). On the other hand, each h’ € H' only has independent
sets of size ¢(IN) and taking the conjunction with a random ¢’ (which is k-wise independent for
k> (C(NQ)’L?’)) is unlikely to create an independent set of size ¢(IN)+3, and so the chromatic number
of g is at least N/(c(IV) + 2). Details follow.

Each function A’ € H' partitions [N] to x(N) = [N/c(N)] sets, each of size ¢(N), and has
h'(u,v) =1 if and only if 4 and v belong to different sets; that is, the complement of &' is a disjoint
set of cliques each having as a vertex-set one of the sets of the partition. Thus, such h’ causes each
of these vertex-set to be an independent set in g. The functions in H' differ only in the partitions
they use. It turns out that it suffices to use “sufficiently random” partitions. Specifically, we use

For the coloring property, Condition C does not hold either.

25

H' = {h!}.cr, where R = {r € [N] : ged(r, N) = 1}, and consider for each r € R the partition
(S .., XM= gXNDy “yhere S = {(¢(N)i+ j)r mod N : j =1,...,e(N)} for i < x(N) and
SN {(e(N)x(N) +j)rmod N : j =1,...N — ¢(N)x(N)}. Thus, hl(u,v) = 1 if and only
if w and v do not reside in the same S (i.e., hl(u,v) = 0 essentially means that u — v = jr

(mod N) for some j € {£(c¢(N) —1)}). The graph G defined by g is pseudorandom because
the observer is unlikely to make a query (u,v) that is affected by h. (because hl(u,v) = 0 yields
2(¢(N) —1) =1 = O(log N) candidates for r, which in turn is selected uniformly in the set R,
where |R| > N/O(log N)). The chromatic number of G is at most x(IN) + 1, because its vertex-set
is covered by x(N) + 1 independent sets. On the other hand, relying on the basic structure of
k' and on the k-wise independence of ¢/, we can show!? that, with high probability, the graph G
does not contain an independent set of size ¢(IN) + 3. Thus, the chromatic number of G is at least
N/(e(N)4+2) > (1—(2/c¢(n))-x(N). Its follows that G is an almost-truthful pseudo-implementation
of the desired specification. W

High connectivity. Recall that in a random N-vertex graph every pair of vertices is connected by
at least (1—o(1))N/2 vertex-disjoint paths. One interesting question is to provide an almost-truthful
pseudo-implementation of a uniformly distributed graph having this high (global) connectivity
property. Unfortunately, we do not know how to do this. A second best thing may be to provide
an almost-truthful pseudo-implementation of a random graph for which almost all pairs of vertices
enjoy this “high connectivity” property.

Theorem 6.6 For every positive polynomial p, assuming the existence of one-way functions, there
exists an almost-truthful pseudo-implementation by an ordinary machine of the following specifi-
cation. The specifying machine selects a graph that is uniformly distributed among all N-vertex

graphs for which all but at most an e(N) def 1/p(logy N) fraction of the vertex pairs are connected
by at least (1 — e(N)) - N/2 vertez-disjoint paths. Edge-queries are answered accordingly.

Interestingly, the same implementation works for all polynomials p; that is, the implementation is
independent of p, which is only needed for the definition of the specification. In fact, in contrast
to all other implementations presented in this work, the implementation used in the proof of
Theorem 6.6 is the straightforward one: It uses a pseudorandom function to define a graph in the
obvious manner. The crux of the proof is in showing that this implementation is computationally-
indistinguishable from the above specification.

Proof Sketch: We use a pseudorandom function to define a graph G = ([N], E)) in the straight-
forward manner, and answer adjacency queries accordingly. This yields a pseudo-implementation

of a truly random graph, which in turn has the strong connectivity property (with overwhelmingly

high probability). Fixing a polynomial p and e e e(N) ey /p(logy N'), we prove that this imple-

mentation is almost-truthful to the corresponding specification. That is, we show that all but an €
fraction of the vertex pairs are connected via (1 — €) - N/2 vertex-disjoint paths. We will show that

"In the analysis we fix any A' € H' and show that that deleting edges as instructed by a k-wise independent
function (i.e., g') is unlikely to create an independent set of size c(IN) + 3. Specifically, we bound the expected
number of independent set of size ¢(IN) + 3 in the resulting graph, and thus we only rely on the independence of
the selection of edges (by g') for pairs of vertices within sets of ¢(IN) + 3 vertices. Note that the various candidate
independent sets differ with respect to their intersection with the independent sets of A', and the analysis has to take
this into account. The technical but elementary analysis is given in Appendix C.

26

if this is not the case, then we can distinguish a random graph (or function) from a pseudorandom
one.

Suppose towards the contradiction that, with non-negligible probability, a pseudorandom graph
violates the desired property. Fixing such a graph, G = ([N], E), our hypothesis means that at least
an € fraction of the vertex-pairs are connected (in G) by fewer than (1—¢)-N/2 vertex-disjoint paths.
Consider such a generic pair, denoted (u,v), and define Sy def Fe(u)NTg(v), S def Fe(u)\ Ta(v),
and S, & Te¢(v) \ Tg(u), where I'g(w) ef {z €[N] : (w,z) € E}. Note that if G were a random
graph then we would expect to have |Sy| = |S1| = |S2| = N/4. Furthermore, we would expect to
see a large (i.e., size &® N/4) matching in the induced bipartite graph B = ((S1,.S2), EN(S1 X S2));
that is, the bipartite graph having S7 on one side and S on the other. So, the intuitive idea is to
test that both these considition are satisfied in the pseudorandom graph. If they do then w and
v are “sufficiently connected”. Thus, the hypothesis that an € fraction of the vertex-pairs are no
“sufficiently connected” implies a distinguisher (by selecting vertex-pairs at random and testing the
above two properties). The problem with the above outline is that it is not clear how to efficiently
test that the abovementioned bipartite graph B has a sufficiently large matching.

To allow an efficient test (and thus an efficient distinguisher), we consider a more stringent
condition (which would still hold in a truly random graph). We consider a fixed partition of [NV]
into T 4 N/m parts, (P1,..., Pr), such that |P;| = m = poly(n/e), where n = logy N. (For
example, we may use P, = {(i —1)m+j :j = 1,...,m}.) If G were a random graph then, with
overwhelmingly high probability (i.e., at least 1 — exp(—m'/9M)) > 1 — exp(—n?)), we would have
|So N P;| = (m/4) £ m?/3 for all the i’s. Similarly for S; and Sy. Furthermore, with probability
at least 1 — exp(—n?), each of the bipartite graphs B; induced by (P; N S1, P; N S3) would have a
matching of size at least (m/4) — m?/3. The key point is that we can afford to test the size of the
maximium matching in such a bipartite graph, because it has 2m = poly(n) vertices.

Let us wrap-up things. If a pseudorandom graph does not have the desired property then at
least e fraction of its vertex-pairs are connected by less than (1 —¢€)N/2 vertex-disjoint paths. Thus,

samplying O(1/¢) vertex-pairs, we hit such a pair with constant probability. For such a vertex-pair,

we consider the sets S; def P; N Sy, Si1 def P;N Sy and S;» def P,NSy, fori=1,...,T. It must

be the case that either €/2 fraction of the Sp;’s are of size less than (1 — (¢/2)) - (m/4) or that €/2
fraction of the bipartite subgraphs (i.e., B;’s) induced by the pairs (Si;,S2;) have no matching
of size (1 — (¢/2)) - (m/4), because otherwise this vertex-pair is sufficiently connected merely by
virtue of these Sp;’s and the large matchings in the B;’s.!® We use m > (8/¢)? so to guarantee
that (m/4) — m2/3 > (1 — (¢/2))(m/4), which implies that (for at least an e/2 fraction of the ’s)
some quantity (i.e., either |Sp;| or the maximum matching in B;) is strictly larger in a random
graph than in a pseudorandom graph. Now, sampling O(1/¢) of the i’s, we declare the graph to be
random if all the corresponding Sy ;’s have size at least (m/4) — m?/® and if all the corresponding
bipartite graphs B;’s have a maximum matching of size at least (m/4) —m?/3. Thus, we distinguish
a random function from a pseudorandom function, in contradiction to the definition of the latter.
The theorem follows. W

Maximum Matching in most induced bipartite graphs: The proof of Theorem 6.6 can be
adapted to prove the following:

8That is, we get at least ((1 — (¢/2)) - T) - ((1 — (¢/2)) - (m/4)) > (1 — €)(N/4) paths going through Sp, and the
same for paths that use the maximum matchings in the various B;’s.

27

Theorem 6.7 For every positive polynomial p, assuming the existence of one-way functions, there
exists an almost-truthful pseudo-implementation by an ordinary machine of a uniformly selected

N -vertex graph that satisfies the following property: For all but at most an €(N) def 1/p(logy N)
fraction of the disjoint set-pairs (L,R) C [N] x [N] it holds that the bipartite graph induced by
(L, R) has a matchning of size (1 — e(N)) - min(|L|,|R)).

As in Theorem 6.6, the implementation is straightforward, and the issue is analyzing it.

Proof Sketch: Observe that almost all relevant set-pairs satisfy |L| = |R| =~ N/3, and so we
focus on these pairs. It can still be shown that in a random graph, with overwhelmingly high
probability, all the corresponding bipartite graphs have a sufficiently large matching. However, this
will not hold if we only consider matchings that conform with the small bipartite graphs B;’s. Still,
with overwhelmingly high probability, almost all the bipartite graphs induced by pairs (L, R) as
above will have a sufficiently large matching that does conform with the small bipartite graphs
By’s. Thus, for € = ¢(N), the distinguisher just selects O(1/¢) different ¢’s, and for each such ¢ tests
the size of the maximal matching for O(1/¢) random (L, R)’s. Needless to say, the distinguisher
does not select such huge sets, but rather selects their projection on F;. That is, for each such i
(and each attempt), the distinguisher selects a random pair (L;, R;) C P, x P;. W

A different perspective: The proofs of Theorems 6.6 and 6.7 actually establish that, for the
corresponding specifications, the almost-truthfulness of an implementation follows from its com-
putational indistinguishability (w.r.t the specification).! An interesting research project is to
characterize the class of specifications for which the above implication holds.

