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Locally satisfiable formulas

Daniel Kral™*

Abstract

A CNF formula 9 is k-satisfiable if each k clauses of ¢ can be sat-
isfied simultaneously. Let 7 be the largest real number such that for
each k-satisfiable formula ¢ with variables z;, there are probabilities p;
with the following property: If each variable z; is chosen randomly and
independently to be true with the probability p;, then each clause of ¥ is
satisfied with the probability at least 7.

We determine the numbers 7 and design a linear-time algorithm
which given a formula v either outputs that ¢ is not k-satisfiable or finds
probabilities p; such that each clause of v is satisfied with the probability
at least m,. Our approach yields a robust linear-time deterministic algo-
rithm which finds for a k-satisfiable formula a truth assignment satisfying
at least the fraction of m; of the clauses.

A related parameter is r; which is the largest ratio such that for each
k-satisflable CNF formula with m clauses, there is a truth assignment
which satisfies at least rpm of its clauses. It was known that 7 = rg for
k =1,2,3. We compute the ratio r4 and show w4 # r4. We also design
a linear-time algorithm which finds a truth assignment satisfying at least
the fraction r4 of the clauses for 4-satisfiable formulas.

1 Introduction

CNF formulas have a prominent position in computer science because of their
essential role in many hardness reductions and constructions, see [1, 2, 6, 11].
We study an extremal problem which relates local and global satisfiability of
CNF formulas. A CNF formula is k-satisfiable if any k clauses of it can be
simultaneously satisfied. The notion of k-satisfiable formulas was introduced
by Lieberherr and Specker [7, 8]; a separate section (20.6) is devoted to this
concept in a recent monograph on extremal combinatorics by Jukna [5].

One of the problems which we address is the following: Let ¢ be a k-
satisfiable formula with the variables z,...,z,. What is the largest number
(1) for which there are probabilities py, ..., p, such that if each z; is chosen
randomly and independently to be true with the probability p;, then each clause
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of 9 is satisfied with the probability at least m(1))? Observe that w(v)) = 1 iff ¢
is satisfiable. Probabilities p; may be also understood to be a fractional truth
assignment. Let 7 be the largest number such that w(v) > 7 for each k-
satisfiable formula . In this paper, we compute the numbers 7 for all £ > 1
and discover a surprising connection between them and the voting paradox stud-
ied by Usiskin [10].

Based on our structural results, we design a linear-time algorithm which for
a k-satisfiable formula with m clauses finds probabilities and constructs a truth
assignment such that at least 7y, - m clauses are satisfied. The ratios of satisfied
clauses of our algorithm dominate the ratios of the previous algorithm (using
a similar technique) for the problem by Trevisan [9]. By the definition of m,
our algorithm is optimal in sense that no algorithm based on fractional truth
assignments can guarantee a larger fraction of satisfied clauses in the class of
k-satisfiable formulas. In addition our algorithm is robust, i.e., its input may be
any formula and the algorithm either constructs a truth assignment or outputs
that the input formula is not k-satisfiable.

The numbers 7; are actually related in this paper to the voting paradox
studied by Usiskin [10] which is described in the next: Let X; for ¢ =1,...,k
be independent real-valued random variables. We define u(Xy,...,X}) to be
the following quantity:

min{P(X; > X3), P(X2 > X3),...,P(Xp_1 > Xi), P(Xi > X1)}

The k-th Usiskin number b, is the largest real number such that there exist
random variables X;,..., X with u(Xi1,...,X%) > b. The values of by, were
determined by Usiskin [10]. In addition, he showed that limy_,o by, = 3/4. We
prove that bgy1 = 7 for all ¥ > 1. Hence, the values of 7, are determined for
all k& (they were unknown for k > 4) and limy_,oc 7, = 3/4 (however, this was
previously proved by Trevisan [9)]).

So far, another modification of the problem (which is also considered in this
paper) was mainly studied: Let r; be the largest real number such that each
k-satisfiable CNF formula with m (not necessarily distinct) clauses has a truth
assignment which satisfies at least rpm clauses. Clearly, r1 = 1/2 and 7, < rg.
The latter inequality is because the expected number of satisfied clauses for
optimal probabilities p; is at least mym and hence there is a truth assignment
which satisfies at least m,m clauses.

We briefly survey previously known results on the values of r; the reader
is also welcomed to see the section 20.6 in the monograph [5]. The study of
the problem was started by Lieberherr and Specker. They showed ry = ‘/_ Ly
0.6180 [7] and they consequently established 73 = 2/3 [8]. Later, Yannakak1s
[12] simplified proofs of the lower bounds for 7, and r3 using a probabilistic
argument. Huang and Lieberherr [4] studied the asymptotic behavior of 7
and proved hm rr < 3/4. The asymptotic behavior of r; was completely

determined by Trev1san [9] by showing hm ri, = 3/4. We compute the value of



r4. Namely, we prove:
_ 3
3/3v69-11 3/3v69+11
5+ \/ 2 o \/ 2+

In addition, our proof gives a linear-time algorithm for 4-satisfiable formulas
which finds an assignment satisfying at least the fraction r4 of the clauses.

The just introduced problem is actually studied for CNF formulas where
the non-negative weights are assigned to the clauses. This is the same problem
because the weights of the clauses can be simulated (with a negligible error)
by repeating the clauses several times in the formula (allowing an exponential
blow-up in the size). If ¢ is a formula, let w(y) be the sum of the weights of
all its clauses and wq () be the maximum weight of the clauses of 1 which can
be simultaneously satisfied. Let ¥y be the set of all k-satisfiable CNF formulas.
Using the just defined notation, we can write:

. Wo (1/))
= W)

~ 0.6992

T4

In this paper, we compute the value of this infimum for ¥ = 4 which substan-
tially differs from the cases k < 4: In the cases of k = 1,2, 3, Yannakakis found
a probability distribution for each k-satisfiable formula v such that each clause
was satisfied with probability at least r; (and hence m; = ry for £ < 4). Thus
the expected weight of the satisfied clauses with respect to such a distribution
is at least rpw(1y) regardless the actual choice of the weight function. Such a
probability distribution may be considered as universal for a formula % for all
possible choices of weights of the clauses. However such a distribution does not
exist in general for 4-satisfiable formulas (hence 74 # r4) as shown in Proposi-
tion 1.

