Electronic Colloquium on Computational Complexity, Report No. 46 (2003)

Locally Computed Baire’s Categories on Small Complexity
Classes

Philippe Moser*

Abstract

We strengthen the resource-bounded Baire’s categories of [Mos03], and define resource
bounded Baire’s categories on small complexity classes such as P, QP, SUBEXP and on
probabilistic complexity classes such as BPP. We give an alternative characterization of
meager sets via resource-bounded Banach Mazur games. We show that the class SPARSE is
meager in P. We investigate the genericity notion arising from our categories, and show that
generic sets are REC-immune. We show that there is no weak-completeness notion based
on our categories, i.e. every weakly-complete set is complete. Next we prove that the class
of complete sets for P under Turing-logspace reductions is meager in P if P is not equal
to DSPACE(logn), and that the same holds unconditionally for QP. Finally we show the
following for our resource-bounded Baire’s category on SUBEXP. First BPP is meager unless
BPP equals EXP infinitely often. Second NP equals AM infinitely often unless NP is meager,
and finally either RP is meager or ZPP equals RP infinitely often.

1 Introduction

Resource-bounded measure and resource-bounded Baire’s Category were introduced by Lutz in
[Lut90] and [Lut92] for both complexity classes E and EXP. Both provide a means of investigating
the sizes of various subsets of E and EXP. In resource-bounded measure the small sets are
those with measure zero, in resource-bounded Baire’s Category the small sets are those of first
category (meager sets). Both smallness notions satisfy the following three axioms. First every
single language L € E is small, second the whole class E is large, and finally ”easy infinite unions”
of small sets are small. These axioms meet the essence of both Lebegue’s measure and Baire’s
category and ensure that it is impossible for a subset of E to be be both large and small.

The first goal of Lutz’s approach was to extend existence results, such as ”there is a language
in C satisfying property P”, to abundance results such as "most languages in C' satisfy property
P”, which is more informative since an abundance result reflects the typical behavior of languages
in a class, whereas an existence result could as well correspond to an exception in the class. Both
resource-bounded measure and resource-bounded Baire’s Category have been successfully used
to understand the structure of the exponential time classes E and EXP.

An important question in resource-bounded measure theory was to generalize Lutz’s measure
theory to small complexity classes such as P, QP and SUBEXP and to probabilistic classes such

*Address: Computer Science Department, University of Geneva. Email: moser@cui.unige.ch

ISSN 1433-8092

as BPP and BPE. These issues have been solved in the following list of papers [AS94], [Str97],
[RS98] and [Mos02].

The same question in the Baire’s category setting was addressed in [AS95] , and resource-
bounded Baire’s categories on small and probabilistic classes were introduced in [Mos03]. In this
paper we strengthen the resource-bounded Baire’s categories of [Mos03] by introducing a much
more powerful definition of resource-bounded Baire’s category. To this end we consider locally
computable strategies, as in [Fen95]. Informally speaking a class is said meager if there is a single
strategy that defeats every language in the class. In [Mos03] the output of the strategy is required
to be computable in polynomial time. For locally computable strategies, we only require the
output to be bit-wise polynomially computable. Thus the output of locally computable strategies
can be of any finite size. With this definition, we obtain a stronger resource-bounded Baire’s
category notion as in [Mos03], on complexity classes such as P, QP, SUBEXP and BPP. We give
an alternative characterization of meager sets via resource-bounded Banach Mazur games. Next
we show that the class SPARSE of languages with polynomial density is meager, in the sense of
Baire’s categories on P, which improves [Mos03] where SPARSE was not meager in the sense of
categories on P.

Whereas typical sets for measure theory are called random sets, typical sets for Baire’s
category are called generic sets. Our category notions give rise to strong notions of genericity.
We investigate the genericity concept yielded by our category notion on P. A natural question
is whether there exists such a generic set in a class containing P such as E. We prove that this
is not the case by showing that every such generic set is REC-immune.

In [Lut95] Lutz introduced the concept of weak completeness. A set A is said weakly complete
if its lower span (the class of sets reducible to A) has measure non-zero. Lutz showed in [Lut95]
the existence of weakly-complete sets that are not complete. Similarly we can define a categorical
weak completeness notion, by calling a set A weakly complete if its lower span is not meager.
We show that strictly weakly-complete languages do not exist, for our category notion on P,
i.e. every weakly-complete language is also complete for P. Next we prove that the class of
complete languages for P under Turing-logspace reduction is meager in P, if P is not equal to
DSPACE(logn), and that the same holds unconditionally for QP.

In [Mel00] a zero-one law was proven for BPP, that is either BPP has measure zero in E or
BPP = EXP. We show an analogue for categories on the smaller class SUBEXP, namely that
either BPP is meager in SUBEXP, or BPP equals EXP infinitely often.

In [IMO3] it is shown that under the plausible assumption NP has measure non zero in
E” total derandomization of NP is possible i.e. NP = AM. We show that under the plausible
assumption "NP is not meager” for categories on the smaller class SUBEXP, partial derandom-
ization of NP is achievable, i.e. NP equals AM infinitely often.

