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Abstract

We study the problem of representing symmetric Boolean functions as symmetric polynomials over
Z - We show an equivalence between such representations and simultaneous communication protocols.
Computing a function with a polynomial of degree d modulo pq is equivalent to a two player protocol
where one player is given the first [log, d] digits of the weight in base p and the other is given the first
[log, d] digits of the weight in base q. The players can decide on a protocol beforehand but they cannot
communicate directly with each other. If m has ¢ distinct prime factors, the protocols involve ¢ players.
This reduces the problem of proving bounds on the degree of symmetric polynomials to proving bounds
on simultaneous communication protocols. We use this equivalence to prove the following results

e We show lower bounds of Q(n) on symmetric polynomials weakly representing classes of Mod,
functions. Previously the best known lower bound for symmetric polynomials weakly representing
any function over Z,, was nt where ¢ is the number of distinct prime factors of m. We show a
linear lower bound for some threshold functions when ¢ = 2.

e We show that the strong degree! of threshold c, for ¢ constant, is o(n) using the fact that the
number of solutions of certain Catalan like Diophantine equations are finite. The connection goes
both ways: the fact that the degree is o(n) implies that some classes of Diophantine equations can
have only finitely many solutions.

e We study classes of randomized protocols which are equivalent to choosing randomly from a sample
space of symmetric polynomials and show upper bounds for threshold functions. In the context of
probabilistic polynomials, we show that general polynomials are provably stronger than symmetric
polynomials.

Our results give simplifications of many previously known results and provide a simple explanation for

why some functions have lower degree over composites than over primes.

!By strong representation, we mean f(X) =0 = P(z) =0 and f(X) # 0= P(X) #0
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1 Introduction

We study the problem of representing a symmetric Boolean function? as a symmetric polynomial over Z,,.
The inputs to the polynomial are 0-1 inputs denoted by X = X1, X5--- X,;. When m is prime, Z,, is a
field and we say that P represents f if P(X) = f(X). Proving lower bounds is not hard in this setting.
When m is composite, there are many possible definitions for what it means for P to represent a Boolean

function f.
Definition 1.1 P strongly represents f if f(X) =0= P(X) =0 and f(X)=1= P(X) #0.

Definition 1.2 P weakly represents f if f(X) # f(Y) = P(X) # P(Y). Equivalently there exist sets
A, A® C Zp, so that f(X) =0= P(X) € A, f(X)#0= P(X) € A°.

Tardos and Barrington [TB95] use the terminology one-sided representation for what we call strong
representation, but we use the latter for simplicity. Also, when we refer to polynomials and degree,
we mean only symmetric polynomials unless otherwise specified. Barrington, Beigel and Rudich [BBR94]
proved the surprising result that the OR function can be strongly represented by a symmetric polynomial of
degree O(y/n) over Zg. In contrast OR has degree Q(n) over Z,. They prove that this is the best possible
for symmetric polynomials. Proving lower bounds is considerably easier in the strong representation.
Linear lower bounds exist for functions for representations using general (not only symmetric) polynomials
[BBR94, Ts96, Gre95]. But as pointed out by [TB95] the task is simplified by the fact that P must output
0 whenever f is 0. The weak representation seems a more natural definition and here far less is known
with regard to lower bounds. The best lower bound known in this case for general polynomials is (logn)
[Gro95, TB95] and the best previously known lower bound for symmetric polynomials is v/n [BBR94].
Their argument can be used to a show a y/n lower bound for many other functions. The lower bound
comes from the observation that a symmetric polynomial of degree d over Zg has period O(d?). Clearly
the strongest bound this argument can prove for any function is v/n for Zg and ni when m has t distinct

prime factors.

1.1 Symmetric Polynomials and Simultaneous Protocols

We show an equivalence between symmetric polynomials representing f over Z,, and certain simultaneous
communication protocols for computing the function f. As a first step towards showing this equivalence,
we consider symmetric polynomials over Z,. Every symmetric polynomial P(X) over Z, computes a func-
tion f : {0,1,---n} — Z, where f(w) is the value of P on a 0 — 1 input of weight w. We show that the
functions that can be computed by a low degree symmetric polynomial in Z,[X] are exactly those than can
be computed from the first few digits of the base p representation of the weight. This is a consequence of a
classical result in number theory called Lucas’ Theorem which tells us how to evaluate binomial coefficients

modulo p. This is made precise by the following theorems.

%Since we are dealing with only symmetric functions, we consider them as functions from {0,---n} — {0,1}.



Theorem 2.4: Let f:{0,1}" — Z, be a function computed by a symmetric polynomial P[X] € Z,[X]
of degree d < p!. Then f is a function of just the first ! digits of w written in base p. Equivalently f can
be computed from w mod p'.

Theorem 2.5: Let f: {0,1}" — Z, be a function which depends only on the first { digits of w in base
p. Then f is computed by a symmetric polynomial P € Z,[X]| whose degree is less than Pt

Over Zpa essentially the same relation holds. However both directions are considerably harder to prove.
The proof uses Kummer’s Theorem which is a classical result that computes the exact power of p that
divides a given binomial coefficient and some facts about interpolation over Zpa.

We now introduce the notion of a protocol for computing a Boolean function f : w € {0,---n} — {0,1}.
For convenience, we take m = 6.

Definition 2.14: A strong protocol for computing f is a protocol involving two players P; and Ps. Ps is
given i = w mod 3*3 as input and outputs a number in Zs3. P, is given j = w mod 2*? as input and outputs
a number in Zs. If f(w) = 0, then both players must output 0. If f(w) = 1, at least one player must
output a non-zero value. The cost of the protocol is max(2*2,3%3). The two players cannot communicate
but they can agree on a procedure beforehand.

Definition 2.15: A weak protocol is defined similarly except that if f(w) # f(w') then at least one
player should give different outputs on w and w'.

Both strong and weak protocols are simultaneous protocols where the two players compute their outputs
independently of one another and write them on a blackboard. A referee then reads their outputs and
decides if the output of the protocol is 0 or 1. In a strong protocol, the referee’s strategy is fixed, he
outputs 0 iff both players say 0. In a weak protocol, the referee can choose any strategy. For m with ¢
distinct prime factors pq, - - -, p;, we define protocols with ¢ players where player P; reads the input in base
Di-

We can now make the connection between symmetric polynomials and simultaneous protocols. By the
Chinese Remainder Theorem, a degree d symmetric polynomial P(X) over Zg corresponds to symmetric
polynomials P5(X) and P3(X) over Zy and Zg respectively whose degrees are at most d. By theorem 2.4
this means that the function computed by P can be computed from the residues of w mod 2¥2 and 3*3
where these are the smallest powers of 2 and 3 which exceed d. This gives us the following theorem.
Theorem 2.16: If there exists a symmetric function of degree d that strongly (weakly) represents f then
there exists a strong (weak) protocol of cost at most 3d for computing f.

