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Abstract. Johnson, Papadimitriou and Yan-
nakakis introduce the class PLS consisting of
optimization problems for which efficient local-
search heuristics exist. We formulate a type-2
problem ITER that characterizes PLS in style
of Beame et al., and prove a criterion for type-
2 problems to be nonreducible to ITER. As
a corollary, we obtain the first relative separa-
tion of PLS from Papadimitriou’s classes PPA,
PPAD, PPADS, and PPP. Based on the cri-
terion, we derive a special case of Riis’s inde-
pendence criterion for the Bounded Arithmetic
theory S2(L). We also prove that PLS is closed
under Turing reducibility.

1 Introduction

Complexity theory has been successful in classi-
fying various computational problems in terms
of the required amount of resources for solving
them. In particular, a vast number of combinato-
rial optimization problems that arise in practical
applications have been shown to be NP-hard.

One successful approach to such difficult opti-
mization problems is local search. Given an op-
timization problem, one specifies a local-search
heuristic and then tries to find a locally-optimal
solution, or a solution whose quality cannot be
improved by the heuristic.

In order to study the complexity of local
search, Johnson, Papadimitriou, and Yannakakis
[JPY88] introduce the class Polynomial Local

Search (PLS) consisting essentially of optimiza-
tion problems for which polynomial-time local-
search heuristics exist. PLS contains many nat-
ural problems, some of which are complete for
the class (with respect to an appropriate notion
of reduction). Unlike many standard complexity
classes such as P or NP, which are classes of
decision problems, PLS is a class of total search
problems.

Beame et al. [BCE198] introduce a framework
to study the complexity of total search problems.
Their framework is based on the notion of type-
2 computation of [Tow90, CIY97], whose inputs
consist of not only strings (type-1 objects) but
also functions and relations (type-2 objects).

The type-2 approach is useful in the study of
‘algorithmic power’ of combinatorial principles
since witnessing a combinatorial principle in a fi-
nite structure can be nicely formulated as a total
type-2 search problem. Various type-2 problems
are introduced by Beame et al. from the combi-
natorial principles such as the pigeonhole princi-
ple. These type-2 problems give rise to alterna-
tive type-2 definitions for Papadimitriou’s search
classes PPA, PPAD, PPADS, and PPP of
[Pap94b], which contain a number of natural
combinatorial problems.

All possible containments and relative sep-
arations among these classes are proven in
[BCE198] by showing reducibilities and nonre-
ducibilities among the corresponding search
problems. However, PLS is not discussed by
Beame et al., and it has been unknown how PLS
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fits in with respect to the other search classes in
a relativized world. This paper solves this open
problem.

In his Ph.D thesis [Bus86], Buss introduces a
hierarchy of fragments S% and T% of Peano Arith-
metic called Bounded Arithmetic and shows its
close connection to the Polynomial-time Hierar-
chy via the notions of definable functions and
witness theorems. Buss and Krajicek [BK94]
obtain a logical characterization of PLS in
Bounded Arithmetic, which can be stated as
follows: a problem is in PLS if and only if
it is E’{—deﬁnable in 7). It is interesting that
PLS, which arose in an attempt to capture local-
search heuristics for practical applications, coin-
cides with a definable class of search problems in
a fragment of Peano Arithmetic. Subsequently
Chiari and Krajicek [CK98] show that PLS is
characterized (in a precise sense) by a combi-
natorial principle called the iteration principle,
which is a variant of the induction principle.

In this paper we introduce a new type-2 search
problem ITER based on the iteration principle,
similarly to the way Chiari and Krajicek define
the I-problem [CK98]. ITER has the following
property: for a search problem @, @) € PLS if
and only if () is many-one reducible to ITER.

We then present a result regarding the power
of Turing reducibility and many-one reducibility
with respect to ITER.

Theorem 7 Let QQ be a search problem (type-1
or type-2). If Q is Turing reducible to ITER,
then QQ is many-one reducible to ITER.

It follows that PLS is closed under Turing re-
ducibility, which, as far as we know, has not been
known.

We introduce the following, systematic
method of formulating type-2 search problems:
given an existential first-order sentence ®, the
corresponding type-2 search problem Q¢ is the
problem of finding a witness to ® in a given finite
structure. If the underlying first-order language
contains <, then the input structure interprets
< as the standard linear ordering.

The main result of this paper is a sufficient
condition on @ for ()¢ to be nonreducible to

ITER.

Main Theorem Let @ be a first-order existen-
tial sentence over a language L not containing
<. If ® fails in an infinite structure, then the
corresponding type-2 search problem Q¢ 1is not
Turing reducible to ITER.

For example, Main Theorem applies to the fol-
lowing sentence:

(Va)[e(z) # 0] O (Fz, y)[x # y A a(z) = e(y)].

This is the injective pigeonhole principle, which
we will use as a primary example throughout
this paper. It follows from Main Theorem
that the above sentence cannot be witnessed in
polynomial-time by making queries to ITER.

Since the combinatorial principles correspond-
ing to Papadimitriou’s classes can be stated in
the form satisfying the premise of Main Theo-
rem, we obtain the the first relative separation
of PLS from Papadimitriou’s classes.

Corollary 9 There exists a relativized world
in which PLS contains none of the following:
PPA, PPAD, PPADS, and PPP.

Corollary 9 may be interpreted as evidence
that efficient local search heuristics are unlikely
to exist for the problems in Papadimitriou’s
classes, which include problems related to cryp-
tographic hash functions (PPP), finding Nash
equilibria (PPAD), Sperner’s lemma, Brouwer’s
fixed point theorem, and the Borsuk-Ulam the-
orem (PPA) [Pap94b].