Theorem 6.8 Suppose that S is a specification for which the following two conditions hold.

1. For every implementation I and every polynomial p there exists a probabilistic polynomial-
time oracle machine D and a polynomial q such that if Pr[(I,n) ¢ Supp(S,n)] > 1/p(n) then
Pr[DUM(A") = 1] = Pr[DEM(17) = 1]| > 1/g(n).

2. S has an almost-truthful pseudo-implementation by an oracle machine that has access to a
random oracle.

Then, assuming the existence of one-way function, S has an almost-truthful pseudo-implementation
by an ordinary probabilistic polynomial-time machine.

Proof: Let I be the implementation guaranteed by Condition 2, and let I’ be the implementation
derived from I by replacing the random oracle with a pseudorandom function. Thus, I’ is a pseudo-
implementation of S. Using Condition 1, it follows that I’ is almost-truthful to S, because otherwise
we obtain an efficient oracle machine D that distinguishes I’ from S. W

19That is, these proofs establish the first condition in Theorem 6.8, whereas the second condition is established by
the straightforward construction of a random graph. A key point in these examples is that, with overwhelmingly high
probability, a random object in (S,n) has stronger properties that those of all objects in (S,n). This fact makes it
easier to distinguish a random object in (S,n) from an object not in (S, n). For example, with overwhelmingly high
probability, a random graph has larger connectivity than required in Theorem 6.6 and this connectivity is achieved
via very short paths (rather than arbitrary ones). This fact enables to distinguish (S,n) from an implementation
that lacks sufficiently large connectivity.

28

7 Supporting Complex Queries regarding Random Graphs

In this section we provide truthful implementations of random graph while supporting complex
queries, in addition to the standard adjacency queries. The graph model as in Section 6, and as
in Section 6.1 we present our (truthful) implementations in terms of oracle machines. Let us start
with a simple example.

Proposition 7.1 There exists a truthful close-implementation by an oracle machine of the follow-
ing specification. The specifying machine selects uniformly an N-vertex graph and answers distance
queries regarding any pair of vertices. Furthermore, there exists a truthful close-implementation of
the related specification that returns a uniformly distributed path of shortest length.

Proof: Consider the property of having diameter at most 2. This property satisfies Condition C
(e.g., by an N-vertex star). Thus, using Theorem 6.2, we obtain a close-implementation of a
random graph, while our implementation always produces a graph having diamater at most 2 (or
rather exactly 2). Now, we answer the query (u,v) by 1 if the edge (u,v) is in the graph, and by 2
otherwise. For the furthermore-part, we add v/N such stars, and serve queries regarding paths of
length 2 by using the center of one of these stars (which is selected by applying an independent
random function to the query pair). W

This example is not very impressive because the user could have served the distance-queries in
the same way (by only using adjacency queries to the standard implementation of a random graph).
(A random shortest path could have also been found by using the standard implementation.) The
only advantage of Proposition 7.1 is that it provides a truthful implementation of the distance-
queries (rather than merely an almost-truthful one obtained via the trivial implementation). A
more impressive example follows. Recall that a random N-vertex graph is likely to have many
(logy N)-vertex cliques that include each of the vertices of the graph, whereas it seems hard to find
such cliques (where in hard we mean unlikely to achieve in time poly(log V), and not merely in
time poly(IN)). Below we provide an implementation of a service that answers queries of the form
v € [N] with a log-sized clique containing the vertex v.

Theorem 7.2 There exists a truthful close-implementation of the following specification. The
specifying machine selects uniformly an N-vertex graph and, in addition to the standard adjacency
queries, answers (Log-Clique) queries of the form v by providing a random [logy N|-vertezx clique
that contains v (and a special symbol if no such clique ezists).

Proof Sketch: Let £ = [logy N| — 1 and consider a simple partition of [N] to T' = [N/{] subsets,
S1,..., ST, such that |S;| = £ fori =1,....,T -1 (eg., Si ={(i—-1l+j:j5=1,..,£}). Use
the oracle to implement a random graph, G’ = ([N], E'), as well as a random onto?® function
f :[N]—|[T] and a random invertible permutation 7 : [N]—[N] (as in Theorem 2.13). The graph
we implement will consist of the union of G’ with N cliques, where the i-th clique resides on the
vertex set {i} U {m(j) : j € Sy;)}. The Log-Clique queries are served in the obvious manner; that
is, query v is answered with {v} U{7(u) : u € Sp}. (For simplicity, we ignore the unlikely case
that v € {m(u) : u € Sp(,)}; this can be redeemed by letting £ = [logy N| and answering with a
random £-subset of {v} U {m(u) : u € Sj(,}.) Implementing the adjacency queries is slightly more
tricky. The query (u,v) is answered by 1 if and only if either (u,v) € E or u and v reside in one of
the N’s cliques we added. The latter case may happen if and only if one of the following subcases
holds:

20Such a function may be obtained by combining the identity function over [T] with a random function f' :
{T' +1,...,N}—[T], and randomly permuting the domain of the resulting function.

29

1. Either u € {m(w) : w € Sy} or v € {m(w) : w € Sy, }; that is, either 7 (u) € Si(v) Or
1

T iv)es f(u)- Fach of these conditions is easy to check by invoking f and 7 .

2. There exists an z such that u,v € {m(w) : w € Sy(;)}, which means that = !(u),7 ' (v) €
Sf(z)- Equivalently, recalling that f is onto, we may check whether there exists a y such that
7 Y(u), 7 }(v) € Sy, which in turn is easy to determine using the simple structure of the sets
S,’s (i.e., we merely tests whether or not [7~1(u)/f] = [7~1(v)/£]).

Thus, our implementation is truthful to the specification. To see that it is a close-implementation
of the specification, observe that it is unlikely that two different Log-Clique queries are “served” by
the same clique (becuase this means forming a collision under f). Conditioned on this rare event
not occurring, the Log-Clique queries are served by disjoint random cliques, which is what would
essentially happen in a random graph (provided that poly(log N) queries are made). Finally, it
is unlikely that the answers to the adjacency queries that are not determined by prior Log-Clique
queries be affected by the sparse sub-graph (of N small cliques) that we inserted under a random
permutation. The theorem follows. W

Another example: We consider the implementation of a random graph along with answering
queries regarding a random Hamiltonian cycle in it, where such cycle exists with overwhelmingly
high probability. Specifically, we consider queries of the form what is the distance between two
vertices on the cycle.

Theorem 7.3 There exists a truthful close-implementation of the following specification. The
specifying machine selects uniformly an N-vertex graph G, and in case G is Hamiltonian it uni-
formly selects a (directed) Hamiltonian Cycle in G, which in turn defines a cyclic permutation
o : [N] — [N]. In addition to the standard adjacency queries, the specification answers travel
queries of the form (trav,v,t) by providing o'(v), and distance queries of the form (dist,v,w) by
providing the smallest t > 0 such that w = o' (v).

We stress that the implementation must answer each possible query in time polynomial in the
vertex name (which may be logarithmic in the distance t).

Proof Sketch: It will be convenient to use the vertex set V' = {0,1,...,N — 1} (instead of
[N]). We use the random oracle to implement a random graph G' = (V, E’) as well as a random
permutation 7 : V — V along with its inverse. We define a graph G = (V,E) by E gy C,
where C' = {(7(i),7(i+1 mod N)) : i€V}, and use C to answer the special (Hamiltonian) queries.
That is, we answer the query (trav,v,t) by (7~ !(v) + ¢t mod N), and the query (dist,v,w) by
7 Y(w) — 71 (v) mod N. The standard adacency query (u,v) is answered by 1 if and only if either
(u,v) € E or 7 }(u) = 77'(v) £1 (mod N). (Indeed, the above construction is reminiscent of
the “fast-forward” construction of [27] (stated in Theorem 2.14).)

To see that the above truthful implementation is statistically-indistinguishable from the speci-
fication, we use the following three observations:

1. If a (labeled) graph appears in the specification (resp., in the implementation) then all is
(labeled) isomorphic copies appear in it. Consequently, for any Hamiltonian Cycle, the set
of Hamiltonian graphs in which this cycle has been selected in the specification (resp., in the
implementation) is isomorphic to the set of Hamiltonian graphs in which any other Hamilto-
nian cycle has been selected. Thus, we may consider the conditional distribution induced on
the specification (resp., on the implementation) by fixing any such Hamiltonian Cycle.

30

2. Conditioned on any fixing Hamiltonian Cycle being selected in the implementation, the rest
of the graph selected by the implementation is truly random.

3. Conditioned on any fixing Hamiltonian Cycle being selected in the specification, the rest
of the graph selected by the specification is indistinguishable from a random graph. The
proof of this assertion is similar to the proof of Lemma 6.3. The key point is proving that,
conditioned on a specific Hamiltonian Cycle being selected, the (rest of the) graph selected
by the specification has sufficiently high entropy. Note that here we refer to the entropy of
the remaining (];]) — N edges, and that the vertex pairs are not all identical but rather fall
into categories depending on their distance as measured on the selected Hamiltonian Cycle.
We need to show that a random vertex-pair in each of these categories has a sufficiently high
(conditional) entropy. Thus, this observation requires a careful proof to be presented next.