Conversely assume there exists a low cost protocol for f. The function computed by each player can
be represented by a low degree symmetric polynomial. We can now use the Chinese remainder theorem to
combine these polynomials and get a low degree polynomial over Zsg.

Theorem 2.17: If there exists a strong (weak) protocol of cost d that computes f then there exists a
polynomial of degree at most d that strongly (weakly) represents f.

This equivalence allows us to use techniques from communication complexity for proving both upper
and lower bounds on the degree of a polynomial representing f. The nature of the protocols allow us to use
results from number theory to prove degree bounds. For instance the problem of determining the degree

of threshold functions is related to classical problems regarding Diophantine equations.



1.2 Lower Bounds

Linear lower bounds for general polynomials in the strong representation are known for many functions.
Far less is known for weak representations. We show a lower bound of €2(n) on the degree of symmetric
polynomials weakly representing the Mod, function over Z,, for large enough r. We show a lower bound
of Q(k) on the weak degree of the threshold k function when m has two prime factors.

To prove lower bounds for weak two player protocols, we define a 3%3 x 2%2 matrix A where a;j =
i mod 3%3 and a;; = j mod 2¥2. We then define the matrix A/ whose i, jth entry is f(a;;) if a;; < n and
’x’ otherwise. The communication complexity of the protocol depends on the number of distinct rows and
columns of Af. The main difficulty in proving bounds is the fact that we do not know the structure of A7
explicitly, its entries are defined through the Chinese Remainder Theorem. Further, the size of the matrix
A7 is 3k3 x 2k2. When 2*2 and 33 are Q(n), the matrix has (n?) entries of which only n+ 1 are 0-1 entries
and all the rest are 'x’s. Hence even the task of proving deterministic lower bounds is not trivial. In all
our lower bound arguments, we first choose a submatrix of A7 whose entries can be computed explicitly
and show that it has sufficiently many distinct rows or columns. Using this technique, we show that any
symmetric polynomial that weakly represents Mod, over Zp, has degree Q(n) provided (r,p) = (r,q) =1
and r > min(p,q). We also show that every symmetric polynomial weakly representing the threshold
function T}, over Z,q has degree Q(max(k,+/n)) for k < 25"

These techniques will not work for ¢-player protocols since now the fraction of 0-1 entries is even smaller.
However we do obtain a linear lower bound for the Mod, function even in the ¢-player case for sufficiently
large r. This result is proved by a reduction to computing the function Exactly-r in the number on the
forehead model. In [CFL83] Chandra, Furst and Lipton show a lower bound of w(1) on this function
which proves to be sufficient for our purpose. This reduction is surprising since in our definition of ¢ player
protocols, each player only sees her own input.

Finally we also give simple proofs of known lower bounds on strong representations for symmetric
polynomials. We also show a separation between strong and weak representations by constructing a
function f which can be weakly represented by polynomials of degree y/n but both f and f need degree

Q(n) for strong representation.

1.3 Upper Bounds

We show a connection between strong representation of constant threshold functions and a well studied
family of Diophantine equations related to Catalan’s Conjecture. Catalan (1844) conjectured that 8 and 9
are the only two consecutive positive integers which are both perfect powers. This conjecture was recently
proved by Mihailescu in 2002. The case of powers of primes (which is the case we use) was known earlier

[Le77]. Pillai (1945) conjectured that for fixed non-zero integers a,b and ¢, the more general equation

at —ym=c I,m,z,y€el



with [,m,z,y > 1 and Im > 4 has only finitely many solutions. This conjecture is still open to the best of

our knowledge. However, with £ = p and y = ¢ also fixed, the equation
ap! —bg™ = ¢ (1)

and [, m > 1 and Im > 4, has only finitely many solutions in /,m [ST86]. We use this to show that for any
constant € > 0 and for sufficiently large n, there exist polynomials of degree en strongly representing T¢.
Conversely, we show that the fact that the degree is o(n) implies that the number of solutions to equation
(1) is finite. The best lower bound we can show for T is v/n. Closing this gap is related to some asymptotic

questions regarding equation (1).

1.4 Randomized Protocols

We investigate protocols where the players are allowed access to a shared random string. This corresponds
to picking a random polynomial from a space of symmetric polynomials of bounded degree over Z,,. We
consider one and two sided error in both strong and weak representations. We construct a number of
protocols for threshold k over Zg of cost max(k,/n) which equals the deterministic lower bound for both
strong and weak protocols. These protocols are constructed by reducing the problem to designing public
coin protocols for EQ) and NE(Q. Also, we show that any randomized protocol for the OR function has
degree y/n. Since the OR function can be probabilistically represented by general polynomials of degree 1,
this shows that in the context of probabilistic polynomials, asymmetric polynomials are provably stronger

than symmetric polynomials.

2 Symmetric Polynomials and Simultaneous Protocols

In this section we establish a relation between low degree symmetric polynomials over Z,, and certain
communication protocols. We denote the ring of symmetric polynomials in n variables over Z,, by
Zn[ X1, -+ X,)° or Z,,[X]®. The elementary symmetric polynomials Sy, - - S, are defined as follows.

S, = ZXi

(2
Se = > Xy Xiy Xy
1174 Fiy,

S, = HXZ-

Theorem 2.1 [La92] The ring Z,,[X]° is generated by the elementary symmetric polynomials Sy, -+ Sy.
If P[X] € Z,,[X]° has degree at most d, it can be expressed as a polynomial over Z, in Si,--- Sq.

Given a symmetric polynomial P[X] € Z,,[X]®, it computes a function f : {0,1}* — Z, which is
defined by f(X) = P(X). Alternately, since f is symmetric, it is a function only of the weight w(X) of

the input. So we can think of f as a function from w € {0,1---n} to Z,.



2.1 Polynomials over Z,

Lucas’ theorem is a classical result in number theory which allows us to evaluate binomial coefficients

efficiently modulo a prime p.