Note that we have proven Corollary 9 directly
in [Mor01]. Main Theorem of this paper is a
generalization of the proof in [Mor01].

We will strengthen Main Theorem to hold for
sentences of any quantifier complexity (Theorem
10).

Main Theorem is in the style of Krajicek’s
Theorem 11.3.1 in [Kra95]. We will discuss sim-
ilarities and differences of the two statements in
Section 5. Riis [Rii01] proves that the assump-
tions of Main Theorem implies that & gives rise



to tautologies that are hard for the tree-like res-
olution proof system. We do not know how his
result relates to our Main Theorem.

Main Theorem implies the following ‘indepen-
dence criterion’ for the relativized theory 745 (L)
of Bounded Arithmetic.

Theorem 16 Let ® be an I-sentence over a
language L such that L — {0} is disjoint with the
language of Bounded Arithmetic. If @ fails in an
infinite structure, then

T) (L) ¥ &9,

where ®<¢ is the XY(L)-formula obtained by
bounding all quantifiers with 219

Theorem 16 is a special case of Riis’s indepen-
dence criterion for S2(L) which applies to any
first-order sentence [Rii93, Kra95]. Hence Theo-
rem 16 itself does not give any new independence
results for 73} (L). However, some of the known
independence results do follow from it.

Throughout this paper we work with binary
strings. For string z, |z| denotes the length of
z. For any n > 1, V,, denotes the set {0,1}" of
the strings of length n. The symbol ‘<’ denotes
the lexicographical ordering of strings. We write
0™ and 1™ to denote the sequences of n 0’s and n
1’s, respectively. When z and y are strings, zoy
denotes the concatenation of the two.

2 Search Problems

Let R be any binary relation. The search prob-
lem Qg is the following problem: given z, find
y such that R(z,y). The input z is called an
instance of Qg and any y satisfying R(z,y) is
called a solution for instance z. For every z,
Qr(z) = {y : R(z,y)} denotes the set of solu-
tions for instance z. Usually we omit the sub-
script R. We say that @ is total if Q(z) is
nonempty for all z.

When a defining relation R is polynomial-time
decidable, the resulting search problem is called
an NP-search problem [BCET98]. TFNP is de-
fined to be the class of total NP search problems
in [MP91] (see also [Pap94a]); the same class is

called VP (for Verification of solutions in Poly-
time) in [Mor01].

There is some evidence in [BCE*98] that some
total search problems may have no computa-
tionally equivalent decision problems. Hence,
the complexity of total search problems, such as
PLS problems below, needs to be investigated
directly.

This paper is concerned with total search
problems, and hence all problems we mention
are assumed to be total.

We say that a Turing machine M solves a
search problem () if, for all z, M on z outputs
some y € Q(z). We write FP to denote the class
of all search problems solvable by a deterministic
polynomial-time Turing machine. Note that our
FP contains all polynomial-time functions.

2.1 Reducibility

A search problem () is used as an oracle in the
following way. An oracle Turing machine M
writes a query ¢ on its query tape and enters
in a special query state. In the next step, some
a € Q(q) magically appears in the answer tape.

Let @1 and )2 be two search problems. Then
Q1 is Turing reducible to Q2, written Q1 <7 Q2,
iff there exists a polynomial-time oracle Turing
machine that solves ()1 by using (2 as an oracle.
We say that Q1 is many-one reducible to Q2 and
write Q1 <, Q2 iff @1 is Truing reducible to Q)
by a machine that asks at most one query to (5.

2.2 Polynomial Local Search

Johnson, Papadimitriou, and Yannakakis
[JPY88] defined a polynomial local search (PLS)
problem as an optimization problem that can
be formulated as a local search problem. The
following is a simplified definition of PLS
problems.

Definition 1 A search problem @ is said to be a
PLS problem if the following conditions are met:
(1) there ezists a polynomial p such that
Q(z) C Vy(jz)) for all z.
(2) there ezist polytime functions qg and hq
such that hg(z,0") # 0" and, for all v € Vy(z)),



if v # ho(z,v) then qg(z,v) < gg(z, hg(v)).
(8) the solutions are defined as

Q(z) = {v € Vy(u)) : v = hq(z,v)}.

The set V,,(|4)) is the search space in which we
look for solutions. The function gg defines the
quality of each potential solution, and hg is a
local-search heuristic. The solutions for instance
z are the locally optimal elements of V(|5)), i.e.,
the elements for which the heuristic hg does not
return an object with better quality. A large
number of common local search heuristics give
rise to PLS problems [JPY88, Yan97].

The class of all PLS problems is not closed
under <,,, unless all PLS problems are polytime
solvable [Mor01]. Hence, we artificially close the
class under <, in the style of [BCE198].

Definition 2 PLS is the smallest class contain-
ing all PLS problems closed under many-one re-
ducibility.

Note that our PLS is apparently larger than
the class with the same name in [JPY88, Yan97];
in particular, our PLS is not a subclass of
TFNP unless PLS C FP [Mor01]. However,
many properties of the class of PLS problems
are also true for PLS. For example, all PLS-
complete problems of [JPY88, Yan97] are also
complete for our PLS.

3 Combinatorial Principles and
Search Problems

Beame et al. [BCE'98] demonstrate that it is
useful to generalize the notion of search prob-
lem so that the instances of search problem Q)
consist of strings, which are type-1 objects, and
functions, which are type-2 objects. More for-
mally, let R be a type-2 relation with arguments
(o, z,y), where z and y are strings and « is a
string function. R defines a type-2 search prob-
lem Qg in the usual way.

The complexity of type-2 relation, functions,
and search problems is measured with respect to
a Turing machine that receives the type-1 argu-
ments on its input tape and is allowed to access

the type-2 arguments as oracles. In particular, a
type-2 function F'(«, z) is said to be polynomial-
time computable if it is computed by a deter-
ministic Turing machine in time polynomial in
|z| with oracle access to a.