Indeed, the above discussion suggests that we may give the entire Hamiltonian cycle to the machine
that inspects the rest of the graph (in an attempt to distinguish the implementation from the
specification). Thus, we assume, without loss of generality, that this machine makes no adjacency
queries regarding edges that participate in the cycle. The first observation says that we may
consider any fixed cycle, and the second observation says that a machine that inspects the rest of
the graph sees truly random edges. The third observation, proved below, asserts that making a
few queries to the rest of the conditional space of the specification, yields answers that also look
random.

We consider the conditional distribution of the rest of the graph selected by the specification,
given that a specific Hamiltonian Cycle was selected. (Indeed, we ignore the negligible (in)
probability that the graph selected by the specification is not Hamiltonian.) Using Bayes’ Law, the
conditional probability that a specific graph is selected is inversely proportional to the number of
Hamiltonian Cycles in that graph. Using known results on the concentration of the latter number
in random graphs (see, e.g., [20, Thm. 4]), we infer that in all but an N~2 fraction of the N-vertex
graphs the number of Hamiltonian Cycles is at least an exp(—2(In N)/2) > N~ fraction of its
expected number. Thus, the conditional entropy of the selected graph (conditioned on the selected
cycle) is () — N — o(NN). Details follow.

For T = (];]), let X = X;--- X7 denote the graph selected by the specification, and Y (G)
denote the Hamiltonian Cycle selected (by the specification) given that the graph G was selected.
Let #yc(G) denote the number of Hamiltonian Cycles in the graph G, where cyclic shifts and
traspositions of cycles are counted as if they were different cycles (and so the number of Hamiltonian
Cycles in an N-clique is N!). Thus, E(#yc(X)) = 27V -(N!). An N-vertex graph G is called good
if #4c(G) > 27V - (N —1!), and G denotes the set of good N-vertex graphs. For a Hamiltonian
Cycle C, we denote by G(C) the set of graphs in G that contain the cycle C. Then, it holds that

HX|Y(X)=C) > Z Pr[X =G|Y(X) =C]-logy(1/Pr[X = G|Y(X) = C))
Geg(C)

> (1-N%)- min (- log,(PrlX = GIY (X) = C])}

a- N R e PelY () = 21X =)

= (1-N"%)- min —lo r = =
G0 | 1oy (Pelx = @)

= (1-N7%- min {log2<1/N!>+log2<#Hc<G)>+(N)}

GeG(0) 2

31

Using the fact that G is good (i.e., G € G(Q)), it follows that logy(#gc(G)) > logy (27 - (N —11)),
which in turn equals logy(N!) — N — logy, N. We thus get,

HX|Y(X)=C) > 1-N7?). ((g) — N —log, N) (2)

Recall that the condition Y (X) = C determines N vertex-pairs in X, and so the entropy of the
remaining 7" = (1;[) — N pairs is at least 77 — logy N. Partitioning these (undetermined) pairs
according to their distances in C, we conclude that the entropy of the N/2 pairs in each such
distance-class is at least (N/2) — logy N. (Indeed, the distance class of undetermined pairs do
not contain distance 1 (or N — 1), which correspond to the forced cycle-edges.) We stress that
our analysis holds even if the machine inspecting the graph, is given the Hamiltonian cycle for
free. This machine may select the induced subgraph that it wants to inspect, but this selection is
determined upto a shifting of all vertices (i.e., a rotation of the cycle). This randomization suffices
for concluding that the expected entropy of the inspected subgraph (which may not include cycle
edges) is at least (1 — ((2logy N)/N)) - (;), where ¢ is the number of vertices in the subgraph.
As in the proof of Lemma 6.3, this implies that the inspected subgraph is at distance at most

O(\/((log2 N)/N) - (%)) < t-N~(1=2()/2 from a random t-vertex graph. The theorem follows. [l

8 Random Bounded-Degree Graphs and Global Properties

In this section we consider huge bounded-degree simple graphs, where the vertices are labelled (and
there are no self-loops or parallel edges). We consider specifications of various distributions over
such graphs, where in all cases the specifying machine responds to neighborhood queries (i.e., the
queries correspond to vertices and the answer to query v is the list of vertices that are adjacent to
vertex v).

The first issue that arises is whether we can implement a random bounded-degree graph or
alternatively a random regular graph. Things would have been quite simple if we were allowing
also non-simple graphs (i.e., having self-loops and parallel edges). For example, a random d-regular
N-vertex non-simple graph can be implemented by pairing at random the dN possible “ports” of
the N vertices. We can avoid self-loops (but not parallel edges) by generating the graph as a union
of d perfect matchings of the elements in [IN]. In both cases, we would get a close-implementation
of a random d-regular N-vertex (simple) graph, but parallel edges will still appear with constant
probability (and thus this implementation is not truthful w.r.t simple graphs). In order to obtain a
random simple d-regular N-vertex graph, we need to take an alternative route. The key observation
underlying this alternative is captured by the following lemma:

Lemma 8.1 For d > 2, let G = ([N], E) be any d-regular N-vertex graph having girth g. Let G’
be obtained by randomly permuting the vertices of G (and presenting the incidence lists in some
canonical order). Then, any machine M that queries the graph for the neighborhoods of q vertices
of its choice, cannot distinguish G' from a random d-regular N -vertex (simple) graph, except than
with probability O(q*/(d — 1)9~1/2). In the case d = 2 and q < g — 1, the probability bound can be
improved to O(q?/N).

Recall that the girth of a graph G is the length of the shortest simple cycle in G, and that (d —
1)9-2)/2 < N always holds (for a d-regular N-vertex graph of girth g).2! Note that Lemma 8.1 is

21The girth upper-bound (i.e., g < 2 + 2log,_, N) follows by considering the (vertex disjoint) paths of length
(g — 2)/2 starting at any fixed vertex. The existence of d-regular N-vertex graphs of girth log; ; N was shown
(non-constructively) in [9].

32

quite tight: For example, in the case d = 2, for ¢ < /N, the N-vertex graph G may consist of
a collection of g-cycles, and taking a walk of length g in G’ (by making g — 1 queries) will always
detect a cycle G', which allows to distinguish G’ from a random 2-regular N-vertex (in which the
expected length of a cycle going through any vertex is (IN)). In the case d > 3, the graph G
may consist of connected components, each of size (d — 1) < N, and taking a random walk of
length (d — 1)9/2 in G’ is likely to visit some vertex twice, which allows to distinguish G’ from a
random d-regular N-vertex (in which this event may occur only after v/N steps). Below, we will
use Lemma 8.1 with the following setting of parameters.

Corollary 8.2 For fized d > 2 and g(N) = w(loglogN), let G = ([N],E) be any d-regular N-
vertezx graph having girth g(N). Let G' be obtained from G as in Lemma 8.1. Then, any machine M
that queries the graph for the neighborhoods of poly(log N) wertices of its choice, cannot distinguish
G’ from a random d-regular N -vertex (simple) graph, except than with negligible in log N probability.
The claim holds also in the case that d = 2 and g(N) = (log N)“().

For d > 2 the girth can be at most logarithmic, and explicit constructions with logarithmic girth are
known for all d > 3 and a dense set of N’s (which is typically related to the set of prime numbers;
see, e.g., [26, 19, 24]). For d = 2, we may just take the N-cycle or any N-vertex graph consisting
of a collection of sufficiently large cycles.

Proof Sketch for Lemma 8.1: We bound the distinguishing gap of an oracle machine (which
queries either a random d-regular N-vertex graph or the random graph G') as a function of the
number of queries it makes. Recall that G’ is a random isomorphic copy of G, whereas a random
d-regular N-vertex graph may be viewed as a random isomorphic copy of another random d-regular
N-vertex graph. Thus, intuitively, the specific labels of queried vertices and the specific labels of
the corresponding answers are totally irrelevant: the only thing that matters is whether or not
two labels are equal.?? Equality (between labels) can occur in two cases. The uninteresting case
is when the machine queries a vertex u that is a neighbor of a previously-queried vertex v and
the answer contains (of course) the label of vertex v. (This is uninteresting because the machine,
having queried v before, already knows that v is a neighbor of u.) The interesting case is that
the machine queries a vertex and the answer contains the label of a vertex v that was not queried
before but has already appeared in the answer to a different query. An important observation is
that, as long as no interesting event occurs, the machine cannot distinguish the two distributions
(becuase in both cases it knows the same subgraph, which is a forest). Thus, the analysis amounts
to bounding the probability that an interesting event occurs, when we make g queries.

Let us consider first what happens when we query a random d-regular N-vertex (simple) graph.
We may think of an imaginary process that constructs the graph on-the-fly such that the neighbors
of vertex v are selected only in response to the query v (cf. [14, Thm. 7.1]). This selection is
done at random according to the conditional distribution that is consistent with the partial graph
determined so far. It is easy to see that the probability that an interesting event occurs in the i-th
query is at most (i — 1)d/(dN — (i — 1)d), and so the probability for such an event occurring in ¢
queries is at most ¢%/N.

22Essentially, the machine cannot determine which vertex it queries; all that it actually decides is whether to query
a specific vertex that has appeared in previous answers or to query a new vertex (which may be viewed as randomly
selected). (Formally, a specific new label indicated by the querying machine is mapped by the random permutation to
a new random vertex.) Similarly, the labels of the vertices given as answer do not matter, all that matters is whether
or not these vertices have appeared in the answers to previous queries (or as previous queries). (Again, formally, the
new vertices supplied in the answer are assigned, by the random permutation, new random labels.)