The paper is organized as follows. We recall certain equalities and inequal-
ities which hold for Usiskin’s numbers by in Section 2. Then, we show that
br+1 < mp in Section 3. We complete the proof of the equality biy1 = 71 in
Section 4 by establishing the opposite inequality bxy1 > 7. Next, we estab-
lish several identities for the claimed value of r4 in Section 5, in particular the
equality 74 = 1/(2 — p2) where py is a root of the equation pj + p2 —1 = 0. The
matching lower and upper bounds on r4 are proved in Section 6 and Section 7,
respectively. Finally, we utilize the obtained results to design our algorithms in
Section 8.

2 Usiskin’s numbers

First, we define recursively functions fj for all non-negative integers k:

1 for k =0 and

fi(z) = { 1— =2 otherwise. (1)
fr—1(z)




Note that the function f; is actually an identity, i.e., f1(z) = z. Observe that
the recursive definition of the functions f; can be reversed, in particular, the
following holds for all & > 0:

- 1—=2
1= frpa(w)

Usiskin showed that the number by, £ > 2, is the only solution z with z €
(1/2,3/4) of the following equation [10]:

fr(z) =0 (3)

which satisfies in addition that f;(z) > 0 fori=1,...,k — 1. It can be shown
that by, < 3/4 for all k£ and limy_, by, = 3/4. Observe that the equality of (3)
can be rewritten to the following form:

1 —by = fr—1(bx) (4)

fr(z) (2)

Based on (3), it is possible to construct an equation of degree [k/2] whose root
is the number by [10]. Then, some of the Usiskin’s numbers can be expressed
explicitly, e.g., by = 1/2, b3 = (v/5 —1)/2, bs = v/2/2 and by = v/3 — 1.

We now state several lemmas on the values f;(bg):

Lemma 1 Let k > 2 be an integer. Then:

1= fo(bg) > f1(bg) > ... > fr—1(bg) > fr(bg) =0

Proof: By the definition of the function fy, we have fo(by) = 1. On the
other hand, the equality of (3) implies that f(b;) = 0. We now show that
fi(br) > fir1(bg) for each i =0,...,k —1:

filbk) > fiva(br)

1— by

filb) > 1= fi(br)

filbe)® = filbg) +1/4 > 1/4—(1—1by)
(filbr) = 1/2)> > b —3/4

The last inequality holds because its left-hand side is non-negative and its right-
hand side is negative (recall that by < 3/4).
|

Lemma 2 Let ¢, j and k be non-negative integers such that i+ j < k —1 and
k> 2. Then:

fi(br) - fi(br) > 1 — by
Moreover, the equality holds only if i+ 7 =k — 1.



Proof: By Lemma 1, it is enough to prove that f;(bg) - fj(bx) = 1 — by
for i +j = k — 1. The proof proceeds by induction on 3. If ¢ = 0, then
fi(br) = fo(bx) =1 and f;(by) = fr—1(bx) = 1 — by, (the latter follows from the
equality of (4) ). Hence, let us assume that ¢ > 1 and we need to show that
fi(br) - fr_1_4(by) = 1 — by. By the equations of (1) and (2), it is enough to

prove:
(1_ l—bk) 1— by — 1-p,

fiia(r)) 1= fr_i(bx)
1—b |
1- Fiay) 1— fr—i(bx)
. _ 1 -0
fuilbe) = fi—1(bx)
fic1(bg) - fr—i(br) = 1=ty

The last equality holds by the induction hypothesis.

Lemma 3 Let i and k be non-negative integers such that k > 2. Then:

fi(b) + fr—i(by) =1

Proof: The proof proceeds by induction i. If 7 = 0, then f;(bx) = fo(bg) =1
and f;(by) = fr(bx) = O (the latter is from the definition of by based on the
equality of (3) ). Let us suppose now that i > 0:

filbe) + fr—i(be) = 1

1-—20; 1-—1b
1- + =1
fic1(be) 1 — fr—it1(bg)
1-by _ 1-b
Jr—it1(br) 1— fi1(bx)

1—fiii(bk) = fr—iv1(br)
fi—1(b) + fr—it1(bk) 1

Now, the last equality follows from the induction hypothesis.

Lemma 4 Let i, j and k be positive integers such that i < j and i + j < k.
Then:

Ji(bk) - fi—1(bx) < fiza(br) - f5(br)



Proof: If i = j, then the claim trivially holds. Hence, assume that ¢ < j in
the rest. In particular, f;(by) > f;(by) by Lemma 1. Let us first rewrite the
inequality from the statement to a little different form:

Jilbk) - fi—1(bk) < fima(br) - f5(br)

1-—20 1 -0
fi(bg) - T—F,00) T filbr) - fi(bx)

fi(br) — fi(br)? £i(bx) = £5(bx)?
fi(bx) — £;(bk) filbr)? = £i(br)?

1 fi(br) + £;(bk)

fi(bx) + fr—i(bx) fi(bx) + £;(bx)

The equality 1 = f;(bx) + frx_i(bx) holds by Lemma 3. The last inequality above
follows from Lemma 1 and the fact that k —¢ > j.

