
Upper and Lower Bounds for Randomized

Search Heuristics in Black-Box Optimization∗

Stefan Droste Thomas Jansen
Ingo Wegener

FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund,
Germany

droste, jansen, wegener@ls2.cs.uni-dortmund.de

Abstract

Randomized search heuristics like local search, tabu search, sim-
ulated annealing or all kinds of evolutionary algorithms have many
applications. However, for most problems the best worst-case ex-
pected run times are achieved by more problem-specific algorithms.
This raises the question about the limits of general randomized search
heuristics.

Here a framework called black-box optimization is developed. The
essential issue is that the problem but not the problem instance is
known to the algorithm which can collect information about the in-
stance only by asking for the value of points in the search space.
All known randomized search heuristics fit into this scenario. Lower
bounds on the black-box complexity of problems are derived with-
out complexity theoretical assumptions and are compared to upper
bounds in this scenario.

1 Introduction

One of the best-studied areas in computer science is the design and anal-
ysis of algorithms for optimization problems. This holds for deterministic

∗This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of
the Collaborative Research Center “Computational Intelligence” (SFB 531).

1

Electronic Colloquium on Computational Complexity, Report No. 48 (2003)

ISSN 1433-8092

algorithms as well as for randomized algorithms (see, e.g., Cormen, Leiser-
son, and Rivest (1990) and Motwani and Raghavan (1995)). The criterion
of the analysis is the asymptotic (w.r.t. the problem dimension), worst-case
(w.r.t. the problem instance) expected (w.r.t. the random bits used by the
algorithm) run time of the algorithm. Large lower bounds need some com-
plexity theoretical assumption like NP 6= P or NP 6= RP. For almost all
well-known optimization problems the best algorithms in this scenario are
problem-specific algorithms which use the structure of the problem and com-
pute properties of the specific problem instance.

This implies that randomized search heuristics (local search, tabu search,
simulated annealing, all kinds of evolutionary algorithms) are typically not
considered in this context. They do not beat the highly specialized algo-
rithms in their domain. Nevertheless, practitioners report surprisingly good
results with these heuristics. Therefore, it makes sense to investigate these
algorithms theoretically. There are theoretical results on local search (Pa-
padimitriou, Schäffer, and Yannakakis (1990)). The analysis of the expected
run time of the other search heuristics is difficult but there are some results
(see, e.g., Glover and Laguna (1993) for tabu search, Kirkpatrick, Gelatt, and
Vecchi (1983) and Sasaki and Hajek (1988) for simulated annealing, and Ra-
bani, Rabinovich, and Sinclair (1998), Wegener (2001), Droste, Jansen, and
Wegener (2002) and Giel and Wegener (2003) for evolutionary algorithms).
Up to now, there is no “complexity theory for randomized search heuristics”
which covers all randomized search heuristics and excludes highly specialized
algorithms. Such an approach is presented in this paper.

Our approach follows the tradition in complexity theory to describe and
analyze restricted scenarios. There are well-established computation mod-
els like, e.g., circuits or branching programs (also called binary decision dia-
grams or BDDs) where one is not able to prove large lower bounds for explic-
itly defined problems. Therefore, one has investigated restricted models like
monotone circuits, constant-depth circuits with unbounded fan-in and differ-
ent sets of available basis functions, length-restricted branching programs or
OBDDs. In all cases, one was interested in these restricted models in order to
develop lower-bound techniques which can be applied to less restricted mod-
els. In some cases, e.g., OBDDs, the restricted models have real applications.
Most of the restrictions are restrictions of some resource like parallel time
in constant-depth circuits or sequential time in length-restricted branching
programs. Monotone circuits restrict the type of possible algorithms or cir-
cuits. In our case of black-box optimization the information about the input

2

is restricted. This reflects the way how randomized search heuristics work.
Our framework allows to discuss optimal randomized search heuristics and
difficult black-box optimization problems. Based on Yao’s minimax princi-
ple (Yao (1977)) we can prove lower bounds without complexity theoretical
assumptions.

In Section 2, the scenario of black-box optimization and black-box com-
plexity is introduced. It is discussed why all well-known randomized search
heuristics are indeed black-box algorithms. Moreover, it turns out that black-
box algorithms can be described as randomized decision trees (a well-studied
computational model in the context of boolean functions, see, e.g., Hajnal
(1991), Heiman and Wigderson (1991), Heiman, Newman, and Wigderson
(1993)).

In Section 3, it is shown that the model might be too generous since it
does not restrict the resources for computing the next query in the decision
tree. Therefore, some NP-hard problems have polynomial-time black-box
complexity. It is possible to consider the restricted and realistic model where
the time to compute the next query is polynomially bounded. Some lower
bounds are even proved in the unrestricted model which makes the bounds
only stronger. Upper bounds should be proved only in the time-restricted
model. Moreover, a scenario is introduced where the information transfer
is restricted. This is motivated by the fact that most randomized search
heuristics are working with a limited information transfer. The restriction
is realized by limiting the information which is transferred from round i to
round i + 1 of the heuristic to a multiset of s(n) search points with their
function values.

In Section 4, we show that problems which are easy as optimization prob-
lems can have the largest possible black-box complexity. These easy results
stress the differences between the usual and the black-box scenario.

Afterwards, we prove upper and lower bounds for several classes of prob-
lems. First, we investigate in Section 5 sorting as the minimization of un-
sortedness where unsortedness is measured by different measures known from
the theory of adaptive sorting algorithms. Section 6 is motivated by prob-
lems which are typical examples in the community discussing evolutionary
algorithms and Section 7 investigates the class of monotone pseudo-boolean
polynomials. In Section 8, it is shown that the class of unimodal pseudo-
boolean functions, i.e., functions where each point has a better Hamming
neighbor or is globally optimal, is difficult in black-box optimization. In
Section 9, we discuss black-box optimization for multi-objective optimiza-

3

tion problems and investigate the single-source-shortest-paths problem. We
finish with some conclusions.

This paper is based on the conference paper by Droste, Jansen, Tinnefeld,
and Wegener (2003) and contains several new results.

2 Black-Box Optimization, Randomized

Search Heuristics, and Randomized Search

Trees

The following meta-algorithm covers all randomized search heuristics work-
ing on the finite search space S. Functions to be optimized are functions
f : S → R.

Algorithm 1 (Black-box algorithm)

1.) Choose some probability distribution p on S and produce a random

search point x1 ∈ S according to p. Compute f(x1).

2.) In Step t, stop if the considered stopping criterion is fulfilled. Oth-

erwise, depending on I(t) = (x1, f(x1), . . . , xt−1, f(xt−1)) choose some

probability distribution pI(t) on S and produce a random search point

xt ∈ S according to pI(t). Compute f(xt).

All the randomized search heuristics mentioned in the introduction fit
into this scenario. E.g., the famous 2-opt algorithm for TSP chooses the tour
π1 uniformly at random and computes its cost C(π1). The algorithm does
not store the whole history (π1, C(π1), . . . , πt−1, C(πt−1)) but only one tour
π as current one. This is captured by Algorithm 1 if pI(t) depends essentially
only on π. Then two non-neighbored edges of π are chosen and πt results
from π by cutting π into two pieces and pasting them together to obtain
πt 6= π. The interesting aspect is that the algorithm uses the parameters of
the problem instance only for computing f(xt) and not for the choice of pI(t).
Hence, it could work without knowing the problem instance if some black
box produces f(xt) if the algorithm asks the query xt. Generalizing this we
obtain the following scenario called black-box scenario.

