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Abstract

We describe a general method how to construct from a propositional
proof system P a possibly much stronger proof system iP. The system
1P operates with exponentially long P-proofs described “implicitly” by
polynomial size circuits.

As an example we prove that proof system iEF, implicit EF', cor-
responds to bounded arithmetic theory V' and hence, in particular,
polynomially simulates the quantified propositional calculus G and the
I1%-consequences of S3 proved with one use of exponentiation. Further-
more, the soundness of i EF is not provable in S1. An iteration of the
construction yields a proof system corresponding to T + Exp and, in
principle, to much stronger theories.

Extended Frege system EF is considered to be a strong propositional
proof system. The qualification strong means that EF smoothly formalizes
many arguments in elementary combinatorics or algebra and it seems very
hard to come up with tautologies that would be hard to prove in EF (i.e.
that they would require long proofs). Another strong proof system is the
quantified propositional calculus G which operates with quantified proposi-
tional formulas. We can move up in this hierarchy allowing a proof system
to quantify also over boolean functions, functionals, etc. But besides simu-
lating definitions from higher order arithmetic or set theory we do not really
have any other way of directly constructing strong proof systems.
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The qualification directly is important here as we do have a general cor-
respondence between proof systems and first-order theories (obeying certain
tame technical conditions satisfied by all “usual” theories, including set the-
ory) and, in particular, we can define a strong proof system from a strong
theory. This correspondence is very useful and it is the deepest informa-
tion applying to all proof systems (as oppose to statements about particular
ones) that we have. In particular, the statements above that EF and G are
strong could be substantiated by identifying theories corresponding to them
(S3 and U], respectively). (The proof system extending G by allowing the
quantification over functions, functionals, etc. corresponds to 175 + Ezp or
to a bit stronger theory, depending on the exact definition).

However, our aim here is to investigate a possibility of a direct, essentially
combinatorial, description of strong proof systems that would, in particular,
not refer to first order theories. This appears of interest in connections with
several problems (e.g. a combinatorial characterization of hard tautologies
and of consistency statements in particular, the existence of an optimal proof
system, constructions of models of strong bounded arithmetic theories, etc.).

As it is with all known non-trivial proof complexity upper bounds or
polynomial simulations, they are much simpler to prove using bounded arith-
metic than using direct proof manipulations. Thus although we want to
bypass the reference to theories in definitions of strong proof systems, we
shall use the correspondence between proof systems and theories in proofs.
However, the concept of implicit EF (and P in general) is defined without
any reference to arithmetic.

Let us now describe a part of this correspondence that we will need
(and fix the notation in the process). A VII’-sentence Vi, (z), with ¢ (z)
having the form Vy(|y| < |z|M), 4o(z,y) for some p-time predicate 1o,
determines an infinite sequence of propositional formulas ||1)(z)||" as follows.
The formula has n atoms pi,...,p, for bits of an z, some n°M) atoms
qi,---,qm for bits of a y in 1), and further it has n°() atoms r1,...,7s
for bits of values of subcircuits of a fixed (canonically constructed) circuit
computing from p, g the truth value of v¥y(z,y). The formula ||¢(z)||”
expresses in a DNF form that if 7 are correctly computed by the circuit
from the inputs p, g then the output of the computation is 1. A number b of
length n is identified with a binary string (by, ..., b,) of length n, and these
bits will make ||1(z)||™(p;/bi) a tautology iff 1(b) is true.

The correspondence between a theory T and a proof system P implies,
in particular, the following:



e If T proves Vz;1(z) then tautologies ||1(x)||" (b) have polynomial size
P-proofs.

e T proves the soundness of P and for any another proof system Q, if T’
proves also the soundness of () then P polynomially simulates Q.

We shall not repeat other definitions and basic facts from proof com-
plexity or bounded arithmetic. The reader can find those in [5] (or in the
other original references listed in the bibliography).

1 TImplicit EF

Let EF be a fixed Extended Frege system in the DeMorgan language. The
set of all DeMorgan tautologies is denoted TAUT. We shall assume that EF
proofs are written in an enhanced form where each step caries an information
about the rule and the previous steps that were used in its derivation. This
is an inessential change that does not affect the proof complexity of EF
(more than by a logarithmic factor).