IN
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Lemma 5 Let i, j and k be non-negative integers such that i + j < k —1 and
k> 2. Then:

Ji(bg) - £ (br) < fig;(br)

Proof: We can assume that ¢ < j. If 4 = 0, the inequality follows from the
fact that fo(bx) = 1. Otherwise, Lemma 4 implies that:

fi(br) - £ (0k) < fim1(br) fi1(br) < oo < fo(br) firj(bk) = firj(br)

3 The Lower Bound on 7

We first introduce some notation used in this section and Section 8. The true
value is denoted by 1 and the false value by 0. Following this notation, z!
denotes the literal z and z° the literal ~z. Let ¢ now be a formula and z a
variable contained in it. Then, clj,(z) is the cardinality of the smallest set C' of
clauses of 9 such that there is no truth assignment which satisfies all the clauses
of C' and which assigns 1 — € to the variable z. If there is not such set C, then
cly (z) = oo.
We state and prove two simple lemmas on the values of cly, (z):

Lemma 6 Let ¢ be a k-satisfiable formula. Then, the following holds for each
variable x contained in ¢:

cl?/)(x) + cl}/,(a:) >k+1

Moreover, if ¢ cannot be satisfied, then each cly(z) is finite.



Proof: If ¢ cannot be satisfied, then a set C of all the clauses of 9 satisfies the

properties required by the definition of clj,(z). Then, each of clj,(z) is finite.
Assume that there is a variable z such that cl?/, (z) + cltlp (z) < k. Let C¢ be
a set of the size cl,(z) of the clauses which can be satisfied only when the value
of the variable z is . Then, the clauses of C° U C! cannot be simultaneously
satisfied, but |C° U C!| < k.
|

Lemma 7 Let ¢ be a k-satisfiable formula and let (z7* V...V 25r) be a clause
of ¥. Then, the following holds:

c111/}_51 (z1)+...+ c111/)—5n (z) > k

Proof: Assume that cllllf€1 (x1) + ...+ cl}[g" (zn) < k, in particular, all the
numbers clfp_si (z;) are finite. Let C; be a set of the size cl}p_“ (z;) of clauses
which can be satisfied only when the value of z; is 1 — ;. Let C' be now the set
containing the clause (z7* V...Vz5*) and all the clauses of the sets C;. If there is
a truth assignment which satisfies all the clauses of C, then the value of z; must
be 1 —¢; (because of the clauses of C;). But, then the clause (27" V...V z5") is
not satisfied. Hence, there is no truth assignment which satisfies all the clauses
of the set C, but |C| < k.

|

Theorem 1 Let i) be a k-satisfiable formula. Then, byy1 < w(¢). Hence,
bry1 < .

Proof: Let z1,...,z, be variables of the formula 1. If the formula ¢ can
be satisfied, then there are probabilities p1, ..., p, such that each clause is sat-
isfied with the probability equal to one (consider the probabilities p; derived
from a satisfying truth assignment). Assume in the rest that the formula 1 is
unsatisfiable. In particular, all the numbers cl;, (z;) are finite by Lemma 6.

We now define the probabilities p;:

fat o) (k1) if cly(e) < k/2,
Pi = fi-ad ) (brr) if el (z;) < k/2,
1/2 otherwise.

The probabilities p; are well-defined because the inequalities clgp(acz-) < k/2 and
cl}ﬁ(xi) < k/2 cannot hold both by Lemma 6. A variable z; is called neutral if
pi = 1/2, i.e., both cl?p(:ci) and clzll,(xi) are at least k/2.

Choose each z; randomly and independently to be true with the probability
pi- By Lemmas 1 and 3, if clj(z;) < k/2, then z; is chosen to be ¢ with the
probability greater than 1/2. We show that each clause of ¢ is satisfied with the
probability at least byy1. Let us fix a clause I' of the formula ¢. If I' contains



at least two neutral variables, then it is satisfied with the probability at least
3/4 > byy1- Hence, we can assume that I' contains at most one neutral variable.

We first consider the case that the clause I' contains a neutral variable. If T’
also contains a literal z for z; with clj (z;) < k/2, then the clause I is satisfied
with the probability at least 3/4 > by1. Hence, it is enough to consider only
the case that the clause I' is of the form:

r= (:175" Vil V. .z5h)

ll

where p;, = 1/2 and clzl[gj (#i;) < k/2for j =1,...,1. By Lemma 3 and the
definition of p;, xfj is chosen to be 1 —¢; with the probability equal to:

fCljp_Ej (EJ) (bk+1)

Since cli (z,) > (k +1)/2, we have that cllllf€1 (3,) + ...+ clfﬂ_s’ (@) > (k+
1)/2—1 by the definition of cI3} (z;,). Lemmas 1 and 5 now bound the probability
that each variable acfj’ is chosen to be 1 —¢; for all j =1,...,( as follows:

H 1 (0 (brt+1) < fr(r+1)/21-1 (brt1)

Observe that fr(z41)/21(br4+1) < 1/2 by Lemmas 1 and 3. Thus, we can ma-
jorize using Lemmas 2 and 3 the upper bound 1/2 - fr(k41)/21-1(bk+1) on the
probability that the clause I' is not satisfied as follows:

/2 fragryj21-1(brg1) < (1= frngry /21 Ok41)) « Frnsr) j21-1Org1) =

Trr1—r(k+1)/21 (k1) = Fries1y/21—1 (k1) =1 = b
The final case is that the clause I' contains no neutral variables. Let us
assume that the clause I is of the following form:

= (e V...2%)

Zl

If there are distinct j and j' such that clflf (#;;) < k/2and clf/j' (zi,) < k/2, then
each of z; and z; is chosen to be €; and ¢, respectively, with the probability
at least 1/2. Hence, I is satisfied with the probability at least 3/4 > bk+1