Let @ be a type-2 search problem. An oracle
Turing machine M uses ) as an oracle in the
following way. M presents a query to ) in the
form (f3,y), where y is a number and 8 encodes
a polynomial-time function. In the next step M
receives in its answer tape some z that is a solu-
tion for Q(8,y)-

Let Q1 and Q2 be type-2 search problems.
We say Q1 is Turing reducible to Qo and write
Q1 <7 @y iff there exists an oracle Turing ma-
chine M that, given an instance (o, z) of @1, out-
puts some z € Q1(a, z) in polynomial-time using
a and Q)2 as oracles, where each query to Q2 is
of the form (y, 3) with 3 a function polynomial-
time computable using « as an oracle.

Q1 is many-one reducible to Qo if Q1 <1 Qo
by an oracle Turing machine that asks at most
one query to Qo.

The following definition is from [BCE™98]
with a small modification.

Definition 3 Let Q) be a type-2 search problem.
Then C(Q) is defined as

C(Q)={Q" : Q" is type-1 and Q' <., Q}.

3.1 Combinatorial Principles as First-

Order Sentences

We introduce below a new, systematic way of
defining type-2 search problems from combina-
torial principles that are representable by sen-
tences of first-order logic with equality.

Let L be an arbitrary first-order language and
let ® be a sentence over L of the form

O =,y (Fz1 ... Fzp)P(21,. .., 28)

for some quantifier-free ¢. Let us call such sen-
tences 3-sentences. Note that we allow the equal-

ity symbol = in ® even though we do not explic-
itly include it in L.



® is interpreted in a structure M which defines
the universe of discourse and the meaning of con-
stants, functions, and relations of L. We define
a canonical structure to be a structure such that
(1) the universe of discourse is V;, for some n > 1;
(2) if 0 € L, then 0 means 0" € V,; and (3) if
<€ L, then < is the lexicographic ordering of
strings. We abuse the notation and write V,, to
denote the canonical structure with the set V,
the universe of discourse.

Assume that @ holds in every canonical struc-
ture. Then the corresponding witness problem
is the following: given a canonical structure
Vi, find a tuple (vy,...,v;) € (Vi)* such that
d(v1,...,vx) holds in V,.

We formulate the witness problem as the type-
2 search problem Q¢ whose type-1 argument x
specifies the universe of discourse V|, and whose
type-2 arguments are the functions and relations
of L. We exclude < from the inputs, since its
meaning in V,, is already fixed. Finally, since
only the length of z is used to define Vi,, we
assume without loss of generality that the type-
1 argument of Q¢ is always of the form 1™ for
n > 1.

To simplify our presentation, we say that a
sentence is 3 if its prenex form is purely ex-
istential. For example, the following sentence,
®prgEoN, 18 a J-sentence:

(Vo)[a(z) # 0] D 3z, )z # y A a(z) = afy)]-

In V,, it states that, if 0" is not in the range of «,
then « cannot be one-to-one. By the (injective)
pigeonhole principle, this holds in every canoni-
cal structure (in fact, in every finite structure).
The corresponding type-2 search problem, called
PIGEON, is the following: given (1", ), find
either v € V,, such that a(v) = 0" or u,v € V,
such that u # v and a(u) = a(v). PIGEON is
defined in [BCE"98], and we will discuss it more
in Section 5.

3.2 The Iteration Problem and PLS

The iteration principle is a weak form of the in-
duction principle. It can be stated as follows.

a(0) > 0 A (Vz)[a(z) > =]
D (Fz)[z < a(z) A afz) = a(a(x))],

where ‘z < gy’ is an abbreviation for
‘z < yAzxz#y. Note that the iteration princi-
ple holds in every canonical structure but fails in
a finite noncanonical structure.

We define ITER to be the type-2 problem de-
fined by the above sentence. That is, given an
instance (1", ), each v € V}, is a solution for
ITER(1", @) if and only if one of the following
holds: «(0™) = 0"; a(v) < v; or both v < a(v)
and a(v) = a(a(v)).

The iteration principle is studied in the con-
text of Bounded Arithmetic by Buss and Kra-
jicek [BK94] and Chiari and Krajicek [CK98].
Buss and Krajicek essentially prove that ITER
is not solvable in type-2 polynomial-time. They
also give a remarkable characterization of PLS
in Bounded Arithmetic, which we discuss in Sec-
tion 6. Based on this result Chiari and Krajicek
prove a close connection between the iteration
principle and PLS.

The following statement, which is motivated
by a result of Chiari and Krajicek [CK98], is ex-
plicitly stated and proven in [Mor01].

Theorem 4 PLS = C(ITER).

That is, a type-1 search problem () is in PLS
if and only if @ <,, ITER. Thus, PLS can be
defined as the class of all type-1 search problems
that are many-one reducible to ITER.

The following is a variant of the theorem of
[CIY97] (also in [BCE™98]).

Theorem 5 Let Q1 and Q2 be two type-2 search
problems. Then Q1 <, Q2 if and only if, for all
oracle A, (C(Q1))”* C (C(Q2)™.

Thus, by proving @ £, ITER, one can show
that (C(Q))* ¢ PLS* for some oracle A. In
Section 5 we discuss Main Theorem, which pro-
vides a sufficient condition for () to be nonre-
ducible to ITER.



3.3 Equivalent Problems

ITER is not the only type-2 problem that char-
acterizes PLS, and we present another type-2
problem BTROOT (Binary Tree Root) that is
equivalent to ITER in the sense that BTROOT
and ITER are many-one reducible to each other.
It follows that BTROOT characterizes PLS.