Finally we show that either RP small in or BPP is easy, that is either RP is meager in
SUBEXP or ZPP equals BPP infinitely often.

2 Preliminaries

We use standard notation for traditional complexity classes; see for instance [BDG95], and
[BDGY0], or [Pap94]. For € > 0, denote by E. the class E. = |J;.. DTIME(2""). SUBEXP is

the class N¢soEe, and quasi polynomial time refers to the class QP = Ug>1q DTIME(nlng"), and
QP; = UkZlDTIME(n’“Og"). Informally speaking QP; and QP share the same relationship as
E and EXP. The point is that whereas it is easy to show that the canonical complete language
is complete for QP1, it is not easy to exhibit a complete language for QP. Let us fix some
notations for strings and languages. Let sg,s1,... be the standard enumeration of the strings
in {0,1}* in lexicographical order, where sy = A denotes the empty string. A sequence is an
element of {0,1}°°. If w is a string or a sequence and 1 < 7 < |w| then w[i] and w[s;] denotes
the ith bit of w. Similarly w[i...j] and ws;...s;] denote the i¢th through jth bits, and by
dom(w) the domain of w, where w is viewed as a partial function. We identify language L with
its characteristic function xr, where xr, is the sequence such that xp[i] = 1 iff s; € L. For a
string s; define its position by pos(s;) = i. If wy is a string and ws is a string or a sequence
extending wi, we write w1 C we. We write wy C wy if wy C wy and wy # we. For two strings
7,0 € {0,1}*, we denote by 7o or by 7o the concatenation of 7 followed by o. For a,b € N

let @ — b denote max(a — b,0). We identify N with {0,1}*, thus we denote by NN the set of all
function mapping strings to strings.

2.1 Finite extension strategies

Whereas measure is defined via martingales, Baire’s categories are defined via finite extension
strategies. Here is a definition.

Definition 1 A function h: {0,1}* — {0,1}* is a finite extension strategy, or a constructor, if
for every string T € {0,1}*, 7 C h(r).

For simplicity we will use the word ”strategy” for finite extension strategy. We will often
consider indexed strategies. An indexed strategy is a function h : N x {0,1}* — {0,1}*, such
that h; := h(i,-) is a strategy for every ¢« € N. If h is a strategy and 7 € {0,1}*, define ext h(1)
to be the unique string u such that h(r) = 7 u. We say a strategy h avoids some language A
(or language A avoids strategy h) if for every string 7 € {0,1}* we have h(7) £ x4. We say a
strategy h meets some language A if h does not avoid A.

3 Local Categories on P

To define a resource bounded Baire’s category on P, we shall consider strategies computed by
Turing machines which have random access to their inputs, i.e. on input 7, the machine can
query any bit of 7 to its oracle. In order to allow such Turing machines to compute the lengths
of their inputs 7 without querying their oracles, we also provide them with s;. For such a
Turing machine M running on input 7, we denote this convention by M (s,)).

Let h be an indexed strategy. Consider the following function ext. Let o € {0,1}* and
i,k € N and let w be the unique string such that h;(c) = o “w. Define

wlk] ifl1 <k <|w

ext (hi(o), k) = { 1 and ezt (h;(0)) = w.

otherwise.

We shall consider strategies whose extensions are bit-wise computable in polynomial time.
Such strategies are very strong since the extension can be of any finite size, as long as it is

locally computable. To guarantee that the second axiom holds, one needs to reduce the power
of our strategies, by requiring that all queries made to the input are contained in a polynomial
printable set, called the query set.

Definition 2 An indezed strategy h : Nx{0,1}* — {0,1}* is said Pjoc computable if there ezists
a random access Turing machine M as above such that for every T € {0,1}* and every i,k € N,

M7 (s, 0%, k) = ext (hi(7), k)

where M Tuns in time polynomial in |3|T‘|+i—l— |k|, and there is a poly printable query set G such
that for every n,i,k € N and for every i', k" € N such that i’ <1i and k' < k and for every input
o€ {0,1}* such that 1810/] <, M"(s|(,|,0i',k’) queries o only on bits that are in G(0™,0%, k),
where G(0",0°, k) is printable in time polynomial in n + 1+ |k|.

A class of languages is said meager if there is a single strategy that avoids every language in
the class.

Definition 3 A class C of languages is Pioc-meager if there exists a Py computable indezed
strategy h, such that for every L € C there exists 1 € N, such that h; avoids L.

In order to state the third axiom, one needs to define ”easy infinite unions” precisely.

Definition 4 X = UiEN X; is a Pioc-union of Pioc-meager sets, if there exists an indezxed Poc-
computable strategy h : N x N x {0,1}* — {0,1}*, such that for everyi € N, h;. witnesses X;’s
meagerness.

3.1 Verifying the axioms
Let us check that all three axioms hold for our local categories.

Theorem 1 For any language L in P, the singleton {L} is Pioc-meager.