The algorithm knows that it has to optimize one function from a class
F of functions f : S → R on the same finite search space. In the case of

4

TSP, S consists of all tours on {1, . . . , n} and F contains all functions fD,
D = (dij)1≤i,j≤n, dij ≥ 0, a distance matrix. Then fD(π) equals the cost of π
with respect to the distance matrix D. The black box knows which function
f ∈ F is considered (it knows D) while the algorithm does not have this
knowledge. The algorithm is allowed to ask queries x ∈ S to the black box
and obtains the correct function values f(x) as answers. This implies that,
in Step t, the whole knowledge of the algorithm is the knowledge that the
problem is described by F and the information contained in I(t). Hence, the
black-box scenario is an information-restricted scenario. The investigation
of this scenario is motivated since randomized search heuristics work in this
scenario.

We have not yet discussed the stopping criterion. Randomized search
heuristics hopefully produce quickly good solutions but they do not prove
that they are good. An exact branch-and-bound algorithm may produce an
optimal solution in the first step and may need exponential time to prove
that it is optimal. Randomized search heuristics are stopped without know-
ing whether the best search point produced is optimal. Therefore, we inves-
tigate the algorithms without any stopping criterion (as infinite stochastic
processes) but we charge the algorithms only for the time until an optimal
search point is chosen as query. The motivation for this is the observation
that randomized search heuristics do not spend most of their time after hav-
ing found an optimal search point. We remark that Lovász, Naor, Newman,
and Wigderson (1991) have investigated search problems in the model of
randomized decision trees. In their model the queries consider the value of
input bits.

Finally, we have to decide how we charge the algorithm for the resources
spent. For most optimization problems, the computation of f(x) is easy (for
the black box knowing f). Hence, we only count the number of queries.
This allows arbitrary time for the choice of pI(t) but a polynomial number
of queries with an exponential run time is not an efficient solution. In the
time-restricted model, we therefore allow only polynomial time (w.r.t. the
problem dimension dlog |S|e) for the choice of pI(t). Summarizing, the black-
box complexity underestimates the run time since only queries are counted.
Lower bounds on the black-box complexity describe limits for all randomized
search heuristics. When proving upper bounds one should estimate the time
for evaluating f and for the realization of the choice of the query points.
Nevertheless, one has to keep in mind that an optimization problem and its
black-box variant are different problems. The second one cannot be easier

5

since one has less information. The black-box complexity (the number of
queries) can be smaller than the run time of the best-known algorithm for
the optimization problem but this cannot hold for the overall run time of the
black-box algorithm.

After having boiled down black-box optimization to a game of queries
and answers we describe algorithms by decision trees. This makes it possible
to apply the lower bound technique known as Yao’s minimax principle. A
deterministic black-box algorithm can be described as a decision tree T . The
first query is computed deterministically and is represented by the root of
the decision tree. Each vertex v of the tree describes a query x and has an
outgoing edge for each possible answer f(x), f ∈ F . The history is described
by the unique path from the root to v containing all earlier queries and
answers. Only a subset F(v) ⊆ F describes the problem instances which
are consistent with all queries and answers in the history. Therefore, it is
sufficient to consider all f(x), f ∈ F(v). For each problem instance f the
algorithm follows a unique path and the cost C(f, T) equals the number
of nodes on this path until a node queries an f -optimal search point. In
principle, these search trees may have infinite depth. When designing a good
decision tree we can avoid to ask the same query twice. Then the depth of
decision trees is limited by the finite number |S|. Nevertheless, we have to
consider infinite trees. If we allow all integer-valued distance matrices for the
TSP, the query π has infinitely many answers. In most cases, we can restrict
the function values f(x), x ∈ S, to a finite set. Yao’s minimax principle
can be applied only if the number of deterministic algorithms is finite. This
assumption holds for deterministic trees of a depth bounded by |S| and a
finite number of answers for all queries.

A randomized black-box algorithm is a probability distribution on the
set of all deterministic black-box algorithms and, therefore, a randomized
decision tree. This is the most convenient definition when considering lower
bounds. For the design of randomized black-box algorithms it is more con-
venient to define them as algorithms fitting into the framework of Algorithm
1. Both definitions are equivalent.

After having described randomized search heuristics in black-box opti-
mization as randomized decision trees we recall Yao’s minimax principle (Yao
(1977), see also Motwani and Raghavan (1995)) which allows to prove lower
bounds for randomized algorithms by proving lower bounds for the expected
run time (w.r.t. a probability distribution on the problem instances) of de-

terministic algorithms.

6

Proposition 1 (Yao’s Minimax Principle) If a problem consists of a finite

set of instances of a fixed size and allows a finite set of deterministic al-

gorithms, the minimal worst-case instance expected optimization time of a

randomized algorithm is lower bounded for each probability distribution on

the instances by the expected optimization time of an optimal deterministic

algorithm.

3 NP-hard Problems with a Polynomial

Black-Box-Complexity and Information-Re-

stricted Black-Box Algorithms

The aim of this short section is to prove that the black-box scenario with
unrestricted time for the computation of the queries is useful only for lower
bounds. The reason is that algorithms may ask queries to get information
about the problem instance. Then the optimal solution is computed by
exhaustive search and, finally, presented as query.

The simplest example of this kind is the MAX-CLIQUE problem where
the search space consists of all vertex sets V ′ ⊆ {1, . . . , n}. Each graph G on
V = {1, . . . , n} is a problem instance and the corresponding function fG to be
maximized is defined by fG(V ′) = |V ′|, if V ′ is a clique of G, and fG(V ′) = 0,
otherwise. A black-box algorithm may ask all sets V ′ where |V ′| = 2 in
order to get the information on the edge set of G. Afterwards, a maximum
clique Vopt is computed and presented as query. This algorithm needs

(

n
2

)

+1
queries. The overall run time of this algorithm is super-polynomial (assuming
that NP 6= P).

We have seen that NP-hard problems can have a polynomial black-box
complexity but the corresponding black-box algorithm cannot be run effi-
ciently. The general model of black-box optimization is too generous since the
time for the computation of the queries is not limited. In the rest of this pa-
per, we consider only upper bounds with polynomial-time algorithms to com-
pute the queries. Even this restriction does not rule out black-box algorithms
which first reconstruct the problem instance and then use a problem-specific
algorithm to compute an optimal search point and present it as query. This
is the case for the maximum matching problem (Giel and Wegener (2003)).
Altogether, we can conclude that the class of black-box algorithms is not
restricted enough.

7

A more reasonable class restricts the information about the history which
is transferred to step t. Local search and simulated annealing only store one
search point with its value and evolutionary algorithms only store a small
number of search points with their values. The only information about the
history consists of s(n) search points and their values. The information
package transferred to the next round has a size of s(n). Hence, s(n) will be
called size bound. The corresponding meta algorithm can be described as
follows.

