
3-SAT ∈ RTIME(O(1.32793n))
Improving Randomized Local Search
by Initializing Strings of 3-Clauses

Daniel Rolf

July 2, 2003

Humboldt-Universität zu Berlin
Institut für Informatik
Unter den Linden 6

10099 Berlin, GERMANY
rolf@informatik.hu-berlin.de

Abstract

This paper establishes a randomized algorithm that finds a satis-
fying assignment for a satisfiable formula F in 3-CNF in O(1.32793n)
expected running time. The algorithms is based on the analysis of so-
called strings, which are sequences of 3-clauses where non-succeeding
clauses do not share a variable and succeeding clauses share one or
two variables. One the one hand, if there are not many independent
strings, we can solve F with a decent success probability, but on the
other hand, if there are many strings, we use them to improve the
running time of Schöning’s 3-SAT algorithm. Within a string, propa-
gation of unit clauses is used to find successors.

1 Introduction

Firstly, we make some common definitions. A literal is a variable or its
negation. An assignment a for a set of variables X maps each variable in
X to 0 or 1. A literal l is satisfied by a if X(l) = 1 if l is not negated
resp. X(l) = 0 if l is negated. A clause is a set of literals based on different
variables. A clause is satisfied by some assignment a if at least one literal
is satisfied by a. Two clauses are called independent if they do not have any
variable in common. A formula is a set of clauses. A formula is satisfied
by a if each clause is satisfied by a. A k−clause is a clause of size k and a
k−formula is a set of clauses of size at most k. The empty clause is denoted

1

Electronic Colloquium on Computational Complexity, Report No. 54 (2003)

ISSN 1433-8092




by ⊥, which is not satisfiable. Note, the empty formula is satisfiable, and a
formula containing ⊥ is not satisfiable.

The problem of deciding whether a k−formula F has a satisfying assign-
ment is well known as the k-SAT problem, which is NP-complete for k > 2.
Hence, if NP 6= P holds (which is widely assumed), there is no hope to find a
polynomial time algorithm for the k-SAT problem for k > 2. poly(n) is used
to denote some polynomial over n with poly(n) ≥ 1. We will not consider
polynomial factors in complexity calculations because we always expect an
exponential expression which outweighs all polynomials for large problems,
and because the number of clauses is O(n3), polynomials that depend on the
number of clauses can also be replaced by poly(n). This paper deals with the
3-SAT problem, so we will use “formula” to stand for a 3−formula.

A naive approach is to enumerate all possible assignments and to check
for each one whether it satisfies F. This algorithm has O (poly(n) · 2n) run-
ning time at most. The evolution of expected running time bounds, which
are somewhat below the deterministic ones, is given as [10, 11, 9, 1] with
bounds of O(1.334n), O(1.3302n), O(1.32971n), and O(1.3290n). In 1999 in
[10], Schöning established a beautiful randomized algorithm, which we will
discuss in Section 2, as we will then need it in Section 3. Using this algo-
rithm, Schöning proved that 3-SAT can be solved in O ((4/3 + ε)n) expected
running time.

In Section 3, we show how to combine a randomized solver with Schöning’s
algorithm in a general way by exploiting information extracted during the
solving process. This is based on the initial idea given in [11], which describes
an O(1.3302n) time randomized algorithm for 3-SAT. In Section 5, we apply
this to Algorithm Ψstrings and establish an O(1.32793n) expected running
time bound, which is the currently best upper bound for 3-SAT. Although
it was independently invented, the approach we use in Section 4 is similar to
the one given in [1].

2 Schöning’s Algorithm

In 1999 in [10], Schöning established the following beautiful randomized al-
gorithm.

Algorithm 1: RW (formula F, assignment a)
1 repeat for 3n steps {

2 if F (a) = 1 then return a

3 C := arbitrary clause in F that is not satisfied by a

4 Flip one literal in C uniformly at random in the assignment a

2



5 }

6 return null

To bound the running time of this algorithm, Schöning proved the fol-
lowing theorem, which bounds the success probability of this algorithm in
terms of the hamming distance d(a, a∗) of the initial assignment a to some
satisfying assignment a∗.

Theorem 2. Let F be a satisfiable formula on n variables and a∗ be a satisfy-
ing assignment for F. For each initial assignment a, the probability that algo-
rithm RW (F, a) finds a satisfying assignment is at least (1/2)d(a,a∗)/poly(n).

Immediately from Theorem 2, we have the following corollary.

Corollary 3. Let F be a satisfiable formula on n variables and a∗ be a sat-
isfying assignment for F. Let pa be a probability distribution that maps each
assignment a to some probability. The probability that algorithm RW (F, a),
where a is an assignment selected at random according to pa, finds a satis-
fying assignemnt is at least E[(1/2)d(a,a∗)]/poly(n), where the expectation is
computed with respect to pa.

Schöning used this to show that, if we draw some assignment uniformly
at random and call Algorithm RW with this assignment, we find a satisfy-
ing assignment with probability at least (3/4)n/poly(n), which immediately
yields the O (poly(n) · (4/3)n) expected running time bound.

In Section 3, we will see how we can achieve better bounds using an
optimized probability distribution pa.

3 Combining RW and a Randomized 2-SAT

Solver

A local pattern P is a tuple (FP , nP , µP , pP , λP) where FP is a formula on
nP > 0 variables, 0 < µP < 1 and (3/4)nP < λP < 1 are arbitrary reals, and
pP is a probability distribution that maps each assignment of FP to some
probability so that

λP ≥ E[(1/2)d(a,a∗)]/poly(n)

holds for all satisfying assignments a∗ of FP , where the expectation is com-
puted with respect to pP . We define

oP :=
ln µP

ln µP − ln λP + nP ln(3/4)

3



for a local pattern P . How to compute such a probability distribution is a
somewhat technical issue we deal with in Section 6. Moreover, we defer the
description of µP after the next algorithm and its lemma.

