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Approximation Hardness of Short
Symmetric Instances of MAX-3SAT
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Abstract

We prove approximation hardness of short symmetric instances of MAX-
3SAT in which each literal occurs ezxactly twice, and each clause is exactly of
size 3. We display also an explicit approximation lower bound for that problem.
The bound two on the number of occurrences of literals in symmetric MAX-
3SAT is thus the smallest possible one which makes the instances hard to
approximate.

1 Introduction

We define a symmetric (balanced) MAX-(3,Bk )-SAT instance of the mazimizing MAX-
3SAT problem as a set of clauses of size exactly 3, in which every literal occurs exactly
k times. MAX-(3,k)-SAT stands for the set of relazed (possibly unbalanced) instances
of MAX-3SAT in which every variable occurs exactly k& times and each clause is of
size exactly 3. We will also denote by (3,Bk)-SAT and (3,k)-SAT the corresponding
sets of formulas.

It was proven in [BKS03] that MAX-(3,4)-SAT is hard to approximate to within
a certain constant. It was also shown that the balanced MAX-(3,B3)-SAT is hard to
approximate [F98], [FLT02]. It remained an open question on whether, in fact, the
balanced class MAX-(3,B2)-SAT remains hard to approximate. Because MAX-(3.4)-
SAT is the smallest, with respect to the occurrence number, class of instances which
are still inapproximable, the balanced bound 2 (B2), would be then the best possible.

In this paper we answer this question, and prove somewhat surprisingly that
MAX-(3,B2)-SAT is, in fact, hard to approximate to within a certain constant. We
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display also an explicit factor for the approximation hardness of that problem. The
bound 2 for the number of occurrences of literals is thus the smallest bound for
symmetric MAX-3SAT for which the approximation gap property is still NP-hard
(see for the applications of regular and symmetric 3SAT gap properties towards other

lower approximation bounds in [ALMSS98], [F98], and [FLT02]).

We note also, that, interestingly, a dual version of this balanced satisfiability
problem leads to a certain natural problem studied in graph theory. Let C' be the
set of clauses and V' = {vy,...,v,} the set of boolean variables. For each v; € V,
let ¢; be the pair of clauses in which v; occurs without negation, and let f; be the
pair of clauses in which v occurs negated. Thus if we set v; true then we satisfy
both clauses in e; and if we set v; false we satisfy both clauses in f;. Now consider
the graph Gy with vertex set C' and edges ey, fi,..., €, fn. Finding a satisfying
assignment for (V,C) is equivalent to choosing one edge from each pair {e;, f;} such
that the resulting subgraph of Gy« has no isolated vertices (or, equivalently, finding
a spanning forest of Gy,¢ with no isolated vertices and at most one edge from each
pair). We remark that a problem of similar type, where the edges come in pairs
but we instead attempt to choose one edge from each pair without creating a giant

component, has been considered by Bohman, Frieze and Wormald [BFW03] (see also
[BFO1]).

We follow in this paper a line of [BKS03] of constructing efficient enforcers for
the boolean variables; however, in our present setting we have to produce resulting
balanced unsatisfiable (3,B2)-SAT formulas. In fact, at that time the existence of such
balanced and unsatisfiable formulas was an open question in the area.

In Section 2 we give the first construction of balanced enforces, and a resulting
balanced unsatifiable (3,B2)-SAT formula. In Section 3 we show how to transform
the existence of balanced enforcers and unsatisfiable (3,B2)-SAT formulas into the
NP-hardness result in exact setting. In Section 4 we prove our main result on ap-
proximation hardness of MAX-(3,2B)-SAT and give an explicit approximation lower
bound and a gap property.

2 Balanced Enforcers

We refer to [BKS03] for a general background on a concept of small enforces of boolean
variables. The constructions given in [BKS03] however do not give balanced enforcers
of boolean variables, and existence of such balanced enforcers for (3,B2)-SAT formulas
was at the time an open problem.

Here we give a construction of a balanced enforcer of literals, and display also the
first unsatisfiable (3,B2)-SAT formula.

To make our constructions easier to follow, we denote a CNF formula by a matrix
with each row listing literals of one clause. We use columns to help count the number
of occurrences of variables.