The symbol <}, denotes the lexicographic ordering on any fixed {0, 1}k,
If we identify i = (i1,...,%x) € {0,1}* with the number 2 jui 20 27 then <jor
corresponds to the usual ordering on {0, ...,2% —1}.

Definition 1.1 Let 7 € TAUT. An implicit EF proof of T is a pair (o, 3)
such that:

1. B is a many-output boolean circuit in variables i1,...,1%.

2. The sequence B(0),...,B(i),...,B(1) is an EF-proof of T (the i’s are
ordered by <j,,.)-

The EF-proof described by (8 is denoted [3*.

3. o is an EF-proof of a (canonical) tautology Correctg(zi,...,zx) ex-
pressing that

“the formula in the step B(x1,...,zx) has been derived
in B* according to the EF-rules specified in B(x1,...,zx)"

The proof system so defined is denoted iEF'.



Note that we do not need to require that a also contains an EF-proof
of the fact that the last step of 8* is 7 (plus the auxiliary information); that
is expressed by a true boolean sentence written using a circuit and so it
always has a polynomial size proof in EF'. Further note that as we consider
enhanced EF-proofs the formula Correctg(z) is indeed expressible without
existential quantification over steps in 8*, and hence if 8* is a correct EF-
proof the formula is a tautology (when considering only polynomial size
proofs such a quantification posses no problem as the quantifiers range only
over a polynomial size set).

Let us start with the obvious.

Lemma 1.2 iEF is a proof system in the sense of Cook-Reckhow [3], and
it polynomially simulates E'F.

Proof :

It is clear that ¢E'F is sound and complete. The third condition in the
Cook-Reckhow’s definition is that the relation “(«, ) is an iEF -proof of
7” is decidable in polynomial time. That follows as it is sufficient to check
that the formula in the last step of 8* is 7, and that “« is an EF-proof of
Correctg” which is a polynomial time relation obviously.

A p-simulation of EF by ¢EF proceeds as follows. Let m be an EF-proof
of 7 of size m. Let /3 be a circuit in log(m) inputs that simply copies 7 into
B*, i.e. f* = . Clearly such g exists of size O(|7]).

For a we take an EF-proof of ||Prf(u,v)||™(w,7), where Prf(u,v) is
the polynomial time relation “u is an EF-proof of v”. This has an EF-proof
of size O(|n|?) that is constructed by a polynomial time algorithm from
and 7. This completes the p-simulation.

q.e.d.

Another p-simulation of EF by ¢+EF follows from Lemma, 3.2.

2 The strength of :EF
Now we calibrate the strength of iEF.

Theorem 2.1 iEF corresponds to bounded arithmetic theory Vi . In par-
ticular,

1. V3! proves the soundness of iEF.



2. Whenever a VIIS-sentence Vxip(z) is provable in Vo then the sequence
of tautologies || (x)||™ has polynomial size iEF-proofs.

3. If V! proves the soundness of a proof system Q then iEF polynomially
simulates Q).

Moreover, an iEF-proof of ||t(z)||" can be constructed by a polynomial-time
algorithm (from a string of length n) and the construction can be formalized
in S3, and the polynomial simulation in item 3. can be also defined in Si.

Proof :

We start by proving the soundness of i EF in V,'. Work in a model of V3!
where we have an iEF-proof (o, ) (coded by a number, say b) of formula
7. Let a be a number coding a truth assignment to atoms of 7.

By induction on 7 € {0,1}* (ordered by <), ) construct a set A; coding
a truth assignment to extension atoms in 8* introduced in steps <j,% such
that all their extension axioms are true when atoms of 7 are evaluated by
a. The induction step is trivial and the statement that such a set exists is
E}’b, hence the E}’b-induction implies that there is such a set A := A7 for
i=1.

Using A, a and b as parameters prove by IT%-induction on 7 that all for-
mulas in 8* are true under the assignment given by a and A. The induction
step uses the proof a: EF is sound in any model of V3 and hence each step
of 8* is indeed derived correctly via EF-rules, which are all sound. Hence
T is satisfied by (any) assignment a. This completes the proof of the first
part.

Assume that V,! proves a VII%-sentence Vz,4(z) which is of the form
Yypo(z,y) with y implicitly bounded in 1y. We shall describe polynomial
size 1EF-proofs of tautologies ||1(z)||", n > 1. In fact, the proof m, of
||(z)||™ will be constructed by a polynomial time algorithm from a string
of length n, and the construction itself could be formalized in S3.