Let Ψ be a non-empty but finite set of local patterns, then Ψ is called
a local scheme. Let I be a mapping which maps each local pattern P ∈ Ψ
to a set of formulas which have to be isomorphic to FP with respect to
arbitrary variable renaming and flipping of all signs of arbitrary variables.
Furthermore, do not let each two different formulas drawn from

⋃

P∈Ψ I(P)
share variables, i.e. they are mutually independent. Then I is a called an
instance of Ψ. With nI we denote the total number of variables involved in
the instance I.

The following algorithm uses an instance of a local scheme to run Algo-
rithm RW with better initial assignments. The relevant properties are stated
in the following lemma.

Algorithm 4: IRWSolve(formula F, local scheme Ψ, instance I)
1 a := uninitialized assignment for F

2 for each P in Ψ and each formula G ∈ I(P) do {

3 In a, draw the variables involved in G at random using the assign-
ment probability distribution pP with respect to the isomorphic
mapping from FP to G

4 }

5 for each variable x of F that is not initialized yet do

6 Uniformly at random, assign 0 or 1 to x in a

7 return RW (F, a)

Lemma 5. Let F be a satisfiable formula on n variables, Ψ a local schema,
and I an instance of Ψ so that each formula in I(P) is a sub formula of F.
Then, with probability at least λ/poly(n) where λ is

∏

P∈Ψ

λP
|I(P)| · (3/4)n−nI ,

Algorithm IRWSolve(F, Ψ, I) returns a satisfying assignment for F.

Proof. Fix some satisfying assignemnt a∗. From Corollary 3, we know that
the success probability is at least E[(1/2)d(a,a∗)]/poly(n) computed with re-
spect to to the assignment probability distribution that has been used to
setup the assignment. IRWSolve initializes the assignment in blocks which
are mutually independent to each other. Because the formulas in I(P) are

4



sub formulas of F, the partial assignment of a∗ on the variables involved in
a certain sub formula also satisfies this sub formula. Thus, each block in
step 3 has its own distribution pP and expectation λP where P is the local
pattern of that block, whereas the expectation in step 5 is 1

2
20 + 1

2
2−1 = 3/4.

Because of independence, the entire expectation is computed by multiplying
the expectations of all blocks, i.e. each expectation λP occurs |I(P)| times,
and 3/4 occurs for the remaining variables.

A randomized solver (a∗, µ, I) := Ψsol(F ) is a polynomial time algorithm
that makes a polynomial number of random decisions to solve a 3-SAT for-
mula. This algorithm can be viewed as as if it would explore a top-down
binary decision tree until it hits a leaf. If a∗ is null, the leaf explored does
not yield a satisfying assignment for F, otherwise a∗ is a satisfying assign-
ment for F. A constant which has to be at most the path probability to that
leaf, i.e. the product of the probabilities of the choice made to get to the
leaf, is returned in µ. The probability of the choice made at some decision is
called the cost of that choice. Meaning that µ is the probability that this leaf
is reached in some run of Ψsol. Moreover, I is a local instance of Ψ, which
is not only a byproduct of the exploration, but will be used for IRWSolve.
However,

∏

P∈Ψ µP
|I(P)| must always be a lower bound for µ. Furthermore,

if F is satisfiable, then at least one possible leaf reachable by Ψsol(F ) must
contain a satisfying assignment for F.

The algorithmic idea is, if the decision tree is not “deep,” then a satisfying
leaf can be found quickly, yet if the decision tree is “deep,” then a “long” path
can be found quickly which will yield a good local instance for IRWSolve.
The following polynomial time algorithm is a template for some algorithm
that combines Algorithm IRWSolve and a randomized solver Ψsol(F ). This
algorithm is a generalization of the one given in [1].

Algorithm 6: Combine(formula F, local scheme Ψ)
1 I := ∅, µ := 1

2 repeat {

3 (a, µ′, I ′) := Ψsol(F )

4 if a 6= null then return a

5 if µ′ < µ then I := I ′, µ := µ′

6 a := IRWSolve(F, Ψ, I)

7 if a 6= null then return a

8 }

We will now settle an important result for this algorithm.

5



Proposition 7. Let Ψ be a local scheme and Ψsol a randomized reduction
strategy. Then Algorithm Combine(F, Ψ) finds a satisfying assignment for a
satisfiable formula F on n variables in expected running time

1/o · poly(n)

with

o := e(maxP∈Ψ oP )·ln(3/4)n.

Proof. For convenience, we write i(P) to stand for |I(P)|. Let µm denote the
minimum of the path probabilities to all leaves. Note, that this must not
necessarily be the minimum of all µ returned by Ψsol(F ) since µ returned by
Ψsol(F ) is a lower bound and thus could be smaller. We have to deal with
two cases.

Firstly, assume that µm ≥ o. At each repetition, Ψsol(F ) is called. Be-
cause F is satisfiable, there is at least one G which is also satisfiable and that
has path probability µG ≥ µm. So, in expected time at most 1/o, a formula
G is found that is a complete reduction of F.