Algorithm 2 (Black-box algorithm with size bound s(n))

1. Apply Algorithm 1 for s(n) steps.

2. In Step t, stop if the considered stopping criterion is fulfilled. Other-

wise, depending only on the multiset I consisting of (x1, f(x1)), . . . ,

(xs(n), f(xs(n))) choose some probability distribution pI on S and pro-

duce a random search point x ∈ S according to pI . Compute f(x).
Use a randomized algorithm to decide whether (x, f(x)) replaces some

(xi, f(xi)) to update I.

In this paper, we only prove lower bounds for the unrestricted case. The
case of lower bounds for the information-restricted scenario is left for future
research. We consider upper bounds for the unrestricted and the information-
restricted case.

4 Simple Problems with Maximal Black-Box

Complexity

The purpose of this section is to show that problems that are simple in the
usual scenario can be very difficult in the black-box scenario. We start with a
simple upper bound in order to see later that the difficult black-box problems
have maximal complexity.

Proposition 2 If the black-box problem is defined on the search space S, the

black-box complexity is bounded above by (|S| + 1)/2.

Proof We create uniformly at random a permutation of S and query the
search points in this random order. For each x ∈ S, the expected time until
it is queried equals (|S| + 1)/2. 2

8

The following problem is known as “needle in the haystack” in the area
of evolutionary computation. The class of functions consists of all Na, a ∈ S,
where Na(a) = 1 and Na(x) = 0, if x 6= a. We investigate maximization
problems if nothing else is mentioned.

Theorem 1 The black-box complexity of the needle-in-the-haystack problem

equals (|S| + 1)/2.

Proof The upper bound is contained in Proposition 2. The lower bound
follows by a simple application of Yao’s minimax principle. We consider the
uniform distribution on all Na, a ∈ S. After having queried m search points
without finding the optimal one, all other |S| − m search points have the
same probability of being optimal. Hence, each deterministic search strategy
queries on average (|S| + 1)/2 different search points. 2

Random search does not transfer information, i.e., s(n) = 0, and it needs
in this case |S| queries on the average and is almost optimal. In the usual
optimization scenario, the problem instance Na and, therefore, a has to be
specified and it is trivial to compute the optimal solution a. Why are we
interested in such a class of functions? The reason is that it contains the in-
teresting single-source-shortest-paths problem SSSP if we model that prob-
lem in the following way. The search space consists of all trees T rooted
at the source s. The cost function CD(T) with respect to a distance matrix
D = (dij), dij > 0, equals the sum of the cost of all s-i-paths in T and the aim
is minimization. If we restrict the problem to those distance matrices where
the connections contained in some tree T ∗ have cost 1 and all other connec-
tions have cost ∞, we are in a needle-in-the-haystack scenario. The tree T ∗

has finite cost and all other trees have infinite cost. Hence, the important
SSSP has the largest-possible black-box complexity in this description of the
problem. In Section 9, we describe SSSP as a multi-objective problem such
that its black-box complexity is linear.

The following problem is known as “trap” in the area of evolutionary
computation. Let S = {0, 1}n, let Ta(x) equal the number of ones in x, if
x 6= a, and let Ta(a) = 2n. The name “trap” describes the fact that typical
randomized search heuristics get trapped in the local optimum 1n (if a does
not contain many ones). Their expected optimization time is much larger
than the bound of Proposition 2 or the bound 2n for random search. In the
same way as Theorem 5 we obtain the following result.

9

Proposition 3 The black-box complexity of the trap problem equals

(2n + 1)/2.

This result has been mentioned since trap functions are bimodal. For all
a, there are at most two local optima, i.e., points without a better Hamming
neighbor. Hence, the class of bimodal functions has the maximal black-
box complexity. Unimodal functions have exactly one local optimum which
necessarily is globally optimal. Many people believe that unimodal functions
are simple for randomized search heuristics. This is disproved in Section 8.

5 Sorting as Black-Box Optimization Prob-

lem

There seems to be no computer science problem which is the subject of more
publications than sorting. This motivates the investigation of sorting when
considering new algorithmic aspects. Here it is necessary to describe sort-
ing as optimization problem, i.e., the problem to minimize the unsortedness.
Measures of unsortedness or presortedness have been considered in the the-
ory of adaptive sorting algorithms (see Petersson and Moffat (1995)). We
investigate the five best-known measures for the unsortedness of permuta-
tions π on {1, . . . , n} with respect to an optimal permutation π′. Because of
symmetry it is sufficient to consider the case where π′ = id is the identity.

– INV(π) equals the number of inversions, i.e., the number of pairs (i, j),
where i < j and π(i) > π(j).

– RUN(π) equals the number of runs, i.e., the number of maximal-length
sorted subblocks.

– REM(π) equals the number of removals, i.e., the minimal number of el-
ements which have to be deleted from π(1), . . . , π(n) in order to obtain
a sorted subsequence. It is known that REM(π) equals the minimal
number of jumps to sort the sequence. A jump is an operation where
one element is removed from π(1), . . . , π(n) and inserted again some-
where.

– EXC(π) equals the minimal number of exchanges of two elements to
sort the sequence. It is known that a permutation π with k cycles has
an EXC-value of n − k.

10

– HAM(π) is the “Hamming distance” to the sorted sequence, i.e., it
counts the number of positions with a wrong element.

All the measures lead to minimization problems. Scharnow, Tinnefeld
and Wegener (2002) have investigated an evolutionary algorithm with size
bound 1 for these five optimization problems. The algorithm has an expected
optimization time of O(n2 log n) in all cases with the exception of RUN where
it needs exponential time.

In our framework, the search space is the set Σn of all permutations on
{1, . . . , n} and we have for each π′ ∈ Σn a problem instance fπ′ : Σn → R

where fπ′(π) measures the unsortedness of π with respect to the optimal
permutation π′ and the measure of unsortedness characterizing the problem.

Our lower bounds are corollaries to a more general result.

Theorem 2 Let S be the search space of an optimization problem. If for

each s ∈ S there is an instance such that s is the unique optimum and if

each query has at most k ≥ 2 possible answers, then the black-box complexity

is bounded below by dlogk |S|e − 1.

Proof We apply Yao’s minimax principle and choose for each s ∈ S a prob-
lem instance I(s) such that s is the unique optimum for I(s). Then we in-
vestigate the uniform distribution on these instances. For each deterministic
search strategy we obtain a decision tree T whose outdegree is bounded by
k and which has to contain a node with the query s for each s ∈ S. For
each s we consider an s-node with minimal depth. The average number of
queries is at least by 1 larger than the average depth of all chosen s-nodes
and, therefore, at least dlogk |S|e − 1. 2

We have |S| = n! for sorting problems. The parameter k is bounded above
by

(

n
2

)

+1 for INV, by n for RUN, REM, EXC, and HAM. (0 ≤ HAM(π) ≤ n
but the value 1 is impossible.) Since log(n!) = n log n − O(n) we get the
following corollary.

Corollary 1 The black-box complexity of the sorting problem with respect to

INV is bounded below by n/2 − o(n) and with respect to RUN, REM, EXC,

or HAM it is bounded below by n − o(n).

In the following, we prove upper bounds.