Theorem 2.2 [Gra97] Lucas’ Theorem: Let w = Zwipi, k= Z kip'. Then
i>0 i>0

(1) 1)

Corollary 2.3 For fized k < p', ( :J > mod p is a function of only the first | digits of w in base p.

Proof: By Lucas’ theorem ( :J ) = H ( 1;: ) modp. But k < p!. So k; = 0 Vi > I. Hence
i

-1
w w;
= H modp. ||
( k ) i—O( ki )

Theorem 2.4 Let f : {0,1}" — Z, be function computed by a polynomial P[X] € Z,[X]° of degree d < p'.
Then f is a function of the first | digits of w written in base p.

Proof: We can write P[X] as a polynomial in Si,---S4. For 1 < k < d, the value of Si on an input of
weight w is Z which depends only on the first  digits of w by 2.3. Hence the value of P[X] on a 0,1

input depends only on the first [ digits of w in base p. |
This correspondence goes both ways, any function that depends on only a few bits of the weight can

computed by a low degree symmetric polynomial.

Theorem 2.5 Let f : {0,1}" — Zjy, be a function which depends only on the first | digits of w in base p.
Then f is computed by a polynomial P € ZpXS whose degree is less than p'.

Proof: We can regard f as a function from wy, - - - w;—1 to Z, where w; € Z,. Hence f can be written as
a polynomial P’ in wy - - - wy, over Z,. But by Lucas’ theorem, we can write each w; as a polynomials in the
inputs X7, --- Xy, since S,i[X1---X,] = w;. Hence we get a polynomial P[X,--- X,] = PI[S]_,"'Splfl]
which is a symmetric polynomial generated by S ---S,-1. Hence deg(P) < .

2.2 Polynomials over Za

Over Zpe a similar relation holds between low degree symmetric polynomials and functions that depend
on only a few bits of the weight. The proofs however are more involved.> We first show that low degree

polynomials depend on only a few bits of the base p representation of the weight.

3We recommend reading just the statements of theorems 2.9 and 2.11 and skipping the rest of this subsection on first
reading



Theorem 2.6 [Gra97] Kummer’s Theorem: The largest power of p that divides ( : ) equals the

number of carries when k and n — k are added in base p.

l+a—1
Corollary 2.7 If0 < k < p', ( P f > = 0 mod p°.

Proof: Let k = Z kip'. k; = 0 for i > [. Hence when we add k and (p"+te=! — k) we get at least a carries.

(3

pH-afl
By Kummer’s theorem, p® divides L |

Corollary 2.8 If k < p!, ( : > mod p® depends only on the first I + a — 1 digits of w in base p.

(77) - 2(0(07)
(1)

) vanishes for all other values of j. Hence ( : ) has period

Proof:

pH-a—l
since corollary 2.7 states that .
J

+a=1 mod p® which implies that its value depends on only the first [ + a — 1 bits of w in base p. |

p

Theorem 2.9 Let f : {0,1}" — Zya be a function computed by P[X] € Zy[X]® where deg(P) = d < p'.
Then f is a function of just the first | + a — 1 digits of w in base p.

Proof: We can write f as a polynomial in Sy --- S3 whose value on a 0,1 input depends on just the first
I+ a—1 digits of w in base p. |}

We now show that a function that looks at just a few bits of the weight can be computed by a low degree
polynomial. Note that it is not obvious that every such function can be computed by some polynomial.
Over Zj, Lucas’ theorem gave a simple way to extract the k' bit of the weight base p using a polynomial.

We now have the k** bit mod p® and need to reduce it mod p.

Lemma 2.10 There exist polynomials Ag(X),- - Ap_1(X) € Zpa[X] of degree at most pa so that A;(x) =

1 mod p* if x = i mod p and 0 otherwise.

Proof: Consider the polynomial X¢®*). If £ % 0 mod p, then z € Zpa hence z%?*) = 1 mod p°. If
2 = 0 mod p, then z?®") = 0 mod p®. Hence we can take Ag(X) = 1 — X%?%) and A;(X) = Ag(X —3).

To prove the bound on the degree, observe that the polynomial

QUX) = X*+ (X = 1)+ (X —p+1)°



is a monic polynomial of degree pa which is identically 0 on Zy.. Hence we can divide A;(X) by Q(X) and
the reminder is a polynomial of degree less than pa which represents the same function on Zj.. |

Theorem 2.11 Let f : {0,1}" — Zya be a symmetric function which depends only on the first k digits of
w(X) in base p. Then f is computed by P(X) € Zp[X]® where deg(P) < p**la.

(;Uj)zwjmodp

i(X)) =1modp® <= S,(X)=cmodp <= (wg)>zcmodp

Proof: By Lucas’ theorem

Hence by lemma 2.10

A(S,

Hence by Lucas’ theorem w; = c. Thus we get a polynomial over Z,« which is one only when the Gt digit

is ¢. Similarly we construct a polynomial that is 1 only for a particular setting of the first k digits of w.

k—1
[[2;5:(X)) =1modp® <= Ay(Sy(X)=1modp*Vj <= w;=c;Vj
j=0

The desired polynomial is now given by

k-1
P(X)= Y | fleo-cx1) J] Ac(Spi (X))
€O, "Cl—1 7=0
The degree of this polynomial is bounded by
k—1
Zpa Pl < phtlg
§=0

2.3 Polynomials and Protocols over 7Z,,

The results of the previous section allow a simple interpretation of symmetric polynomials over Z,, for any

m. For convenience we state our results for m = 6. We first introduce some definitions.
Definition 2.12 A polynomial P[X] € Z,,[X]® strongly represents f : {0,1}™ — {0,1} if
e f(x1, - xy) =0= P(x1,---2p) =0

o f(z1, - xn)=1= P(z1,---25) #0



0(f) denotes the lowest degree of a symmetric polynomial that strongly represents f.

Definition 2.13 A polynomial P[X)] € Zp[X]® weakly represents f : {0,1}" — {0, 1} if

f(@rs---an) # f(y1,- - yn) = P, 2n) # Py1, - yn)

A(f) denotes the lowest degree of a symmetric polynomial that weakly represents f.