Secondly, assume that µm ≤ o. Then there is at least one possible result
of Ψsol with µ ≤ o. So, in expected running time at most 1/o, µ ≤ o will hold.
After that, repeatedly calling IRWSolve will return a satisfying assignment
for F in expected time at most 1/λ · poly(n) with

λ :=
∏

P∈Ψ

λP
i(P) · (3/4)n−nI

due to Lemma 5. Hence, the expected running time in that case is 1/o +
1/λ · poly(n).

We claim that o ≥ max{λ, µ} for all possible instances I of Ψ. Then
µ ≤ o implies λ ≥ o. Thus in expected time at most 1/o ·poly(n), a satisfying
assignment of F is found.

Unfortunately, max{λ, µ} depends on an actual instance I. Thus, to ob-
tain what claimed, we have to establish a lower bound of max{λ, µ} which
does not care for I, i.e. we have to minimize max{λ, µ} with respect to all
possible instances I of Ψ.

Firstly, we take the logarithm of both µ and λ to obtain

lµ := ln µ =
∑

P∈Ψ

(ln µP · i(P)) and

lλ := ln λ =
∑

P∈Ψ

((ln λP − nP ln(3/4)) · i(P))

+ ln(3/4) · n.

6



Since λP > (3/4)nP , 0 < λP < 1, and 0 < µP < 1 hold for all P ∈ Ψ, we
observe that all coefficients of i(P) in lµ resp. lλ are negative resp. positive.
lµ = lλ can be considered as a plane equation. So, fix some arbitrary point
one that plane and vary i(P) away from the plane in some direction. Because
of the signs of the coefficients in lµ resp. lλ, depending on the direction, lµ
or lλ will not decrease. Thus the minimum of lµ constrained to lµ = lλ is
the global minimum of ln max{λ, µ} with respect to all possible instance I.
Finally, consider the following linear program.

Minimize lµ

with respect to i(P) ≥ 0 for all P ∈ Ψ

constrained to lµ = lλ. (1)

We know from the theory of linear programming (cf. [12]) that the minimum
will be attained on some intersection of the border planes of the solution
space. So, let R ∈ Ψ be a local pattern that maximizes oP with respect to
P ∈ Ψ, and set i(P) to 0 for all P ∈ Ψ−R. Moreover, we solve constraint (1)
and set

i(R) :=
ln(3/4)

ln µR − ln λR + nR ln(3/4)
n = oR

ln(3/4) · n

ln µR

.

Observe that this is a feasible basic solution to the linear program, i.e. one
that satisfies all constraints. We will rewrite the objective function lµ using
the null (non-basic) variables (by replacing i(R)) and verify that all coeffi-
cients of non-basic variables are at least 0. Furthermore, we know that lµ is a
minimal solution if all non-basic variables in this rewritten form have coeffi-
cients at least 0. So, with dP we denote the coefficient of i(P) in the rewritten
form and with cµ

P resp. cλ
P in the original form of lµ resp. lλ. Furthermore,

we obtain for all P ∈ Ψ −R

dP = cµ
P − cµ

R

cλ
P − cµ

P

cλ
R − cµ

R

.

To show that dP ≥ 0 holds, we have to prove

cµ
P ≥ cµ

R

cλ
P − cµ

P

cλ
R − cµ

R

.

So, we insert the actual values to obtain equivalently

ln µP ≥ ln µR
ln λP − ln µP − nP ln(3/4)

ln λR − ln µR − nR ln(3/4)

7



Observe that the numerator of the fraction is greater than 0 because of the
definition of local patterns and the precondition for λP . Thus we can divide
by the numerator and by −1 to equivalently obtain

ln µP

ln µP − ln λP + nP ln 3
4

≤
ln µR

ln µR − ln λR + nR ln 3
4

, i.e.

oP ≤ oR,

which is true due to the maximality of oR.
Finally, insert the minimal solution in lµ for a lower bound on ln min{λ, µ},

and obtain what claimed.

A special randomized solver called Ψstrings will be introduced in Section 5.
But before, we have to establish a little framework and prove some interesting
properties of it in Section 4.

4 Unit Clause Propagation

Let F be a formula and l a literal. Let F |l be obtained by removing all
clauses in F that contain l (they are satisfied by l = 1) and removing l from
all clauses that contain l (they are not satisfied by l = 1, but lose one literal.
Furthermore we call l a fixed literal of F |l, and we say F |l is obtained by fixing
l to 1 in F. Let L = {l1, .., ls} be a finite set of literals. Then F |L is defined by
fixing all literals of L in F. A satisfying assignment for some formula G that
has been obtained by fixing some literals in a formula F can be extended to
satisfy F using the fixed literals of G. Observe, that we may fix all literals
in F and obtain a formula G. Then G is either empty or contains ⊥. In the
first case, the extended assignment of G satisfies F. In the second case, the
extended assignment does not satisfy F. Trying to fix a literal of F that is
already fixed to a different value will result in a contradiction, so to signal
this, we automatically add ⊥ to F if this happens.

A unit clause is a clause that consists of exactly one literal. A formula that
does not contain a unit clause is called unit-free. The following proposition
shapes the kernel of our devised algorithms. But before, we define χ(F,G)
to be the set of pairs (C,D) ∈ F × G with D ⊂ C and |D| = 2.

Proposition 8. Let F be a formula and L a set of literals so that F |L is a
unit-free formula. Then at least one of the following holds.

(1) If F is satisfiable, then F |L is satisfiable.

(2) F |L contains ⊥ and is thus not satisfiable.

8



(3) χ(F, F |L) is not empty.

Proof. If F is not satisfiable, then obviously (1) holds. So, let F be satisfiable.
Assume that neither (3) nor (2) holds. We will show that (1) holds.