Let us first restate ITER in graph-theoretic
terms. Given an instance (1", &), consider the di-
rected graph G whose vertex set is V;, and (u,v)
is a directed edge iff u # v and a(u) = v. It
follows that G is a directed acyclic graph (dag)
with outdegree < 1. We define a sink of G to be
a vertex with no outgoing edge and at least one
incoming edge. Then ITER is essentially the
problem of finding a sink in this exponentially
large graph, and because of the principle “every
dag with at least one edge has a sink”, ITER
is total. Note that the only upper bound on the
indegree of GG is exponential in n. Moreover, the
oracle a only tells us the outgoing edge of each
vertex, and it is impossible in general to find an
incoming edge of the given vertex in polynomial
time.

We define the type-2 problem BTROOT as
the problem of finding sinks in an exponentially
large dag with outdegree < 1 and indegree < 2
such that it is easy to find the incoming edges of
a vertex. The underlying graph is a collection of
binary trees and isolated nodes, and the task is
to find the root of any tree, and hence the name
BTROOT.

Instances of BTROOT are of the form
(1™, a, 1, B2), where « is intended to define the
outgoing edge of a vertex and 31 and 3 give two
incoming edges. BTROOT is defined by the fol-
lowing 3-sentence over L = {0, a, 81, B2, <}:

a(0) > 0 A (Vz)[a(z) > z]A
(Va)[Br(z) <z A B2(x) < z]A
(Vavy)[z = yV

((BLly) =z V a(y)
O (Fz)[z < a(z) ANa(z) =

=1z) ¢ ax)

ala(z))]-

Theorem 6 ITER and BTROOT are many-
one reducible to each other.

=y)]

A proof of Theorem 6 is in Appendix A.

We formulate another problem equivalent to
ITER in a joint work with Buresh-Oppenheim
[BOMO3].

4 Closure Property of PLS

Note that, in [BCE'98], all known reductions
between type-2 problems are many-one reduc-
tions and all known separations are with respect
to Turing reduction. That is, we do not know
whether any pair Q1 and Q)2 exists such that Q1
is Turing reducible to Q)2 but not many-one re-
ducible; in other words, we do not know if Turing
reduction is more powerful than many-one reduc-
tion. However, we prove that this is not true for
ITER.

Theorem 7 Let QQ be a search problem (type-
1 or type-2). @Q <, ITER if and only if
Q <7 ITER.

By Theorem 4, it follows that PLS is closed
under Turing reducibility. As far as we know,
this has not been known.

Theorem 7 simplifies the proof of Main The-
orem, since, in order to prove @ £r ITER, we
only need to show £,,. However, it is not hard
to directly extend the proof of £, to £ without
invoking Theorem 7; see [BCET98].

5 Main Result

Main Theorem Let ® be an 3-sentence over
a first-order language L without the standard or-
dering <. If ® fails in an infinite structure, then

Qs £r ITER.

In [CK98], Chiari and Krajicek essentially
prove that, for the weak pigeonhole principle
and the generalized iteration principle, the corre-
sponding type-2 search problems are not many-
one reducible to ITER. Their results follow as
special cases of our Main Theorem. We also



prove a special case of Main Theorem in [Mor01]
which implies Corollary 9.

Before proving Main Theorem in Section 5.3,
let us illustrate what Main Theorem is about.
Recall ®p;gron from Section 3

(Vo)[a(z) # 0] D (Fz, )z # y A a(z) = aly)],

which defines the type-2 problem PIGEON.
Since ®prgron fails in an infinite structure, it
follows from Main Theorem that PIGEON is
not Turing reducible to ITER.

It is important that L does not contain <.
For example, ITER and BTROOT, which are
many-one reducible to ITER, are defined by
sentences containing the symbol <.

Main Theorem is similar to Theorem 11.3.1
of [Kra95] below. A JV-sentence is a sentence
of the form (37)(Vy)$ with ¢ quantifier-free. A
language is relational if it contains no function
symbol. Let (FPNF)2 denote the class of type-2
search problems solvable in polynomial-time by
an oracle Turing machine that has access to a
type-2 NP oracle as well as its type-2 inputs.

Theorem 8 [Kra95] Let ® be a IV-sentence
over a relational language L without <. If @ fails

in an infinite structure, then the type-2 problem
Qo is not in (FPNF)2,

Since ITER € (FPNP)? trivially, the conse-
quence of Theorem 8 is stronger than that of
Main Theorem. However, it does not apply to
search problems defined by 3-sentences (which
are also 3V-sentences) over functional languages,
which is the scope of Main Theorem. For exam-
ple, Theorem 8 does not say anything about the
complexity of PIGEON, since ®prgpon is not
over a relational language. In fact, PIGEON
is in (FPNF)2: binary search asking ‘does there
exist v > k witnessing ®prgron?’ for various k
yields a solution in polynomial-time.

5.1 Relative Complexity of PLS

Beame et al. [BCE98] formulate a number of
type-2 search problems. LONELY is based on
the fact that there is no perfect matching in a
graph with an odd number of vertices. More

formally, LONELY is the type-2 search problem
defined by the following 3-sentence:

a(0) =0 A (Vz)[z = a(a(x))]
O (Jz)[z # 0Nz = az)].

Note that the above sentence holds in every
canonical structure V,.

PIGEON, which we discussed in Section
5, is also from [BCE'198]. SINK and
SOURCE.OR.SINK are also defined in the
same paper, but we do not give their definitions
here.

The above type-2 problems are formulated to
capture the search classes defined by Papadim-
itriou in [Pap94b]. These classes are: PPP,
PPA, PPAD, and PPADS (PPADS is given
this name in [BCE*98]). They are known to con-
tain natural problems, some of which are com-
plete [Pap94b]. Their type-2 definitions are the
following.