A weak representation for f is also a representation for f¢ and so A(f) = A(f¢), but this may not hold

for 6(f). A strong representation is a special case of a weak representation hence A(f) < min(d(f),d(f€))-

Definition 2.14 A strong protocol for computing f : w € {0,---n} — {0,1} is a protocol involving

two players Py and P3. The two players cannot directly communicate but they can agree on a procedure
beforehand.

e P5 is given ¢ = w mod 3%3 as input and outputs Ps(3) € Zs.

e P, is given j = w mod 22 as input and outputs Py(j) € Zo.

If f(w) =0, P3(w) =0 and Py(w) = 0.
If f(w) =1, Ps(w) #0 or Pa(w) #0.

The cost of the protocol is max(2¥2, 3%3).

Definition 2.15 A weak protocol is defined similarly except that if f(w) # f(w'), at least one of the

players outputs distinct values on inputs w and w'.

Lemma 2.16 If there exists a symmetric function of degree d that strongly (weakly) represents f then

there exists a strong (weak) protocol of cost at most 3d for computing f.

Proof: Let
PIX] =) ai X%
A

be a symmetric polynomial over Zg that strongly(weakly) represents f. Let

b; = a;mod?2
Py(X) = ) biX™
¢ = a;mod3

Py(X) = Z X%
1

Both P»(X) and P3(X) are symmetric polynomials of degree at most d. Let d < 2¥2 < 2d,d < 3% < 3d.
By corollary 2.4 the function computed P,(X) depends on just the first ko bits of w(X) in base 2. This

10



function is computed by player P,. The function corresponding to P3(X) can be computed from the first k3
digits of w(X) in base 3. This is computed by player P3. The cost of this protocol is max(2*2,3%3) < 3d |}

Lemma 2.17 If there exists a strong (weak) protocol of cost d that computes f then there exists a polyno-

mial of degree at most d that strongly (weakly) represents f.

Proof: Suppose the players read ko and k3 digits respectively. The function computed by P, depends
on only the first ko bits of w(X). So it can be computed by a polynomial Py(X) inZo[X]® of degree at
most 2¥2 by corollary 2.5. Similarly the function computed by P; depends only of the first k3 digits and is
computed by P3(X) in Z3[X]® whose degree is less than 3*3. By The Chinese remainder theorem, there is
a unique polynomial P(X) € Zg[X] which is congruent to P»(X) mod 2 and P3(X) mod 3. P(X) is also
symmetric and its degree is at most max(22,3%3) =d. |

We can now view both strong and weak protocols for f as simultaneous protocols in the communication

complexity setting.

e P, and P3 have inputs i and j and they wish to compute f(w) where w = i mod 3%¥3 and w =
4 mod 2*2.

e The two players cannot communicate with each other. We can imagine both players see their inputs
and then simultaneously write their outputs on a blackboard. A referee then reads what they have

written and decides the output of the protocol.

e There are restrictions on the values that the players can output since P3(i) € Zs3 and Pa(j) € Zo.

Hence the function should have O(1) deterministic simultaneous communication complexity.

If 2k23k3 < n there might be multiple values of w between 0 and n satisfying this congruence. If f does
not agree on all these values, then clearly no protocol with parameters ko, k3 exists. Assuming this is not
the case we can define an input matrix analogous to communication complexity.
We define a 3%3 x 2%2 matrix A = aij, 0<1< 3k3, 0 < j < 2%2 as follows
a;; = 4mod 3ks
a;; = jmod k2
0< a; < 2k23ks
P, receives the same input j for all inputs in the same column of A and hence outputs the same value.

Similarly inputs in a row are indistinguishable to P3. For a function f, we then define the 3%3 x 2k matrix
Al as follows

o If 0 < aj; < n, A, = f(ai)).
o If a;; > n, Azfj = x. The symbol x indicates that the function is not defined for this value of weight.

If 2%2 and 3%3 are much larger than /n, many of the entries of A/ are marked x.

11



3 Strong Representations

3.1 Lower Bounds

Theorem 3.1 [BBRY/] The Or function can be strongly represented by a polynomial of degree O(/n) over
Zg. Any symmetric polynomial that weakly represents the Or function has degree Q(y/n).

Proof: We design a strong protocol for OR of cost < 3y/n.

Or Protocol
e Choose ko and k3 so that v/n < 25 < 2y/n and /n < 3§ < 3y/n.
e If i =0 then P3(i) =0 else P3(i) = 1.

e If j = 0 then P»(j) =0 else P»(j) = 1.

To prove that this protocol computes the OR function, we need to show that i = j = 0 = w = 0. But
w=0mod 2*?, w=0mod 3" = w=0mod 2*23k

Also 2¥23%3 > but w < n. Hence w = 0.

To prove that this is tight for any weak protocol, if 2¥23%3 < n then i = j = 0 for inputs of weight 0 and
2k23k3  Hence any protocol will output the same value on these inputs. So 2¥23%¥3 > n = min(2*2, 3%3) >
N

To prove bounds better than /n however we need stronger techniques. The value of the protocol on
input a;; is zero iff P3(i) = P>(j) = 0. Hence there exists a protocol for f where P3 reads k3 bits and P
reads ko bits iff there exist I C {0,---3% — 1} and J C {0,---2*2 — 1} such that

o If f(a;j) =0thenie I,je€J.
o If f(a;j) =1theni¢ I orj¢J.

In other words, all the Os in A7 must be contained in a single rectangle. Hence we can show that such a

protocol is impossible by finding a showing that any rectangle containing all the 0s must contain a 1.

Lemma 3.2 There is a strong protocol for f where Py and Ps read ko and ks digits of the weight respectively

iff Vi, j such that f(ai;) = 1, either there are no Os in row i or there are no Os in column j of Af,

Proof: If there exist 4, j such that f(a;;) = 1 but there are Os in both row ¢ and column j of Af . then
the row player must answer 0 on row ¢ and the column player must answer 0 on column j. Hence they
both answer 0 on a;; so the protocol is incorrect. We can think of the two zero entries as a fooling set.
Conversely, if row ¢ does not have any 0Os, the row player can answer 0 on input ¢ and similarly for the
column player. This gives a strong protocol for f. |}

Lemma 3.2 gives a condition to test whether a protocol with parameters ko, k3 exists. If a protocol

does exist, the lemma guarantees that the following protocol works correctly.

12



Protocol
e If 3w < n such that w =i mod 3%3 and f(w) = 0 then P3(i) = 0. Else P3(i) = 1.

e If 3w < n such that w = j mod 2*? and f(w) = 0 then P,(j) = 0. Else Py(j) = 1.