Proof. Let L € P be any language. We describe a Pj,.-computable constructor h which
avoids {L}. Consider the following Turing machine M computing h. For a string o € {0,1}*,
M? (8|4, k) simply outputs 1 — L(s|41) if k = 1 and L if k¥ > 1. Since M doesn’t query its
oracle it is easy to check that h is Pjoc-computable. Let’s check that h avoids {L}. Let o be any
prefix of x1,, we have h(o) I x1, i.e. h avoids xr. O

The following result states that subsets of small sets are small, and that easy infinite unions
of small sets are small.

Theorem 2
1. All subsets of a Pjoc-meager set are Pioc-meager.
2. A Pioc-union of Pioc-meager sets is Poc-meager.

Proof. Immediate by definition of P,c-meagerness. O
Let us prove the second axiom.

Theorem 3 P is not Pjoc-meager.
Proof. We will need the following technical Lemma.

Lemma 1 Let h be a Poc computable indexed strategy. Then there exists a function f : N — N
such that,

1. For every o € {0,1}* such that |o| < Z;;Bf(j) we have |ext hi(o)| < f(3),
2. f(0) =1 and f(i) > 2° for every i €N,

and there ezists a deterministic Turing machine which on input i, computes f(i) within

O(log(f(2))) steps.

Proof. Let h be any P, computable indexed strategy and let N be a Turing machine witnessing
this fact. We construct a deterministic Turing machine M for f. At each computation’s step,
M increments a counter R. On input 7, M computes f recursively as follows: f(0) = 1. For
i > 0 compute B := Z;-;%f(j). For every string o of size at most B, simulate N”(s‘a‘,Oi,k)
for K =1,2,... until N outputs L, store under k, the corresponding k. Then compute K :=
max|q|<p ks. Stop incrementing the counter R, compute 2R+K+1 and output this value.

For the running time of M on input 4, observe that the last two steps (once the counter R
is stopped) take time O(R+ K +14). Thus the total running time of M is at most O(R+ K +1)
which is less than O(log(f(z))). This ends the proof of the Lemma.

Let us prove the Theorem. Let h be an indexed constructor in P, and let M be a Turing
machine computing h with query set Gjps. Let f be as in Lemma 1 and let) be a Turing
machine computing f.

We construct a language L € P which meets h; for every . The idea is to construct a
language L with the following characteristic function,

XL = | 0 |E£L‘th1(B())O---9|E£L‘th2(Bo/\Bl)0---9| |S£L’thi(30 /\Bl/\--- /\Bi—l)o"'g|

Bo B By B;

where block B; has size f(i) and contains ezt (h;(By”By"--- "B;_1)) followed by a padding
with 0’s. B; is large enough to contain ext (h;(By "B " -+ “B;_1)) by definition of f.
Let us construct a polynomial time Turing machine N deciding L. On input z, where |z| = n,

1. Compute pos(z).

2. Compute the index i(x), where the membership bit of z is in zone Bj(,), with the formula
i(z) = manzo[Zg;é (t) < pos(z) + 1], in the following way. At the beginning S = 1,
then for ¢t = 1,2,... compute f(t) by simulating Q for |z|? steps, and add the result to
S, until either @ doesn’t halt, or S > pos(z) + 1. Let ty denote the first ¢ for which this
happens, then i(z) =ty — 1.

3. Compute the position of z in Bj(;), where rpos(z) = pos(z) — F(i(z) — 1), with F(j) =
J

4. Compute the membership bit of z, where bit(z) = ext (hi(z)(Bo "B1" - -+ " Bj(z)—1), Tpos(z)).
If bit(z) =1, then output 0 (z is in the padded zone of Bj)), otherwise output bit(z).

Let us check that L is in P. The first step is clearly computable in time polynomial in
n. For the second step notice that if f(t) < pos(z), @ must halt within O(log(pos(z))) steps,
which is less than |z|? since pos(z) = 2902, Thus the second step computes i(z) correctly.
Moreover since f increases at least exponentially, only a polynomial number of terms need to
be summed in the second and third step. Since f is at least exponentially increasing, the sums
in step two and three can be done in polynomial time. Finally the last step requires simulating
MBo ABlA"'AB"(@—l(sF(i(z),l),Oi(”’),rpos(w)). By the hypothesis on h, M’s queries are all in
G (0°7G@-11 04) rpos(z)), which is contained in G 7(01°FG@-1l 04®) pos(z)) which has size
polynomial in |z|. For such a query g, i.e. M queries the gth bit of its input, simply run step one
to four above with z replaced by ¢. By definition of Gj; only a polynomial number of recursive
steps need to be performed. O

3.2 Resource-bounded Banach-Mazur games

We give an alternative characterization of small sets via resource-bounded Banach-Mazur games.
Informally speaking, a Banach-Mazur game, is a game between two strategies f and g, where
the game begins with the empty string on which go f is applied successively. Such a game yields
a unique infinite string, i.e. a language, called the result of the play between f and g. For a class
C, we say that g is a winning strategy if it can force the result of the game with any strategy
f to be a language not in C. We show that the existence of a winning strategy is equivalent to
the meagerness of C'. This equivalence result is useful in practice, since it is often easier to find
a winning strategy, rather than a finite extension strategy.

