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On x(G) — a(G) > 0 gap recognition and a(G)-upper bounds
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Abstract

We show that for a graph G it is N P-hard to decide whether its independence number
(@) equals its clique partition number ¥(G) even when some minimum clique partition of
G is given. This implies that any a(G)-upper bound provably better than X(G) is N P-hard
to compute.

To establish this result we use a reduction of the Quasigroup Completion Problem (QCP,
known to be NP-complete) to the maximum independent set problem. A QCP instance is
satisfiable if and only if the independence number a(G) of the graph obtained within the
reduction is equal to the number of holes A in the QCP instance. At the same time, the
inequality X(G) < h always holds. Thus, QCP is satisfiable if and only if a(G) = X(G) =
h. Computing the Lovdsz number ¥(G) we can detect QCP unsatisfiability at least when
X(G) < h. In the other cases QCP reduces to X(G) — a(G) > 0 gap recognition, with one
minimum clique partition of G known.

Keywords: independence number, clique partition number, Lovisz number, latin square,
quasigroup completion problem.

1 Introduction

Let G(V, E) be a simple undirected graph. An independent set of vertices is a subset S C V such
that any two vertices of S are not adjacent. The mazimum independent set problem asks for an
independent set of the maximum cardinality. This cardinality «(G) is called the independence
number of the graph, and is N P-hard to compute [1]. A clique Q is a subset of V such that
any two vertices of ) are adjacent. The minimum clique partition problem asks for a smallest
by cardinality set of cliques {Q1,...,Qx} containing every vertex v € V in exactly one of the
cliques. The cardinality X(G) of this set is called the clique partition number. It is equal to the
chromatic number x(G) (minimum number of vertex colors needed to provide different colors
for any pair of adjacent vertices) of the complementary graph. The minimum clique partition
problem is also N P-hard [1]. Obviously, the inequality a(G) < x(G) holds as no two vertices of
an independent set can belong to the same clique.
There exists a polynomial-time computable function ¥(G) “sandwiched” between those two
NP-hard numbers [3, 6]:
a(G) <9(G) <X(G). (1)
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One simple definition of ¥(G) is via minimum of the largest eigenvalue of so-called feasible
matrices A = (Gij)nxn:
'19(G) = Hljn Amax(A)a (2)

s.t. a;j =1 if (4, 7) Qf E; a;; = aj;

(that is, to obtain ¥(G) we minimize the largest eigenvalue of a symmetric matrix having 1’s
on the main diagonal and in all entries corresponding to non-edges, while the other entries are
arbitrary). 9(G) is called the Lovdsz number (or 9-function) of a graph. It serves as an upper
bound for the independence number and as a lower bound for the clique partition number simul-
taneously. Besides, there are increasingly tight sequences of polynomial-time computable upper
bounds for a(G) based on “lift-and-project” method [5] and the concept of matrix copositivity
[11].

A latin square is an n X n matrix filled with integers from 1 to n so that each number occurs
exactly once in any row and in any column. One example is L = (¢;;)nxn such that

éij = ((Z +j - 2) mod n) + 1. (3)

In the Quasigroup Completion Problem (QCP, a.k.a. latin square completion) we are given
an n X n array partially filled with integers from {1...n} and it is asked whether there is a
completion for all & empty cells (holes) such that it gives a latin square. QCP is N P-complete [4].
Recently it has been intensively studied, especially from constraint programming and boolean
satisfiability viewpoints [7, 8, 9, 10, 12, 13, 14].

In this paper we show a reduction of QCP to the maximum independent set problem. The
obtained graph instances obey a(G) < h and X(G) < h constraints. At that, the original QCP
instance is satisfiable if and only if a(G) = X(G) = h. This allows us to obtain some results
restricting polynomial-time recognition of X¥(G) — a(G) > 0 gap and computation of tight upper
bounds on «(G) under P # NP assumption. In fact, unless P = NP, it means there is no
polynomial-time computable upper bound on a(G) provably better than ¢#(G) and, in turn,
¥(G) does not bound a(G) provably better than x(G).

2 Latin square 3D encoding

The concept of latin square can be also expressed via a three-dimensional array of 0-1 values.
Namely, let a 0-1 variable z;ji, 4,5,k € {1...n} denote “Cell (7,7) is filled with number %”.
The array of these variables determines a latin square if and only if

Vi, k1 Tijk = 1,
V’i, k Z?:l Tijk = 1, (4)
Vi k Y mije = 1.

These conditions correspond to maximum independent sets of a graph, whose vertices are triples
(1,7,k) and there is an edge between two of them if and only if two of their entries coincide.
This graph I' is known as H(3,n) Hamming graph, see e.g. [2].

Lemma 1 (') = n?. There is a one-to-one correspondence between mazimum independent

sets of I and n x n latin squares.



Proof. First, we prove I' does not have an independent set larger in size than n?. Indeed,
there are only n? distinct pairs of two first entries (4,5) for the vertices {(i, j, k)}. Thus, in any
vertex subset X such that |X| > n? there is at least one vertex pair ((, 4, k), (p,q,r)) such that
(7,7) = (p,q). This vertex pair must be connected by an edge. So, X is not an independent set.

Now, consider a latin square L = (£;;)nxn and the vertex subset S = {(4,4,k) : £;; = k}. It
contains n? vertices because there are n? distinct (4,7) pairs. Let (4,7,k) € S and (p,q,7) € S
be two distinct vertices. As i = p and j = ¢ would have implied k¥ = r by the definition of S,
this case is not possible. Thus, if 4 = p, then j # ¢ and k # r as L does not have two equal
numbers on the same row. Similarly, if j = ¢, then ¢ # p and k # r as L does not have two equal
numbers on the same column. Therefore, there are no triples in S with exactly two common
entries and, hence L defines a maximum independent set of I'. As (3) provides a latin square
for any n > 0, one obtains a(I') = n? as claimed.