Let us consider now the case that there is exactly one j such that cl (z5;) <
k/2. We can assume that such j is equal to 1. The variable z;, is chosen to
be &1 with the probability fclil (iﬂil)(bk'i'l) due to the definition of p;,. By the

assumption that no variable of T is neutral, we have clzlp_sj' (i) < k/2 for
j' # 1. The definition of cl} (z;,) now implies that:

Cll_sz (wlz) +.o.t Clr}/;—El (37“) > Clzspl (.’B“) -1
The variable x 7 for j =2,...,lis chosen to be 1 — ¢; with the probability:

fcl;_Ej (z;) (bk+1)



By Lemmas 1 and 5, we can now bound the probability that each variable xfj
is chosentobe 1 —¢; forall j = 2,...,(:

I
1_[2 fcll_ij (o) Or+1) < farz @iy -1 (Or+1)
=

Hence, the clause T is satisfied with the probability at least:
1- (1 - fcli1 (wil)—l(bk-i-l)) . fclfp1 (w;l)—l(bk-l-l) =

L= firiaz () —1(br+1) - faz (@iy)—1(Ok+1) = brt1
The first equality follows from Lemma 3 and the last one from Lemma 2.
Finally, if there is no j such that cli/ (z;,) < k/2, we have glzlﬁ_ej (zi;) < k/2
for all j because no variable of I' is neutral. The variable a;f; is chosen to be
1 — ¢, with the probability equal to:

fcl;_sj (z5) (bk+1)

By Lemma 7, we have that clqlﬁ_s1 (zi)) + ...+ clilp_s’ (z4,) > k. By Lemmas 1

and 5, we can now bound the probability that each variable xfj is set to value
l—¢gjforalj=1,...,L[

!
H f e (zj)(bk+1) < frlbryr) = 1= brgs

Thus, the clause I is satisfied with the probability at least bgy1-

4 The Upper Bound on 7
Theorem 2 Let i be the following formula:
Y= (1) A(~z1 Va2) A(mZ2VZ3) Ao A(mZp1 V 2g) A (k)
The formula v is k-satisfiable and byy1 > 7(¢0). Hence, bpy1 > mp for allk > 1.

Proof: Let k be a fixed integer. We first show that the formula ¢ is k-
satisfiable, i.e., that any formula 1)’ obtained from ¢ by removing a single clause
can be satisfied. If the missing clause is (z1) or (—z}), then set all variables to
be false or true, respectively. Otherwise, the missing clause is (—z; V z;41) for
some 7, 1 < 4 < k — 1. Then, set all the variables z; for ¢’ < 7 to be true and
all the others to be false.

Let p1,...,pr be fixed probabilities. We prove that if each variable z; is
chosen randomly and independently to be true with the probability p;, then



contains a clause which is satisfied with the probability at most bg41. Assume
that all the clauses are satisfied with the probability at least byy1. We show
that then each clause is satisfied with the probability exactly by1.-

We prove by induction on 4 that p; > f;(bgy1) and that if p; = f;(bgs1),
then py = fir(bps1) for all &' < 4. If 4 = 1, then p; > f1(bgs1) = brs1 because
the clause (z;) is satisfied with the probability at least bg11. Let 7 > 2. Since
the clause (—z;—1 V z;) is satisfied with the probability at least by11, we have:

1—pi1(1 —pi) > brya

By the induction hypothesis and the equality of (1), we get:

- fia(ber1)(1—pi) > brya
1—bryr > fica(bpgr)( —pi)
1—brq1
ST s g,
fici(bgy1) — P
1—brq1
g > 1— kL
b= Ji—1(bry1)
pi > fi(bpt1)

In addition, if p; = f;(bgs1), then all the inequalities are strict, in particular,
Pi-1 = fi1(bry1). Hence, py = fi(bgy1) for all 4 <.

So, pr > fr(bgy1). Since the clause (—zy) is satisfied with the probability
at least bgi1, we have 1 — fi(bgy1) > 1 — py > bgy1. Thus, pr = fr(bgs1)-
This implies that p; = fi(bg+1) for all i and each clause is satisfied with the
probability exactly bg41 by Lemma 2.

|

5 Properties of r4

In this section, we establish several identities which are satisfied by the claimed
value of 74. Let gy be the unique real solution of the following equation:

% = (1—qo)? (5)

Using Cardano’s formula, we have:

33\/@—}—11 33\/@—11 1
qo—\/ 5 —\/ 5 +§~0.5698

Let us define py = /g0 ~ 0.7547. It is easy to check from (5) that py and go
satisfy the following equation:

P =4 =po(1 - qo) (6)

10



The first and the last part of equation (6) together with the definition po = /g0
gives:

potpg—1=0 (7)
The claimed value of r4 can be determined from the values of py and gq:

1 1 1 3

C1+pd 2-pk 2-q 5_*_{/3\@711 _ </3\/E+11
2 2

T4 ~ 0.6992 (8)

6 The Lower Bound on 74
We prove that r4 is at least the value given by (8) in the next theorem:
Theorem 3 Let 9 be a 4-satisfiable CNF' formula. Then:

wo () 1

—_— 2>

w(y) ~2-p

on

In particular:

Ty >
2 —pg

Proof: Consider a fixed 4-satisfiable formula . It is possible to assume that
no clause of 9 contains simultaneously a positive and a negative occurrence
of the same variable (such a clause is always satisfied and removing it from
can only decrease the ratio wg(¢)/w(v)). If 1 does not contain a clause of
size one, then set each variable randomly and independently to be true with
the probability 1/2. The expected weight of the satisfied clauses is at least
3w(y) /4 (each clause is satisfied with the probability at least 3/4) and hence
there is a truth assignment which satisfies clauses of the total weight at least
3w()/4 > w(¥)/(2 — ).