Let a∗ be a satisfying assignment of F. Assume that there is a clause
D ∈ F |L that is not satisfied by a∗. Firstly, observe that, if D ∈ F held, D
would be satisfied by a∗. However, D ∈ F |L holds, and thus there is a clause
C ∈ F with D ⊂ C, i.e. D is obtained by removing at least one literal l with
l ∈ L from some clause C ∈ F. Firstly, D cannot be ⊥ since (2) is assumed
to be wrong, but secondly, D cannot be a unit clause since F |L is unit-free,
and finally third, D cannot be a 3-clause since then C would have to be a
4-clause. Thus D has to be a 2-clause, yet this violates our assumption, so
such a clause D ∈ F |L cannot exist, and hence, we conclude that F |L is also
satisfied by a∗, which completes the proof.

We can apply this proposition to any case where a unit-free formula G is
obtained from a formula F by fixing arbitrary literals in any order. Propo-
sition 8 requires a unit-free formula F |L, and we now discuss how to handle
unit clauses. Observe that a unit clause forces its literal to a fixed value. So,
it is quite easy to remove all unit clauses from some formula F , and that is
done by the following trivial polynomial time algorithm.

Algorithm 9: Simplify(formula F )
1 while there exists a unit clause l ∈ F do

2 F := F |l

3 return F

As stated before, a unit clause allows only one value for its literal, so we
see that fixing does not alter satisfiability. We will use this behavior called
unit clause propagation in Section 5 for reduction purposes. However, this
also leads to the following.

Observation 10. Let F be a formula. Set G := Simplify(F ). Then G is
unit-free, and there exists a set of literals L with G = F |L.

So, we can conclude the following.

Lemma 11. Let F be a unit-free formula, L a set of literals, and G :=
Simplify(F |L). Set L′ to all literals fixed in G that are not fixed in F. Then
F and L′ satisfy Proposition 8.

Furthermore, we present a simple yet powerful lemma.

9



Lemma 12. Let F be a formula and ab a 2-clause in F. Set G := Simplify(F |a).
Let (C,D) be an arbitrary pair in χ(F,G). If b ∈ D, then F is equivalent to
H := F − C + D.

Proof. Let d be the literal of C that is missing in D. Observe that d can even
be a. Let a∗ be a satisfying assignment of F. If a∗ assigns 1 to a, then 0 must
be assigned to d. If a∗ assigns 0 to a, then 1 must be assigned to b. In both
cases a∗ satisfies D, i.e. a∗ satisfies H. Now, let a∗ be a satisfying assignment
of G. Assume that D is satisfied, but not C. That means that 0 is assigned
to d. This implies that a∗ has to assign 0 to a and thus has to assign 1 to b.
But, C contains b and is thus satisfied by a∗, yielding a contradiction.

A formula is clean if Lemma 12 is not applicable to any 2-clause in F. To
clean a formula means to apply Lemma 12 as long as possible. For example,
{ab, abc} or {ab, bc, acd} cannot occur in a clean formula.

The following lemma shows that cleaning preserves the properties of
Proposition 8.

Lemma 13. Let F be a clean formula and L a set of literals. Set G :=
Simplify(F |L) and let H be the cleaned version of G. Then the following

holds.

(1) G contains ⊥ if and only if H contains ⊥.

(2) If χ(F,G) is empty, then χ(F,H) is empty.

(3) If χ(F,G) is not empty, then χ(F,H) is not empty.

Proof. (1) This is obvious since cleaning does not remove ⊥.
(2) Since χ(F,G) is empty, there is no 2-clause in G that has not been

already a 2-clause in F. Thus Lemma 12 is not applicable because F is already
clean and new 3-clauses cannot emerge, showing G = H.

(3) Cleaning does not decrease the number of 2-clauses of a formula. So,
all 2-clauses in G are also 2-clauses in H. That means χ(F,G) ⊆ χ(F,H).

This yields the following extension of Simplify.

Algorithm 14: SimplifyClean(formula F )
1 F := Simplify(F )

2 Clean F

3 return F

We will exploit these facts in our randomized solver presented in Section 5.

10



5 Randomized Solver Using Strings

Let (C1, .., Cl) be a sequence of 3-clauses so that successive clauses share no
more than two, but at least one variable, and that non-successive clauses
are independent. Then we call (C1, .., Cl) a string of length l. The type of a
string S, denoted with type(S), is built as follows. type(S) is a sequence of the
length of S minus 1. Each item in type(S) describes how the corresponding
succeeding clauses in S are connected. p means both clauses share exactly one
variable and that with the same sign. n means both clauses share exactly one
variable and that with different signs. nn means both clauses share exactly
two variables and both with different signs. These types are sufficient for our
intentions. For example, the string (abc, bcd, def, fgh) has type (nn, n, p).
The types of strings are interesting because all strings of the same type are
isomorphic with respect to arbitrary variable renaming and flipping of all
signs of arbitrary variables. So, one example string of some type can be used
as FP in a local pattern P . We want to establish a randomized solver which
which will output a couple of string of types given in Ψ as byproduct. These
will serve as a local instance passed to IRWSolve. At first, we will present
the algorithm, and then will look which strings could arise and what local
patterns to create for them in Ψ. This is a bit messy and mostly deferred to
Section 6.

We will present an algorithm to find strings which allow a bound of
O(1.32793n) for the expected running time for 3-SAT. The algorithm re-
quests a set of string types T which has the following meaning. A string
may grow very long, but we will see that we only have to deal with strings
of length at most 5. So, in T , we provide a set of forced stop types, i.e.
if a string has type in T it is not continued anymore. Beside these, there
are cases where the algorithms internally decide to stop the string, these are
called the internal stop types.