Conversely, it is easy to see that any T' maximum independent set S = {(4,4,k)}, |S| = n?
defines a latin square L = (¢;)nxn such that £;; = k if and only if (4,5, k) € S. QED.

To reduce QCP to the maximum independent set problem we will use subgraphs of I'. Let
the QCP input be a matrix L = (€;j),xn such that £;; = k € {1...n} if the cell (i,7) is
prefilled with k, and /;; = 0 otherwise. Correspondingly, the number of holes h is the total
number of entries (i, j) such that £;; = 0. Without loss of generality we assume that this input
does not immediately violate the latin square constraints. That is, 4;; = ;4 > 0, j # q or
L;; = £,; > 0, 1 # p cases never occur. Otherwise, the QCP instance is trivially unsatisfiable.
Define a graph G(V, E) with vertices

V={(,4,k): (lij =0)&(Vp: £,; #k)&(Vq: Lig #k)}. (5)

As earlier, put an edge between distinct vertices (i, j, k) and (p, ¢, ) when they have two common
entries:

E= {((ZaJa k), (pa q, T)) : (Z :p)&(j = Q)&(k 7& ‘l") \Y (’l = p)&(j 75 q)&(k = ’r’)V

(i # p)&(j = )&(k = r)}. (6)

In other words, G(V, E) is the subgraph of I induced by non-neighbors of those vertices (i, 7, k)
for which gij =k>0.

Lemma 2 «o(G) < h. The QCP instance given by the matriz L is satisfiable if and only if
a(G) = h.

Proof. Let So = {(4,4,k) : £;j = k > 0} be the vertex subset of I' corresponding to the
partial completion given by L. Obviously, |Sg| = n%2 — h. Since the partial completion obeys the
latin square constraints, Sy is an independent set. Denote by N1 (Sy) the closed neighborhood
of Sy, that is, union of Sy with the set of I' vertices adjacent to at least one vertex from Sy.
G(V,E) is obtained by removing N*(Sp) from T'.

Assume G(V, E) has an independent set S; of size greater than h. Then Sy U S; is an
independent set of T’ having more than n? vertices, contradicting Lemma 1. Hence a(G) < h.

Let G(V, F) have a maximum independent set S; of size h. Then Sy U S; is a maximum
independent set of I", so S1 determines a correct completion of the QCP input to a latin square.
Therefore, the given QCP instance is satisfiable. Conversely, if the given input matrix L admits
a completion to a latin square, we can take the maximum independent set S of I' corresponding



to this latin square and observe that S\ Sy is an independent set of G(V, E) of size h. Therefore,
the QCP instance is satisfiable if and only if @(G) = h. QED.

Thus, we have described a reduction of QCP to the maximum independent set problem
on I' subgraphs. In the next section we present the results based on clique partition of these
subgraphs.

3 The main results

Lemma 3 Let G(V,E) be a graph obtained within the QCP reduction to the mazimum inde-
pendent set problem. Then X(G) < h.

Proof. Let L = (4;;)nxn be the QCP input matrix as described above. V may include only
such vertices (¢, j, k) for which £;; = 0. We note that all (¢, j,k) € V corresponding to one hole
¢;; = 0 comprise a clique. Hence V is a union of not more than h of such cliques. This implies
X(G) < h. QED.

Therefore, computing the Lovdsz number ¢(G) on the described graphs we can efficiently
detect QCP unsatisfiability at least when X(G) < h. We may say that the inequality 9(G) <
h — € for some fixed 0 < € < 1 designates an easily recognizable subclass of unsatisfiable QCP
instances. In the other cases, QCP is equivalent to deciding whether a(G) = ¥ (G) provided
X(G) = h and the clique partition defined in the proof of Lemma 3 is a minimum one. Thus,
we have deduced the following:

Theorem 1 For a graph G is it NP-hard to decide whether there is a gap between its indepen-
dence and clique partition numbers X(G) — a(G) > 0 provided some minimum clique partition
of G 1is given.

We note that currently we are not aware of any graph G obtained within the reduction from
an unsatisfiable QCP instance for which ¥(G) = X(G) = h.

Corollary 1 For a graph G is it N P-hard to decide whether there is a gap between its indepen-
dence and clique partition numbers X(G) — a(G) > 0.

Though it immediately follows from Theorem 1, there is also a simple direct proof of this
fact. Assume we have an oracle answering whether x(G) — a(G) > 0 for any graph G. Define
G, as the graph composed of G and ¢ additional mutually independent vertices, each of which is
connected with every vertex of G. Note that a(G;) = max(a(G),1) and X(G;) = max(x(G),1).
Submit the graphs G;, i = 0,1,... to the oracle until it says «(G;) = X(G;). There cannot be
more than X (G) of such queries. Upon termination, ¥(G;) = Xx(G) since a(G;) = Xx(G;) = X(G),
so using the oracle we can compute X(G) in polynomial time. (In fact, we have to compute
9(G;) only if the process stops with ¢ = 0, that is, when a(G) = x(G). Otherwise the terminal
value 7 gives X(G).)

Corollary 2 Unless P = NP, there is no polynomial-time computable upper bound on the
independence number a(G) provably better than the Lovdsz number 9(G) and, in turn, 9(Q)
bounds a(G) from above not provably better than the clique partition number X(G).

Indeed, any such upper bound on «(G) allows for polynomial time recognition of X(G) —
a(G) > 0 gap whenever X(G) is known. According to Theorem 1, this would imply P = NP.
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