By [4] the hypothesis implies (is equivalent to, in fact) that there is a
term t(z) of the language of S such that S3 proves:

() t(z,y) < 2| — to(z,y) -

Furthermore, we may assume that () has an S5 proof in which all formulas
are strict 39; let Q2 be one such proof. The algorithm that will construct
will use Q as an advice (but it is common for all n and so the algorithm is
uniform).



A general sequent in 2 looks like
A(z,y,2z,u),... — FB(z,y,2,v),...

To simplify the notation we show just one formula per cedent and we do not
show explicit bounds in the existential quantifiers.

The proof A* will contain n atoms p for bits of z, n(") atoms ¢ for bits
of y and t(2") < 2’ atoms r for bits of z. Proof € is translated into B*
step by step. If we were constructing a simulation in EF, a sequent of the
form as above would be translated into a sequent of the form

||A(z,y, z,u)||(p, ¢,y u),... — ||B(z,y,2,v)||(p,q,7,0),...

where we denote new atoms assigned to bits of v and v (< an®M of them)
also u and v for simplicity of the notation. Here u are new atoms that
are not extension atoms while v are extension atoms depending possibly
on all p,q,r,u. But as there are exponentially many atoms r already, such
a sequent would be exponentially long and could not be produced by a
polynomial size circuit.

We overcome this difficulty by systematically introducing new extension
atoms for all (sub)formulas that appear in the translation. Hence the sequent
gets translated into a sequent of the form

WAy--. —> WB,...

where w4 and wp are extension atoms depending on p,q,7,u and p,q,7,v
(and hence u too) respectively. Having the sequent from 2 this introduction
of the extension atoms is exponential in size but very canonical and can be
constructed by a polynomial size circuit with an access to 2. By this phrase
we mean that the circuit has size n°(!) and produces the extension atoms
and axioms bit by bit.

The whole proof §* is parcelled into peaces parametrized by sequents in
Q. Each peace has its own canonical assignment of extension atoms and is
constructed by a suitable polynomial size circuit. It remains to show how
these peaces are put together to form an EF-proof. That is, how are the
inferences in ) simulated.

We shall consider only the most complicated case, the simulation of a
¢-LIND inference

JuA(t,u) — FvA(t+1,v)
Ju'A(0,u') — ' A(Jlwl|,v")




(we leave out the free parameters and the quantifier bounds). Assume that
the proof * contains a derivation of a sequent of the from wy — wp
representing

1Al w) — [[Al(s,0)

where t are new atoms (not extension atoms), s are extension atoms intro-
duced so that they define the number represented by ¢ plus 1, and v are
extension atoms depending on (p, ¢, and) ¢, u.

Take |w| = gno® copies of this derivation (canonically listed) in disjoint
atoms t,s,u,v, say tt, s’ ul,v* for 0 < i < 2n° " Piece them together by
postulating that t© = 0 (represents 0), s* = ¢'*! and v' = w**!. This is
correct as atoms t' and u’ were not extension atoms and so we can add
conditions on them. This concatenation of the |w| subproofs is again quite
canonical and it constitutes a proof of a sequent of the form wq — wp
corresponding to:

1A]1(0,u%) — [|All(w], v .

To finish the description of 5* we need only to derive the (translation of the)
antecedent #(z,y) < |z| of (*). This is done by stipulating that all atoms r
are equal to 1 and using a canonical EF-proof of the valid inequality saying
that the term t(z,y) produces from z and y of the lengths n and n©™)
respectively at most %M bt

The EF-proof a of the correctness of the description of 8* by S is easy
and uses the parcellization of £* given by the steps in €Q; it is essentially an
EF-proof of the fact that Q is indeed a proof in S3 4+ 1 — Exp of (x). This
concludes the proof of the second part of the theorem.

The third property of the correspondence between iE and Vi stated in
the theorem is actually a consequence of the first two (this is a standard
argument, cf. [5]). The formalization of the constructions in items 2. and 3.
is routine (note that the formalization starts with Q, not with any V4'-proof).
This concludes the proof of Theorem 2.1.

q.e.d.

Now we note some corollaries of the theorem. The first one just restates
explicitly what has been used in the proof of the theorem (the last sen-
tence in the corollary follows by a general well-known argument using the
correspondence between a theory and a proof system).