33

The more challenging part is to analyse what happens when we query the graph G. (Recall
that we have already reduced the analysis to a model in which we ignore the specific labels, but
rather only compare them, and analogously we cannot query a specific new vertex but rather only
query either a random new vertex or a vertex that has appeared in some answer.)?® To illustrate
the issues at hand, consider first the case that d = 2 (where G consists of a set of cycles, each of
length at least g). In this case, we have the option of either to proceed along a path that is part
of a cycle (i.e., query for the neighbors of the an end-point of a currently known path) or to query
for a random new vertex. Assuming that we make less than g — 1 queries, we can never cause an
interesting event by going along a path (because an interesting event may occur in this case only
if we go around the entire cycle, which requires at least ¢ — 1 queries). The only other possibility
to encounter an interesting event is by having two paths (possiblly each of length 1) collide. But
the probability for such an event is bounded by ¢?/N, where g is the number of queries that we
make.?*

We now turn to the more interesting case of d > 2. As in case d = 2, taking a walk of length
g — 2 from any vertex will not yield anything useful. However, in this case, we may afford to
take longer walks (because ¢ may be much larger than g). Still, we will prove that, in this case,
with probability at least 1 — ¢? - (d — 1)*(9*3)/ 2. the uncovered subgraph is a forest. The proof
relies both on the the girth lower-bound of G and on a sufficiently-good rapid-mixing property
(which follows from the girth lower-bound). We bound the probability that a cycle is closed in
the current forest by the probability that two vertices in the forest are connected by a non-tree
edge, where the probability is taken over the possible random vertices returned in response to a
new-vertex request and over the random order in which neighbors of a query-vertex are provided.
Indeed, a key observation is that when we query a vertex that has appeared in some answer, we
may think that this vertex is selected at random among the unqueried vertices appearing in that
answer.”> Taking a union bound on all possible (3) vertex pairs (i.e., those in the forest), we bound
the probability that either two ends of a discovered path (in one tree) or two vertices in different
current trees are connected by an edge. (In both cases, these vertices are actually leaves.)

We consider each of these two cases seperately: In the latter case (i.e., leaves in different trees),
the two vertices (which are not connected in the currently uncovered subgraph) are uniformly
distributed in G, and thus the probability that they are connected is essentially d/N. The situation
here is essentially as analyzed in the case d = 2: we have two paths, each initiated at a random
(new at the time) vertex, leading to the leaves in question, and thus the latter are almost uniformly
and independently distributed.

Turning to the former case (i.e., endpoints of a path in a tree), we use the girth hypothesis
to infer that this path must have length at least g — 1 (or else its endpoint are definitely not
connected). However, the machine that discovered this path actually took a random walk (possiblly
to two directions) starting from one vertex, becuase we may assume that this is the first time in
which two vertices in the current forest are connected by a current non-tree edge. We also use

23Thus, we may consider querying G itself (rather than querying G”).

24Using a union bound over all query pairs, we bound the probability that the ith query collides with the j-th
query. Each of these two queries is obtained by a path of fixed length starting from a uniformly and distributed
vertex (which was new at the time). Thus, these two queries are almost uniformly and independently distributed (in
[N]), and the probability that they are neighbors is at most 1/(N — q).

#That is, the correspondance between the new place-holders in the answer and the new real neighbors of the
queried vertex is random. Formally, we may define the interaction with the graph such that at each point only the
internal nodes of the currently revealed forest are assigned a serial number. Possible queries may be either for a new
random vertex (assigned the next serial number and typically initiating a new tree in the forest) or for a random
leaf of a specific internal vertex (which typically extends the corresponding tree and turns one of these leaves to an
internal vertex with d — 1 new leaves).

34

the hypothesis that our exploration of the path (i.e., queries regarding vertices that appeared in
previous answers) is actually random (i.e., we effectively extend the current end-point of the path
by a uniformly selected neighbor of that end-point). Now, the end-point of such a path cannot hit

any specific vertex with probability greater than v def (d —1)~(0=D/2 because after (g —1)/2 steps
the end-point must be uniformly distributed over the (d — 1)(9~1/2 leaves of the tree rooted at
the start vertex (and the max-norm of a distribution cannot increase by additional random steps).
Fixing the closest (to the start vertex) end-point, it follows that the probability that the other
end-point hits the neighbor-set of the first end-point is at most d - v = O((d — 1)~9~1/2). To
summarize, the probability that an interesting event occurs, while making g queries, is at most
O(q? - (d —1)~(9=1/2)_ The lemma follows. [l

Implementing random bounded-degree simple graphs: We now turn back to the initial
problem of implementing random bounded-degree (resp., regular) simple graphs.

Proposition 8.3 For every constant d, there exist truthful close-implementations of the following
two specifications:

1. A random graph of maximum degree d: For size parameter N, the specification selects uni-
formly a graph G among the set of N-vertex simple graphs having mazimum degree d. On
query v € [N], the machine answers with the list of neighbors of vertez v in G.

2. A random d-regular graph: For size parameter N, the specification selects uniformly a graph
G among the set of N-vertex d-reqular simple graphs, and answers queries as in Part 1.

Proof: We start with Part 2. This part should follow by Corollary 8.2, provided that we can
implement a random isomorophic copy of a d-regular N-vertex graph of sufficiently large girth.
This requires an explicit construction of the latter graph as well as an implementation of a random
permutation and its inverse (as provided by Theorem 2.13). Specifically, let G be the fixed graph,
and 7 the random relabelling of its vertices. The we answer query v, by first determining the
preimage of v in G (i.e., 771 (v)), next find its neighbors (using the explicitness of the construction
of Gy), and finally return their images under 7. Indeed, this process depends on the ability to
provide explicit constructions of adequate d-regular N-vertex graphs (i.e., Gn’s). This is trivial in
the case d = 2 (e.g., by the N-cycle). For other values of d > 3, adequate constructions can be
obtained from [26, 19, 24, 22] (possibly by dropping several (easily identified) perfect matchings
from the graph). These construction apply for a dense set of N’s (which are typically of the form
p(p — 1)2 for any prime p), but we can obtain other sizes by combining many such graphs (note
that we are not even required to give a connected graph, let alone a good expander).

We now turn to Part 1. We first note that most graphs of maximum degree d have (1—0(1))-dN/2
edges. Furthermore, for T = ©(v/dN) and D = O(\/dN), all but a negligible (in N) fraction of the
graphs have (dN/2) — T £ D edges. In this range, random N-vertex graphs with a given number of
edges and degree bound d, can be closely-implemented by selecting a random d-regular N-vertex
graph and omitting the adequate number of edges. Thus, all that is needed is to select M at
random with probability proportional to the number of N-vertex graphs with M edges and degree
bound d. This can be done by using known expressions for these numbers, and techniques such as
in Appendix A. W

35

A general result: The proof of Proposition 8.3 actually yields a truthful close-implementation of
several other specifications. Consider, for example, the generation of random connected d-regular
graphs, for d > 3. Since the explicit constructions of d-regular graphs are connected (and their
modifications can easily made connected), applying Corollary 8.2 will do. (Indeed, we also use the
fact that, with overwhelmingly high probability, a random d-regular graph is connected.) More
generally, we have:

Theorem 8.4 Let d be fized and II be a graph property that satisfies the following two conditions:

1. The probability that Property 11 is not satisfied by a uniformly chosen d-regular N -vertex graph
1s negligible in log V.

2. Property 11 is satisfied by a family of strongly-constructable d-reqular N -vertex graphs having
girth w(loglog N).

Then, there ezists a truthful close-implementation (by an oracle machine) of a uniformly distributed
d-reqular N -vertex graph that satisfies property 11.

We note that Condition 1 may be relaxed. It suffices to require that a random d-regular graph and
a random d-regular graph having Property II are staistically-indistinguishable (by a machine that
makes poly-logarithmically many queries). In particular, a random 2-regular graph and a uniformly
distributed connected 2-regular graph are statistically-indistinguishable, and thus we can provide
a truthful close-implementation of the latter specification. We mention that Theorem 8.4 yields
truthful close-implementations to random d-regular graphs that are required to be Hamiltonian,
Bipartite, have logarithmic girth, etc.

9 Supporting Complex Queries regarding Length-Preserving Func-
tions

In this section we consider specifications that, in addition to the standard evaluation queries, answer
various queries regarding a random function f : {0,1}" — {0,1}". The first type of queries we
handle are interated-evaluation queries, where the number of iterations may be super-polynomial
in the length of the input (and thus cannot be implemented in a straightforward manner).

Theorem 9.1 There exists a truthful close-implementation of the following specification. The
specifying machine, uniformly selects a function f : {0,1}" — {0,1}", and answers queries of the
form (z,m), where x € {0,1}" and m € [2°°Y(™)], with the value f™(x) (i.e., f iterated m times
on).

Proof: Consider first an implementation by a random N-cycle, where N = 2". That is, using a
random 1-1 mapping 7 : {0,..., N — 1} — {0,1}", define f(x) = 7(7 '(x) + 1 mod N), and answer
the query (z,m) by m(7~!(x) + m mod N). (Indeed, the above construction is reminiscent of the
“fast-forward” construction of [27] (stated in Theorem 2.14).) The only thing that goes wrong is
that we know the cycle length of f and thus can distinguish it from a random function by any
query of the form (-, N'). Thus, we modify the construction so to obtain a function f with unknown
cycle lengths. A simple way of doing this is to use two cycles, while randomly selecting the length
of the first cycle. That is, select M uniformly in [N], and let

m(r~1(z) + 1 mod M) if n~(z) € {0,..., M — 1}
flz) = m(r~Hz) +1) if 7=1(z) € {M,...,N — 2}
(M) otherwise (i.e., 7 1(z) = N — 1)

36

We could have tried to select f such that its cycle structure is distributed as in case of a random
function, but we did not bother to do so. Nevertheless, we prove that any machine that makes ¢
queries cannot distinguish f from a random function with probability better than poly(n)-q2/2%™).
Actually, in order to facilitate the anaysis, we select M uniformly in {(N/3),...,(2N/3)}.