Assume in the rest that ¢ contains clauses of size one. It is also possible to
assume that all the occurrences of variables in clauses of size one are positive: If
this is not true and 9 contains a clause (—z), then change all positive occurrences
of z to negative and vice versa. Observe that no variable can appear both
positively and negatively in clauses of size one because 1 is 4-satisfiable. Now,
let X be the set of variables which occur in the clauses of size one. In addition,
assume that the sum of the weights of clauses containing a literal® z for z € Xis
equal to one (this can be assured by multiplying all the weights of all the clauses
by the same suitable constant which clearly preserves the ratio wo(¢)/w(v)).

We can also assume that there is no clause (—z V —y) for z € X and any
variable y. If there is such a clause, change all negative occurrences of y to
positive and vice versa (note that y ¢ X because 1 is 4-satisfiable). If this
does not help, then 1 contains a clause (—z V y) and a clause (—z' V —y) for

1We strictly distinguish between a literal and a variable when speaking about containment
in clauses, e.g., a clause (-2 V y) contains a variable z but it does not contain a literal z.

11



Ay | Ay | A3 | Ay | A5 | Ag | A7 | Ag | Ag
z VoI x x| x| x| x| x| x| x
—z | TV VIV VX ] x| x| x
Yy 27 x|V x| x| V]| V] x| x
-y 2 x| 2PV V| x|V X
2oz | T x [P x | TV

Table 1: Distribution of clauses of a 4-satisfiable formula into nine sets
Ai,...,Ag. The sign 4/ denotes that a literal of the particular type must be
present in a clause, the sign x that it cannot be present and the sign ? that it
can be present (but it does not need); = represents a variable from the set X, y
from Y and z from Z.

some z,z' € X. But then, the clauses (z), (z'), (—-z V y) and (=2’ V —y) of ¥
contradict the 4-satisfiability of the formula .

Let Y be the set of variables y which occur in the clauses of type (—z V y)
and which are not contained in X, i.e., Y is the set of all the variables which are
not contained in X and which are contained in a clause of size two together with
a literal of the form —z for z € X. Finally, let Z be the set of the remaining
variables contained in 1), i.e., the variables of ¥ included neither to X nor to Y.

We divide clauses of the formula 1 into nine disjoint sets (see Table 1):

e The set A; consists of the clauses containing a literal z for z € X.

e The set Ay consists of the clauses containing only literals of the form —z
forz € X.

e The set A3 consists of the clauses which contain a literal -z for z € X
and a literal y for y € Y and which are not in A4;.

o The set A4 consists of the clauses which contain a literal —z for z € X
and a variable from Z and which are contained neither in A; nor in As.

e The set A5 consists of the clauses containing only literals of the form —z
for z € X and literals of the form —y for y € Y.

e The set Ag consists of the clauses containing no variable from X but which
do contain a literal of the form y and a literal of the form —y’ for y,y' € Y.

e The set A7 consists of the clauses containing only literals of the type y for
y € Y and literals with the variables of Z.

e The set Ag consists of the clauses containing only literals of the type —y
for y € Y and literals with the variables of Z.

e The set Ay consists of the clauses containing only variables from the set
7.

12



Tt is easy to check that each clause belongs to exactly one of the nine sets defined
above. Note that by the assumption on the weights of clauses containing a literal
z for £ € X, the sum of the weights of the clauses of A; is equal to 1. Note
also that the sets A,,..., Ag contain only clauses of size two and more. Let o
be the sum of the weights of clauses contained in the sets Az, Az, Ay and Ag
and let ¢ be the sum of the weights of clauses of the set A;.

Assume first that o is small, namely o < 1/p3. Let us consider the following
probability distribution: Set a variable of X to be true with the probability po,
a variable of Y with the probability gy and a variable from Z with the probability
1/2. We analyze the probability that a clause of ¢ is satisfied for each of the
nine possible clause types:

e A clause of A; is satisfied with a probability at least py because it contains
a literal z for z € X.

A clause of A, is satisfied with a probability at least 1 — p} because it
consists of at least four (because of 4-satisfiability) literals of the type -z
for z € X.

e A clause of A; is satisfied with a probability at least 1—po(1—go) = 1 —pg
because it contains both a literal -z for z € X and a literal y for y € Y.

e A clause of A4 must be of size at least three (by the definition of the set
Y) and hence it is satisfied with a probability at least min{1 — p3/2,1 —
Pog0/2,1—po/4} =1-p3/2>1/(2 - p).

e A clause of A5 must be of size at least three (again by the definition of
the set Y) and hence it is satisfied with a probability at least min{l —
P390, 1 — pog3} =1 — pp.

o A clause of Ag is satisfied with a probability at least 1 —go(1—go) > 3/4 >
1/(2 - pj)-

e A clause of A is satisfied with a probability at least min{1—(1—go)/2,1—
(1-q0)*}=(1+4a)/2>3/4>1/(2-p}).

e A clause of Ag is satisfied with a probability at least min{1—q2,1—qo/2} =
1—p§.
e A clause of Ay is satisfied with a probability at least 3/4 > 1/(2 — p2).

We prove, under the assumption ¢ < 1/p3 (which was made earlier) that the ex-
pected weight of the satisfied clauses of 1 is at least w(z))/(2—p?2). Since the ex-
pected weight of the satisfied clauses of A4, Ag, A7 and Ay is at least 1/(2 — p?)
of the sum of their weights, it is enough to prove that the expected weight of
the satisfied clauses of A;, As, A3, A5 and As is at least 1/(2 — p?) of the sum
of their weights. The expected weight of the satisfied clauses of A; is at least
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1-po and of the clauses of As, A3, A5 and Ag is at least o - (1 — pg). Hence, it
is enough to show the following inequality:
1-po+o-(1—pf) S 1
1+o ~2-pl

But the previous inequality can be easily verified using the assumption o < 1/p3
and the equality (8):

po+o(l—p5) _ pot+ (L—pd)/rd _po+1-p5 _ 1
1+o - 1+1/p} p+1 2 — p?