We split the whole algorithm in a number of tiny algorithms to make
the analysis easier. Despite the fact that the algorithms call each other,
they do not branch, i.e. will finish after polynomial time. We will make a
lot of decisions and say that a decision propagates satisfiability if at least
one choice yields a new formula that is satisfiable if the old formula was
satisfiable. Observe that all algorithms propagate satisfiability. So, if the
input formula is satisfiable, there is a positive probability to find a satisfying
assignment, i.e. there exists a satisfying leaf. Because we also want to return
the path probability if a leaf is reached (cf. Section 3), we internally have to
keep track of the cost.

All algorithms make us of some global variables: F is the current formula,
I containing the current local instance, S contains the current sequence of

11



clauses, and T contains a set of stop string types.
Moreover, we have to ensure that all clause sequences added to I are

really strings and all strings added to I are independent. This is guaranteed
by finding successors in S using an advancing strategy as follows. We have
some S and all literals but at most the ones in the last clause are already
fixed. In the next step we will always fix the last clause to get the next clause.
So, step by step, we advance the string and are sure that only succeeding
clauses can share variables. For example, if we have (abc, def, fgh) as current
clause sequence, then only g and h are not fixed, i.e. any existing 3-clause
can share at most f or g with the string. Finally, we will only choose 3-
clauses to continue with, which ensures independence to all strings already
found because a 3-clause is always independent to all literals already fixed,
otherwise it would not be a 3-clause.

The following algorithm is the is the algorithm we are going to use in
Combine. It does some initialization and essentially calls Start. Finally, it
returns a satisfying assignment if found, the path probability to the leaf
explored, and the local instance containing all strings found.

Algorithm 15: Ψstrings(formula F )
1 For all P ∈ Ψ set I(P) := ∅

2 S := ()

3 Start

4 µ := product of the probabilities of all choices

5 if ⊥ ∈ F then a := null

6 else a := current assignment

7 return (a, µ, I)

The next algorithm splits the the current clause sequence S mutually
independent strings and clears S. This can be done by popping clauses from
S until the next clause would be independent to the clauses already popped.
Then the clauses popped form a string because only variables succeeding in S
can share variables. This is repeated while S is not empty. Finally, if there is
a literal left, then control is passed to Next2 with the 2 possible assignments
for this literal. Obviously, deciding among c and c propagates satisfiability,
which is a precondition of Next2 (see below).

Algorithm 16: Start()
1 if S 6= () then {

2 Split S in mutually independent strings S

12



3 for each S ′ ∈ S do

4 I(type(S ′)) := I(type(S ′)) + S ′

5 S := ()

6 }

7 if ∃ literal c not fixed in F then goto Next2({c}, {c})

The following algorithm checks whether the last string in S is a forced
stop type. We will use this always after we extended S, and if we encounter
a forced stop type, we will select a satisfying assignment for G and will pass
control to Start which will flush S. In that case we have cost 1/g where g is
the number of satisfying assignments for G. Furthermore, G has to contain
all variables in S that are not fixed yet, so that after fixing G to some
assignment, all 3-clauses are independent to S. On the other hand, this also
implies that at most the last string in S is a forced stop type. All other
strings are internal stop types.

Algorithm 17: CheckStop(sub-formula G)
1 if S 6= () then {

2 S ′ := last string of S

3 if type(S ′) ∈ T then {

4 Uniformly at random, select L from the set satisfying assign-
ments for G

5 F := F |L
6 return true

7 }

8 }

9 return false

The following algorithm takes two sets of literals. It relies on that deciding
among L1 and L2 is satisfiability propagating. At first, it checks if one of
the 2 sets can be excluded using Lemma 11 and Lemma 13. This is done
by checking for ⊥ firstly, which would imply that the other assignment must
preserve satisfiability and thus can be fixed, and after that, by checking for
an empty χ, which would imply that this assignment preserves satisfiability
and thus can be fixed. If a check is true, then the clause sequence is stopped
with no cost. If all checks failed, then we can safely select among L1 and
L2 and will find a 3-clause that has shortened to a 2-clause. In this cases
the string is extended with cost 1/2. This way, the new clause will extend

13



S using an n−, p−, or independent connection. If S ends with a stop type
now, then we set D with cost 1/3.

Algorithm 18: Next2(set of literals L1, L2 )
1 Clean F

2 F1 := SimplifyClean(F |L1
)

3 F2 := SimplifyClean(F |L2
)

4 if ⊥ ∈ F1 then F := F2, goto Start

5 if ⊥ ∈ F2 then F := F1, goto Start

6 if χ(F, F1) = ∅ then F := F1, goto Start

7 if χ(F, F2) = ∅ then F := F2, goto Start

8 select at random {

9 w.p. 1/2: {

10 (C,D) := arbitrary pair in χ(F, F1)
11 F := F1

12 S := S � C
13 if CheckStop(D) then goto Start
14 goto Next3(D)

15 }

16 w.p. 1/2: same as previous case, but use F2 instead of F1

17 }

The following algorithm takes a 2-clause ab that has to be in F. Then a
number of checks similar to those in Next2 are done. If a check is true, then
the clause sequence is stopped with no cost or control is passed to Next2
because one assignment could be excluded. Moreover, we check whether
there is a clause abc with some appropriate c found in F. If that is true, we
pass control to Next5, which deals with this special case. If all checks failed,
then both Fa and Fb contain at least one 2-clause that was a 3-clause in F. So,
we select among the 3 satisfying assignments for ab, use clause C to extend
S with cost 1/3 and pass control to Next3. We show that C neither contains
a, b, nor ab. This way C extends S with an n− or independent connection.
If ab is in C then we would have passed control to Next5. Without loss of
generality, assume that we fixed a to 1 and have a 3-clause (C,D) ∈ χ(F, Fa).
This clause cannot contain a since then it would have been removed and not
shortened. Assume that b is contained in C. On the one hand, if b was the
literal removed from C to obtain D, then b would be fixed to 0 and the
check at step 11 would pass control to Next2. On the other hand, if b was

14



in D, then we would have a case where Lemma 12 is applicable meaning
that Fa would not be clean. But this cannot be true since Fb was cleaned by
SimplifyClean.