Definition 5

1. A play of a Banach-Mazur game is a pair (f,g) of strategies such that for every string
7 €{0,1}*, 7 C g(7).

2. The result R(f,g) of the play (f,g) is the unique element of {0,1}* that eztends (go f)*(\)
for every i € N.

For a class of languages C and two function classes F; and Fj, denote by G[C, Fy, Fry] the
Banach-Mazur game with distinguished set ', where player I must choose a strategy in Fy, and
player II a strategy in Fry. We say player II wins the play (f,g) if R(f,g) & C, otherwise we
say player I wins. We say player II has a winning strategy for the game G|[C, Fy, Fy], if there
exists a strategy g € Frr such that for every strategy f € Fy, player II wins (f, g)

Let us prove that both notion are equivalent.

Theorem 4 Let X be any class of languages. The following are equivalent.
1. Player II has a winning strategy for G[X, NN Pi].

2. X s Pioc-meager.

Proof. We need the following technical Lemma.

Lemma 2 Let h be a Pioc computable indexed constructor. Then there ezists a function f : N —
N such that for every m € N, t < m and for every string T of size at most m, |hy(7)| < f(m), and
there exists a deterministic Turing machine which on input m, computes f(m) within O(f(m))
steps.

Proof. Let h be a P\,c computable strategy, and let N be a Turing machine witnessing this fact.
We construct a deterministic Turing machine computing f. At each computation’s step, M
increments a counter R. On input m € N, compute K = maz|: <m,<m{|ht(7)|}, by simulating
N on all appropriate strings. Stop incrementing the counter R, compute K + R and output the
result. Thus M’s total running time is less than O(R + K) which is less than O(f(m)). This
ends the proof of the Lemma.

For the proof of the Theorem, suppose the first statement holds and let ¢ € P, be a
wining strategy for player II. Let M be a Turing machine computing g. We define an indexed
constructor h € Pjoc by constructing a machine N for h; let ¢ € N and o € {0, 1}*,

hl(a) = g(OJ) where ¢’ = 0'/\02.;|0"_

h is Pjoc-computable because computing h;(o) simply requires to simulate M? (8/5) answer-
ing M’s queries in dom(o’)\dom(c) by 0. Thus N’s query set satisfies Gy (011,07 k) C
Gr(0#1e1 k) which has size polynomial in |816(] + i + | k|, because |o'| < |o| + .

We show that if language A meets hy for every & € N, then A ¢ X. This implies that X is
Ploc-meager as witnessed by h. To do this we show that for every a T x4 there is a string 3
such that,

aCBCg(B) T xa-

If this holds, then player I has a winning strategy yielding R(f,g) = A: for a given « player I
extends it to obtain the corresponding 3, thus forcing player II to extend to a prefix of x4. So
let a be any prefix of x 4, where |a| = k. Since A meets hy, there is a string o C x4 such that

o' Cg(c") = hi(o) C xa

where o/ = o201/, Since |a| < |0’| and «, ¢’ are prefixes of x4, we have a C o’. Define £ to
be o’.

For the other direction, let X be P .-meager as witnessed by h, i.e. for every A € X there
exists 7 € N such that h; avoids A. Let N be a Turing machine computing h. Let f : N - N
be as in Lemma 2, and let) be a deterministic Turing machine computing f. We define a
constructor g € P, inducing a winning strategy for player II in the game G[X,NY,Py,.]. We
show that for any strategy f, R(f,g) meets h; for every i € N, which implies R(f,g) &€ X. Here
is a description of a Turing machine M computing g. For a string o with [s,(| =n , M7 (s|4/, k)
does the following.

1. Compute B = maxp,>1[f(m) < n] in the following way. For ¢ = 1,2,... compute f(t)
by simulating @ for n? steps, and denote the result by b;, until either) doesn’t halt, or
by > n. Let ¢y denote the first ¢ for which this happens, then define B = by,_;.

2. Compute ng = ming<p[(V7 C o such that |7| < B) hi(r) £ o].
3. If no such ng exists output 0 if £ = 1, and output L if £ > 1.

4. If ny exists, then if £ = 1 output 0, otherwise simulate N Ao(s‘aH_l, 0", k — 1) answering
N’s queries in dom(o *0)\dom(o) with 0, and output the result of the simulation.

Let us check that g is Pj,c computable. For the first step, we have that whenever f(m) <n
Q halts within O(n) steps. Since @ is simulated n? steps, B is computed correctly, in polynomial
time. For the second step, the B3 simulations of N can be done in polynomial time. Moreover
every h:(7) computed during the second step has size at most B, thus only the first n bits of the
input o need to be read. This together with the fourth step guarantees that the query set for
M is given by Gpr(0°91', k) = {1,2,...n}|JGn(0/=+1/ 0" k — 1) which has polynomial size.