Corollary 2.2 Let Vzi)(z) be a VII%-sentence that is provable in
S +1— Exp, i.e so that S proves

lyl = t(z) = () .

Then the sequence of tautologies ||y (z)||™, n > 1, admits polynomial size
1EF-proofs.

Moreover, the set of all VII?-sentences provable in S3 + 1 — Exp is az-
iomatized over Sy by the canonical (see [5]) VII-sentence expressing the
soundness of iEF.

By [4] S3 + 1 — Ezp is not VII}-conservative over S3. Hence Corollary
2.2 immediately yields

Corollary 2.3 The soundness of iEF is not provable in Sj.

Note that it is not known if Si proves the soundness of the quantified
propositional calculus G.

Theorem 2.1 yields an information about the relative strength of G and
iEF.

Corollary 2.4 iEF p-simulates G.

Proof :

By [8] the proof system G corresponds to theory U; and, in particular,
the two properties of the correspondence singled out in the introduction are
valid for U} and G. This implies (as U is weaker than V3') that V3 proves
the soundness of G, and hence i EF polynomially simulates G' by the third
property stated in Theorem 2.1.

q.e.d.

Proving Corollary 2.4 directly would be rather challenging to a formal-
ization. It is not very difficult to prove directly (via a witnessing style
argument) that ¢E'F polynomially simulates G;. But the simulation of full
G, say via Herbrand theorem, would lead to very convoluted formulas (sim-
ilarly as formulas in Herbrand theorem get complex with the growth of the
quantifier complexity).



3 Iteration of the construction

In defining P from a general proof system P (say a non-deterministic ac-
ceptor of TAUT or a polynomial time function whose range is TAUT') the
problem is not what a should be (a P-proof) but what should g be. In
particular, I have not found a natural definition of parcelling a P-proof into
steps that could be then computed by § (a minimal requirement for such
a definition is that it specializes to the usual notion of a step if applied to
ordinary proof calculi). However, there is a way out. Any proof system P
can be p-simulated by a proof system @ that extends EF by a polynomial
time subset of TAUT as new axioms (cf.[6], [5]). We shall denote this form
of Q by @ D EF. In fact, many usual proof systems p-simulating EF are
actually p-equivalent to some ) D EF. Hence without loosing to much in
generality we can restrict to such proof systems in the next definition.

For Q D EF it is straightforward to say what 3 should be: 3(i) is either
a step correctly derived from earlier steps (whose indices are encoded in
B(i) too) by an EF-rule, or it is a Q-axiom (which is a p-time property).
Let Cor?"ectg2 be the tautology expressing this, constructed analogously to
Correctg from Definition 1.1 (in particular, Correctg = CorrectgF )-

Definition 3.1 Let P,Q D EF be proof systems. Define new proof system
[P, Q] as follows. A [P,Q]-proof of T € TAUT is a pair (o, ) such that:

1. B is a many-output boolean circuit in variables i1,...,1%.

2. The sequence B(0),...,B(5),--.,B(1) is a Q-proof of 7. The Q-proof
described by (B is denoted B*.

3. « is a P-proof of the tautology Correctg(ml, ey Tg)-

Further put iP := [P, P).

We note few simple properties of the bracket operation. The symbols
<p and =, denote the p-simulation and the p-equivalence, respectively.

Lemma 3.2 For P D EF, P <, [P,EF).

Proof :
Let 7(z1,...,2,) be a tautology. Circuit S will describe the following
trivial, exponential derivation of 7. For each a € {0,1}", 5* has a segment



where it computes the truth value of 7(a): this is simply the derivation
of subformulas which are true, respectively of the negations of subformulas
which are false.

Then it contains 2"~! segments, one for each (ag,...,a,) € {0,1}"*
where it derives 7(z1,a2,...,a,) from 7(0,aq,...,a,) and 7(1,aq9,...,ay,)
(using z1 =0V 21 = 1).

Then there are 2" 2 segments where all 7(x1, 2, as, .- ., a,) are derived
from 7(x1,0,a3,...,a,) and 7(z1,1,as,...,a,), etc. The proof ends with a
derivation of 7 from 7(z1,...,2,-1,0) and 7(z1,...,Tp-1,1).

The correctness of the steps in §* is trivial to prove assuming one knows
that all 7(a)’s have been derived, i.e. are true. But if P proves 7, it proves
that “all 7(a) are true”, and hence can prove the formula Correctg. So
[P, EF) p-simulates P.

q.e.d.