Algorithm 19: Next3(2-clause ab )
1 Clean F

2 Fa := SimplifyClean(F |a)

3 Fb := SimplifyClean(F |b)

4 Fab := SimplifyClean(F |a,b)

5 Fab := SimplifyClean(F |a,b)

6 Fba := SimplifyClean(F |b,a)

7 if ⊥ ∈ Fa then F := Fba, goto Start

8 if χ(F, Fa) = ∅ then goto Next2({a, b}, {a, b})

9 if ⊥ ∈ Fb then F := Fab, goto Start

10 if χ(F, Fb) = ∅ then goto Next2({b, a}, {b, a})

11 if ⊥ ∈ Fab or b is fixed to 0 in Fa or a is fixed to 0 in Fb then goto
Next2({a, b}, {a, b})

12 if χ(F, Fab) = ∅ then F := Fab, goto Start

13 if ⊥ ∈ Fab then goto Next2({a, b}, {a, b})

14 if χ(F, Fab) = ∅ then F := Fab, goto Start

15 if ⊥ ∈ Fba then goto Next2({b, a}, {b, a})

16 if χ(F, Fba) = ∅ then F := Fba, goto Start

17 if ∃c : abc ∈ F then goto Next5(ab, abc)

18 select at random {

19 w.p. 1/3: {

20 (C,D) := arbitrary pair in χ(F, Fa)
21 F := Fab

22 S := S � C
23 if CheckStop(D) then goto Start
24 goto Next3(D)

25 }

26 w.p. 1/3: same as previous cause, but swap a and b

27 w.p. 1/3: {

28 (C,D) := arbitrary pair in χ(F, Fa)

15



29 F := Fab

30 S := S � C
31 if CheckStop(D) then goto Start
32 goto Next3(D)

33 }

34 }

The following algorithm takes a 2-clause ab and a 3-clause abc that have to
be in F. It uses some probability constants p0, p1, q0, and q1 with 2p0+p1 = 1
and q0 + q1 = 1, which are subject to optimization and given in Section 6.
At first, we extend S by abc resulting a nn−connection. If S ends with a
stop type now, then we set ab, abc with cost 1/5 because there are only
5 satisfying assignments involving a, b, c. In the outer select statement we
select one of the 3 satisfying assignments for ab, so this decision is satisfiability
propagating. Selecting a = 1 and b = 1 implies c = 1, so we can fix c to 1
and pass control to Start if we choose a = 1 and b = 1 as being done in the
first case. This case has cost p1. In the second (analogous third case), we
choose a = 1 and b = 0. Then we check whether choosing c = 1 may result
in ⊥ or empty χ. If this is true, we can immediately fix c and pass control
to Start having cost p0. If the checks fail, we choose setting c = 0 or setting
c = 1. So, this decision also propagates satisfiability. If we set c = 0, we have
cost p0q0 and pass control to Start. Otherwise, we extend S by C having cost
p0q1 and resulting an n− or independent connection, and we pass control to
Next3. This is a n− or independent connection because shortened clauses
may contain c, but not c. So, if we pass control to Start, we have cost at
least min{p1, p0q0}, and if we hand over to Next3, we have cost p0q1.

Algorithm 20: Next5(2-clause ab, 3-clause abc)
1 S := S � abc

2 if CheckStop(ab, abc) then goto Start

3 Clean F

4 select at random {

5 w.p. p1 : F := F |a,b,c, goto Start

6 w.p. p0 : {

7 F := F |a,b

8 Clean F
9 Fc := SimplifyClean(F |c)
10 Fc := SimplifyClean(F |c)
11 if ⊥ ∈ Fc then F := Fc, goto Start

16



12 if χ(F, Fc) = ∅ then F := Fc, goto Start
13 select at random {
14 w.p. q0 : F := Fc, goto Start
15 w.p. q1 : {
16 (C,D) = arbitrary pair in χ(F, Fc)
17 F := Fc

18 S := S � C
19 goto Next3(D)
20 }
21 }

22 }

23 w.p. p0 : same as previous case, but swap a and b

24 }

We use Ψstrings as Ψred and call Combine(F, Ψ) to obtain our final al-
gorithnm. In Section 6, we explain how Ψ and T are set up. These are
rather technical issues and omitted here. Yet, they show that the worst case
is determined by the strings of type () (i.e. single clauses), and in that case
λ() = 3/7 and µ() = 1/3 hold. By inserting these values in the equation in
Proposition 7, we obtain the following theorem, which is the main result of
this paper.

Theorem 21. Let F be a satisfiable formula. Algorithm Combine(F, Ψ)
will find a satisfying assignment of F in expected running time at most
O(1.32793n).

Interestingly, the bound does not decrease if we try to seek for longer
strings because the case () may always arise and thus will always be the
limit, at least using our approach.