We show that R(f,g) meets every h; for any strategy f. Indeed suppose this is not the
case, i.e. there is a strategy f such that R(f,g) does not meet h. Let ng be the smallest index
such that R(f,g) does not meet hp,. Since R(f,g) meets hp,—1 there is a string 7 such that
hno—1(7) T R(f,g). Since g strictly extends strings at every round, after a certain number of
rounds, f will output a string o long enough to enable step 2 (of M’s description) to find out that
hny—1(7) C o thus incrementing ng — 1 to ng. At this round we have g(o) = o0 ezt hy,, (o "0),
i.e. hy, C R(f,g) which is a contradiction. 0

Note that throughout Section 3, the polynomial time bounds in Pj, categories, can be
replaced by both quasipolynomial and subexponential time bounds, thus yielding a local category
notion on both complexity classes QP and SUBEXP. In section 6 and 8, some applications of
our local category notion on QP and SUBEXP will be given.

4 Meagerness of SPARSE

It was shown in [Mos03] that the class SPARSE is not meager for the category notion on P
introduced in [Mos03]. Here we prove that local computable strategies are stronger than the
strategies of [Mos03], by showing that the class SPARSE is P|,c-meager.

Theorem 5 SPARSE is P\oc-meager.

Proof. Let L be any sparse language. Then there exists a polynomial p such that |[LN{0,1}"| <
p(n), for every n > 1. Consider the following strategy h, which on input o € {0,1}* pads o with
|o| I’s. Since L is sparse, h avoids L. We construct a random access Turing machine M for h;

on input o € {0,1}* and j € N, M?(s/,,5) outputs 1 if 1 < j < |o| and L otherwise. Since M
doesn’t query its oracle, h is Pjoc-computable which ends the proof. O

5 Genericity

The typical sets for Baire’s category are generic sets. Here is a definition.

Definition 6 A language G is Pioc-generic if G meets every Pioc-computable strategy.

The following result shows that the genericity notion yielded by our local categories on P is
a very strong one: every generic set is REC-immune.

Theorem 6 Let G be a Pjoc-generic set. Then G is REC-immune.
Proof. We need the following technical Lemma.

Lemma 3 Let A be any recursively enumerable set. Then there exists a function f : N - N
such that range(f) = A, i.e. range(f) = {N|sny € A}, and f(n) is computable in time O(n).

Proof. Let M be a Turing machine for A. To compute f(n), simulate M during a total of n
steps on s1, s2,---. Denote by s;, if it exists, the last string on which M stops and outputs 1 .
Define f(n) =1 if s; exists, otherwise f(n) = 0.

This ends the proof of the Lemma. For the proof of the Theorem, let G be a Pjoc-generic
set, then G is infinite because G' meets every strategy si(c) = o”1”"... 1. Suppose for a

k
contradiction that there exists an infinite recursively enumerable set A C G, and let f be as in
Lemma 3. Consider the following Pjoc-computable strategy h.

ext(hi(0), k)) = { 0 i {f(0),fQ),..., f(kD} N {lollo| +1,...,|of +[k] — 1} =0

1 otherwise.

Since A is infinite, there exists ng such that {f(0), f(1),... , f(no)}N{|o|, |lo|+1,... ,|o|+no—1}
is non-empty, and since this set can only increase in size with k, we have ext(h;(0),k)) =L for
every k with k > ng. moreover h is computable in polynomial time, thus A is Pj,c-computable.
Since h extends characteristic strings of languages with 0’s up to the membership bit of a word
z such that A(z) = 1, h avoids A. Since A C G, h avoids G, which ends the proof. O

6 Weak Completeness

In [Lut95] the concept of weak completeness was introduced. A set A is said weakly complete if
its lower span (the class of sets reducible to A) has measure non-zero. Lutz showed in [Lut95] the
existence of weakly-complete sets that are not complete. Similarly we can define a categorical
weak completeness notion, by calling a set A weakly complete if its lower span is not meager.
We show that there is no weak-complete but incomplete language, for our category notion on P,
i.e. every weakly complete language for P is complete for P. To this end we need the following
result.

Theorem 7 Let C be a ¥3 class, such that there ezists a language A in P, such that for every
finite variant A" of A, A’ € C. Then C is Pjoc-meager.

Proof. By hypothesis there exists a polynomial oracle Turing machine M, such that C =
{L|3zVy : MY (z,y) = 0}. Consider the following P|,c-computable strategy g where ext(g(o), k)),
with |s|,| = n, is computed as follows.

1. Simulate ML (z,y) for every z < logn and y < log k, where x7, = o NA(S)041)) " A(S|042)

9

2. If for every = < logn there exists y < logk such that M’ (z,y) # 0 output L, else output
A(S|5]+k)-

Let us show that g is a strategy. Suppose for a contradiction that g extends o infinitely.
Then the result is a finite variant of A, hence not in C. Therefore there exists £ € N, such
that Vz < |s,| 3y < logk, such that M (z,y) # 0, where L = g(c). Hence g should not have
extended o more than k bits, which is a contradiction.

g is computable in polynomial time since there are a logn - log k simulations to perform and
since the queries to A can be computed in polynomial time. The query set Gy4(n, k) has size
polynomial in n and |k|, therefore g is Pjo.-computable.