Assume now that o > 1/p}. We consider two probability distributions and
we show that the expected weight of the satisfied clauses is large enough for at
least one of them. The first one is the distribution defined above, i.e., variables
from X are set to be true with the probability pg, from Y with the probability gg
and from Z with the probability 1/2. Again, the expected weight of the satisfied
clauses of A4, Ag and Ay is at least 1/(2 — p2) of the sum of their weights.
The expected weight of the satisfied clauses in the rest of ¢ is at least 1 - py +
o-(1=pg)+6-(1+p§)/2. I po+0(1—p5) +86(1+p3)/2 > (1+0+8)/(2—1j),
then the expected weight of the satisfied clauses of the whole formula v is at
least w(¢))/(2 — p¢). This happens if the following inequalities hold:

po+o(l—p5)+6(1+p3)/2 > (1+0+6)/(2—p5)
1+ pa 1 ) ( 1 1
5( ° - > olg—=—14+0) —po+5——
2 2—p% 2—p(2) 0 2—p§

5 (2—1% +22p% — P _ 1)

o (=1 +pg + 2p5 — p§) — 2po + pg + 1

\Y%

o (=1+pg + 20} — p§) — 2po + p§ + 1

P
(1 —pd)/2

(9)
We apply (7) to (9):

5> ~oP6(—2po +p) + (1—2po +p§) _ (1—0opd)(p§ —2p0+1) _

- 31 —p3)/2 31 —p3)/2
(L—op)(L—p—pf) _ (1=om))(pd—po) _ (opd = DA =po)
p3(1+ po)/2 p3(1+ po)/2 Po/2

The other probability distribution which we consider is simpler: All the vari-
ables of X and Y are set to be false and the variables of Z are set to be true
with the probability equal to 1/2. The expected weight of the satisfied clauses
of A4, Ag and Ay is at least 3/4 of the sum of their weights (all the clauses of A4
and Ag are satisfied and a clause of Ay is satisfied with the probability at least
3/4). Among the remaining clauses all the clauses of Ay, Az, A5 and Ag are
satisfied, hence the expected weight of the satisfied clauses of Ay, Az, A3, As,
Az and Ag is at least 0. Hence, if 0 > (140 +0)/(2 — p2), the expected weight
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of the satisfied clauses of the whole formula v is at least w(v)/(2 — p2). Thus,
this distribution provides a sufficient expected weight of the satisfied clauses if
the following inequality hold (the last equality is derived using (7) ):

§<o(2-p3)—(1+0)=0(1—-p;) —1=0p; -1 (11)

We have shown that for the first probability distribution, the expected weight
of the satisfied clauses is sufficient, i.e., it is at least w(¢)/(2 —pd), if (10) holds,
and for the second distribution, it is sufficient if (11) holds. We now complete
the proof by showing that at least one of the inequalities (10) and (11) holds
providing ¢ > 1/p}:

(op3 — 1)(1 — po)

< opd—1
Po/2 = 9P
1-po < po/2
1 < 3po/2

Since pg > 2/3, the last inequality clearly holds.
|

We show that unlike in the case of k-satisfiable formulas for k£ = 1,2, 3 there
is no universal probability distribution for 4-satisfiable formulas in general:

Proposition 1 There is a 4-satisfiable formula ¢ and € > 0 such that for each
probability distribution over its variables (where each of the variables is set inde-
pendently of the others), weights of the clauses of 1 can be chosen in such a way
that the expected weight of the satisfied clauses of v is smaller than 1/(2—pd)—e.

Proof: Consider the following 4-satisfiable CNF formula:

v=()ANE@)YA(~zVy)A (=2 VY)A(-y V)

Let p, p', g and ¢, respectively, be the probability that the variable z, z', y and
y', respectively, is set to be true. It can be easily verified that min{p,p’,1—p+
pg, 1 —p' +p'q",1—qq'} < 1/(2—p?) — ¢ for a fixed € > 0 regardless the actual
choice of p, p, ¢ and ¢'. Assume, e.g., that 1 —p+pg < 1/(2 — p2) — €. If the
weights of all the clauses except for the clause (—z V y) to be negligible, then
the expected weight of the satisfied clauses is at most (1/(2 — p2) — €)w(¢). If
the minimum is attained by another term, we proceed analogously.

|

7 The Upper Bound on r4

We first present a construction of a certain 4-satisfiable formula. Next, we show
that any truth assignment of it behaves in some sense almost like a random
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assignment and then we prove the upper bound by a careful choice of parameters
in the construction of the formula.

The formula SAT4(n, a, 8,7) is defined as follows: It has n variables z;,1 <
i < n, and n* variables yz where @ ranges over all ordered k-tuples of numbers
1,...,n for k = |n*/3]. We say that two ordered k-tuples @ and b have a
common entry if there is ¢ which is an entry both of a and l_;; we do not require
that 7 has the same position in @ and b, e.g., 7 may be the first entry of @ and
the last one of b. The clauses of the formula SAT(n, o, 8,7) are the following:

e n clauses (z;) for 1 < i <n each of weight 1/n.

e kn* clauses (—z; V yz) for all pairs i and @ such that 4 is contained in 4.
If 7 is contained in @ several times, then the formula contains as many
clauses (—z; V yz) as is the number of occurrences of ¢ in d. Each of these
kn* clauses has the weight equal to o/ (kn*), i.e., the sum of their weights
is equal to a.

e clauses (—yg V —y;) for all ordered pairs of k-tuples @ and b which do not
have a common entry. Note that each clauge of this type is included to the
formula twice because the pairs of @ and b are considered to be ordered.
All the clauses of this type have the same weight chosen in such a way
that the sum of their weights is equal to 3.

o (}) clauses (—z;, V -z, V oy, V ozy,) for all unordered quadruples iy, 42,
13 and 14 of different numbers between 1 and n. All these clauses have the
same weight equal to y/ (Z), i.e., the sum of their weights is equal to 7.