We turn to prove that the above truthful implementation is statistically-indistinguishable from
the specification. As in the proof of Lemma 8.1, we may disregard the actual values of queries and
answers in the querying process, and merely refer to whether these values are equal or not. We also
assume, without loss of generality, that the querying machine makes no redundent queries (e.g., if it
knows that ¥ = f¥(z) and z = f*(y) then it refrains from making the query (z, k + £), which would
have been answered by z = f¥*#(z)). That is, at any point in time, the querying machine knows
of a few chains, each having the form (z, f*(z), f*2(z), ..., f*¥*(z)), for some known = € {0,1}" and
k1 < ko < -++ < k;. Typically, the elements in each chain are distinct, and no element appears in
two chains. In fact, as long as this typical case holds, there is no difference between querying the
specification versus querying the implementation. Thus, we have to upper bound the probability
that an untypical event occurs (i.e., a query is answered by an element that already appears on one
of the chains, although the query was not redundent).

Let us first consider the case that f is constructed as in the implementation. For the i-th
non-redundent query, denoted (x, k), we consider three cases:

Case 1: z is not on any chain. The probability that f*(z) hits a known element is at most (i —
1)/(N —(i—1)), because z is uniformly distributed among the N — (i — 1) unknown elements.
(Since f is 1-1, it follows that f*(z) is uniformly distributed over a set of N — (i—1) elements.)

Case 2: z is on one chain and f¥(z) hits another chain. The probability to hit an element of another
chain (which must belong to the same cycle) is (i —1)/(N’ — (i — 1)?), where N’ > N/3 is the
number of vertices on the cycle (on which z reside). This is because the chains on the same
cycle may be though of having a random relative shift (which ignore the collisions of known
vertices). For i < \/N/2, we obtain a probability bound of i/Q(N).

Case 3: z is on some chain and f*(z) hits the same chain. Without loss of generality, suppose that
f*(x) = z. For this to happen, the length N’ of the cycle (on which z reside) must divide k.
We upper-bound the probability that all prime factors of N’ are prime factors of k. Recall that
N’ is uniformly selected in [(N/3), (2N/3)], let P = P, denote the set of prime factors of &, and
note that |P| = poly(n) (by the hypothesis k € [2P°Y(™)]). We bound the number of integers
in [N] that have all prime factors in P by bounding, for every ¢ € [n], the product of the

number of ¢-bit long integers with all prime factors in P’ 4o {p € P:p < n°} and the number

of (n—t)-bit integers with all prime factors in P” def P\ P', where c is a suitable constant (i.e.,
satisfying |P| < n¢1). For t > n/logn, the size of the first set can be upper-bounded by the
number of n°~smooth numbers in [2¢],26 which in turn is bounded by 2¢—(#/¢)+o(t) r 9(1-(1/e))t,

The size of the second set is upper-bounded by ((nit)‘ﬁ’;‘logn)) < 20=(/))(n=t) where the

inequality uses |P"| < n°~!. Thus, we upper-bound the probability that an uniformly chosen
integer in [(N/3), (2N/3)] has all prime factors in P by

n/logn n
S gtk 3 gm(/epmbetn) _ g=(n/e)+on)
t=1 t=(n/logn)+1

26 An integer is called y-smooth if all its prime factors are smaller that y. The fraction of y-smooth integers in [z]
is upper-bounded by u="*°(")| where u = (log z)/(log y); see, [7].

37

Thus, the probability that we form a collision in ¢ queries (to the implementation) is at most
q2 . Nfl/(c+1)_

We now turn to the case that f is a random function (as in the specification). Suppose that
we make the non-redundent query (x, k). We wish to upper-bound the probability that f*(x) =y,
for some fixed y (which is on one of the chains). It is well-known that the expected number
of ancestors of y under a random f is ©(v/N); see, e.g., Theorem 33 in [6, Ch. XIV]. Thus,
Pr;]| Uis1 £ (y)| > N34 = O(N~/%), and it follows that Pr[f*(z) = y] < N~V4 + O(N~1/4),
for any fixed (z,%) and y. (Indeed, it seems that this is a gross over-estimate, but it suffices for our
purposes.) It follows that the probability that we form a collision in ¢ queries to the specification
is at most O(¢?/N'/4). W

Comment: The proof of Theorem 9.1 can be easily adapted so to provide a truthful close-
implementation of a random permutation with iterated-evaluation and iterated-inverse queries.
That is, we refer to a specifying machine that uniformly selects a permutation p : {0,1}" — {0,1}",
and answers queries of the form (,m), where z € {0,1}" and m € [+2P°Y(™)], with the value p"(x).
The implementation is exactly the one used in the proof of Theorem 9.1, and thus we should only
analyze the probability of collision when making (non-redundent) queries to a random permutation.
For any fixed (x, k) and y, the probability that 7*(z) = y equals the probability that = and y resides
on the same cycle of the permutation p and that their distance on this cycle equals £ mod ¢, where
£ is the length of this cycle. The claim follows using the fact that £ is distributed uniformly over [N]
(becuase the probability that x resides on a cycle of a certain length equals the expected number
of elements residing on cycles of such length divided by N). An alternative implementation of
a random permutation supporting iterated-evaluation (and iterated-inverse) queries was suggested
independently by Tsaban [28]. Interestingly, his implementation works by selecting a cycle structure
with distribution that is statistically-close to that in a random permutation (and using a set of cycles
of corresponding lengths, rather than always using two cycles as we do).

Preimage queries to a random mapping: We turn back to random length preserving func-
tions. Such a random function f : {0,1}" — {0,1}" is highly unlikely to be 1-1, still the set of
preimages of an element under the function is well-defined (i.e., f~'(y) = {z : f(z)=v}). Indeed,
this set may be empty, be a singleton or contain more than one preimage. Furthermore, with
overwhelmingly high probability, all these sets are of size at most n. The corresponding “inverse”
queries are thus natural to consider.

Theorem 9.2 There exists a truthful close-implementation of the following specification. The
specifying machine, uniformly selects a function f : {0,1}" — {0,1}", and, in addition to the
standard evaluation queries, answers the inverse-query y € {0,1}" with the value f'(y).

Proof: We start with a truthful implementation that is not statistically-indistinguishable from
the specification, but is close to being so and does present our main idea. For £ = O(logn) (to be
determined), we consider an implementation that uses the orcale in order to define two permutations
71 and 7y over {0,1}" (along with their inverses) as well as a random function g : {0,1}" — {0,1}*.
We define f(x) = ma(pref,,_,(m1(z))g(71(x))), where pref;(z) denotes the i-bit long prefix of z. That

is, the function g induces collisions within the structured sets S,, where S, < {afB: B € {0,1}¢},
and the permutation 7y (resp., m2) randomly route inputs (resp., outputs) to (resp., from) these
sets. Indeed, it is instructive to note that g induces a collection of random independent functions
go : {0,1}* — {0,1}* such that g,(8) = g(aB), and that each g, induces a random function on the

38

corresponding S, (i.e., mapping af to ags(3)). Thus, letting suff;(z) denote the i-bit long suffix
of z, we may write

f(z) = m2(aga(B)), where o «— pref,,_,(m1(z)) and 8 « suff,_p(mi(x)). (3)

The evaluation queries are answered in a straightforward way (i.e., by evaluating 71, g and 7).
The inverse-query y is answered by first computing a8 = 75 *(y), where |a| = n—£, then computing

R.(B) = def {8 : g(af') = B} via exhaustive search, and finally setting f(y) = {7 ' (af) : #' €
R.(B)}. Indeed, the key point is that, since £ = O(logn), we can afford to determine the set
R, (B) by going over all possible 8/ € {0,1}¢ and including §' if and only if g(a3') = 8. The
random permutation 71 (resp., m9) guarantees that it is unlikely to make two evaluation queries
(resp., inverse-queries) that are served via the same set S,. It is also unlikely to have a non-
obvious “interaction” between these two types of queries (where an obvious interaction is obtained
by asking for a preimage of an answer to an evaluation query or vice versa). Thus, the answers to
the evaluation queries look random, and the answers to the inverse-queries are almost independent
random subsets with sizes that corresponds to the collision of 2¢ elements (i.e., 2¢ balls thrown at
random to 2¢ cells).

The only thing that is wrong with the above implementation is that the sizes of the preimage-sets
correspond to the collision pattern of 2¢ balls thrown at random to 2¢ cells, rather than to that of the
collision pattern of 2" balls thrown at random to 2™ cells. Let p;(m) denote the expected fraction
of cells that contain 7 balls, when we throw at random m balls into m cells. Then, po(m) = 1/e,
for all sufficiently large m, whereas

womy~ T (1 222) @)

We focus on i < n (because for i > n both p;(2¢) and p;(2") are smaller than 272"). We may ignore
the (negligible in n) dependence of p;(2") on 2", but not the (noticeable) dependence of p;(2%) on
2¢ = poly(n). Specifically, we have:

i pi(2") pi(n®+ 1) = (I[j= (1 = (G = 2)n") - pi(27)

e /(@) |~ (o1~ (3—2)71’6))(gid))
—1 (1 c%

—C

—_

/2 (1+ /2

e
e

e /6 z(l—n* -e /6
e ~ (

e

=W N =

—1/24 1-1.5n"¢)-e"1/24
[i>4]e'/@) [(A-06Gn"9)) e /(i) |

Thus, the singleton and two-element sets are slightly over-represented in our implementation (when
compared to the specification), whereas the larger sets are under-represented. In all cases, the devi-
ation is by a factor related to 1+ (1/poly(n)), which cannot be tolerated in a close-implementation.
Thus, all that is required is to modify the function g such that it is slightly more probable to
form larger collisions (inside the sets S,’s). We stress that we can easily compute all the relevant
quantities (i.e., all p;(2")’s and p;(2%)’s, for i = 1,...,n), and so obtaining a close-implementation
is merely a question of details, which are shortly outlined next.