Let us show that g avoids C. Denote by L the result of the game between g and some
strategy f, where player II plays according to g. Let z be any string. On the first turn for player
IT where the state of the game is of length at least 22”1, player II will extend ensuring that
Vz < z+1 3y < log k such that M*(z,y) # 0. Thus M(z,y) # 0, which implies L ¢ C. O

Corollary 1 Let C be a 3 class closed under finite variants. Then C is Pioc-meager iff P £ C.
An interesting consequence of Corollary 1 is that every weakly-complete set is also complete.
Theorem 8 There is no weakly-complete incomplete set for P under Turing-logspace reductions.

Proof. Let A € P be any language. Denote by P(A) the lower span of A, i.e. the class of

languages Sﬁgspace—reducible to A. Tt is easy to check that P(A) is a X3 class and is closed
under finite variant. Thus by Corollary 1 we have P(A) is not Pjoc-meager iff A is Slq;g space-hard
for P. O

Another consequence of Corollary 1 is the meagerness of the class of complete sets for P,
under the assumption P is not equal to DSPACE(log n).

Theorem 9 If P is not equal to DSPACE(logn), then the class of Slq;gspace—complete sets for P
18 Ploc-meager.

Proof. Let A be a <! -complete set for P. Consider the upper span of A denoted P~!(A4),

—logspace
where P~1(A) = {B: A Slj;gspace B}. Tt is easy to check that P~1(A) verifies the hypothesis of
Corollary 1. Since P ¢ P~1(A), P~1(A) is Poc-meager. Since every g%’;gspace—complete language
for P is in P~1(A), the proof is complete. O
Note that the same result holds unconditionally for our category notion on QP;, more pre-

cisely.

Theorem 10 There is no weakly-complete incomplete set for QP under Turing-logspace reduc-
tions.

Proof. The proof is similar to Theorem 9.

10

7 Local Categories on BPP

In this section we generalize our local categories on P to the probabilistic class BPP. To this
end we need the following probabilistic strategies.

Definition 7 An indezed strategy h : N x {0,1}* — {0,1}* is said BPPoc computable if there
is a probabilistic random access Turing machine (as defined in Section 3) M such that for every
T €{0,1}* and every i,k,n € N,

Pr[M7 (s, 0%,k,0") = ext (hi(1),k)] >1—27"

where the probability is taken over the internal coin tosses of M, M runs in time polynomial
in |s;|| + i+ |k| +n, and there is a poly printable query set G such that for every m,i,k € N
and for every i',k' € N such that ' < i and k' < k and for every input o € {0,1}* such that
S|/ < m, M”(s|g|,0i,k,0") queries o only on bits that are in G(0™,0%, k), where G(0™, 0%, k)
is printable in time polynomial in m + 1 + |k|.

By using standard Chernoff bound arguments it is easy to show that Definition 7 is robust,
i.e. the error probability can range from 1/2 + 1/p(n) to 1 — 279" for any polynomials p, g,
without enlarging (resp. reducing) the class of strategies defined in Definition 7.

Similarly to P, a class C is said meager if there is a single probabilistic strategy that avoids
C.

Definition 8 A class of languages C is BPPoc-meager if there ezxists a BPP,c computable
indezxed strategy h, such that for every L € C there ezists i € N, such that h; avoids L.

The definition of easy infinite unions is similar to P.

Definition 9 X = |J;cy X; is a BPPjoc-union of BPP\oc-meager sets if there exists an indezed
BPP)oc-computable strategy h : Nx N x {0,1}* — {0,1}* such that for every i € N, h;. witnesses
X;’s meagerness.

7.1 Verifying the axioms
Let us prove the first axiom.

Theorem 11 For any language L in BPP\oc, the singleton {L} is BPP,.-meager.

Proof. Let L € BPP be any language and let N be a probabilistic Turing machine deciding it. We

describe a BPPoc-computable constructor A which avoids {L}. Consider the following Turing

probabilistic Turing machine M computing h. On input a string o € {0,1}*, M7(s|5, k,0")

simulates N(s|y41) with error probability smaller than 27" and outputs 1 — N(s/541) if k=1

and L if £ > 1. Since M doesn’t query its oracle, it is easy to check that A is BPP y,c-computable,

moreover h avoids {L}. O
The third axiom holds by definition.

Theorem 12

11

1. All subsets of a BPP\oc-meager set are BPP)o-meager.
2. A BPP\oc-union of BPP,c-meager sets is BPPoc-meager.

Proof. Immediate by definition of BPP,.-meagerness. ad
Let us prove the second axiom.

Theorem 13 BPP is not BPPoc-meager.