Define the weight function W, as W,(X) =1 if w(X) = a and 0 otherwise.

Corollary 3.3 Every symmetric polynomial that strongly represents W, has degree Q(n). The function
W, is strongly represented by polynomials of degree ©(y/n).

Proof: Let 2F2 < %,3’“3 < §. Assume a > (<)5. Set

b = a—(+)2k
c = a—(+)3k

Observe that b lies in the same column as a while ¢ lies in the same row. But now

fla) =1
fo) =0
fle) =0

Hence by lemma 3.2 such a protocol does not exist. Hence max(2¥2,3%) > 2. The proof that A(W,) =
©(+y/n) is similar to the proof for OR in theorem 3.1 |}

Corollary 3.4 Every symmetric polynomial that strongly represents the NOR function has degree Q(n).

Define the threshold function Ty as Ti(X) = 1 if w(X) > k and 0 otherwise.
Corollary 3.5 Every symmetric polynomial that strongly represents Ty, has degree Q(max(k,+/n)).

Proof: Suppose 2¥23k3 < n. Choose a < k < a + 2¥23%3. Both players receive the same inputs for
these weights but Ty(a) = 0 while Tj(a + 2¥23%3) = 1. This proves a lower bound of /n. Now suppose
max(2¥2,3%3) < k. Consider any w > k. Since j = w mod 2¥2 and 2¥2 < k,j < k. Similarly i < k. The

entry ¢ lies in the same row as a while j lies in the same column.

Tk (w) =1
Te(i) = 0
T() = 0

Now apply lemma 3.2. Hence max(2F2,3%3) > &k |

Corollary 3.6 Every symmetric polynomial that strongly represents Ty has degree Q(n) for k < 7.
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Proof: Choose Iy > ko such that k£ < 22 < n. Choose I3 > k3 such that k < 35 < n.

Tw(0) = 1
Ti(22) = 0
Ti(3%) = 0

Hence by lemma 3.2, max(2*2,3%3) > k. |

Define Mod, (X) to be 1 if w(X) = 0 mod  and 0 otherwise. We can show that if r # 2%3° both Mod,
and its complement have § = ©(n). If r = 223° then Mod, has degree O(1) while Mod, has degree O(n).
We skip the proof.
3.2 Constant Threshold Functions and Catalan’s Equation

Catalan (1844) conjectured that 8 and 9 are the only two consecutive positive integers which are both

perfect powers. Catalan’s conjecture says that the equation

gd—ym=1 I m,z,ycZ (2)

with [, m,z,y > 1 has only one solution, [ = y = 2,m = x = 3. Pillai (1945) conjectured that for given

non-zero integers a, b and ¢, the more general equation
ar! —bym=c¢ I,m,z,y€cZ (3)

with [, m,z,y > 1 and Im > 4 has only finitely many solutions. However, [ST86] with a, b, p, g and c fixed
positive integers,
ap! —bg™ = ¢ (4)

and [,m > 1 and Im > 4, has only finitely many solutions in [, m. Interestingly this has the following

consequence for the strong degree of threshold functions:
Theorem 3.7 Let ¢ be a constant. For any constant € > 0,3ng such that for n > ng, 6(T.) < en.

Proof: Tj is the Or function. We prove the theorem for ¢ = 2. We use the following simple protocol.

Protocol
e [f either player receives an input less than ¢, she outputs 0.

e If either player receives an input greater than c, she outputs 1.

We first show that this protocol works correctly if both players do not read the last digit of the weight.
Hence

w mod 3*3

.
Il
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j =  wmod 2
3k < p < gkl

2k2 < n < 2k2+1

We must prove that there does not exist w such that w > 2, 1< 1and j < 1. There are four cases to

consider.
1. i=0and j = 0. But then w = 0 mod 2¥23%3. Hence w = 0.
2. i=1and j = 1. But then w — 1 = 0 mod 2¥23%3. Hence w = 1.

3. i =1and j = 0. If the most significant digit of w in base 3 is 2, then w = 2 - 3¥3 4 1, which is odd
but on the other hand w = 2¥2, which is even. If the last bit of w in base 3 is 1, then

w =2 =3k41 = 23k

But the only successive powers of 2,3 are 8,9 [ST86]. So for n sufficiently large this cannot happen.
4. =0 and j = 1. Similar to case 3.

Similarly in the case when the players do not read the last d digits, we get equations of the form a2*> —b3*3 =
+1, where a < 2¢,b < 3%. But since equation (4) has only finitely many solutions, we can take n sufficiently
large enough so that this equation cannot be true. This proves the theorem for T5. For ¢ > 2, by repeating
the same argument, we get an equation of the form a2¥? — b3 = k with k& < ¢ which has finitely many
solutions by equation (4). |

We show that the connection is tight in the following sense: If §(7) is sufficiently small asymptotically,

then for all fixed a, b, c equation (4) has only finitely many solutions in / and m.

Theorem 3.8 For constant c, if there exists 0 < € < min(2~%,3(¢+1)) such that Yn > ng 6(T,) < en over
Zg, then
a2 — 3™ = ¢ (5)

has only finitely many solutions for |a| <2¢,|b] <3¢ and 1 < ¢ < c.

Proof: If §(T;) < en Vn > ng then there exists a strong protocol P for T, such that max(2k2, 3k3) < en.
Now assume that there exist infinitely many solutions to equation 5 for some a, b, ¢’. Assume that a,b,c’ > 0.

Since there are infinitely many solutions, there exist solutions with a2! > ng. Set n = a2! = ¢ 4+ b3™. Let

w = n.
r_n_n k
2—52272677/222
Hence j = a2' mod 2¥2 = 0. Similarly
m n—c’>n—c' no s gk
=25 2 2en23



Hence i = ¢ + 3™ mod 3% = ¢. But now

flw) =1

f0) =0

fid)y =0
Hence by lemma, 3.2 a protocol does not exist. If the solution was such that a,b < 0 while ¢’ > 0, we could
take n = —b3™ = ¢ — a2’ and reach a similar contradiction. So there can exist only finitely many solutions
to equation (5). An analogous result holds for general p and gq. |

Currently the best lower bound we can show for T, is v/n, so there is a substantial gap between the
upper and lower bounds. Closing this gap relates to some asymptotic questions about equation (4). We

discuss this in detail in section 6.

4 Weak Representations

4.1 Lower Bounds for Mod,

We use the following classical result about simultaneous communication to prove lower bounds on weak

protocols.