Let us just sketch one possible approach. For N dfon and ¢ & 2¢, we have N/t sets S,’s that
are each partitioned at random by the g,’s to subsets (which correspond to the sets of af’s that are
mapped to the same image under g,). Now, for a random collection of g,’s, the number of i-subsets

39

divided by N is p; e pi(t) rather than g; def pi(IN) as desired. Recall that |p; — ¢i| < pi/(t — 1) for
all 7 > 1, and note that >, p;t =1 = >, g;¢. Indeed, it is instructive to consider the fractional mass
of elements that resides in i-subsets; that is, let p; = p;i and ¢, = ¢;i. We need to move a fractional
mass of about 1/(¢ — 1)e elements from singleton subsets (resp., two-element subsets) to the larger
subsets. With overwhelmingly high probability, each S, contains more than n singleton subsets
(resp., n/2 two-element subsets). We are going to use only these subsets towards the correction of
the distribution of mass; this is more than enough, because we need to relocate only a fractional
mass of 1/(t — 1)e from each type of subsets (i.e., less than one element per a set S,, which in turn
has cardinality ¢). In particular, we move a fractional mass of p} — ¢} = p, — ¢}, from singleton (resp.,
two-element) subsets into larger subsets. Specifically, for each ¢ > 3, we move a fractional mass of
(¢} — p%)/2 elements residing in singletons and (g, — p})/2 elements residing in two-element subsets
into 4-subsets.?” This (equal contribution condition) will automatically guarantee that the mass
in the remaining singleton and two-element subsets is as desired. We stress that there is no need
to make the “mass distribution correction process” be “nicely distributed” among the various sets
S.’s, because its affect is anyhow hidden by the application of the random permutation 7. The
only thing we need is to perform this correction procedure efficiently (i.e., for every a we should
efficiently decide how to modify g¢,), and this is indeed doable. [l

*TFor example, we move mass into 3-subsets by either merging three singletons or merging a singleton and a two-
subset into a corresponding 3-subset, where we do three merges of the latter type per each merge of the former type.
Similarly, for each 7 > 4, we move mass into i-subsets by merging either 7 singletons or /2 two-subsets, while doing
an equal number of merges of each type. Finally, for every j > 1, we move mass into (25 + 3)-subsets by merging
additionally created 2j-subsets and 3-subsets (where additional 2-subsets are created by either using a 2-subset or
merging two singletons, in equal proportions).

40

10 Conclusions and Open Problems

The questions that underlie our work refer to the existence of good implementations of various speci-
fications. At the very least, we require the implementations to be computationally-indistinguishable
from the corresponding specifications.?® That is, we are interested in pseudo-implementations. Our
ultimate goal is to obtain such implementations via ordinary (probabilistic polynomial-time) ma-
chines, and so we ask:

Q1: Which specifications have truthful pseudo-implementations (by ordinary machines)?
Q2: Which specifications have almost-truthful pseudo-implementations (by ordinary machines)?

Q3: Which specifications have pseudo-implementations at all?

In view of Theorem 2.9, as far as Questions Q1 and Q3 are concerned, we may as well consider
implementations by oracle machines (having access to a random oracle). Indeed, the key observation
that started us going was that the following questions are the “right” ones to ask:

Q1r (Q1 revised): Which specifications have truthful close-implementations by oracle machines
(having access to a random oracle)?

Q3r (Q3 revised): Which specifications have such close-implementations at all?

We remark that even in case of Question Q2, it may make sense to study first the existence of
implementations by oracle machines, bearing in mind that the latter cannot provide a conclusive
positive answer (as shown in Theorem 2.11).

In this work, we have initiated a comprehensive study of the above questions. In particular,
we provided a fair number of non-trivial implementations of various specifications relating to the
domains of random functions, random graphs and random codes. The challenge of characterizing
the class of specifications that have good implementations (e.g., Questions Qlr and Q3r) remains
wide open. A good start may be to answer such questions when restricted to interesting classes of
specifications (e.g., the class of specifications of random graphs having certain properties).

Acknowledgments

The first two authors wish to thank Silvio Micali for discussions that took place in 1984. The
main part of Theorem 2.9 was essentially observed in these discussions. These discussions reached
a dead-end because the notion of a specification was missing (and so it was not understood that
the interesting question is which specifications can be implemented at all (i.e., even by an oracle
machine having access to a random function)).

We are grateful to Noga Alon for very helpful discussions regarding random graphs and explicit
constructions of bounded-degree graphs of logarithmic girth. We also thank Avi Wigderson for a
helpful discussion regarding the proof of Lemma 6.3.

28Without such a qualification, the questions stated below are either meaningless (i-e., every specification has a
“bad” implementation) or miss the point of generating random objects.

41

References

[1]

2]
3]

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Abadi, E. Allender, A. Broder, J. Feigenbaum, and L. Hemachandra. On Generating
Hard, Solved Instances of Computational Problem. In Crypto88.

N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons, Inc., 1992.

E. Bach. Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms.
ACM Distinguished Dissertation (1984), MIT Press, Cambridge MA, 1985.

S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Average Case
Complexity. JCSS, Vol. 44, No. 2, 1992, pp. 193-219. Preliminary version in 21st STOC,
1989.

M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. SICOMP, Vol. 13, pages 850-864, 1984. Preliminary version in 23rd FOCS,
1982.

B. Bollobas. Random Graphs. Academic Press, 1985.

E.R. Canfield,P. Erdos, and C. Pomerance. On a Problem of Oppenheim Concerning
?Factorisatio Numerorum”. Jour. of Number Theory, Vol. 17, pages 1-28, 1983.

I. Damgérd. Collision Free Hash Functions and Public Key Signature Schemes. In Euro-
Crypt’87, Springer-Verlag, LNCS 304, pages 203-216.

P. Erdos and H. Sachs. Regulire Graphen gegenebener Taillenweite mit minimaler Knoten-
zahl. Wiss. Z. Univ. Halle-Wittenberg, Math. Nat. R., 12, pages 251-258, 1963.

O. Goldreich. A Note on Computational Indistinguishability. IPL, Vol. 34, pages 277-281,
May 1990.

O. Goldreich. Foundation of Cryptography — Basic Tools. Cambridge University Press,
2001.

O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. JACM,
Vol. 33, No. 4, pages 792-807, 1986.

O. Goldreich, and H. Krawczyk, On Sparse Pseudorandom Ensembles. Random Structures
and Algorithms, Vol. 3, No. 2, (1992), pages 163-174.

O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,
32 (2), pages 302-343, 2002.

O. Goldreich and L. Trevisan. Three Theorems regarding Testing Graph Properties.
Proceedings of 42nd FOCS, pages 460-469, 2001. Full version in ECCC, TR01-010, 2001.

S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2, pages
270-299, 1984. Preliminary version in 14th STOC, 1982.

J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from any
One-way Function. SICOMP, Volume 28, Number 4, pages 1364-1396, 1999. Preliminary
versions by Impagliazzo et. al. in 21st STOC (1989) and Hastad in 22nd STOC (1990).

42

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Derandom-
izing the XOR Lemma. In 29th STOC, pages 220-229, 1997.

W. Imrich. Explicit Construction of Regular Graphs with no Small Cycles. Combinatorica,
Vol. 4, pages 53-59, 1984.

S. Janson. The numbers of spanning trees, Hamilton cycles and perfect matchings in a
random graph. Combin. Prob. Comput., Vol. 3, pages 97-126, 1994.

D.E. Knuth. The Art of Computer Programming, Vol. 2 (Seminumerical Algorithms).
Addison-Wesley Publishing Company, Inc., 1969 (first edition) and 1981 (second edition).

F. Lazebnik and V.A. Ustimenko. Explicit Construction of Graphs with arbitrary large
Girth and of Large Size.

L.A. Levin. Average Case Complete Problems. SICOMP, Vol. 15, pages 285-286, 1986.

A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan Graphs. Combinatorica, Vol. 8, pages
261-277, 1988.

M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations from Pseudo-
random Functions. SICOMP, Vol. 17, 1988, pages 373-386.

G.A. Margulis. Explicit Construction of Graphs without Short Cycles and Low Density
Codes. Combinatorica, Vol. 2, pages 71-78, 1982.

M. Naor and O. Reingold. Constructing Pseudo-Random Permutations with a Prescribed
Structure, Jour. of Crypto., Vol. 15 (2), 2002, pp. 97-102.

B. Tsaban. Permutation graphs, fast forward permutations, and sampling the cycle struc-
ture of a permutation. Journal of Algorithms, Vol. 47 (2), pages 104-121, 2003.

A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80-91,
1982.

43

Appendix A: Implementing various probability distributions

Our proof of Theorem 5.2 relies on efficient procedures for generating elements from a finite set
according to two probability distributions. In both cases, we need procedures that work in time that
is poly-logarithmic (rather than polynomial) in the size of the set (and the reciprocal of the desired
approximation parameter). In both cases, we have close expressions (which can be evaluated in
poly-logarithmic time) for the probability mass that is to be assigned to each element. Thus, in
both cases, it is easy to generate the desired distribution in time that is almost-linear in the size
of the set. Our focus is on generating good approximations of these distributions in time that is
poly-logarithmic in the size of the set.

Indeed, the problem considered in this appendix is a special case of our general framework. We
are given a specification of a distribution (i.e., each query should be answered by a sample drawn
independently from that distribution), and we wish to closely-implement it (i.e., answer each query
by a sample drawn independently from approximately that distribution).