6 Local Scheme for Strings

We present a local schema Ψ containing a couple of string type thats are used
to establish an O(1.32793n) bound on the expected running time of our 3-
SAT algorithm. We have split the strings into two different tables. The ones
in the first table are those we put in T , i.e. the forced stop types. The other
ones in the second table are those which occur if the algorithms themselves
decide to stop a string, i.e. the internal stop stypes. Both together form
Ψ. Observe that mirroring a string yields a different type, e.g. (nn, n, n, p)
compared to (p, n, n, nn), but yields the same FP , so in that case that we

17



have a type and its mirror, we take the one with the lower µ−value into Ψ
so that this µ serves as a lower bound for both types.

The last column in the tables shows e−oP ·ln(3/4). Due to Proposition 7,
the largest of these determines the constant c for the expected running time
poly(n) · cn of our algorithm. Instead of writing formulas for FP we write
only the types, but each string of such a type can stand for FP .

µP can be calculated as follows. Assume we have a clause sequence S that
is being flushed in Start. Then S has been found and caused a number of
costs that we will split in individual costs for each string. The first choice al-
ways has cost 1/2 in Next2 called by Start. This will be postponed to the last
string in S. At first, we consider all but the last string in S. A n−connection
not preceded by a nn−connection has cost at least 1/3. A p−connection has
cost 1/2. A nn, n−connection has cost p0q1. The independent connection to
the next string has cost at least 1/3. So, the cost of a non-ending string of S is
at least p0q1 times the number of nn, n−connections multiplied by 1/3 times
the number of n−connections not preceded by a nn−connection multiplied
by 1/2 times the number of p−connections multiplied by 1/3 for the indepen-
dent connection to the next string. Observe, these strings are internal stop
types. Now, we consider the last string. At first, assume that the last string
is also an internal stop type. If it ends with an nn−connection, this has cost
min{p1, p0q0}. In other cases, the last clause was fixed with no cost. All other
connections are similar to the previous non-ending string case. But, we have
to include the initial 1/2. So, the cost of an ending, internal stop type string of
S is at least 1/2 multiplied by p0q1 times the number of nn, n−connections
multiplied by 1/3 times the number of n−connections not preceded by a
nn−connection multiplied by 1/2 times the number of p−connections mul-
tiplied by min{p1, p0q0} if the string ends with an nn−connection. Finally,
assume that the last string is a forced stop type. The the analysis is similar
to the previous case, but we have to use cost 1/5 for the last connection if
it is an nn−connection (for fixing the ab, abc), and we have to additionally
multiply cost 1/3 if the last connection is not an nn−connection (for fixing
ab).

Some cases may yield similar string patterns, in that cases we use the
lowest µP .

To obtain the values for λP and the appropriate assignment probability
distributions pP , maximize, with respect to all possible assignment distribu-
tions pP ,

min
{

E
[

(1/2)d(a,a∗

)
]

|a∗ satisfies FP

}

, (2)

where the expectation is computed with respect to pP . Using the maximizing
pP , assign to λP the minimum of E

[

(1/2)d(a,a∗

)
]

with respect to all possible

18



satisfying assignments for FP , then λP is a lower bound whatever the real
assignment of FP is.

To calculate λP we have to find a probability distribution that maximizes
equation (2). So, we have a classical max-min optimization problem and
could form a linear program and solve it using the Simplex-Method con-
straining the pP to be a probability distribution, i.e. summing to one and
being at least 0. Although, we will use a different approach (cf. [9]). Instead
of computing max-min we compute max-equal, i.e. find a probability dis-
tribution so that E

[

(1/2)d(a,a∗

)
]

is equal for all a∗ satisfying FP and thus
maximal. This can be done using any linear equation solver. But, beware
this may yield an invalid pP , i.e. with some negative values, so we have to
check the pP computed for a valid probability space. Fortunately, this is true
with our string types.

We have built the stop types in a way that a string is stopped as soon
as it is yielding a bound that is below the worst case bound, as mentioned,
already determined by type (). The probability constants p. and q., which
affect the path probabilities of strings involving nn−connections, are set to
the following values.

p1 = 61083/250000

p0 = 188917/500000

q1 = 44167/125000

q0 = 80833/125000

We set them this way to get those strings below the worst case bound.

6.1 Forced Stop Types

FP nP µP λP c ≤
(p, p) 7 1/24 243/1739 1.32790
(p, n, p) 9 1/72 2187/27334 1.32773
(p, n, n, p) 11 1/216 729/15904 1.32760
(p, n, n, n) 11 1/324 729/15848 1.32777
(p, n, n, nn) 10 1/180 1215/19894 1.32745
(p, n, nn) 8 1/60 405/3799 1.32755
(p, nn) 6 1/20 27/145 1.32765
(n, p, p) 9 1/72 729/9110 1.32772
(n, p, n, p) 11 1/216 2187/47732 1.32763
(n, p, n, n) 11 1/324 729/15856 1.32780

19



(n, p, n, nn) 10 1/180 405/6634 1.32748
(n, p, nn) 8 1/60 45/422 1.32753
(n, n, p, p) 11 1/216 2187/47704 1.32759
(n, n, p, n) 11 1/324 729/15856 1.32780
(n, n, p, nn) 10 1/180 1215/19888 1.32743
(n, n, n, p) 11 1/324 729/15848 1.32777
(n, n, n, n) 11 1/486 243/5264 1.32791
(n, n, n, nn) 10 1/270 405/6608 1.32764
(n, n, nn) 8 1/90 135/1262 1.32778
(n, nn, n, p) 10 8343897139