11

Theorem 3 The following upper bounds hold for the black-box complexity of

the different sorting problems:

– INV: n + 1 in the unrestricted case and 2n − 1 for the size bound 3,

– RUN: 2n log n + O(n),

– HAM: O(n log n).

Proof For INV, we ask the queries ak := (k, k + 1, . . . , n, 1, . . . , k − 1),
1 ≤ k ≤ n. Using the answers to these queries we are able to compute the
rank of each element in the sorted sequence. We show this for item k. Let
b be the number of inversions of ak and c the corresponding number of ak+1

(or a1, if k = n). Let r be the unknown rank of k. Each of the items smaller
than k is counted in ak and not in ak+1 while each of the items larger than k
is counted in ak+1 and not in ak. All other pairs are counted both in ak and
ak+1 or neither in ak nor in ak+1. Hence,

b − c = r − 1 − (n − r) = 2r − n − 1

and r can be computed knowing b and c. Finally, we know the rank of each
item and can present the sorted list as query n + 1.

If s(n) = 3, we ask the following queries: a1, a2, a∗
1, a3, a∗

2, . . . , an, a∗
n−1.

The ai-queries are the same as above. The search point a∗
i should have the

items 1, . . . , i at their correct positions and should be different from all aj.
The aim is to store ai, a∗

i−1, and ai+1 after having queried ai+1, and to store ai,
ai+1, and a∗

i after having queried a∗
i . First, we query a1 and a2 and compute

some a∗
1 with the proposed properties. From ai, ai+1, and a∗

i , we can decide
which is the a∗-query. Then we can compute from ai and ai+1 the value of
i and ai+2. This is the next query. Knowing the answer we forget ai and its
value. From ai, a∗

i−1, and ai+1, we can compute which are the search points ai

and ai+1. Then we compute the rank of item i and some a∗
i with the proposed

properties. As long as i ≤ n−3, we have three free items. If we rank them in
decreasing order, the search point is different from all a-queries. If i = n− 2,
the items 1, . . . , n − 2 have to be at their correct positions. There is always
one choice to place n − 1 and n such that we fulfil the properties. Then we
query a∗

i and forget a∗
i−1 and its value. If i = n − 1, the search point where

1, . . . , n − 1 are at their correct positions is unique and optimal. If it equals
some ai, it has been queried earlier and the search has been finished earlier.

12

For the scenario described by RUN, we can simulate binary comparisons
and, therefore, sorting algorithms with a small worst-case number of compar-
isons. Let a and b be two items we want to compare and let c = c3, c4, . . . , cn

be the other items. Let r be the unknown number of runs of (c3, . . . , cn). We
ask for the number of runs of π1 = (a, b, c3, . . . , cn) and π2 = (b, a, c3, . . . , cn).
The results are summarized in the following table for all six complete order-
ings of a, b, and c.

RUN(π1) RUN(π2)
a < b < c r r + 1
c < a < b r + 1 r + 2
b < a < c r + 1 r
c < b < a r + 2 r + 1
a < c < b r + 1 r + 1
b < c < a r + 1 r + 1

If RUN(π1) < RUN(π2), we conclude that a < b. If RUN(π2) < RUN(π1),
we conclude that b < a. Otherwise, min{a, b} < c < max{a, b}. Then we
use the same approach to compare a and c and put item b at position 3.
Then we know whether a < c (implying that a < b) or c < a (implying that
b < a). Hence, a binary comparison can be simulated by four queries. With
at most 4(n− 1) queries we determine the maximal item which then is used
as c-element. Then two queries are sufficient to simulate a query and the
total number of queries can be bounded by 2n log n + O(n).

For HAM, we use a randomized sampling strategy to collect information.
Moreover, we use the power of negative thinking. If HAM(π) = n, we obtain
for each item the information that its position in π is wrong. If we know n−1
wrong positions for each item, we know the correct position of each item and
can compute the optimum search point. If π is chosen uniformly at random,
the probability that HAM(π) = n is at least 1/e − O(1/(n!)) (see Graham,
Knuth, and Patashnik (1994)). We investigate a sequence of cn log n queries
chosen independently and uniformly at random. The constant c is chosen
large enough. By Chernoff bounds, with overwhelming probability we have
at least c′n log n permutations π such that HAM(π) = n, e.g., for c′ = c/3.
By the coupon collector’s theorem (see Motwani and Raghavan (1995)), the
probability that item i does not take all its n − 1 wrong positions in these
permutations is less than 1/(2n), if c′ = 1+ε. Hence, the probability that we
do not know all wrong positions for all items is less than 1/2. Altogether, the

13

expected number of queries until we can compute the optimal permutation
is bounded by O(n log n). 2

It is easy to prove O(n2) bounds for REM and EXC. These bounds are not
presented in detail, since they are not significantly better than the O(n2 log n)
bounds mentioned earlier which even hold for the size bound 1. The upper
and lower bounds for INV differ only by a factor of 2. They differ since the
lower bound works with the maximal possible number of

(

n
2

)

+ 1 different
answers to a query. The search strategy for the upper bound allows only up
to n different answers for each query with the only exception of the first one.
A similar reason holds for the difference in the lower and upper bound for
RUN. The lower bound is based on the fact that RUN(π) can take n different
values but we ask some queries to get the information of a binary comparison.
The situation for HAM is different. Each query can have n different answers
but we only use the information whether HAM(π) = n or HAM(π) < n.
This implies that this strategy needs Θ(n log n) queries. Altogether, we have
solved the problem completely only for INV. For the unrestricted case and
EXC and REM one may hope to find better upper bounds. For the case of a
constant size bound, it would be interesting to look for better lower bounds.

6 Classes of Simple Functions

Since this paper has been motivated by problems on the analysis of evolu-
tionary algorithms, we now discuss classes of functions which are investigated
as typical examples in the literature on evolutionary algorithms.

A function is called separable if some subblocks of the input vector can
be optimized independently. The class LIN of all linear functions on {0, 1}n,
namely all

f(x) = w1x1 + · · · + wnxn,

contains those functions where each bit can be optimized independently from
the others. Evolutionary algorithms on linear functions have been inves-
tigated in many papers, before Droste, Jansen, and Wegener (2002) have
proved that a simple evolutionary algorithm with size bound 1 has an ex-
pected optimization time of Θ(n log n) on LIN. The special function where
w1 = · · · = wn = 1 is known as ONEMAX. The idea is that all vari-
ables have the same influence, i.e., the same absolute weight. To obtain a
class of functions, we define ONEMAX as the class of linear functions where

14

wi ∈ {−1, +1} for all i. The special function where wi = 2n−i is known as BV
(it interprets (x1, . . . , xn) as a binary representation and computes its binary
value). The idea is that xi has more influence than xi+1, . . . , xn altogether.
We define BV as the class of linear functions where wi ∈ {−2n−i, +2n−i}. Fi-
nally, we consider the non-linear function known as LO (leading ones). The
value of LO(x) is the length of the longest prefix of x consisting of ones only.
Again, xi has more influence than xi+1, . . . , xn altogether. Moreover, as long
as (x1, . . . , xi) does not have the right value, xi+1, . . . , xn have no influence at
all. Droste, Jansen, and Wegener (2002) have proved that the already men-
tioned evolutionary algorithm has an expected optimization time of Θ(n2)
on LO. We define LO as the class of all functions fa, a ∈ {0, 1}n, where fa(x)
is the length of the longest prefix of x which equals the corresponding prefix
of a.