A.1 Sampling the binomial distribution

We first consider the generation of elements according to the binomial distribution. For any N, we
need to output any value v € {0,1, ..., N} with probability (]Z) 27N An efficient procedure for this
purpose is described in Knuth [21, Sec. 3.4.1]. In fact, Knuth describes a more general procedure

that, for every p, outputs the value v € {0,1,..., N} with probability by p(v) def (]:) pU(1=p)N—v.

However, his description is in terms of operations with reals, and so we need to adapt it to the
standard (bit-operation) model. Knuth’s description proceeds in two steps:

1. In Section 3.4.1.F, it is shown how to reduce the generation of the binomial distribution by,
to the generation of some beta distributions, which are continuous distributions over [0, 1] that
depends on two parameters a and 5.2 The reduction involves taking log, N samples from
certain beta distributions, where the parameters of these distributions are easily determined
as a function of N. The samples of the beta distributions are processed in a simple manner
involving only comparisons and basic arithmetic operations (subtraction and division).

2. In Section 3.4.1.E, it is shown how to generate any beta distribution. The generator takes a
constant number of samples from the continuous uniform distribution over [0, 1], and produces
the desired sample with constant probability (otherwise, the process is repeated). The samples
of the uniform distributions are processed in a simple manner involving only comparisons and
various arithmetic and trigonometric operations (including computing functions as log and
tan).

The above is described in terms of real arithmetic and sampling uniformly in [0, 1], and provides
a perfect implementation. The question is what happens when we replace the samples with ones
taken from the set {¢, 2¢, ..., |1/€] - €}, and replace the real arithmetics with approximations upto a
factor of 1 +e.

29 A beta distribution with (natural) parameters a and b is defined in terms of the accumulative distribution function

Fas(r) def (a+b— 1) / (1 = 2)" L da
0

a

and the uniform continuous distribution is a special case (i.e., a = b = 1). In general, F, ;(r) equals the probability
that the bth largest of a + b — 1 independent uniformly chosen samples in [0, 1] has value at most 7.

44

Let us first consider the effect of replacing the uniform continuous distribution U(r) = r by

the continuous step-distribution Se(r) e |7/€] - €, where we may assume that 1/e is an integer.
Since the variation distance between U and S, is O(e), the same holds for any function applied to
a constant number of samples taken from these distribution. Thus, the implementation of the beta
distributions via the step-distribution S will deviate by only O(e), and using the latter to generate
the binomial distribution by, only yields a deviation of O(elog N). Finally, using the average
numerical stability of all functions employed®® we conclude that an implementation by O(log(1/¢))
bits of precision will only introduce a deviation of e.

A.2 Sampling from the two-set total-sum distribution

We now turn to the generation of pairs (I,7) such that [+ =T and 0 < [,7 < S, where T < 25.
Specifically, we need to produce such a pair with probability proportional to (*l9) - (f) (i-e., the
number of ways to select [elements from one set of size S and r elements from another such set).
(In the proof of Theorem 5.2, S = M/2.) Without loss of generality, we may assume that 7' < S
(or else we select the “complementary” elements). Thus, we need to sample r € {0,...,7} with

probability
(T‘i'r) ’ (f)

(7)

We wish to produce a sample with deviation at most ¢ from the correct distribution and are

()

Pr =

allowed time poly(k), where k 4o log(S/€). In case T < k, we perform this task in the straightfor-
ward manner; that it, compute all the 7"+ 1 probabilities p,, and select r accordingly. Otherwise
(i.e., T > k), we rely on the fact that p, is upper-bounded by twice the binomial distribution of T’
tries (i.e., ¢ = (f) /2. This leads to the following sampling process:

1. Select r according to the binomial distribution of T tries.
2. Compute p, and g,. Output 7 with probability p,/2¢,, and go to Step 1 otherwise.

We will show (see Fact A.1 below) that p, < 2¢, always holds. Thus, in each iteration, we output r
with probability that is proportional to p,; that is, we output 7 with probability ¢,-(pr/2¢r) = pr/2.
It follows that each iteration of the above procedure produces an output with probability 1/2, and
by truncating the procedure after k iterations (and producing arbitrary output in such a case) the
output distribution is statistically close to the desired one.

Fact A.1 Suppose that T < S and T > k. For p,’s and q,’s as above, it holds that p, < 2q,.

Proof: The cases 7 = T and 7 = 0 are readily verified (by noting that p, = (5)/(%) < 277 and

g =2"T). For r € {1,..,T — 1}, letting o % (S —r)/(25 — T) € (0,1), we have
Dr _ (f) ’ (Tﬁr)/(ng) _ 2T . (2§:f)
ar (})/27 (’s)

30Fach of these functions (i.e., rational expressions, log and tan) has a few points of instability, but we apply
these functions on arguments taken from either the uniform distribution or the result of prior functions on that
distribution. In particular, except for what happens in an e-neighborhood of some problematic points, all functions
can be well-approximated when their argument is given with O(log(1/¢) bits of precision. Furthermore, the functions
log and tan are only evaluated at the uniform distribution (or simple functions of it), and the rational expressions
are evaluated on some intermediate beta distributions. Thus, in all cases, the problematic neighborhoods are only
assigned small probability mass (e.g., € in the former case and O(1/€) in the latter).

45

2ol —a) - (25 — T))*l/2 . 9Hz()-(25-T)
(2m(1/2)? - 25)~1/2 . 2H2(1/2):28
1+o(1) o (Ha(e)-1)(25-1)

V2o(1 =) -8

= 2T-(1+0(1))-(

where g8 % (28 —T)/S > 1 and Hy is the binary entropy function. For « € [(1/3),(2/3)], we can
upper-bound p, /g, by (14 0(1)) - v/9/48 < 2. Otherwise (i.e., without loss of generality o < 1/3),
we get that Hy(a) < 0.92 and o~ }(1 — a)™! < 28 — T, where for the latter inequality we use
1 <r<8—1. Thus, p,/q is upper-bounded by O(v/25 — T) -2~ 225-T) = (2~ U5 +l&S) which
vanishes to zero with k (because S > T > k)31 W

A.3 A general tool for sampling strange distributions

In continuation to Appendix A.2, we state a useful lemma (which was implicitly used above as well
as in prior works). The lemma suggests that poly(log N)-time sampling from a desired probability
distribution {p;}~; can be reduced to sampling from a related probability distribution {g;}¥,
which is hopefully poly(log N)-time sampleable.

Lemma A.2 Let {p;}Y, and {q;}; be probability distributions satisfying the following conditions:

1. There exists a polynomial-time algorithm that given i € [N] outputs approximations of p; and
¢ up to £N72.

2. Generating an index i according to the distribution {q;}Y , is closely-implementable (upto
negligible in log N deviation and in poly(log N)-time).

3. There ezist a poly(log N)-time recognizable set S C [N] such that

(a) 1 =3 ;cq i is negligible in log N.
(b) There ezists a polynomial p such that for every i € S it holds that p; < p(log N) - g;.

Then generating an index © according to the distribution {pi}i]il 18 closely-implementable.

Proof: Without loss of generality, S may exclude all i’s such that p; < N 2. For simplicity, we
assume below that given ¢ we can exactly compute p; and ¢; (rather than only approximate them

within +N~2). Let ¢ def p(log N). The sampling procedure proceeds in iterations, where in each
iteration i is selected according to the distribution {¢;}¥;, and is output with probability p;/tg; if
i € S. (Otherwise, we proceed to the next iteration.) Observe that, conditioned on producing an
output, the output of each iteration is in S and equals 7 with probability ¢; - (pi/tg;) = pi/t. Thus,
each iteration produces output with probability > ;. ¢ pi/t > 1/2t, and so halting after O(t log(1/¢))
iterations we produce output with probability at least 1 — €. For any ¢ € S, the output is ¢ with

probability (1+¢€)-p;/p, where p def > jespj- Setting € to be negligible in log N, the lemma follows.
[

A typical application of Lemma A.2 is to the case that for each i € [N] the value of p; can be
approximated by one out of m = poly(log V) predetermined p;’s. Specifically:

31n fact, it holds that p, < v/2- g, for all 7's, with the extreme value obtained at r = T/2 (and T = S), where we
have & =1/2 (and 8 =1).

46

Corollary A.3 Let {p;}, be a probability distribution and S C [N] be a set satisfying Condi-
tions (1) and (3a) of Lemma A.2. Suppose that, for m,t = poly(log N), there ezists an efficiently
constructible sequence of integers 1 = iy < i9 < -+ < iy, = N such that for every j € [m — 1]
and i € [ij,i;41] NS it holds that p;; /t < p; < t-p;;. Then generating an index i according to the
distribution {p;}¥, is closely-implementable.

Proof: For every j € [m — 1] and i € [ij,i;41] NS, define p; = p;; and note that p;/t < p; <t-p;.
Let p’ = Y ;c5p;, and note that p’ < ¢. Now, define ¢; = p}/p’ for every i € S, and ¢; = 0 otherwise.
Then, for every i € S, it holds that p; < t-p: = t-p’-q; < t?g;. Since these g;’s satisfy Conditions (1),
(2) and (3b) of Lemma A.2, the corollary follows. W

Appendix B: Implementing a Random Bipartite Graph

Following the description in Section 6, we present a close-implementation of random bipartite
graphs. Two issues arise. Firstly, we have to select the proportion of the sizes of the two parts,
while noticing that different proportions give rise to different number of graphs. Secondly, we note
that a bipartite graph uniquely defines a 2-partition (up to switching the two parts) only if it is
connected. However, since all but a negligible fraction of the bipartite graphs are connected, we
may ignore the second issue, and focus on the first one. (Indeed, the rest of the discussion is slightly
imprecise because the second issue is ignored.)