2250000000000
1215/19904 1.32790

(n, nn, n, n, p) 12 8343897139
6750000000000

10935/312692 1.32776
(n, nn, n, n, n) 12 8343897139

10125000000000
3645/103864 1.32789

(n, nn, n, n, nn) 11 8343897139
5625000000000

405/8692 1.32765
(n, nn, n, nn) 9 8343897139

1875000000000
675/8299 1.32777

(nn, n, p, p) 10 8343897139
1500000000000

405/6653 1.32768
(nn, n, p, n) 10 8343897139

2250000000000
405/6634 1.32789

(nn, n, p, nn) 9 8343897139
1250000000000

675/8321 1.32752
(nn, n, n, p) 10 8343897139

2250000000000
1215/19894 1.32787

(nn, n, n, n, p) 12 8343897139
6750000000000

3645/104168 1.32773
(nn, n, n, n, n) 12 8343897139

10125000000000
243/6920 1.32786

(n, nn, n, n, nn) 11 8343897139
5625000000000

405/8692 1.32765
(n, nn, n, nn) 9 8343897139

1875000000000
675/8299 1.32777

(nn, n, p, p) 10 8343897139
1500000000000

405/6653 1.32768
(nn, n, p, n) 10 8343897139

2250000000000
405/6634 1.32789

(nn, n, p, nn) 9 8343897139
1250000000000

675/8321 1.32752
(nn, n, n, p) 10 8343897139

2250000000000
1215/19894 1.32787

(nn, n, n, n, p) 12 8343897139
6750000000000

3645/104168 1.32773
(nn, n, n, n, n) 12 8343897139

10125000000000
243/6920 1.32786

(nn, n, n, n, nn) 11 8343897139
5625000000000

225/4826 1.32762
(nn, n, n, nn) 9 8343897139

1875000000000
45/553 1.32774

(nn, n, nn) 7 8343897139
625000000000

25/176 1.32790

6.2 Internal Stop Types

FP nP µP λP c ≤
() 3 1/3 3/7 1.32793

20



(p) 5 1/6 81/331 1.32688
(p, n) 7 1/18 81/578 1.32700
(p, n, n) 9 1/54 729/9080 1.32702
(n) 5 1/9 27/110 1.32755
(n, p) 7 1/18 81/578 1.32700
(n, p, n) 9 1/54 243/3028 1.32706
(n, n) 7 1/27 9/64 1.32738
(n, n, p) 9 1/54 729/9080 1.32702
(n, n, n) 9 1/81 243/3016 1.32729
(n, nn, n, n) 10 8343897139

1687500000000
135/2204 1.32737

(n, nn, n) 8 8343897139
562500000000

405/3788 1.32745
(n, nn) 6 15270727861

375000000000
45/241 1.32769

(nn, n, p) 8 8343897139
375000000000

405/3799 1.32712
(nn, n, n, n) 10 8343897139

1687500000000
405/6608 1.32733

(nn, n, n) 8 8343897139
562500000000

135/1262 1.32741
(nn, n) 6 8343897139

187500000000
45/241 1.32753

(nn) 4 15270727861
125000000000

15/46 1.32793

Acknowledgements

I want to thank Deryk Osthus for many valuable remarks.

References

[1] S. Baumer and R. Schuler. Improving a probabilistic 3-sat algorithmy
by dynamic search and independent clause pairs. ECCC Report, 2003.

[2] R. Beigel and D. Eppstein. 3-coloring in time O(1.3446n): a no-MIS
algorithm. In 36th IEEE Symposium on Foundations of Computer Sci-
ence, pages 444–452, 1995.

[3] D. Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and
constraint satisfaction. In Symposium on Discrete Algorithms, pages
329–337, 2001.

[4] E. A. Hirsch and A. Kojevnikov. UnitWalk: A new SAT solver that uses
local search guided by unit clause elimination. PDMI preprint 9/2001,
Steklov Institute of Mathematics at St.Petersburg, 2001.

21



[5] I. Kersten and O. Riedlin. Algebra. Georg-August-Universität
Göttingen, http://www.uni-math.gwdg.de/skripten/Algebraskript/
algebra.pdf, 2001.

[6] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-
time algorithm for k-SAT. pages 628–637.

[7] R. Paturi, P. Pudlak, and F. Zane. Satisfiability coding lemma. Chicago
Journal of Theoretical Computer Science, 1999.

[8] R. Rodosek. A new approach on solving 3-satisfiability. In AISMC:
International Conference on Artificial Intelligence and Symbolic Math-
ematical Computing, 1996.

[9] D. Rolf. 3-SAT ∈ RTIME(1.32971n). Diploma thesis, Department Of
Computer Science, Humboldt University Berlin, Germany, Jan. 2003.
http://www.informatik.hu-berlin.de/∼rolf/papers/rolf033sat.html.

[10] U. Schöning. A probabilistic algorithm for k-SAT and constraint satis-
faction problems. In Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science, New York, NY, USA, pages 410–
414. IEEE Press, 1999.

[11] R. Schuler, U. Schöning, and O. Watanabe. A probabilistic 3-sat algo-
rithm further improved. In STACS 2002, 19th Annual Symposium on
Theoretical Aspects of Computer Science, Proceedings, volume 2285 of
Lecture Notes in Computer Science, pages 192–202. Springer, 2002.

[12] R. J. Vanderbei. Linear Programming: Foundations and Extensions.
Kluwer Academic Publishers, Boston, 1996.

22

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092