PPA = C(LONELY)
PPAD = C(SOURCE.OR.SINK)
PPADS = C(SINK)

PPP = C(PIGEON)

Beame et al. show all possible separations
and containments of these classes in a relativized
world by obtaining all possible reducibilities and
nonreducibilities among the type-2 problems.

However, PLS is not discussed in [BCET93],
and it was unknown how PLS relates to the
other classes. Since the type-2 search problems
of Beame et al. satisfy the premise of Main
Theorem, the following is immediate from Main
Theorem, Theorems 4 and Theorem 5, and the
fact that SOURCE.OR.SINK many-one re-
duces to the other problems of [BCE'98].

Corollary 9 There exists a relativized world
in which PLS contains none of the following:
PPA, PPAD, PPADS, and PPP.

Corollary 9 may be interpreted as evidence
that efficient local search heuristics are un-
likely to exist for the problems in Papadim-
itriou’s classes, which include problems related
to cryptographic hash functions (PPP), finding



Nash equilibria (PPAD), and Sperner’s lemma,
Brouwer’s fixed point theorem, and the Borsuk-
Ulam theorem (PPA) [Pap94b].

5.2 Sentences with More Quantifiers

We generalize Main Theorem so that it applies to
sentences with higher quantifier complexity. For
k > 1, we say that a sentence is ¥ if its prenex
form has k£ — 1 quantifier alternations with the
outmost quantifier 3.

Let ® be a Xj-sentence, and let &z be a
J-sentence obtained by herbrandizing ®. It is
a well known fact that @ logically implies @ g
[Bus98b]. It is not hard to see that Qs , <m Qs.
From this fact, the following is immediate:

Theorem 10 Let k > 1 and ® be a X -sentence
over a first-order language L without the stan-
dard ordering <. If ® fails in an infinite struc-
ture, then

Qs %7 ITER.

It is interesting that Theorem 8 does not seem
to generalize in the same way.

5.3 Proof of Main Theorem

Throughout this section, we fix the language L
to be L = {0,a} and assume that ® is an 3-
sentence over L of the form (3z)¢(x). The case
with arbitrary language and arbitrary 3-sentence
is analogous to the current case.

For any n > 1, a partial function p, : V, — V,
is called a restriction. Let p = {pn }n be a family
of restrictions. We denote by (Qs)” the type-
2 search problem Qg such that the oracle for
o answers queries consistently with p, ie., on
instance (1", a), if v € dom(p,,), then the query

‘a(v)’ is answered with py, (v).
The size of restriction Pn is
|dom(pp)| + |ran(p,)| and is written |py).

We say that {pn}n is a polysize family if
lpn| € nO0.

We say that a restriction p, : V,, — V,, con-
tains a solution for Q)¢ if the defined part of p,
contains a witness to ® in V,,.

A restriction p, : V,, — V,, is said to be safe
for @ if the following conditions are met: (1)
there exists an infinite structure X = (K, ak)
in which & fails; and (2) there exists a one-one
mapping f : V,, — K such that p,(v) = u implies
ak(f(v)) = f(u). Note that, if p, is safe for @,
then p,, does not force a solution for Q. We say
that a family {p,}, of restrictions is safe for ®
if p, is safe for @ for every n.

The separation proofs in [BCE198] involve
the following model of computation. Define a
Search-tree (or S-tree) T,, to be a directed tree
whose internal nodes are labeled with queries
‘a(v)’ for some v € V,, and whose edges are la-
beled with answers ‘u’ for some u € V,,. Each
internal node specifies an oracle query to «, and
if the answer is ‘a(v) = u’, then the outgoing
edge with label ‘u’ should be taken, which leads
to the node specifying the next query. This pro-
cedure terminates when a leaf node is reached.
The leaf nodes are unlabeled. Krajicek [Kra95]
has a similar construct called the witness test
tree.

Note that, for every path P of T, there ex-
ists a corresponding restriction wp specified by
the queries and answers on P. We say that T,
solves Q¢ on n if, for every path P of T}, the
corresponding restriction 7mp contains a solution
for Qs.

Let Depthp(n) be the depth of T, i.e., the
maximum length of paths from the root to a
leaf node. A family {7),}, of S-trees is said to
be poly-depth if Depthr(n) € n®1). Poly-depth
families of S-trees constitute a nonuniform ver-
sion of type-2 FP.

Special cases of the following are implicit in
[Bus86, Kra95, BCE*98, CK98, Mor01].

Lemma 11 Let L be a language not containing
< and let ® be an I-sentence over L that fails
in an infinite structure. If {T,}n is a poly-depth
family of S-trees over L and p = {pn}n is a safe,
polysize family of restrictions, then, for all suf-
ficiently large n, T,, contains a path P such that
pn U Tp is safe for ®.

Note that the conclusion of Lemma 11 implies
that 7,, does not solve (Q4)” on n. A proof of



Lemma 11 is provided in Appendix C.

By Theorem 7, it
Qs %m ITER. Assume for the sake of
contradiction that Q¢ <,, ITER. Let M
be an oracle Turing machine that solves Qs
in polynomial-time by making one query to
ITER and arbitrary many queries to a. Let
k(n) € n°M be the running time of M.

suffices to prove

Claim 12 There ezists a polysize family {pn}n
of restrictions such that, for sufficiently large n,
the following hold: (1) py, is safe for ®; and (2)
pn contains the answers to all the queries to a
and ITER made by M on (1", ).