We first show that the formula SAT4(n, a, 8,7) is 4-satisfiable:
Lemma 8 The SAT4(n,a,B,7) is 4-satisfiable for all n, o, B and 7.

Proof: Let W be a minimal set of clauses of SAT4(n, a, 8,7) which cannot be
simultaneously satisfied. Assume for the sake of contradiction that |W| < 4. By
the minimality of W, any variable either does not appear in the clauses of W at
all or it has both a positive and a negative occurrence in the clauses of W. Since
[W| <4, W cannot contain a clause of size four. Moreover, W must contain at
least one clause of the type (—yz V —y;) (otherwise, it contains only the clauses
of types (z;) and (—z; V yz) which can be satisfied by setting all the variables
to be true). If W contains a clause (-yz V —y;), it must contain also clauses
(-z; V ygz) for some i contained in @ and (—z; V y;) for some j contained in
b. Since the clause (—yz V —yz) is present in SAT4(n,a,B,7), we have i # j.
But then, W must contain also the clauses (z;) and (z;) which implies that
|W| > 4.

|

Next, we prove that any truth assignment behaves on SAT4(n,a,8,7) like
a random assignment. Observe that p + a(1 —p + pq) + B(1 — ¢%) +v(1 — p*)
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is the expected weight of the satisfied clauses of SAT4(n, «, 3,+) when the vari-
ables z; are set to be true with the probability p and the variables y; with
the probability q.

Lemma 9 The weight of the satisfied clauses of SAT4(n,a,B,7) is equal to
p+oa(l—p+pg+0(n~/'?) + (1 - +0n %) +y1-p*+0(n™)
for all n, a, B and v where p is equal to the fraction of variables z; set to true
and q is the fraction of variables yz set to true. The constants in the functions
O(n=1'2), O(n=/3) and O(n=1) are independent of n, o, f3, v, p and q and
the actual terms estimated by them can be both negative and positive.

Proof: Let k = |n'/3] be the size of the tuples @ as in the construction of
SAT4(n,a,B,v). We deal with each of the four types of the clauses contained
in SAT4(n,a, B,7) separately:

o (z;)for1<i<nm
There are exactly pn clauses z;, 1 < ¢ < n satisfied. Hence the weight of
the satisfied clauses of this type is exactly p.

e (—z; Vyz) for i contained in @
Let 7(@) be the number of entries of @ which correspond to the variables
z; set to be true by the assignment (counting multiplicity if 7 is contained
several times in @). Chernoff bounds [3] can be used to bound the number
of ordered k-tuples @ for which 7(&) differs significantly from the “average
value” kp:

Ha,7(@) > (1+ \pk}| < e Npk/3pk
|{5, T(l_i) > (1 — /\)pk}| < e*A2pk/2nk

v

Set A = n!/4/pk > n—1/12. Observe that except for at most e~©(m"/*)pk
tuples @, all tuples @ satisfy that the number of their entries ¢ which
correspond to the variables z; set to true is within the difference of n'/*
from pk. If y;z is false and the number of such ¢’s is within the difference
of n!/% from pk, then there are satisfied (1 — p + O(n*/4=1/3))k = (1 —
p+ O(n~/1?))k clauses out of all the k clauses (—a; V yz) containing the
literal yz. Hence the ratio of the satisfied clauses of the type (—z; V yz) is

equal to g+ (1—g)(1—p+0(n=1/12)) +=0"""*) = 1_p 4 pg+0O(n=1/12).

e (—yz V ;) for @ and b with no common entry
Consider all ordered pairs of literals —yz and —y; (including those with

@ = b); exactly 1—g2 of them contain a satisfied literal. There are n2* such
pairs. However only some of them correspond to real clauses. The number
of the clauses of the type (—yzV —w;) is at least n*(n—k)*. Hence the error
made by approximating the ratio of the satisfied clauses by 1 — g2 is of

the order 1 — =B — O(k? /n) = O(n=1/3).
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o (mzy, V mi, V oz, Vozy,)
Consider all n* ordered quadruples of (not necessarily distinct) literals
—z;; exactly (1 — p*)n* of them contain a satisfied literal. The number of
ordered quadruples corresponding to the clauses of the formula is 4! (Z) (4!
quadruples correspond to each clause). Hence at most n* — n(n — 1)(n —
2)(n —3) = ©(n?) of the quadruples do not correspond to the clauses and
the fraction of the satisfied clauses of this type is 1 — p* + O(n™1).

Theorem 4 For each € > 0, there exists a 4-satisfiable formula ¢ such that

wo () < w(¥)/(2 - pg) +e.

Proof: Set a, § and 7 to be the unique solution of the following system of
equations:

apy + Bpo + 106 —p0 = O (12)
l—a+ag -4y = 0 (13)
apo—2B8qp = 0 (14)

The values of a, 8 and v, respectively, are approximately equal to 1.234, 0.819
and 0.272, respectively.

Consider a formula SAT4(n,a, 3,7) for a sufficiently large n, i.e., such that
the error term aO(n=/12) + BO(n=1/3) + yO(n~') from Lemma 9 is smaller
than the considered €. The formula SAT4(n, a, 3,7) is 4-satisfiable by Lemma 8.
The value wo(SAT4(n, a, 3,7)) is equal up to an additive error of ¢ to the max-
imum of the function p + a(1 — p+pq) + B(1 — ¢%) +y(1 —p*) for 0 < p,g < 1
by Lemma 9 and the choice of n.