Theorem 4 The black-box complexity of LIN is bounded above by n + 1 in

the unrestricted case and by (3/2)n + 1/2 for the size bound 2, already for

ONEMAX it is bounded below by n/ log(2n+1)−1. The black-box complexity

of BV equals 2 − 2−n.

Proof Let ei = 0i−110n−i. Knowing all f(ei) for f ∈ LIN is equivalent to
knowing all wi. Then query n + 1 can be chosen as optimal search point.

In the case of a size bound of 2 the idea is to store (ei, f(ei)) and (ai, f(ai))
after round i where ai contains the optimal prefix of length i followed by n−i
zeros. Remember that (ei, f(ei)) reveals the optimal bit at position i. Hence,
the first round is obvious. In general, the storage contains some ei (always
together with f(ei)) and some a with an optimal prefix whose length is at
least i − 1. From (ei, f(ei)) we can decide whether a contains the optimal
prefix of length i. In the positive case, the next query is ei+1 and, in the
negative case, the next query is a′ obtained from a by flipping the ith bit. It
is obvious that this strategy uses at most 2n queries. We can improve this by
using random bits at the positions 2, . . . , n of a1. Then the expected number
of wrong bits equals (n − 1)/2 and only for wrong bits we have to ask the
a-queries.

The lower bound for ONEMAX (and, therefore, also LIN) follows from
the fact that f(x) ∈ {−n, . . . , n} for f ∈ ONEMAX and an application of
Theorem 2.

The upper bound for BV follows by asking at first a random query a
which is successful with probability 2−n. The value f(a), f ∈ BV, reveals

15

the full information on all wi and the second query can be chosen as optimal
search point. The lower bound is easy to obtain. 2

The results on LIN are interesting since we conjecture a lower bound (even
for ONEMAX) of Ω(n log n) for the size bound 1. In the case of BV, f(a)
contains the full information on f . The main idea behind BV is also contained
in the class MBV of all functions g ◦ f where f ∈ BV and g : Z → R is
monotone. The class MBV contains also nonlinear functions and has infinite
size. It is interesting to see how Yao’s minimax principle can nevertheless be
applied to get lower bounds on the black-box complexity of MBV.

Theorem 5 The black-box complexity of MBV is bounded above by n + 2
and bounded below by Ω(n/ log n).

Proof The upper bound follows as the upper bound for LIN in Theorem 4.
We only have to add the query point e0 = 0n to get a reference point.

For the lower bound, we first assume a less powerful black box. It does not
produce the correct g ◦ f -value for the query but only the complete order of
the g ◦f -values of all queries asked so far. For the (t+1)th query point there
are only t+1 places in the complete order of the previous t queries where the
new query point can be inserted. The number of deterministic algorithms is
finite and we can apply Yao’s minimax principle for the uniform distribution
on all 2n possible f ∈ BV. The number of nodes in the decision tree on the
first t levels is bounded above by t!. Hence, the average depth of 2n nodes is
Ω(n/ log n).

In the following, we prove that we cannot do better than this lower bound
if we know the exact values of g ◦ f(a). Let s = (s1, . . . , sn) be the sign
vector of f , i.e., si = +1 if wi = 2n−i, and si = −1, otherwise. After having
queried a1, . . . , am the set of still possible s-vectors is independent of the fact
whether we get only the order of the g ◦ f -values or their exact values. In
the original black-box scenario, the decision on the next query can depend
on the exact values of the function. Let us consider two situations where the
same queries have been asked with the same order of the function values but
with different function values. It makes no sense to use the knowledge of the
function values. We have a worst-case input scenario and the adversary is
still free to choose the monotone function g in such a way that it transforms
one vector of function values into the other one. 2

Finally, we prove quite precise bounds on the black-box complexity of
LO.

16

Theorem 6 The black-box complexity of LO is bounded above by n/2+ o(n)
for the size bound 1 and bounded below by n/2−o(n) in the unrestricted case.

Proof The upper bound follows by the following simple strategy. The first
query is chosen uniformly at random. If the storage contains the search point
b and fa(b) = i, we know that (a1, . . . , ai) = (b1, . . . , bi) and ai+1 = 1 − bi+1.
The next query b′ starts with (a1, . . . , ai+1) followed by n − i − 1 random
bits. In any case b′ replaces b in the storage. Then fa(b

′) = j ≥ i + 1 and
the random number Ni of new correct bits equals j − i. We have Prob(Ni =
k) = 2−k, if 1 ≤ k ≤ n − i − 1, and Prob(Ni = n − i) = 2−(n−i−1). This
corresponds to a geometrically distributed random variable with parameter
p = 1/2 where values larger than n − i are replaced by n − i. Therefore,

2 − 2−(n−i−1) ≤ E(Ni) ≤ 2 and V (Ni) ≤ 3.

We partition the run of the algorithm into two phases where the first one
ends when we know at least n−dn1/2e a-bits. The length of the second phase
is bounded by dn1/2e = o(n). We try to estimate the probability q that the
length of the first phase is not bounded above by t := n/2+n2/3 = n/2+o(n).
This equals the probability that the sum S of t independent random variables
Ni(j), 0 ≤ i(j) < n − dn1/2e is smaller than n − dn1/2e. Then E(S) ≥

(2 − 2−(n−dn1/2e))t and V (S) ≤ 3t. It follows from Tschebyscheff’s inequality
that q = o(1). Since n is a trivial upper bound on the length of the first phase,
its expected length is bounded by (1 − q)(n/2 + n2/3) + q · n = n/2 + o(n).

For the lower bound, we apply Yao’s minimax principle for the uniform
distribution on all a ∈ {0, 1}n. Note that Theorem 2 gives only a lower bound
of order n/ log n. In the scenario of LO it is easy to evaluate precisely our
knowledge after having asked t queries b(1), . . . , b(t). If m = fa(b(j)) is the
maximal answer to the queries, we know precisely the first m + 1 bits of a
and the a-posteriori distribution for the n − m − 1 suffix bits is the uniform
distribution on {0, 1}n−m−1. Hence, a query not starting with the correct
m + 1 bits reveals no information. Each query starting with the correct
m + 1 bits reveals the random number of Nm+1 new correct bits (where
Nm+1 is the random variable defined in the proof of the upper bound). Now,
Tschebyscheff’s inequality implies that the probability that n/2− n2/3 steps
are enough to find the optimum is bounded above by o(1). This implies the
theorem. 2

17

7 Monomials and Monotone Polynomials

Each pseudo-boolean function f : {0, 1}n → R can be written uniquely as a
polynomial

f(x) =
∑

A⊆{1,...,n}

wA ·
∏

i∈A

xi.