Suppose Claim 12 holds and consider M on
(1™, @) for n sufficiently large. We answer all the
queries to « and ITER according to p, asserted
to exist by the Claim. At the end of its com-
putation, M is forced to output some v € V,, as
a solution, although no solution is forced by p,.
Hence, after M outputs some v, we extend p,, to
some « such that ¢(v) does not hold in V;,. This
completes the proof of Main Theorem.

It remains to prove Claim 12. Fix n suffi-
ciently large so that all the necessary invocations
of Lemma 11 hold, and let & = k(n). We divide
the computation of M into 3 phases: phase 2 is
the ITER-query of M, and phase 1 and 3 con-
sist of all the a-queries that are asked before and
after the ITER-query, respectively.

For each phase, we construct a restriction pu;
such that (1) ps extends po, which extends p1;
(2) p; is safe for @, and it contains the answers to
all the queries that are asked in the first 4 phases
of M; and (3) |ui| € n®(0),

In order to construct pi, let M’ be an oracle
Turing machine that simulates M until M writes
the ITER-query, at which point M’ halts. Thus,
M' simulates phase 1 of M and asks at most
k a-queries. Construct an S-tree 7" from M’
by extracting all possible sequences of a queries
that M’ asks. By Lemma 11 (with p, empty),
T' contains a path P such that np is safe for ®.
Let py = 7p.

For phase 2, let (1™, ) be the ITER-query
that M asks, when all preceding a-queries are

answered according to p;. Our task is to con-
struct uo by extending 1 enough so that a solu-
tion for ITER(1™, 8) is specified, while keeping
o safe for @.

By definition of many-one reduction,
B:Vym+—V, is computable by an oracle
Turing machine Mg in time polynomial in n
using « as an oracle. For each z € V,,, let B(x)
be the S-tree corresponding to the computations
of Mg on z. We say a path P of S-tree B(z) is
good if P is consistent with puy and u1 U wp is
safe. For each z € V,;,, let Goodp(x) be the set
of all good paths of B(z). By Lemma 11, for all
z, Goodg(r) is not empty.

There are three cases to consider.

First Case: Goodg(0™) contains a path P
such that the corresponding computation of Mg
makes (0") = 0". We set puo = p1 U mp and
return an arbitrary v € V,;; to M as a solution
for the ITER-query (1™, 3).

Second Case: For some z € V,, Goodg(z)
contains a path P such that the corresponding
computation of Mg makes f(z) = y for some
y < z. We set puo = 1 Ump and return z as a
solution for the ITER-query.

Third Case: the above two cases do not hold.
Since the first case does not hold, every path in
Goodg(0™) corresponds to a computation of Mg
with 8(0™) > 0™. Similarly, since the second case
does not hold, every path in Goodp(1™) leads to
B(1™) = 1™. Hence, by the least number princi-
ple, there exists z € V,;,, such that (1) Goodp(x)
contains a path P’ that leads to B(z) = y for
some y > z; and (2) for all z > z, every path in
Goodp(z) leads to B(z) = z.

Let z, y, and P’ be as in the preceding para-
graph. Let Betterp(y) as the set of paths P” of
B(y) such that mpr is consistent with p; U mps
and p1 Umpr Umpr is safe for . By Lemma 11,
Betterpg(y) is not empty. Let P* be any path
in Betterp(y). Set ps to be yy U mpr U mp~ and
return z to M as a solution for its ITER-query.
Note that z is a solution because f(z) = y and
B(y) = y. This concludes the construction of us.

i3 is constructed in essentially the same way
as p1. Let M" be the machine that simulates
phase 3 of M, and let 7" be the corresponding



S-tree. We find a path P of T" that is consistent
with restriction puo and ps U wp is safe for . By
Lemma 11, such a path exists, and we set u3 to
be po U mp.

Finally, let p, = p3. The resulting family
{pn }n satisfies the conditions in Claim 12.

6 Bounded Arithmetic

In his 1986 thesis Buss introduces theories S3
and T¢ of Bounded Arithmetic, which have
been shown to be closely linked to complex-
ity classes in the Polynomial-time Hierarchy
[Bus86, Bus98a, Kra95]. See Appendix D for ba-
sic definitions.

A connection between Bounded Arithmetic
theories and the Polynomial-time Hierarchy is
via the notions of definability of functions, rela-
tions, and search problems. Informally, a search
problem is definable in theory T if its totality is
provable in T'.

Definition 13 Let (Q be a total search problem
and T be a theory of Bounded Arithmetic. @
18 Ef—deﬁnable in T if and only if for some Ef—
formula ¢(x,y),

1. For all m,n € N, ¢(Sm,sn) implies
n € Q(m), where spy and s, are numerals
representing x and y, respectively; and

2. T F (Vz)(3y)(z, y)-

Buss and Krajicek in [BK94] obtain a remark-
able result which gives a logical characterization
of PLS in Bounded Arithmetic. We state their
result in terms of many-one reducibility.

Theorem 14 A search problem Q is in PLS if
and only if Q is Zli—deﬁnable in Ty.

Let ® be an J-sentence over an arbitrary lan-
guage L. We denote by ®<¢ the X¢(L)-formula
obtained by bounding all quantifiers of ® by 2/4/,
where a is the only free variable of the formula.
We say that a language L is BA-disjoint if L—{0}
is disjoint with the language Lpa of Bounded
Arithmetic. The following is a consequence of
Theorems 4 and a relativized version of Theo-
rem 14.

Theorem 15 Let ® be an J-sentence over a
BA-disjoint language L, and Qs be the corre-
sponding type-2 search problem. If T)(L) proves
&= then Q¢ <,, ITER.

Thus, by showing Q¢ «m ITER, one obtains
the independence of ®<¢ from T.}(L).

From Main Theorem and Theorem 15, we ob-
tain the following.