For ¢ € [+ N], the number of 2N-vertex bipartite graphs with N + ¢ vertices on the first part is

2N Y gwvriyv-iy o (2N g
N+ -\ N

where equality holds for i = 0 and approximately holds (i.e., upto a constant factor) for |i| = v/N.
Thus, all but a negligible fraction of the 2/N-vertex bipartite graphs have N =+ log, N vertices on

each part. That is, we may focus on O(log N) values of i. Indeed, for each i € [tlog, N], we

def logy N

compute T} def (]\2]]12) LoV and p; = T;/T, where T '= 3,°%, n 1. Next, we select i with

probability p;, and construct a random 2/N-vertex bipartite graph with N 4 ¢ vertices on the first
part as follows:

e As in Section 6, we use the function f; to implement a permutation 7. We let S def {v
7(v) € [N +1]}, and xs(i) & 1 if and only if i € S.

e Asin Section 6, we answer the query (u,v) by 0 if xs(u) = xs(v) and according to the value
of fo otherwise.

Appendix C: Various Calculations

For the proof of Lemma 6.3

The proof of Lemma 6.3 refers to the following known fact:

Fact C.1 Let X be a random variable ranging over some domain D, and suppose that H(X) >
logy |D| —€. Then X is at statistical distance at most O(\/€) from the uniform distribution over D
of even size.

47

Proof: Suppose that X is at statistical distance 6 from the uniform distribution over D. Then,
there exists a S C D such that |Pr[X € S] — (|S|/|D|)| = 6, and assume without loss of generality
that |S| > |D|/2. Note that either for each e € S it holds that Pr[X = e] > 1/|D| or for each
e € S it holds that Pr[X = e] < 1/|D|. By removing the |S| — (|D|/2) elements of smallest
absolute difference (i.e.,, smallest |Pr[X = e] — (1/|D|)|), we obtain a set S’ of size |D|/2 such that
|Pr[X € S']1—(]S'|/|D])| > 6/2. The entropy of X is maximized when it is uniform both on S’ and
on D\ S'. Thus:

H(X) < Hy(Pr[X €S']) +Pr[X €8] H(X|X e€S)+Pr[X e D\S]-HX|X eD\S)
= 1 (5+3) +log(D)/2)
= 1-9(5") + logy(|D/2)

We get that H(X) < log, |D| — c- 62, for some universal ¢ > 0. Combining this with the hypothesis
that H(X) > logy |D| — €, we get that € > ¢+ 6%, and 6 < \/¢/c follows. W

For the proof of Theorem 6.5

In continuation to Footnote 17, which refers to Part 2 of the proof of Theorem 6.5, we prove the
following fact.

Fact C.2 Let ¢(N) be as in Theorem 6.5, and T e N/c¢(N). Assume that T is an integer.
Consider any fized partition, (Pi,...,Pr), of [N] such that |P;| = ¢(N) for every i. Consider a
graph selected as follows:

o Fach P; is an independent set.

o Fork = (C(NZ)+3), the rest of the edges are determined by a k-wise independent binary sequence
of length (1;) -T- (c(év)).

Then, with probability at least 1 — O(N_1/2), the graph has no independet set of size ¢(N) + 3.

Proof: We will show that the expected number of independet set of size ¢(N) + 3 is O(N~'/2),

and the fact will follow. Let ¢ & ¢(N) and s def . + 3. We partition all possible independent

sets of size s into classes according to the contributions of the various F;’s to them. That is, the
classes that corresponds to the sequence (si,...,s7), where EiT:1 s; = s, consists of independent
sets having s; vertices from F;. For such a class, we let r; denote the j-th non-zero s;. We actually,
cluster the classes according to the resulting sequence of 7;’s. That is, the cluster (r1,...,7;), where

;-:1 r; = s and 7; > 1, consists of independent sets having r; vertices from the j-th part that
contributes any vertices to the independent set. Then, the contribution of such a cluster to the
expectation is given by the number of potential independent sets in the cluster times the probability
that such a potential independent set is assigned no edges. Observe that the number of potential
undetermined edges in such a potential independent set is (;) — >, (%), and thus the contribution
of the cluster is given by

T ¢ C _(s_ t T B _; N/C ¢ c Tzz
<t> _ lH ()] (=S) — () (i) :K)Q()]

48

We bound, seperately, each factor of the form (;) - 2(%). Specifically:

Claim: Let f(z) = (§) .2(). Then, for z € {1,...,c} it holds that f(z) < ¢cN®1, and for z €
{2,...,c — 1} it holds that f(z) < Ne=(3/2),

Using this claim, the contribution of each sequence of 7;’s is:
t

270G (V/e)t - T fre) < - (N/e)t H eNTi

=1
= 2_(2) . NZi:l i
= 27@_}_%'5 = 2_8
where the last two equalities use logy N = ¢/2 and ¢ = s — 3, respectively. Furthermore, if the
sequence of r;’s has some element in {2,...,c—1} then we get a better bound of 275. N~1/2 becuase
we gain at least a factor of N~1/2 in the inequality.
Now, the number of sequences (ry,...,r¢), for various ¢, is Y 7, (i:i) < 2571, Of these only a
constant number have all 7;’s in {1, ¢} (i.e., the all-1 sequence and the permutations of (¢, 1,1,1)).
Thus, the expectation is bounded by

O(1)-275+2°.(27° . N2y < O(N7/?)

where the inequality uses s > ¢ = 2logy N

We now turn to the proof of the claim. For z = 1, equality holds (i.e., f(1) = ¢-2° = ¢-N?). (In
fact, this is the only case where equality holds.) For z = ¢, we have f(c) = 1-2¢¢1/2 = Ne-1 <
cNe~1. In all other cases, we define g(z) = log, f(z) — (z — (3/2)) - logy N, and prove that it is
negative. Using logy, N = ¢/2, note that

o) = log, (.75 223y
)

C)

c (x—c—1zx 3c
= logy | |+ "+

x

Cl

¢
2 2
2 4

(x—d)x 3

] w=e)r, 2C
< 0g9 (,CL‘ + 2 + 4

where ¢ % ¢+ 1. Using the fact that ¢ = ¢(IN) = w(1) (and 2 < z < ¢/ — 2), we consider two cases:
1. If either 2 <z <5 o0r ¢ —5 <z < ¢ —2 then we bound log, (§) by 5log, ¢’ and get

1 3c
1 4 Z. —c -
g(z) < blogyc +3 ZS]rmnsauc)lc_Q{(:n c)r}+ 1
2(c' =2 3c
= 510&6,_%_’_?0 <0

2. If 5 <z < ¢ — 5 then we bound log, (¢) byc and get
- _ /
glz) < ¢ —|— 5 5<m<aucx 5{(x ¢z} +c
5(cd —5)

= 2 —
¢ 2

<0

So the claim follows, and so does the entire fact. W

49

Appendix D: A strengthening of Proposition 2.15

The hypothesis of Part 2 of Proposition 2.15 requires the existence of one-way functions, or equiv-
alently the ability to generate hard-instances (to NP-problems) along with corresponding solutions
(cf. [11, Sec 2.1]). A seemingly weaker condition, which is in the spirit of Levin’s theory of average-
case complexity [23] (see also [4]), is the ability to generate hard-instances to NP-problems. Specif-
ically:

Definition D.1 (generating hard instances): A probabilistic polynomial-time algorithm G is called
a generator of hard instances for a set S if for every probabilistic polynomial-time algorithm A the
probability that A correctly decides whether or not G(1™) is in S is bounded away from 1. That is,
there exists a polynomial p such that for all sufficiently large n’s it holds that

1
Pr, gum[A(z) = xs(z)] < 1- p(m)

where xs(z) =1 if x € S and xs(z) = 0 otherwise.

Definition D.1 only requires that hard instances be generated with “noticible” probability. Note that
the existence of one-way functions (even weak ones) implies the ability to generate hard instances
to NP-problems. The converse is not known to hold. Thus, the following result strengthens Part 2
of Proposition 2.15.

Proposition D.2 Assuming the existence of generators of hard instances for NP-problems, there
exist specifications that cannot be pseudo-implemented.

Proof: Let L be an NP-set that has a generator G of hard instances, let R be the corresponding
witness relation (i.e., L = {z : 3y s.t. (z,y) € R}), and R(z) def {y : (z,y) € R}. Consider the
specification that answers query z with a uniformly distributed y € R(x) if R(z) # 0 and with a
special symbol otherwise. We will show that this specification cannot be pseudo-implemented.
Let I be an arbitrary implementation of the above specification, and consider a distinguisher
that, for parameter n, makes the query x < G(1"), obtains the answer y, and outputs 1 if and only if
(z,y) € R (which is polynomial-time decidable). When this distinguisher queries the specification,

it outputs 1 with probability that equals p def Pr[G(1™) € L]. Assume, towards the contradiction,
that when the distinguisher queries I it outputs 1 with probability that at least p — u(n), where
i is a negligible function. In such a case we obtain a probabilistic polynomial-time algorithm that
violates the hypothesis: Specifically, consider an algorithm A such that A(x) answers 1 if and only
if (z,I(z)) € R, and note that A is always correct when it outputs 1. Thus,

Pr,_gum[A(z) = xr(z)] = Prlrel A A(z)=1]+ Pr[z¢ L] - Pr[A(z)=0[z ¢ L]
= PrizeLl A (z,I(z))eR|+ (1 —p) - Pr[(z,I(z))¢ Rlx ¢ L]
> (p—pu(n)+(A—p)-1 =1-p(n)

Thus, the implementation I cannot be computationally indistinguishable from the specification,
and the proposition follows. W

ECCC ISSN 1433-8092
50 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