For given literals [y, [y and 5, we construct the set 8(ly, [1,13) of 5 clauses (or more
precisely the conjunction of 5 clauses) as follows:

lo —a b
I b e
S(lo,l,ls) = I, a e
a b ¢

-a —b -c

for a,b,c¢ new variables. We call 8§(lo,[,l3) the enforcer for (lo V i1 V I3). It is easy
to see that there are boolean values for a,b and ¢ such that 8§(lo,li,l2) is equivalent
to the clause (Io V [; V I3). The advantage of an enforcer 8(ly,l;,[3) over the clause
(loV11 VI3) lies in the fact each literal occurs in 8(ly, [, [3) in a different clause, and can
be used more than once independent on other literals. For a given boolean variable
x we define the enforcer 2 for z to be

) = S(z,z, ),

and another enforcer
2@ = §(z,y,y) US(z, ~y, ~y)

for a new variable y. In either case we need to create 5 clauses per one forced
occurrence of z.
We now construct an unsatisfiable (3,B2)-SAT-formula f of 20 clauses and 15
variables as
f=a®y-z®.

In this formula each variable occurs exactly twice in its negated and unnegated form.
This yields the following lemma.

Lemma 1. There exists an unsatisfiable (3,B2)-SAT formula f with 20 clauses and

15 variables.

We notice also that if we relax the property of being balanced for a formula f,
and construct it as

f=2Pus®UeP UiV o Vol

we get an unsatisfiable formula f with 16 clauses and 14 variables (an improvement
over an unbalanced formula with 20 clauses and 15 variables of [BKS03]).

Lemma 2. There exists an unsatisfiable (3,4)-SAT formula [ with 16 clauses and 12

variables.



We are going to use the constructions of the explicit enforcers of this section
to obtain NP-hardness and approximation hardness results on balanced (3,B2)-SAT
formulas.

3 NP-Hardness in Exact Setting

The technique of turning explicit balanced enforcers into NP-hardness result for
(3,B2)-SAT formula is more evolved than the corresponding technique for unbal-
anced (3,4)-SAT formulas, cf. [BKS03]. We start here with the NAE-3SAT problem,
of deciding for a given set of clauses C of size exactly equal to 3 whether there is
an assignment making in each clause at least one literal true and at least one literal
false. The problem NAE-3SAT is known to be NP-complete (c.f. [ST8]).

We construct now in five stages a (3,2B)-SAT formula g.

In the first stage we replace each variable occurrence with a different variable. In
the second stage, we replace a NOT-ALL-EQUAL clause NAE (ly,15,13) by (lo V11V
[3) A (=lo V =l V =ly); note that now each variable z occurs exactly twice, once as a
literal x, and once as a literal —x.

In the third stage, we create a ”wheel of implications”: xq — x1, 21 — 29, -+ , 25 —
xg for the variables xg,- - , 25 which has replaced one original variable. In the fourth
stage, we replace each implication x — y with a 3-clause =z V y V —a for a a new
variable. Notice that we use each new variable exactly twice. Finally, for each new
variable a we add the enforcer a(?). The resulting (3,2B)-SAT formula g is satisfiable
iff NAE-formula f is satisfiable. This proves the NP-completeness of (3,2B)-SAT.

Theorem 1. The problem (3,B2)-SAT is NP-complele.

4 Approximation Hardness

We prove now approximation hardness result on MAX-(3,2B)-SAT problem. The
resulting lower approximation bound improves also on a lower bound of [BKS03]

proven for more general problem of MAX-(3,4)-SAT.

Theorem 2. For every 0 < e < 1, it is NP-hard to approzimate MAX-(3,2B)-SAT
to within an approximation ratio smaller than (1016 — £)/1015.

Proof. We will use Hastad’s theorem that for every 0 < ¢ < 1/4 it is NP-hard to
distinguish between E3-LIN-2 instances in which one can satisfy at least 1 — ¢ of all
equations from those when one can satisfy at most 1/2 + ¢ of all equations [H97]. We
will refer also a general reader to the bounded occurrence techniques of [BK01] and

[BK03].



The general strategy will be to translate a system § of n equations over Z,, each
with 3 variables, in two stages. In the first, we replicate each equation k£ times, where
k is “sufficiently large” (k = n is sufficiently large, and the exact minimal sufficient
value of k is not important). Afterwards we may assume that each variable in §
occurs at least k times. Next, we will define a (3,2B)-SAT formula B(8) with 508n

clauses such that

1. Let T be the set of truth assignments for B(8); we have a normalization function
v: T — T such that v(Z) satisfies at least as many clauses as Z for every truth
assignment .

2. Let 'V be the set of value assignments to variables of §, we have a bijection
B :V — v(T) such that if ¢ is the number of equation that ¥ does not satisfy,
then 3(Z) does not satisfy i clauses.