Theorem 16 Let ® be an I-sentence over a
BA-disjoint language L. If ® fails in an infinite
structure, then

T} (L) ¥ ®=°.

Theorem 16 is a special case of Riis’s first fini-
tisation principle in [Rii93]. It states that, if a
sentence ® over a BA-disjoint language L fails
in an infinite structure, then ®<¢ is not provable
in S2(L). Riis proves it by a model-theoretic ar-
gument, and Krajicek later gives an alternative
proof which uses Theorem 8.

Although Theorem 16 does not by itself give
any new independence result for T3 (L), some of
the known independence results for 7 (L) do fol-
low from it.

For example, consider any 3-sentence ® defin-
ing any of PIGEON, LONELY, SINK, and
SOURCE.OR.SINK. From Theorem 16 it fol-
lows that the ¥4 (L)-formula ®<% is not provable
in Ty (L). Note that these formulas have been
known to be independent of the whole Sy(L),
which is much larger than T3 (L) [CK98].

Two more combinatorial principles are shown
to be independent of T,}(L) in [CK98]. One is a
functional version of the weak pigeonhole princi-
ple, and the other is called the generalized itera-
tion principle. The independence of these state-
ments also follow from Theorem 16.

7 Concluding Remarks

We have shown that none of the type-2 prob-
lems of [BCE"98] is reducible to ITER. A
natural question is whether ITER is reducible
to any of these. In a joint work with Buresh-
Oppenheim, we have been able to show that

10



ITER is not reducible to LONELY [BOMO03],
and hence (PLS)4 ¢ (PPA)# for some oracle
A. However, it is still open whether ITER is
reducible to PIGEON.

It is also open whether analogues of Theo-
rem 7 hold with respect to the type-2 problems
of [BCE'98]. This is related to the question
whether Papadimitiou’s classes are closed under
Turing reducibility.

By a result of Buss and Krajicek [BK94],
FP* ¢ PLS” for some oracle A. However,
in the unrelativized context, PLS C FP is con-
sistent with the current knowledge of complex-
ity theory. It would be interesting to derive a
complexity-theoretic consequence of PLS C FP.

Acknowledgements. We wish to thank S.
Riis for helpful suggestions on [Mor01] that mo-
tivated the Main Theorem.
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A Proof of Theorem 6

Theorem 6 ITER and BTROOT are many-
one reducible to each other.

BTROOT <, ITER is trivial. For the other
direction, let (1", @) be an instance of ITER and
construct an instance (17,7, 81, B2) as follows.

First, consider every z € V5, as counsisting of

two components z! and z? such that z = 2! o 22
v : Vop — Vo, is defined as
2zt o 22 if a(z!) = 2!
2o (22+1) if a(z!) # 2!
y(z' 0 2%) = and 22 £ 1"

(a(zh)) ozt if a(z!) # 2

and 22 = 1"

where z? + 1 is the lexicographically next string
of 22.

Let us describe the idea behind the definition
of v. For each v € V,,, we associate a lexico-
graphically ordered sequence v o 0™,...,v o 1™.
If a(v) = v, then 7 is the identity mapping on
the sequence. Otherwise, the sequence forms a
chain in which v o ¢ is mapped to v o (i + 1), for
all 4 € V,, — {1™}. Only the ‘top element’ v o 1"
of the chain is mapped to something outside of
the chain, namely, the vth element of the chain
corresponding to a(v).

Note that, for most of z € V5, there are at
most two nodes that can be mapped by v to z:
one is z' o (22 — 1) and the other is 2201™. Thus,
B1 and By are defined as follows:

21 0 22 if 22 =0"V a(zt) = 2!
Bi(z) = { z'o (22 —1) otherwise
2201n iffy(z2oln) =2z

Ba(z) = { Lo 22 otherwise

2 0Z

Note that all v, 1, and 2 are polynomial-
time computable with oracle a.. The correctness
of the reduction follows from the following five
properties:

1. if 4(0%") = 02", then «(0") = 07
2. if y(2) < z, then a(z!) < z';

3. B1 is not increasing anywhere,
Ba2(z) > z then 22 > a(2?);

and if

4. for all z # y, y(z) = y iff either B;(y)
or f2(y) = x;

=

5.if z < 7(z) and v(z) = ~v(v(2)), then
2! < a(z!) and a(z') = a(a(zh)).

It is not hard to verify the above properties.

B Proof of Theorem 7

Theorem 7 Let Q be a search problem (type-
1 or type-2). @Q <, ITER if and only if
Q <7 ITER.

Let @ be a type-1 search problem and assume
that Q <7 ITER. We show that @ <,, ITER.
The case with type-2 () is entirely analogous.

Let M be an oracle Turing machine that solves
Q by making queries to ITER and k(n) € n®")
be the number of ITER-queries that M makes
on inputs of length n. Assume without loss
of generality that the type-1 argument of every
ITER-query is 1™("),

Let n be arbitrary and m = m(n) and
k = k(n). Consider every element v € Vi, as

12



the concatenation of k components of length m,
ie., v =v'ov?o...00", where each v’ € V,.

The first ITER-query of M depends only on
input z, but all subsequent queries depend on the
answers to the preceding queries. For 1 <1 <k,
we write [z, s1,..., ;] to denote the type-2 ar-
gument of the ith ITER-query that M asks
when, for each j < 4, the jth query is answered
by sj. We do not require that s; be actually a
solution for the jth query. Note that z, s1,...,s;
are not arguments for [z, s1,...,s;], which is a
mapping from V,,, to V.

Define a relation Sol as follows. For
i € {1,...,k} and v € Vi, Sol(i,v) holds
iff, for all j < 4, v/ is a solution for
ITER(1™,y[z,v1,...,vj—1]). Let MazSol(v)
be the maximum 7 such that Sol(i,v) holds.
Clearly, MaxSol is polynomial-time computable
in n with access to a.