Proof. The proof is very similar to Theorem 3. Notice that only step 4 in the proof of Theorem 3

is probabilistic; all simulations of M in step 4 can be performed with error probability 27". Since

there is a polynomial number of simulations, L is in BPP. O
Similarly to P, meagerness can be characterized through Banach-Mazur games.

Theorem 14 Let X be any class of languages. The following are equivalent.
1. Player II has a winning strategy for G[X, NN, BPP,].
2. X 1is BPP,c-meager.

Proof. The proof is similar to that of Theorem 4. For the first direction, M can be simulated
with error probability 27", thus h is in BPPjo.. For the other direction, less than n? simulation
of h are performed in step 2, and each can be performed with error probability smaller than
9-s(n) (where s is a polynomial to be determined later). Step 4 can be performed with error
probability smaller than 275("); this yields a total error probability smaller than (n?+ 1)2_5("'),
which is smaller than 2= for an appropriate choice of s. a

8 Consequences of some non-meagerness assumptions

In the following, we will show an application of our category notion on SUBEXP. It is easy to
check that the category notion of Section 3, can be adapted to the class E,, for every a > 0.
Let us denote by E,, _ the corresponding category notion.

We show an analogue of the zero-one law for BPP [Mel00] for local categories on SUBEXP.
We show that for every a > 0, either BPP is E,, -meager or BPP is equal to EXP infinitely
often.

Theorem 15 For every a > 0, BPP is E,__ -meager, unless BPP "2 EXP.

Qloc

Proof. We need the following result.

Theorem 16 Let C be a complexity class such that for every e > 0 and every language A € C,
there exists a language B € DTIME(2™), such that for almost every n € N, A(1") = B(1").
Then C is Eq,_-meager, for every a > 0.

Qloc

Proof. Let a > 0. Let M1, M>,... be a standard enumeration of DTIME(2"5), where ¢ will
be determined later and where M; runs in time o’ 4 q(i) for some polynomial g, obtained by
adding an alarm clock. Consider the following deterministic Turing machine M. On input 17,

12

M simulates M;(17) and outputs 1 — M;(17), where i is computed as follows.

i J1]1]2][12[3[1]2[3]4 [... o
jl1]2[3[4[5]|6]7|8[9]10]...

Let i € N* and denote by 4o the first j for which 4 occurs in Table 1. We have M (1%) =
1—M;(1%), and M (1%H0+1)=1) = 1 — M (1% +H+1D=1) for every ¢ > 1. Define M to output 0 on
all other strings. Let k € N* and denote by T} the set of languages L such that for almost every
n € N, L(1") = By(1"), where By = L(My), and let X = (J,c+ Tk- Consider the following
strategy g. On input o where |s ;|| = n, g is defined as follows,

M(s, if1<k<2m
ext (g(0), k)) :{ J_(o) otherwise.

Let us show that g is computable in time 27*/? " On input ¢ and k£ as above, a machine for
g needs to perform one simulation of M on an input less than 157, i.e. simulate M;(17) with
1,7 < bn. This takes time 25m° 4 q(5n), which is less than 27*/? for an appropriate choice of 4.

We show that for every strategy f we have R(f,g) ¢ X. Suppose for a contradiction that
there is a strategy f such that R(f,g) € X. Denote L = R(f,g). Applying the hypothesis with
€ = 0 yields L € T; for some integer 7, i.e. there exists Ny € N such that for every s > Ny,
L(1%) = B;(1%). Let iy be as above, and let o be a string output by f during the game between
f and g, such that |s|;/| = n with n >4 and n > Np. Let ¢ be the greatest integer such that
io +t(i +1) —1 < n+ 1. By definition of n we have,

n+1<i+ (t+1)i+1t<4dn.
~—_—————
I

Since L = R(f,g), we have L(1') = M(11) = 1 — M;(17) = 1 — B;(1!) which is a contradiction
because I > Ny. Since C C X, C is E, -meager.

This ends the proof of Theorem 16. To prove Theorem 15 we also need the following slightly
modified result of [ITW98].

Theorem 17 (Impagliazzo, Widgerson) If BPP Z,-é EXP, then for every language A € BPP
and every € > 0, there is a language B € DTIME(2™) such that the following holds: For any
constant d > 0 and any length-preserving randomized polynomial-time Turing machine M,

Pr{A(M(1™)) = B(M(1™))] > 1 —m™¢,
for almost every lengths m, where the probability is taken over the internal coin tosses of M.

Suppose BPP Z;é EXP. Applying Theorem 17 with M(1™) = 1™, we have that for every
A € BPP and every € > 0, there exists B € DTIME(2"°) such that A(1™) = B(1™), for almost
every lengths m. Thus by Theorem 16 we have that BPP is E,, -meager for every o > 0. O

13

8.1 Partial Derandomization of AM under non-meagerness assumption

The following result achieves partial derandomization for NP under the hypothesis ”NP is not
meager” for categories on SUBEXP.

Theorem 18 NP 2 AM, unless NP is Eq, -meager, for every o> 0.