The first partial derivatives according to p and g are the following:

0

a—p(p+a(1—p+pq)+ﬁ(1—q2)+7(1—p‘*)) = l-—a+aq—4yp°
0

a—q(p+a(1—p+pq)+ﬂ(1—q2)+7(1—p‘*)) = ap—20Bq

Hence, the function p+a(1—p+pq)+3(1—¢?)+v(1—p*) attains its maximum for
one of the following pairs of values (p, ¢): (0,0), (0,1), (1,0), (1,1), (1,/28) and
(o, q0)- The last pair is by the choice of a, 8 and v to satisfy (13) and (14). It is
easy to check that the values of the function p+a(1—p+pq)+8(1—g¢?)+v(1—p*)
for (p,q) = (0,0) and for (p,q) = (po,qo) dominate all the others. By (6) and
(12), the value of p+ (1 — p+ pq) + B(1 — ¢®) +v(1 — p*) is equal to a+ 3+
both for (p7 q) = (070) and (pa q) = (p07 qO)

We now estimate the ratio wo(SAT4(n,,B,7))/w(SAT4(n,a,3,7)) using
the fact that the maximum of the function p+a(1—p+pq)+5(1—¢?)+v(1-p*)
is equal to @ + 8 + v and it is within the error of ¢ from wo(SAT4(n, a, 3,7)).
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We have also w(SAT4(n,a,8,7)) =1+ a+ 8+ 7 due to the construction of
SAT4s(n,a,B,7). The desired estimate on the ratio now follows using the equal-
ities (8) and (12):

wo(SAT4(n,0,5,7)) . a+B+y . __ 1 L

€= +e=-—=tc€
w(SAT4(n,a,8,7)) ~ 1+a+pB+7 1+p3 2—-pg

8 The Algorithms

One can check that the numbers cly, () can be replaced in the proof of Theorem 1
by any numbers &3 (z) which have the following three properties:

1. 52}(:12) + §,1/,(:z:) > k + 1 for each variable z of 1,
2. §11/)_51 (1) +...+ 511/)_5’ (z1) > k for each clause (z°* V...V z°) of ¢ and

3. &y (@) <1+ 511/)_51 (z1)+...+ 5;2_5’ (z;) for each clause (z°° V...V z°).

Moreover, all the numbers {7 (z) need not to be finite (this assumption only
simplified several arguments in the proof). The numbers cly(z) have the first
two of the above properties by Lemmas 6 and 7 and the third one followed from
their definition. Instead of clj,(z), our algorithms use the numbers imj, (z) which
are defined to be the (largest) numbers which have the following properties:

e If 4 contains a clause (z¢), then imj(z) = 1.

e If ¢ contains a clause (z°° V...V z°'), then im}?(zo) < 1+ im}/f‘€1 (z1) +
et im}p_sl (z1).

e If there is no restriction on the value of imj,(z), set imj(z) to co.

The third property on the numbers &, (z) is satisfied by the definition of imj, (z).
Observe that if imj, (z) is finite, then there is a set C of clauses of the size imj, (z)
such that the clauses of C' can be satisfied only if the value of z is €. Thus,
cly(z) < imj(z). We can conclude that if 1 is k-satisfiable, then the numbers
im7,(z) have all the three properties needed in the proof of Theorem 1. Note
the numbers imj,(z) may also have the properties for a formula which is not
k-satisfiable.

Trevisan [9] considered similar numbers but he required instead of £’ (zo) <
1 —}—5}[51 (z1) +. ..+§:/f“ (z1) that £ (z0) <1 +max{§11/)_51 (z1),---, 11[5’ (z1)}
Hence Trevisan’s numbers correspond to depths of certain “derivations” that z
is € and our numbers imj,(z) to their sizes. This causes that the ratios of the
algorithm obtained by Trevisan are worse, but on the other hand, our analysis
is less straightforward.
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Input:  a formula ¢
Output: the numbers imj (z)

unmark all literals z°

set all imj(z) to oo

for each clause (z°) set imjy(z) to 1

while there is an unmarked literal z° with im}[a(x) < oo do
choose an unmarked z7' with imzlp_e1 (z1) as small as possible
mark the literal zf’
for all clauses (z;° V...V ;') with only unmarked literal zp’°

set im;’(zo) to min{im}’(zo),1+ imzllfEl (1) +..-+ imllp_el (1)}

endfor

endwhile

Figure 1: A linear time algorithm computing the numbers imj, (z).

The linear time algorithm of Figure 1 computes the numbers imj,(z). Once
the numbers imj, (z) are computed, one can check (in linear time) whether the
numbers imy, (z) have the above mentioned three properties. If this is not the
case, then the input formula is not k-satisfiable. Otherwise, the probabilities p;
can be defined as in the proof of Theorem 1. In particular, each clause of ¢ with
respect to the probabilities p; is satisfied with the probability at least bgy1:

Theorem 5 There is a linear time algorithm which for a given formula ¥ with
variables x; either outputs that ¢ is not k-satisfiable or finds probabilities p;
such that each clauses is satisfied with the probability at least 7y, if a variable x;
is chosen to be true with the probability p;.

Using the algorithm from Theorem 5, we can find a truth assignment which
satisfies at least the fraction of bgy; of the clauses using a derandomization
method proposed by Yannakakis [12]:

Theorem 6 There is a deterministic linear time algorithm which for a given
formula ¥ with m clauses either outputs that 1 is not k-satisfiable or finds a
truth assignment such that at least bi41 - m clauses are satisfied.

Similarly, the same method can be applied to the result presented in Sec-
tion 6:

Theorem 7 There is a deterministic linear time algorithm which for a given
4-satisfiable formula 1 with m clauses either outputs that v is not k-satisfiable
or finds a truth assignment such that at least r4 - m clauses are satisfied.
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