Its degree d is the largest size of a set A where wA 6= 0. The function f
is monotone increasing if wA ≥ 0 for all A. Let zi ∈ {xi, 1 − xi}. Then
we get also a unique representation (of the same degree) with respect to
z1, . . . , zn (variables and negated variables). The function f is monotone if it
is monotone increasing for some choice of z1, . . . , zn. It is well known that the
optimization of polynomials of degree 2 is NP-hard. Therefore, we consider
the class MP(d) of all monotone pseudo-boolean functions whose degree is
bounded by d. Wegener and Witt (2003) have proved that a randomized local
search heuristic with size bound 1 has a worst-case expected optimization
time of Θ(2d · n

d
· log n

d
) on MP(d) and it is interesting to investigate the

black-box complexity of MP(d). Our results will show that randomized local
search is not far from optimal. Our lower bound holds even for the class
MON(d) of monotone monomials (polynomials with one term).

Theorem 7 The black-box complexity of MON(d) is bounded above by 2d for

the size bound 0 and bounded below by 2d−1 + 1/2. The black-box complexity

of MP(d) is bounded above by O(2d log n + n2) for the size bound 3.

Proof The results on MON(d) are easy. The upper bound follows by ask-
ing random queries and the lower bound by Theorem 2 considering the 2d

monomials z1 · · · zd, zi ∈ {xi, 1 − xi}.
For the upper bound on MP(d) we start with the following approach

which works in the unrestricted scenario. The ith bit of a is called essential
if f(ai) < f(a) where ai is obtained from a by flipping the ith bit. If a
is the search point with the largest f -value (at first some arbitrary a), we
determine the essential bits with the queries a1, . . . , an. Afterwards, we ask
random queries b where b agrees with a in its essential bits and is chosen
uniformly at random at the other positions. If a is not optimal, the expected
number of queries to find a better search point b is bounded by O(2d) since it
suffices to activate one further monomial of f . Altogether, there are at most
n phases until all bits f depends on essentially are essential. Each phase has
an expected length of O(2d + n) leading to a time bound of O(2dn + n2).

18

The first term can be improved. For the analysis, we may choose at most n
monomials containing all variables f essentially depends on. In each step of
the search for better search points each of these monomials has a probability
of at least 2−d of being activated. Hence, the probability of not activating at
least one of the chosen monomials in c · 2d · log n queries is bounded above
by 1/2 for some constant c large enough. This implies that the expected
number of queries for searching for better search points is even bounded by
O(2d log n).

Now we show how we can perform the search within a size bound of 3.
Our aim is to store the search point a and “as an indicator” the search point
b such that ai = bi for all essential bits of a and ai 6= bi, otherwise. Then we
can perform the random search fixing all essential bits of a. This search can
be successful immediately if f(b) > f(a). We still have to describe how to
construct b with limited storage space. First, we only store a and its bitwise
complement c. Then we ask the queries a1, . . . , an only storing the last query
in order to identify the index i. Whenever we find a new essential correct
bit, e. g., bit i, we ask ci and replace c by ci. Finally, c = b. We store a, c,
and the last query of type ai. Since a and ai differ only at position i but a
and c differ at least at the positions i + 1, . . . , n we can compute the “role”
of each search point if i < n. For i = n, either a and c differ at one of the
positions 1, . . . , n− 1 or c = an. In any case, the algorithm works with a size
bound of 3. 2

8 Unimodal Functions

Typical difficult optimization problems have many local optima which are
not globally optimal. Here we investigate the class of unimodal functions
f : {0, 1}n → R, i.e., functions where each a ∈ {0, 1}n is globally optimal or
has a Hamming neighbor with a better function value. Better means larger
since we consider maximization problems. Let U(b) be the class of unimodal
functions f which take at most b different function values. There is an ob-
vious O(nb) bound on the black-box complexity of U(b). This bound holds
for the following search strategy with size bound 1 (and also for simple evo-
lutionary algorithms). The first search point is chosen uniformly at random.
Afterwards, we query a random Hamming neighbor a′ of the search point a
in the storage. The new search point a′ replaces a if f(a′) ≥ f(a).

Horn, Goldberg, an Deb (1994) have designed unimodal functions where

19

b = b(n) grows exponentially and where local search heuristics including the
one discussed above have an expected optimization time of Θ(nb). Rudolph
(1997) has proved that the function introduced by Horn et al. can be opti-
mized in polynomial expected time by a non-local randomized search strat-
egy. He defined unimodal functions which have been shown to be difficult
for mutation-based evolutionary algorithms by Droste, Jansen, and Wegener
(1998). Here we investigate the more general scenario of black-box opti-
mization and prove that the black-box complexity of the class of unimodal
functions grows exponentially. This extends a similar bound for determinis-
tic strategies proved by Llewellyn, Tovey, and Trick (1989) with an adversary
argument. We are also interested in the dependence of the black-box com-
plexity of U(b) on b = b(n).

The proof idea is again an application of Yao’s minimax principle. For
U(b) we consider functions f : {0, 1}n → {0, 1, . . . , b − 1}. It is difficult to
investigate the uniform distribution on the set of these unimodal functions.
Therefore, we describe another probability distribution on U(b). The idea
is to create a random simple path P = (p0, . . . , pl) where p0 = 1n, pi+1 is a
Hamming neighbor of pi, and l ≤ b − n − 1. Then

fP (a) =

{

n + i if a = pi

ONEMAX(a) otherwise

is a unimodal function. If a search strategy tries to follow the path, we expect
a search time of Ω(b − n). If b = 2o(n), the set of path points is a sparse set
in {0, 1}n and it seems to be difficult to find shortcuts.

Simple paths are free of cycles. It is easier to investigate random paths
which are not necessarily simple. Let R = R(L) be the following random
path R = (r0, . . . , rL). Let r0 = 1n and let ri+1 be a Hamming neighbor
of ri chosen uniformly at random. The corresponding random simple path
P = P (R) starts at p0 = r0. After having reached pi = rj let k ≥ j be the
largest index where rj = rk. Then pi+1 := rk+1. With large probability, R
has only short cycles and the Hamming distance of ri and rj is quite large if
j − i is not too small. These ideas are made precise in the following lemma.

Lemma 1 For L(n) = 2o(n), d(n) ≤ min{n, L(n)} and each constant β > 0
there exists some α = α(β) > 0 such that

Prob(H(ri, rj) ≤ α · d(n)) = 2−Ω(d(n))

for the random path R = R(L(n)) and each (i, j) where j ≥ i + β · d(n).

20

Proof Since R is defined by a time-homogeneous Markov chain, it is sufficient
to consider the case i = 0. Let Ht := H(r0, rt). Then Ht+1 = Ht + 1 iff one
of the n − Ht bits where r0 and rt are equal flips. Hence,

Prob(Ht+1 = Ht + 1) = 1 − Ht/n

and
Prob(Ht+1 = Ht − 1) = Ht/n.

Let γ := min{β, 1/10} and α := γ/6. We investigate the subpath R′ =
(rk, . . . , rj) of R where k = j − bγ · d(n)c.

If Hk ≥ (3/10) · n − bγ · d(n)c, then Hj ≥ (3/10) · n − 2bγ · d(n)c, since
the Hamming distance can decrease at most by 1 per step. By definition,
2 · γ · d(n) ≤ d(n)/5 ≤ n/5 and Hj ≥ n/10 ≥ α · d(n).

