
Improved Upper Bounds for 3-SAT

Kazuo Iwama and Suguru Tamaki

School of Informatics, Kyoto University, Kyoto 606-8501, Japan
{iwama, tamak}@kuis.kyoto-u.ac.jp

1 CNF Satisfiability

The CNF Satisfiability problem is to determine, given a CNF formula F , whether or not there
exists a satisfying assignment for F . If each clause of F contains at most k literals, then F is called
a k-CNF formula and the problem is called k-SAT. For small k’s, especially for k = 3, there have
been a lot of algorithms which run significantly faster than the trivial 2n bound. The following
list summarizes those algorithms where a constant c means that the algorithm runs in time O(cn).
Roughly speaking most algorithms are based on Davis-Putnam. [Sch99] is the first local search
algorithm which gives a guaranteed performance for general instances and [DGH+02], [HSSW02]
and [BS03] follow up this Schöning’s approach.

3-SAT 4-SAT 5-SAT 6-SAT type ref.

1.782 1.835 1.867 1.888 det. [PPZ97]
1.618 1.839 1.928 1.966 det. [MS85]
1.588 1.682 1.742 1.782 prob. [PPZ97]
1.579 - - - det. [Sch92]
1.505 - - - det. [Kul99]
1.481 1.6 1.667 1.75 det. [DGH+02]
1.362 1.476 1.569 1.637 prob. [PPSZ98]
1.334 1.5 1.6 1.667 prob. [Sch99]
1.3302 - - - prob. [HSSW02]
1.3290 - - - prob. [BS03]
1.324 1.474 - - prob. [*]

2 Our Contribution

Our new bounds are denoted by [*] in the above list, namely we prove:

Theorem 1 For any satisfiable n-variable 3-CNF (4-CNF) formula F , there exists a randomized

algorithm that finds a satisfying assignment of F in expected running time O(1.324n) (O(1.474n)).

The basic idea is to combine two existing algorithms, the one by Paturi, Pudlák, Saks and Zane
[PPSZ98] and the other by Schöning [Sch99]. It should be noted, however, that simply running
the two algorithms independently does not seem to work. Also, our approach can escape one of
the most complicated portions in the analysis of [PPSZ98]. In this paper we focus on the 3-SAT
case; the 4-SAT case is very similar and may be omitted. The same approach does not improve
the bounds for 5-SAT or more.

3 Basic Ideas

The algorithm of [PPSZ98] is called ResolveSat, which is based on a randomized Davis-Putnam
combined with bounded resolution. This algorithm has the unique feature that it achieves a quite
nice performance, O(1.3071n), for a unique 3-CNF formurla, i.e., a formula which has only one

1

Electronic Colloquium on Computational Complexity, Report No. 53 (2003)

ISSN 1433-8092

satisfying assignment. As the number m of satisfying assignments grows, the bound, denoted by
TPPSZ(m), degenerates, i.e., TPPSZ(m) is an increasing function. [PPSZ98] needed a lot of effort
to stop this degeneration by formalizing the intuition that if the formula has many satisfying
assignments, then finding one should be easy.

In contrast, the algorithm of [Sch99] is based on the standard local search for which the above
intuition is obviously true. Namely its running time TSCH(m) is the worst when m = 1 and then
decreases. Recall that TPPSZ(1) < TSCH(1) = O(1.334n). So, if we run the two algorithm in
parallel, then its running time is bounded by min{TPPSZ(m), TSCH(m)} which becomes maximum
(= TPPSZ(m0) = TSCH(m0)) at m = m0. Obviously TSCH(m0) < TSCH(1). Although TSCH(1) is not
the currently best, there is a lot of hope of breaking it since TPPSZ(1) is much better than the
current best.

Unfortunately, this approach has an obstacle. We know the value of TPPSZ(m) but we do not
know that of TSCH(m) for the following reason. To obtain TSCH(m), it appears that we need to
know the Hamming distance between the (randomly chosen) initial assignment and its closest
satisfying assignment. However, there is no obvious way of doing so, since it is quite hard to
analyze how (multi) satisfying assignments of a 3-CNF formula can distribute in the whole space
of 2n assignments.

4 Our solution

Both [PPSZ98] and [Sch99] repeat an exponential number of tries. Each try of [Sch99], denoted by
SCH, looks like:

(1)Generate a random initial assignment y.

(2)Execute a local search 3n steps starting from y.

Each try of [PPSZ98], denoted by PPSZ, has a similar structure, namely:

(1)Generate a random initial assignment y.

(2)Generate a random initial permutation π of [1, n].

(3)Execute Davis-Putnam based on y and π, which takes at most n steps.

As mentioned previously, a simple repetition of SCH and PPSZ does not work. (It probably works
but we cannot analyze.) Our solution is to use the same random assignment for each execution of
SCH and PPSZ. Namely, our algorithm is:

repeat I times

(1)Generate a random initial assignment y.