Lemma 4.1 There exists a weak protocol for f with parameters (kp,kq) iff the matriz AS has at most p

distinct columns and q distinct rows.

Proof: The column player receives i = w mod p*» as input and outputs a value over Zp. If the number
of distinct columns exceeds p, then there are two distinct rows j and j' on which the row player gives
the same output. But there is a row index ¢ on which these two rows differ. Now consider the inputs
a;; and a;. The values of the function at these inputs are different, but both players output the same
value contradicting the definition of a weak protocol. A similar argument holds for the number of rows.
Conversely, if there are at most p distinct columns, the column player can assign a different output for
each type of column. Similarly for the row player. It is easy to see that this gives a valid protocol. |

’, we need to specify what it means to have at most

Since the matrix A7 has some entries marked ’x
p distinct columns and ¢ distinct rows. We mean that there is a way to set the x’s to 0 or 1 so that the

resulting matrix satisfies this condition.

Theorem 4.2 Let (r,p) = (r,q) =1 and r > min(p,q). Any symmetric polynomial that weakly represents
Mod, over Zpq has degree 2(n).

Proof: For convenience we consider the case r = 5,p = 2,q = 3. The general case is similar. The values
of ko and k3 will be determined later. We exhibit a 3 x 3 submatrix V of A such that V/ is the identity

matrix.
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0 a1 2k2 a2k
V=1 013 a12%2 + 53" ay2k2 4 by3ks
b23k3 a12k2 + bg3k3 a22k2 + b23k3

Elements in the same row of V have the same residue modulo 33 and elements in a column have the same

residue modulo 2%2. So V is a sub matrix of A. Since 2¥2 % 0 mod 5, we can find a1,a2 < 5 so that

a122 = 1mod5

as2¥? = 2mod5
Similarly since 3%3 % 0 mod 5, we can find by, by < 5 so that

b3 = —1mod5
by3ks —2mod 5

To ensure that all entries are at most n, we set 4(2¥2 + 3¥3) < n. To satisfy this, we can take 16 < 2k < g

and 37 < 3" < §. Hence min(2"2,3%) > J. Hence

vi=

o O =
o = O
- o O

Hence if max(2*2, 3%3) < 34 then Af has at least 3 different columns and a weak protocol cannot exist by
lemma 4.1. [ |

Corollary 4.3 Let s = p%q®r where (r,p) = (r,q) = 1 and r > min(p,q). Any symmetric polynomial that

weakly represents mods over Zp, has degree 2(n).

The proof is exactly the same as the previous one.
Our proof requires r > min(p, g). We cannot for instance show that Mods is hard over Zq5. While this
is probably true, to prove a lower bound, we will need to choose a different submatrix as it is easy to verify

that a simple protocol exists for the inputs in V.

4.2 Multi-player Protocols for Mod,

We now consider the case when m has ¢t > 2 distinct prime factors and protocols involve ¢ players. As a
first attempt we could try and apply the rank lower bound to a two dimensional sub matrix of the input.
However these sub matrices are very sparse and contains mainly x’s, so this approach is unlikely to work.
We show a lower bound for the ¢ player case by a reduction to the function Exactly-r in the number on
the forehead model. There is a lower bound of w(1) on the deterministic complexity of Exactly-r due to
Chandra, Furst and Lipton [CFL83]. The reduction seems surprising since in our definition of ¢ player
protocols, each player only sees her own input. We first need some results from the number on the forehead
model. Here there are ¢ players P, -+ P; and ¢ inputs z1,- -+ z; and player P; receives inputs z; Vi # j.

They wish to compute some function f(z1,--- z¢).
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t
Definition 4.4 For z;---x, € {0,---7 — 1}, the Ezactly-r function E.(z1,---z¢) =1 iﬁin =r.
i=1

Theorem 4.5 [CFL83] The deterministic complezity of the Ezactly-r function D(EL(zy,---z)) is w(1).

Here w(1) means that for ¢ fixed, the value of D(E!(z1,---z;)) goes to infinity as r tends to infinity. We
now define the Mod-r function in the number on the forehead model which should not be confused with
the Mod, function.

Definition 4.6 For z;---z; € {0,---r — 1}, the Mod-r function M!(z1,---z¢) =1 zﬁz.ﬁcz =0 mod .
Lemma 4.7 The deterministic complezity of the Mod-r function D(M(z1,---x)) is w(1).

Proof: We reduce the Exactly-r problem to the Mod-r problem. Assume that there is a protocol for

Mod-r. We will show that we can use it to compute the Exactly-r function at the cost of just one more
¢ t

bit of communication. Let S = sz P; computes s1 = Zx, If sy =0 thensince 0 <z <r, S<r.
i=1 i=2
If sy > 7, then S > r. In either case, E!(x1, --z;) = 0. Hence P; writes a special output on the board.

On the other hand, if 0 < s; < r, then 0 < S < 2r. Hence if M!(x1,---3;) = 1, then S = r, hence
El(z1,---x4) = 1. Hence the players can run the protocol for E! and the referee outputs the appropriate
value. Hence D(E!) < D(M}) + 1. But now by theorem 4.5, D(M}) = w(1). |}

We are now ready to prove a lower bound for Mod, in the ¢ player case. For convenience, we consider
the case of Zsg. The protocols now have three players P», P; and Ps who receive yo = w mod 2¥2,y3 =

w mod 3¥3 and y5 = w mod 55 respectively.

Theorem 4.8 There exists ro such that Vr > rq and (r,2) = (r,3) = (r,5) = 1, any symmetric polynomial
that weakly represents modr over Zsy has degree Q(n).

Proof: We use a fooling set comprising of inputs a2*2 + b3%3 + 5% where a,b,c € {0,---r — 1}. The

inputs received by P», P3 and P; respectively are

u = b3* + 5 mod 2+
v = a2k + 5% mod 3k3
w = a2% + b3% mod 5%s

We may as well give P, b3%3 and c5*5 since the value of u can be computed from this. Since (33, r) =
(5%, 7) = 1, and b,c € {0,---r — 1}, it is sufficient to give P, the inputs

Ty = b3%3 mod r

T3 ¢5% mod r

The values of b3¥3 and ¢5*5 can be recovered from z5 and z3 respectively. Similarly set z; = a2*> mod r.