If Hk < (3/10) · n− bγ · d(n)c, then Ht < (3/10) · n for all t ∈ {k, . . . , j}.
Hence, we have bγ · d(n)c independent steps where the Hamming distance
increases with a probability of at least 7/10. By Chernoff bounds, the prob-
ability of less than (3/5) · bγ · d(n)c distance increasing and then more than
(2/5)·bγ ·d(n)c distance decreasing steps is bounded above by 2−Ω(d(n)). Oth-
erwise, the Hamming distance increases by at least (1/5) ·bγ ·d(n)c > α ·d(n)
for large n. 2

Now we are prepared to prove a lower bound on the black-box complexity
of U(b(n)+n). We describe the bound with respect to functions with at most
b(n)+n different function values since our construction uses n function values
for the search points outside the path.

Theorem 8 The black-box complexity of the class U(b(n) + n) of unimodal

functions is bounded below by Ω(b(n)/ log2 b(n)) if b(n) = 2o(n).

Proof We apply Yao’s minimax principle for the probability distribution on
all fP defined by the experiment described before Lemma 1 where L(n) =
b(n). First, we have to investigate the length l(n) of the simple path P based
on the random path R of length L(n). Let d(n) = c·log b(n) for some constant
c. Lemma 1 for β = 1 implies for each i that the probability of the event
rk = ri for some k where k − i ≥ d(n) is bounded above by b(n) · 2−Ω(d(n)).
Hence, the probability of a cycle whose length is at least d(n) is bounded
above by b(n)2 · 2−Ω(d(n)) which equals 2−Ω(d(n)) if c is chosen large enough.
With probability 1 − 2−Ω(d(n)), the length of P is at least b(n)/d(n). For all
other cases we estimate the search time below by 0.

21

We investigate a scenario which provides the search process with some
additional information and prove the lower bound for this scenario. The
knowledge of the heuristic is described by

– the index i such that the prefix (p0, . . . , pi) of P but no further P -point
is known and

– the set N of points known to lie outside P .

Initially, i = 0 and N = ∅. The search heuristic asks a query point a. We
define the search to be successful if a = pk and k ≥ i + d(n). If the search is
not successful, i is replaced by i + d(n) (the points pi+1, . . . , pi+d(n) are made
public) and N is replaced by N ∪{a} if a does not belong to P . We prove the
theorem by proving that the success probability of each of the first b(n)/d(n)2

steps is bounded by 2−Ω(d(n)). If c is chosen large enough, this bounds the
success probability of all b(n)/d(n)2 steps by b(n) · 2−Ω(d(n)) = 2−Ω(d(n)), if c
is chosen large enough.

The initial situation where i = 0 and N = ∅ is quite simple. Lemma 1
for β = 1 implies that a search point a where H(p0, a) ≤ α(1) · d(n) has a
success probability of 2−Ω(d(n)). The proof of Lemma 1 shows the same for a
query point a where H(p0, a) > α(1) · d(n). Even the probability of reaching
the Hamming ball with radius α(1) · d(n) around a after at least d(n) steps
is bounded by 2−Ω(d(n)). This is important later since the knowledge a ∈ N
should not be a useful information to guide the search.

After m unsuccessful queries the heuristic knows the first m · d(n) + 1
points on P and knows for the at most m points in N that they are outside
P . Let M be the set containing those points where it is known whether
they belong to P or not. Let y be the last point of P known to lie on P .
We partition M into the set M ′ of points which are far from y and the set
M ′′ = M − M ′ of points which are close to y. The point z is far from y if
H(y, z) > α(1) · d(n).

First, we analyze the success probability of the next query assuming the
following event E. The path starts at y and does not reach a point in M ′.
By the same arguments as above, Prob(E) = 1−2−Ω(d(n)). For a query point
a let A be the event that the search is finished successfully. Then

Prob(A|E) = Prob(A ∩ E)/Prob(E)

≤ Prob(A)/Prob(E)

= Prob(A) · (1 + 2−Ω(d(n))).

22

Hence, the success probability of each query point is still 2−Ω(d(n)).
We have to take into account the points in M ′′. Now we apply Lemma 1

for β = 1/2. Let z be the point reached after the first d(n)/2 steps of P
starting at y. The probability that some point from M has a Hamming
distance of at most α(1/2) · d(n) from z is bounded by 2−Ω(d(n)). Otherwise,
all M -points are far from z if far is now defined by a Hamming distance of
at least α(1/2) · d(n). Hence, we can apply the above arguments for the
following d(n)/2 steps. This still gives a bound of 2−Ω(d(n)) on the success
probability. 2

If b(n)− n = Ω(n), the upper and lower bound on the black-box complexity
of U(b(n)) differ by a factor of order n·log2 b(n). For the case of exponentially
increasing b(n) the bounds are quite tight. For small b(n) it is possible to
save one (log b(n))-factor. We conjecture that the upper bound O(n · b(n))
is optimal, at least for small b(n). In particular, for b(n) = (3/2)n, we can
consider a random path of length bn/2c starting in p0 = 1n by flipping a
randomly chosen 1-bit in each step. We conjecture a bound of Θ(n2) for
black-box algorithms in this scenario.

In many papers and textbooks it is stated that unimodal functions are
“easy” for evolutionary algorithms or randomized local search. Our results
show that this holds if the size of the image space is bounded but the state-
ment does not hold in the general setting.

9 Black-Box Complexity and Multi-Objective

Optimization

In black-box optimization, the modeling of the problem is essential. It has
influence on the information revealed by queries. The SSSP problem leads
to a needle-in-the-haystack problem, if it is considered as a single-objective
optimization problem (see Section 4). The real objective is to compute n− 1
shortest paths although these paths can be described by one tree. Hence,
it seems to be more appropriate to consider the problem as a minimization
problem with n − 1 objectives. More precisely, we consider fD : T → R

n−1

where T contains all trees on V = {1, . . . , n} rooted at s := n and fD(T)
equals the vector (dT

1 , . . . , dT
n−1) such that dT

i is the cost of the unique s-i-
path in T. Scharnow, Tinnefeld, and Wegener (2002) have analyzed a simple

23

evolutionary algorithm in this scenario. It has an expected optimization time
of O(n3) for the size bound 1.

Theorem 9 The black-box complexity of the SSSP in the description as

multi-objective optimization problem is at least n/2 and at most 2n− 3. The

upper bound can be obtained by a black-box algorithm with size bound 2.

Proof For the lower bound, we consider the uniform distribution on all
distance matrices where di,i−1 = 1, if 3 ≤ i ≤ n, dk1 = 1 for some k ∈
{2, . . . , n} and di,j = ∞, otherwise. For each search point, i.e., each tree T
rooted at s and each i ∈ {2, . . . , n − 1}, we have dT

i = n − i, if T contains
the path s, n− 1, . . . , i, and dT

i = ∞, otherwise. These values do not contain
any information on k. Moreover, dT

1 = n − k + 1, if T contains the path
s, n − 1, . . . , k, 1, and dT

1 = ∞, otherwise. Hence, we are in the situation
where we search for the value of k which is chosen uniformly at random from
{2, . . . , n} and where we may try one value per step. This is a needle in a
small haystack of size n−1 and we get the lower bound n/2 from Theorem 1.