For v € Vi, define B(v) to be

’UH—2 Oo.

(wlo...0v!)onfz,vt, ... 0" o ..ok,

where !l = MaxzSol(v). 8 leaves every component
of v unchanged except the ¢ + 1st component,
to which y[z,v!,...,v"] is applied. Note that
B is computable by a Turing machine in time
polynomial in n with access to a.

It is not hard to see that, if v is solution
for ITER(1¥™, 8), then Sol(i,v) holds for every
1<i<k.

Finally, the following machine M’ is a many-
one reduction from @ to ITER: given z, M’
asks an ITER query (1¥™, 3), where f3 is pre-
sented as, say, a polynomial-time Turing ma-
chine. Upon receiving a solution v, M’ simulates
M on z, using the ith component v* as a solu-
tion for the ith query of M. When M halts, M’
halts with the same output, which is a solution

for Q(z).

C Proof of Lemma 11

Lemma 11 Let L be a language not containing
< and let ® be an I-sentence over L that fails
in an infinite structure. If {T,,}, is a poly-depth
family of S-trees over L and p = {pn}n is a safe,

13

polysize family of restrictions then, for all suffi-
ciently large n, T, contains a path P such that
pn U Tp is safe for ®.

For simplicity, let L = {0,a} and ® be of the
form (3z)¢(x). More general cases are proven
analogously. Fix n sufficiently large so that
|Va| = 2™ >> Depthr(n) + |pn|. Since p, is safe
for @, there exists an infinite structure X =
(K,ak) in which @ fails and a one-one map-
ping f : V,, — K such that p,(v) = u implies
ak(f(v)) = f(u).

When p : V, — V, is a restriction, we say
that u touches v € V,, if v € dom(u) U im(u).
Let g : V, — K be a partial mapping defined as

g(v) = { f(v) if p,, touches v; and

undefined otherwise.

We incrementally extend g while traversing
T,, applying the following procedure at each
node, starting with the root of T,,. Let ‘a(v)’ be
the label of the current node, and let P denote
the path from the root of T;, to the parent node
of the current node. Let u denote the restriction
pn U mp. We maintain the following invariants:
(i) g is one-one; (ii) for all v € Vj;, g(v) is de-
fined iff p touches v; and (iii) for all u,v € V,
if u(v) = u then g(v) and g(u) are defined and
ak(g(v)) = g(u).

Two cases arise. Case (1): v € dom(g). Then
there exists ux € K such that ax(g(v)) = uk. If
ug € im(g), then take the outgoing edge labeled
with ¢ '(uk). If ux ¢ im(g), then choose an
arbitrary u € V,, that neither p,, nor wp touches,
and set g(u) := ug. Take the outgoing edge
labeled with u. Case (2): v ¢ dom(g). Then
pick an arbitrary vg € K\im(g), and let ux =
ak(vk). We set g(v) = vig. If ug ¢ im(g),
then choose an arbitrary u € V,, that neither p,
nor p touches, and set g(u) := ug. Take the
outgoing edge labeled with g~ (ux).

It is not hard to verify that the invariants hold
throughout the procedure.

When we reach a leaf of T}, by applying the
above procedure, let P denote the path that has
been traversed. The invariants imply that P is
a path of T, such that p, Unp is safe for ®.



D Bounded Arithmetic

In his 1986 thesis Buss introduces theories S}
and T¢ of Bounded Arithmetic, which have
been shown to be closely linked to complex-
ity classes in the Polynomial-time Hierarchy
[Bus86, Bus98a, Kra95]. These theories are de-
fined over the language of Bounded Arithmetic

A
LBA = {0; S;+a "y LiJa |w‘a#a S}a

where 0 is a constant, S is the successor func-
tion, |z| = [log x| denotes the binary length
of z, and z#y = 21#1'¥ is the smash function.
BASIC denotes the set of axioms that define the
meaning of the nonlogical symbols in Lpy. Fi-
nally, we write a < b as a shorthand for —(a > b).

A quantifier is said to be sharply bounded if
it is of the form (3z < |t(a)|) or (Vz < |t(a)|),
where t is a term in the language Lpa. A quan-
tifier is said to be bounded if it is of the form
(3z < t(a)) or (Vz < t(a)).

¢ is the class of formulas whose bounded
quantifiers are all existential (arbitrary sharply-
bounded quantifiers are allowed). More gener-
ally, for 7 > 1, Eé’ is the class of formulas with
1—1 alternations of bounded quantifiers, starting
with the bounded existential quantifiers. Every
¥0-formula represents an X7 relation, and con-
versely.

Let @ be a set of formulas. The ®-IND ax-
ioms are the formulas

A(0) A (V2)[A(z) D A(Sz)] D (Vz)A(z)

for all formulas A € ®. Similarly, ®-LIND ax-
ioms are the formulas

A(0) A (Va)[A(z) D A(Sz)] D (Va) A(|2])

for all A € ©.

Sé is the theory axiomatized by BASIC plus
Eg’—PI ND, and T% is the theory axiomatized by
BASIC plus Z2-ITND. These are called BA the-
ories.

BA theories are relativized in the following
way. Let o ¢ Lpa be a function symbol. X?(c)
is defined over language Lpa U {a} similarly

to £¢ with a restriction that « does not ap-
pear in the bound of a quantifier. Then rela-
tivized theory Si(a) and Ti(«) are axiomatized
by BASIC plus appropriate induction axioms
for $¢(a)-formulas. Note that the relativized BA
theories have no axiom defining the meaning of
o.

For an arbitrary language L, S4(L) and T4(L)
are obtained similarly over language Lps U L.
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