We now have a reduction to the problem of computing M?(z1, 2, 73) in the number in the forehead model
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with some added restrictions. We want a simultaneous protocol, and P, P3 and Ps can write only 2,3 and
5 distinct outputs respectively. Overall the communication complexity of the protocol must be less than
5 bits since 2° = 32. However by lemma 4.7, for r > ro, D(M}) > 5. Hence for r > ry a weak protocol
cannot exist provided all the entries in our fooling set are no larger than n. The largest entry is bounded
by 7(2F> + 3ks 4 5%5). So we set each of 2+2,3%3 5k5 < I This gives a bound on the degree of {%-. In
general over Z,, where m has t distinct prime factors, the largest of which is p;, the value of ry depends

on t and m and the bound we get is 77 i

4.3 Lower Bounds for Threshold
We show a lower bound for Threshold functions in the two player case.

Theorem 4.9 Every symmetric polynomial weakly representing the threshold function Ty over Zpq has
degree Q(max(k,+/n)) for k < Z

- pq’
Proof: Since a lower bound of v/n is easy to show for all k, we assume that k& > /n. We consider the
case of Zg. Let 2%2 3%3 < [ and let 3%3t1 > k. We define

IS]
|

= 3k mod 22

2¢ = 2.3kt mod 2k2

Since 2%2 < k, @ < k and 2a < k. Now set

0 3kstl 2. 3ks+l 0 1 1
V=| x a @ + 3kst1 = Vi=| x 0 1
X X 2a x %X 0

Clearly V7 has at least three distinct rows for all settings of the xs. To ensure that the entries of V are
at most n we need 2.3%¥37!1 < n. This is possible provided k& < &- In the case of Z,,, we can construct a

similar matrix of size (p+1) X (p+ 1) provided k < . |}

4.4 Separating Strong and Weak Representations

We construct a function f for which A(f) = O(y/n) whereas 6(f) and §(f) are ©(n). Choose lz,l3 such
that v/n < 22 < 2/n and \/n < 3% < 3\/n. Define f : {0,---,n} — 0,1 by f(w) = 1 if exactly one of
22 and 3" divides w. Note that since 0 < w < n < 2238 if both 2© and 3% divide w, then w = 0. So
equivalently, f(w) = 1 if w # 0 and exactly one of 2/ and 3% divides w.

Lemma 4.10 Every polynomial that strongly represents the function f(f) has degree Q(n).
Proof: Tet 2¥2 4 3% < n. Set mo = max(ko,l) and m3 = max(ks,[3). Observe that

2™ = () mod 2
2m2 2 () mod 3®
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3™ = (0 mod 3"
3M3  #£ () mod 22
2m2 4 3M3 £ () mod 2"
2m2 4 3M3 £ () mod 3%

We now consider the matrix

0 3ms
gm>  gma | gms

pr_ [0 (10
10 0 1

Hence by 3.2, such a protocol cannot exist. |

Hence

Weak Protocol for f
e Set ko = Iy and ks = I3. Hence 4 = w mod 2" and 7 = w mod 3l
e If i =0 then P5(i) = 0 else Ps(i) = 1.
o If j =0 then P5(j) = 0 else Py(j) = 1.

e The output of the protocol is 1 if P3(i) = P(j) and 0 if P5(3) # Pa(j).

It is easy to see that the above protocol computes f. The cost of the protocol is O(y/n).

5 Randomized Protocols

Simultaneous protocols where the players have access to a shared random string are well studied in com-
munication complexity [BKL95]. Such protocols are of interest to us since they have can be interpreted as
selecting a symmetric polynomial at random from a sample space of symmetric polynomials. We use the
fact that the matrix A/ for T}, is similar to the matrix for EQ to give a number of randomized protocols
for the threshold function. These protocols match the best deterministic lower bounds shown in lemma
3.5 and theorem 4.9. We are unable to show any non trivial lower bounds for such protocols though we

believe they exist for functions like Mods over Zg.

5.1 Types of Protocols

Definition 5.1 [Tar93] A sample space of polynomials probabilistically represents a Boolean function if
on every input, a randomly chosen polynomial from the space computes the function correctly with good

probability.

20



Definition 5.2 A randomized protocol is a protocol where Py and Ps have access to a shared random
string. Py reads the first ko bits of the input in base 2 and Ps reads the first ks digits in base 3. Each of
them computes some function of the input bits and the bits of the random string. The cost of the protocol
is defined as max(22, 33),

Lemma 5.3 Choosing a polynomial from a sample space of symmetric polynomials of degree < d is equiv-

alent to a randomized protocol of cost d.

Proof: Each polynomial in the sample space corresponds to a deterministic protocol. Hence choosing a
random polynomial is equivalent to choosing a random protocol from a space of protocols. We can imagine
the players having access to a public string of random bits which allows them to choose a protocol from a
space of protocols. The function that each player computes is some function of the input bits read and the
shared random bits. Private coins are clearly not sufficient since the players do not pick their protocols
independently. [ |

We can define both strong and weak randomized protocols with both one and two sided error. Let us
first consider one sided error for strong representations. The next lemma, states that to beat deterministic
protocols, we must allow for some error on the 0 entries. If we insist on always getting the Os correct, the
same lower bound applies as in the deterministic case. However, for protocols that are allowed to err on
0s, this lower bound does not apply. Indeed we can design protocols (see for example lemma 5.8) that beat

the best known deterministic protocols.

Lemma 5.4 There exists a strong randomized protocol with parameters ko and ks for a function f which
always answers 0 on 0 inputs and which answers 1 on 1 inputs with probability € > 0 iff there ezists a

strong deterministic protocol for f with identical parameters.

Proof: One direction is trivial. For the other direction, by lemma, 3.2 if there does not exist a deterministic
protocol, then 3 4, j so that f(a;;) = 1 but there are 0s in row 7 and column j. But then in any randomized
protocol that always answers Os correctly, the row player says 0 on row ¢ with probability 1 and the column
player says 0 on column j with probability 1. Hence the protocol outputs an incorrect answer for input a;;
with probability 1. |

Hence when we consider strong protocols with one-sided error, the error is on 0 inputs. We also consider
strong protocols with two-sided error and weak protocols with one and two-sided error. Unlike in the case
of RP and BPP where the success probability can be amplified by repetition, running any of the above
kinds of protocols twice is not always equivalent to sampling from another space of protocols. This is
because the 0 and 1 sets obtained by repetition may not be rectangular partitions of the inputs. Hence,
proving that a weak two sided error protocol with success probability % does not exist does not rule out

the possibility that there exists a protocol with success probability %

5.2 Randomized Protocols for Threshold

We consider the threshold & function for various values of k. We first start with a general lower bound for

any kind of randomized protocol for Tj.
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Lemma 5.5 Any randomized protocol for Ty, has cost Q(y/n).