We construct B(8) in stages. First, we replace each equation of § with the equiv-
alent formula in disjunctive normal form, and in that formula, we replace occurrences
of a variable, say x, with two new variables. E.g. x +y+ 2z =1 mod 2 is transformed
into

(LCl V Y1 Vv 2’1) A (.IQ V Y1 V _‘Zl> A (_'.Il Vv Y2 V _'2’1> A (_‘.IQ V Y2 V Zl).

Note that each new variable occurs once negated and once non-negated.

Secondly, for each pair of variables that replace the same occurrence of a variable
in 8, we introduce 13 new variables and we “connect” them with the implication into
a gadget described in Figure 1.

Before describing the way these gadgets are connected, we may show how a truth
assignment can be normalized without decreasing the number of satisfied clauses.
Suppose that a pair of occurrences of a variable is assigned different values. Then in
its gadget we can change this assignment to either of the two values without changing
the number of satisfied implications. Thus, if we have three pairs of occurrences of
a variable from the same formula that replaced an equation, if even one of the pairs
has two values assigned, we can change the assignment so each pair is assigned one
value, the equation is satisfied and the number of satisfied implication is not smaller.
From now on, we can view this pair of variables as one.

As a result, in a formula that replaced an equation we have all 4 clauses satisfied
if the formula is satisfied, or 3 clauses are satisfied.

Now suppose that not all variables in a gadget are assigned the same value. We
convert all variables to the majority value of the “solid dot” variables—we count 7 of
them. If the minority consisted of 1 variable, we gain at least 1 implication among
these variables, while loosing at most 1 clause outside the gadget. A short inspection
shows that if the minority consisted of 2 variables, we gain at least 2 implications,
and if it consisted of 3 variables, we gain at least 3 implications, so in no case we
decrease the number of the satisfied clauses.



Figure 1:

Gadget for the copies of a variable. Arrows describe implications. Non-arrows
correspond to the occurrences in the clauses that are not the part of this gad-
get: the two copies have two occurrence each in the replacement of an equa-
tion, six other gadget variables participate in one equivalence each—a pair of
implications—with a similar variable of another gadget.

Next, given a variable of & with m occurrences, we get m gadgets with 6m variables
that should be connected with others using equivalences (pairs of implications); we
connect them using a random matching; by Bdllobas [B88] the resulting multigraph
of gadgets has, with high probability, isoperimetric number equal at least 1 (this
probability grows with the number of nodes, thus we assured that we have at least k
nodes/gadgets). This in turn means that if a minority of 7 gadgets has a truth value
different from the majority, we can convert all these gadgets to the majority value
and at least 7 of the equivalences will become true. Thus this is a good normalization
even if all 7 equations connected with these gadgets become false.

To finish, we group implications into “consecutive pairs”, i.e. pairs of the form
r — y Ay — z. In such a pair at least one implication is true. Equivalences clearly
form such pairs, and inside a gadget, implications form an Eulerian graph, so they
can form a single chain of 22 implications. A consecutive pair of implications can be
converted to a pair of 3-clauses by adding a new variable: * — y Ay — z converts to
(mzVyV-a)A(—yVzV-a);to this we add the enforcer a'?. If one or more clause
in the enforcer is false, we normalize the assignment so that all of them are true, and
as a result we loose the truth of only one implication.

One can see that an equation of § was replaced with 4 clauses of its normal form,
these clauses have occurrences of 3 pairs of variables, and for each pair we have build
a gadget. Inside a gadget we have 22 implications, and a gadget participates in 6
equivalences with other gadgets, so we can say that each gadget has 28 implications.

For each implication we use 6 clauses (the implication itself and a half of an



enforcer). Thus B(8) replaces an equation with 4 + 3(28 x 6) = 508 clauses. In the
process, a variable is replaced with a set of variables, but the normalization makes
all these variables equivalent and this defines an obvious bijection between value
assignments for 8, and the normalized truth assignments for B(§). For a normalized
truth assignment all clauses in the enforcers and gadgets are true; if an equation of §
is satisfied, all 4 clauses of its normal form are true, otherwise all but 1 are true.
Now by result of Hastad [H97], it is NP-hard to distinguish between the good
systems of 2n equations in which at least (2 — €)n equations can be satisfied, and the
bad systems in which at most (1 + €)n equations can be satisfied. For a system § of
2n equation, B(8), is a (3, B2)-SAT formula with 2 x 508n clauses. If § is a good
system, we can satisfy at least (1016 — ¢)n clauses of B(8), and if 8 is a bad system
we can satisfy at most (1015 + ¢)n clauses of B(8). This completes the proof.
O
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