(2)Only (2) of SCH; if a satisfying assignment is found, then answer YES.

(3)Only (2) and (3) of PPSZ; if a satisfying assignment is found, then answer YES.

end Answer NO.

Now let p0 be the probability that the above single try (a single execution of (1)-(3)) finds a
satisfying assignment if the given formula is satisfiable. To obtain p0, there are two key lemmas:

Lemma 1 ([PPSZ98]) For any satisfiable 3-CNF formula F , the probability that a single try of

PPSZ finds a satisfying assignment, denoted by τ(F, z|Bz), is bounded as follows:

τ(F, z|Bz) ≥ 2−((1−γ)−(1−γ−β)∆z)n−o(n),

where γ = 2 − 2 ln 2 and β = 1.115.

We need to know the formal definition of τ(F, z|Bz) and ∆z. Let S(F) be the set of satisfying
assignments of the formula F . A set of assignments, B ⊆ {0, 1}n, is called a subcube, if B is
determined by fixing a certain number of variables. For example, {0000, 0001, 0010, 0011} is a

2

subcube obtained by fixing x1 = x2 = 0. Now it is not hard to see that the whole space, {0, 1}n,
can always be partitioned into a family {Bz | z ∈ S(F)} of disjoint subcubes so that Bz contains
z ∈ S(F) but no other z′ ∈ S(F)−{z}. Now, given the formula F and the subcube Bz, τ(F, z|Bz)
is defined as the probability (averaged over y) that a single execution of (2) and (3) of PPSZ finds
the assignment z under the condition that the initial assignment y ∈ Bz. Also ∆z is defined as

∆z =
log2(2

n/|Bz|)

n
,

namely, it is the ratio of the number of the variables fixed to determine Bz.

Lemma 2 ([Sch99]) Suppose that SCH starts from the initial assignment y and there is a sat-

isfying assignment z. Let d(y, z) be the Hamming distance between y and z. Then the probability

that a single try of SCH starting from y finds z is at least (1/2)d(y,z).

Recall that our new try uses the same y for both SCH and PPSZ. If y ∈ Bz, then apparently
∆zn variables are assigned correct values, i.e., d(y, z) ≤ (1 − ∆z)n. Also, by averaging over y:

Lemma 3 For any satisfiable 3-CNF formula F , the probability that a single try of SCH finds a

satisfying assignment, denoted by σ(F, z|Bz), is bounded as follows:

σ(F, z|Bz) ≥

(

3

4

)(1−∆)n

,

where, given F and Bz, σ(F, z|Bz) is defined as the probability that a single execution of (2) of

SCH finds z supposing that the initial assignment y ∈ Bz. (Proof is similar to [Sch99].)

Now our success probability of a single try is at least the probability of Lemmas 1 and 3, i.e.,

p0 ≥ max{τ(F, z|Bz), σ(F, z|Bz)},

which becomes minimum (= Ω(1.3238−n)) when ∆z = 0.02513. Now the standard probabilistic
argument allows us to claim that our algorithm finds a satisfying assignment with high probability
for I = O(1.324n). Recall that I is the number of repetitions.

References

[BS03] S. Baumer and R. Schuler. Improving a probabilistic 3-SAT Algorithm by Dynamic Search
and Independent Clause Pairs. ECCC Report No. 10, 2003. Also presented at SAT 2003.

[DGH+02] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan,
and U. Schöning. A deterministic 2− 2

k+1
algorithm for k-SAT based on local search. Theoretical

Computer Science, 289(1):69–83, 2002.
[HSSW02] T. Hofmeister, U. Schöning, R. Schuler and O. Watanabe. Probabilistic 3-SAT Algorithm

Further Improved. Proceedings 19th Symposium on Theoretical Aspects of Computer Science,
LNCS 2285:193–202, 2002.

[Kul99] O. Kullmann, New methods for 3-SAT decision and worst-case analysis. Theoretical Computer

Science, 223(1-2):1–72, 1999.
[MS85] B. Monien and E. Speckenmeyer. Solving satisfiability less than 2n steps. Discrete Applied

Mathematics, 10:287–295, 1985.
[PPSZ98] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time algorithm for

k-SAT. Proceedings 39th Annual Symposium on Foundations of Computer Science, 628–637,
1998.

[PPZ97] R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. Proceedings 38th Annual

Symposium on Foundations of Computer Science, 566–574, 1997. (full version is available at
http://www.math.cas.cz/ pudlak/ppsz.ps.gz)

[Sch92] I. Schiermeyer. Solving 3-Satisfiability in less than 1.579n steps. In Selected papers from

Computer Science Logic 92, LNCS 702:193–20, 1992.
[Sch99] U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. Pro-

ceedings 40th Annual Symposium on Foundations of Computer Science, 410–414, 1999.

3
ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