Proof: Suppose 2¥23%3 < . Choose i < k < i + 2¥23%3. Since both players receive the same input for
weights i and 7 4+ 2523%3 their output distributions will be identical but the value of T}, on these weights is
different. |}

Our upper bounds for T, come from the observation that when 2%2,3%3 > k. the matrix Af looks like
the matrix for equality of strings in two party communication complexity. We can imagine that each player

has a color in {0,---,k — 1} and they are trying to decide if they have the same color.

Lemma 5.6 There is a strong randomized protocol P; of cost O(max(k,~/n)) with two sided error for Ty
such that V 0 < p < 1 if w < k, both players say 0 with probability p and if w > k at least one player says
1 with probability 1 — p?.

Proof:  Set 2¥2,3%¥3 > max(k,/n). By setting x’s to 1, the corresponding matrix A/ has its first &k
diagonal entries set to 0 and the rest to 1. The players wish to design a protocol so that if ¢ = j < k, they
both say 0, else someone says 1.

Protocol 1
e If either input is greater than k that player says 1.

e Using their shared random string, P, and Ps select a random subset of colors S. Each color
from {0---k — 1} is included in S independently with probability p.

e Each player says 0 if her color is in S, else she says 1.

If both players have the same color 7, they both say 0 provided ¢ € S which happens with probability p.
If they have distinct colors 4, §, they both answer 0 iff i, j € S which happens with probability p?. Hence
they answer 1 with probability at least 1 —p?. By setting p = % the protocol answers correctly on all inputs
with probability at least 2. |1

Theorem 5.7 Ty is strongly represented by a probabilistic polynomial of degree O(max(k,/n)) with two

sided error.
We now design a one sided error protocol for the complementary problem T,.

Lemma 5.8 There is a strong randomized protocol for Ty whose cost is O(max(k,+/n)). The protocol

always answers 1 if w > k and answers 0 if w < k with probability at least %.

Proof: We want a protocol where if ¢ = j < k, then one of the players says 1. If not, then with some
probability they should both say 0.
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Protocol 2

e [f either player sees a number bigger than k, she says 0.

probability %
e P, answers 1 onevery s € Sand Oon j € S.

e P; answers 1 on every color in S and 0 on j € S.

e P, and P3 choose a random subset S of {0,1---k — 1} by including each color in it with

Suppose both players receive the same color ¢ < k. Either ¢ € S or ¢ € S, hence one of them will always

answer 1. If i # j and i > k, P, always says 0 while P3 says 0 if ; ¢ S which happens with probability at
least % Similarly for the case when j > k. If 4 # j and 4,5 < k, then both players say 0 iff i ¢ S while

j € S which happens with probability exactly i. |

Theorem 5.9 T is strongly represented by a probabilistic polynomial of degree O(max(k,/n) with one

sided error.

The public coin communication protocol for equality of strings gives a protocol which weakly represents

T with one sided error.

Theorem 5.10 T} can be weakly represented by a probabilistic polynomial of degree O(max(k,+/n)) with

one sided error.

Proof: Again we choose 22, 3% > max(k,/n).

Protocol 3

coins to select a random bit in the codeword and output that bit.

independent of Ps.

e If both players output the same bit, then the output of the protocol is 0 else it is 1.

e If i, 7 < k the players both encode their inputs using the Hadamard code. They use the public

o If 4 > k P, outputs a random bit independent of P3. If 7 > k P3 outputs a random bit

If either player sees an input greater than k£ she outputs a random bit independent of the other player,

hence the probability that they output the same bit is . In the case when i = j < k, the Hadamard

2

encodings of both inputs are the same, hence they always output the same bit. If ¢ # j, since the relative

distance of the Hadamard code is %, with probability %, the two players will output different bits.

23



6 Conclusions

The Strong Degree of Threshold

The best lower bound for T}, in the strong representation is max(k, /n). The only non trivial upper bound
we know is o(n) for constant threshold. Any improvement in either direction would be very interesting.
These questions are related to (and in fact equivalent to) some interesting number theoretic questions.
We shall consider the case of T5. For every k, choose 3K < 2k < 3K'+1 Since (2k,3k’) = 1, there exist
0<ag < 3% and 0 < be < 2¥ such that

ar2F — b3 =1 (6)

This defines sequences a = {aj,as,---} and b = {b1,ba,---}. We are interested in the asymptotic behavior
of these sequences. Note that ay and by are within a constant factor of each other by equation (6) and
our choice of k'. Hence we can consider just the sequence a. Equation 4 implies that for any constant c,
ay < c for only finitely many values of k. In other words the liminf(a) tends to oo as k tends to co. To
prove a stronger upper bound, we would need to show that for some function c(k) which is w(1), there are
only finitely many solutions to 6 with aj < ¢(k). On the other hand, finding a function d(k) which is o(2*)
such that for infinitely many values of k, ay < d(k) will show a lower bound of better than /n. In other
words proving that liminf(a) < o(2¥) will give a better lower bound. Conversely, improving either bound
will imply something about lim inf(a).

Weak protocols for threshold seem harder to analyze since unlike in the strong case, the protocol is not
fixed.

Threshold for ¢ > 2

For ¢ > 2, the best lower bound for any representation in this paper is nt. Tt seems that better lower
bounds should exist especially for large values of k. On the other hand, for small values of k, it seems
possible that as t increases the degree may decrease. Since each player reads w in a different base, it seems

harder to come up with large numbers that look small to every player.

Weak Representation of Mod, for small r

Our bounds for weak protocols for Mod, in both the two player and multi-player cases require r to be
sufficiently large. The only cases for which upper bounds are known is when r = p{* --- pi*. It would be
nice to show a lower bound of €2(n) for all other r. For instance is there a lower bound of Q(n) for Mods

over 215?

Randomized Protocols

There exist randomized protocols for T}, that essentially equal the best deterministic lower bounds. Are
there functions where randomized protocols beat the deterministic lower bounds? We also do not know

any lower bounds for randomized protocols except the trivial nt lower bound.
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