Proof. The proof relies on Theorem 16 combined with the following result from [Lu00].

Theorem 19 [Lu00] If NP “L° AM, then for every language A € NP and every e > 0, there is
a language B € DTIME(2™) such that the following holds: For any length-preserving nondeter-
ministic polynomial-time multi-valued transducer M, there is at least on string s produced by
M(1™), such that A(s) = B(s), for almost every lengths m.

Suppose NP Z;g AM. Applying Theorem 19 with M (1™) = 1™ yields that for every A € BPP
and every € > 0, there exists B € DTIME(2™) such that A(1™) = B(1™), for almost every
lengths m. Thus by Theorem 16 NP is E,_-meager for every o > 0. O

8.2 BPP is easy or RP is small
The following result states that either RP is meager or ZPP equals BPP infinitely often.

Theorem 20 Fither RP is E,, -meager for every a > 0, or ZPP "2 BpP,
Proof. The proof relies on Theorem 16 combined with the following result from [Kab00].

Theorem 21 [Kab00] If ZPP “£ BPP, then for every language A € RP and every € > 0, there is
a language B € DTIME(2™) such that the following holds: For any length-preserving zero-error
probabilistic polynomial-time Turing machine M, there is at least on string s produced by M (1™)
such that A(s) = B(s), for almost every lengths m, and M(1™) outputs a least one string with
nonnegligeable probability.

Suppose ZPP Z,:g BPP. Applying Theorem 21 with M(1™) = 1™ satisfies the hypothesis of
Theorem 16. Thus by Theorem 16 NP is E,_-meager for every a > 0. ad

Qloc

9 Conclusion

The results in Section 8 should be compared to the zero-one laws obtained in Lutz’s measure
setting, see [Mel00] and [IM03] for more details. Although the results of Section 8 only hold
for infinitely many input lengths, they require strategies which take less time to be computed
compared to the martingales used in the measure setting, since the strategies can be computed
in subexponential time whereas the martingales require exponential time to be computed. A
further improvement would be to show that the results of section 8, hold in an almost-everywhere
setting.

Acknowledgments
We’d like to thank E. Allender for pointing out a mistake in an earlier draft of this paper.

14

References

[AS94]

[AS95]

[BDGY0]

[BDG95]

[Fen95]

[IMO3]

[TW98]

[Kab00]

[Lu00]

[Lut90]

[Lut92]

[Lut95]
[Mel00]

[Mos02]
[Mos03]

E. Allender and M. Strauss. Measure on small complexity classes, with application for
BPP. Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer
Science, pages 807-818, 1994.

K. Ambos-Spies. Resource-bounded genericity. Proceedings of the Tenth Annual Struc-
ture in Complexity Theory Conference, pages 162-181, 1995.

J. L. Balcazar, J. Diaz, and J. Gabarro. Structural Complezity II. EATCS Monographs
on Theorical Computer Science Volume 22, Springer Verlag, 1990.

J. L. Balcazar, J. Diaz, and J. Gabarro. Structural Complezity I. EATCS Monographs
on Theorical Computer Science Volume 11, Springer Verlag, 1995.

S. A. Fenner. Resource-bounded Baire category : a stronger approach. Proceedings of
the Tenth Annual IEEE Conference on Structure in Complexity Theory, pages 182—
192, 1995.

R. Impagliazzo and P. Moser. A zero-one law for RP. to be published in Computational
Complexity Conference, 2003.

R. Impagliazzo and A. Widgerson. Randomness vs time de-randomization under a
uniform assumption. Proceedings of the 39th IEEE Symposium on Foundations of
Computer Scinece, pages 734-743, 1998.

V. Kabanets. Easiness assumptions and hardness test: Trading time for zero error.
Proceedings of the Fifteenth Annual IEEE Conference on Computational Complezity,
pages 150-157, 2000.

C.-J. Lu. Derandomizing arthur-merlin games under uniform assumptions. Proceedings
of the Eleventh Annual International Symposium on Algorithms and Computation,

2000.

J.H. Lutz. Category and measure in complexity classes. SIAM Journal on Computing,
19:1100-1131, 1990.

J.H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and
System Science, 44:220-258, 1992.

J.H. Lutz. Weakly hard problems. SIAM Journal on Computing, 24:1170-1189, 1995.

D. Melkebeek. The zero one law holds for BPP. Theoretical Computer Science, 244(1-
2):283-288, 2000.

P. Moser. a generalization of Lutz’s measure to probabilistic classes. submitted, 2002.

P. Moser. Baire’s categories on small complexity classes. to be published in Funda-
mentals of Computation Theory, 2003.

15

[Pap94] C. Papadimitriou. Computational complezity. Addisson-Wesley, 1994.

[RS98] K. Regan and D. Sivakumar. Probabilistic martingales and BPTIME classes. In Proc.
13th Annual IEEE Conference on Computational Complexity, pages 186-200, 1998.

[Str97] M. Strauss. Measure on P- strength of the notion. Inform. and Comp., 136:1:1-23,
1997.

16

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