For the upper bound, we simulate Dijkstra’s famous algorithm. This
algorithm works in n rounds. Let dopt(i) be the length of a shortest s-i-
path. Dijkstra’s algorithm finds a vertex ik in round k such that dopt(i1) ≤
dopt(i2) ≤ · · · ≤ dopt(in). We can implement Dijkstra’s algorithm in such
a way that dopt(ij) = dopt(ij+1) implies ij < ij+1. After round k, we like to
know a tree T (k) containing s-i-paths of minimal length under the restriction
that only i1, . . . , ik are allowed as intermediate vertices. Such a tree allows
the computation of i1, . . . , ik+1 and the computation of T ′(k) containing the
same s-i-paths for all i ∈ {i1, . . . , ik+1} and the edges (ik+1, i) for all i 6∈
{i1, . . . , ik+1}. Comparing T (k) and T ′(k) and the corresponding dT (k)- and
dT ′(k)-values, we can simulate Dijkstra’s algorithm to compute T (k + 1).
Moreover, T (1) consists of all edges (s, i), i 6= s. The number of queries
is bounded above by 2n − 3, since T (n − 1) is optimal. It is sufficient to
store T (k) and T ′(k) or T ′(k) and T (k + 1). Then we have the problem of
recomputing k and ik+1. The only vertex which is a leaf in T (k) and an
inner node in T ′(k) is ik+1. Knowing this node and its rank in the list of
path lengths we can compute k. This is enough to compute T (k + 1). Then
we store T ′(k) and T (k + 1). If T ′(k) 6= T (k + 1), there is a vertex i with
different s-i-path lengths in T ′(k) and T (k + 1). Its path length in T (k + 1)
is smaller. Hence, we can identify T ′(k) and the predecessor of i in T ′(k)
is the special vertex ik+1. We can identify k by considering the position of

24

dT ′(k)(i) among all dT ′(k)-values. This information is enough to determine
ik+2 and to compute T ′(k + 1). Since we can distinguish T ′(k) and T (k + 1),
we are able to store T (k + 1) and T ′(k + 1) after having queried T ′(k + 1).
If T ′(k) = T (k + 1), we do not query T (k + 1). We know T (k), T ′(k), and,
therefore, also k. Since we also know T (k + 1) = T ′(k), we directly compute
T ′(k + 1) and store afterwards T (k + 1) and T ′(k + 1). 2

10 Conclusions

We have identified randomized search heuristics as black-box algorithms since
they do not use the information about the problem instance for their com-
putations. All popular randomized search heuristics work moreover with a
limited information transfer between the rounds of the algorithm. This leads
to the scenario of black-box problems. We have proved lower bounds in
the unrestricted black-box scenario. In some cases, these bounds are strong
since they are close to upper bounds for well-known search heuristics. In
other cases, the bounds are close to optimal with respect to upper bounds
in the unrestriced scenario. There are several problems where we conjecture
that the corresponding bounds in the scenario with size bounds like a con-
stant or linear are much larger. Such bounds can reveal more on the limits
of popular randomized search heuristics. The proof of these bounds is open
for future research.

References

[1] Cormen, T.H., Leiserson, C.E., and Rivest, R.L. (1990). Introduction to

Algorithms. MIT Press.

[2] Droste, S., Jansen, T., Tinnefeld, K., and Wegener, I. (2003). A new
framework for the valuation of algorithms for black-box optimization. In
K. A. de Jong, R. Poli, and J. E. Rowe (Eds.): Foundations of Genetic

Algorithms 7 (FOGA), 253–270, Morgan Kaufmann, San Francisco.

[3] Droste, S., Jansen, T., and Wegener, I. (1998). On the optimization of
unimodal functions with the (1+1) evolutionary algorithm. Proc. of Par-
allel Problem Solving from Nature (PPSN V), LNCS 1498, 47–56.

25

[4] Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the
(1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81.

[5] Giel, O. and Wegener, I. (2003). Evolutionary algorithms and the max-
imum matching problem. Proc. of 20th Symp. on Theoretical Aspects of
Computer Science (STACS), LNCS 2607, 415–426.

[6] Glover, F. and Laguna, M. (1993). Tabu search. In C.R. Reeves (Ed.):
Modern Heuristic Techniques for Combinatorial Problems, 70–150, Black-
well, Oxford.

[7] Graham, R.L., Knuth, D.E., and Patashnik, O. (1994). Concrete Mathe-

matics. Addison-Wesley.

[8] Hajnal, P. (1991). An Ω(n4/3) lower bound on the randomized complexity
of graph properties. Combinatorica 11, 131–143.

[9] Heiman, R., Newman, I., and Wigderson, A. (1993). On read-once thresh-
old formulae and their randomized decision tree complexity. Theoretical
Computer Science 107, 63–76.

[10] Heiman, R. and Wigderson, A. (1991). Randomized vs. deterministic
decision tree complexity for read-once boolean functions. Computational
Complexity 1, 311–329.

[11] Horn, J., Goldberg, D. E., and Deb, K. (1994). Long path problems.
Proc. of Parallel Problem Solving from Nature (PPSN III), LNCS 866,
149–158.

[12] Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983). Optimization by
simulated annealing. Science 220, 671–680.

[13] Llewellyn, D.C., Tovey, C., and Trick, M. (1989). Local optimzation on
graphs. Discrete Applied Mathematics 23, 157–178.

[14] Lovász, L., Naor, M., Newman, I., and Wigderson, A. (1991). Search
problems in the decision tree model. Proc. of 32nd IEEE Symp. on Foun-
dations of Computer Science (FOCS), 576–585.

[15] Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cam-
bridge University Press.

26

[16] Papadimitriou, C.H., Schäffer, A.A., and Yannakakis, M. (1990). On
the complexity of local search. Proc. of 22nd ACM Symp. of Theory of
Computing (STOC), 438–445.

[17] Petterson, O. and Moffat, A. (1995). A framework for adaptive sorting.
Discrete Applied Mathematics 59, 153–179.

[18] Rabani, Y., Rabinovich, Y., and Sinclair, A. (1998). A computational
view of population genetics. Random Structures and Algorithms 12, 314–
330.

[19] Rudolph, G. (1997). How mutation and selection solve long-path prob-
lems in polynomial expected time. Evolutionary Computation 4, 195–205.

[20] Sasaki, G. and Hajek, B. (1988). The time complexity of maximum
matching by simulated annealing. Journal of the ACM 35, 387–403, 1988.

[21] Scharnow, J., Tinnefeld, K., and Wegener, I. (2002). Fitness landscapes
based on sorting and shortest paths problems. Proc. of Parallel Problem
Solving from Nature (PPSN VII), LNCS 2439, 54–63.

[22] Wegener, I. (2001). Theoretical aspects of evolutionary algorithms. Proc.
of 28th Int. Colloquium on Automata, Languages and Programming
(ICALP), LNCS 2076, 64–78.

[23] Wegener, I. and Witt, C. (2003). On the optimization of monotone poly-
nomials by simple randomized search heuristics. To appear in Combina-
torics, Probability and Computing.

[24] Yao, A.C. (1977). Probabilistic computations: Towards a unified mea-
sure of complexity. Proc. of 17th IEEE Symp. on Foundations of Computer
Science (FOCS), 222–227.

27

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