Note that the lemma holds (by the same proof) even with [P, F] or even
[P, R] in place of [P, EF] (F a Frege system and R resolution).

The next lemma shows that it makes no sense to iterate the construction
in the place of a.

Lemma 3.3 For all P D EF, iP =, [iP, P].

Proof :

The p-simulation of ¢P by [iP, P] follows from Lemma 3.2 (as P D EF).
For the opposite p-simulation consider the case P = EF.

In the proof of the soundness of iEF in V3 we only used the fact that o
is an EF-proof in order to know that what « proves is actually true in the
model. That is, we only used that the soundness of EF is provable in V.
Hence « could have been an iEF-proof as well. This shows (by part 3 of
Theorem 2.1) that iEF >, [{EF, EF).

The case of general P D EF' is proved analogously, using a theory cor-
responding to iP in place of Vi}.

q.e.d.

So if we want to iterate the i-construction we should apply it to the
second argument in the bracket operation. For the rest of the section we
restrict ourselves to P = EF.
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Definition 3.4 Put i1 EF :=+EF, and for k > 1 define
iyt 1EF = [EF,i,EF)]

One can show analogously to Theorem 2.1 (or by applying Theorem 2.1
to its own formalization in S3) that iy EF corresponds to S3 + k — Exp
of [4] (or see [5]) and hence to the ¥;-induction in a k-th order bounded
arithmetic. Analogously to Corollary 2.3, S5 + k — Ezp does not prove the
soundness of 1,11 EF. We shall not get into details as we are unable to say
anything else sensible about the proof systems besides the next theorem.

Theorem 3.5 The soundness of each iz EF, k > 1, is provable in To+ Exp.

On the other hand, if a VII-sentence Va1)(z) is provable in To+Exp then
there is a k > 1 such that all tautologies || (z)||", n > 1, have polynomial
size i, EF -proofs.

In the correspondence between To + Ezp and i EF’s the constant & is
fixed in proofs of any particular sequence ||¢(z)||", n > 1. But we can also
allow k& unbounded (besides the implicit bound given by the size of the whole
proof). In this way we get a proof system that is (presumably) stronger.
This is analogous to the situation for G: proofs in T translate into G-
proofs, fixed k£ > 1, while G (unbounded quantifier complexity) corresponds
to a stronger theory UJ. A formal definition of this very strong proof system
might be as follows.

Definition 3.6 Proof system i EF is defined as follows. An i, EF -proof
of T € TAUT is a triple (o, B,w) such that (a, B) is an i), EF-proof of T.

It can be shown that T + Exp does not prove the soundness of i EF.
This is an evidence that .. EF may be indeed stronger than any i E'F'.

It is easy to see that i(ioEF) =, i EF and hence the i-operation does
not necessarily always produce a stronger proof system. But we can now
start iterating the i, -operation and proceed forward. We could have also
defined the iy -operation not as |w|-iteration of the i-operation but as w-
iteration (or even 2%-iteration, etc.) enumerated by a polynomial size circuit
(or by a circuit produced by a polynomial size circuit, etc.).

In fact, there does now seem to be the canonical way how to iterate the
basic ¢-operation. This appears analogous to a situation in proof theory of
higher order arithmetic and set theory where there is also no the canonical
way how to iterate consistency statements or even how to represent ordinals.
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We conclude by two remarks about the bracket operation for systems
below EF. For example, UJ can be described (its bounded first-order con-
sequences, precisely) as RY + 1 — Ezp, where R} is a subtheory of S cor-
responding to Frege systems F. But we cannot conclude analogously to
Theorem 2.1 that iF or [EF, F|] correspond to U;. This is because F has no
extension atoms and cannot abbreviate a priori exponentially long formulas
translating formulas in the starting arithmetical proof, no matter that it is
equally canonical as in the case of V3.

The absence of extension atoms in F' has another corollary: For any
P >, G it holds that [P, F| =, P. This can be seen as follows. As P >, G4
we can take for a theory Tp corresponding to P (it is unique only up to
VII%-consequences) a theory containing Ty. Now assume that (a,) is an
[P, F)-proof of 7 in a model of Tp. The P-proof « is sound in the model
and hence B* is indeed an F-proof of 7. As there are no other atoms in
B* than the atoms of 7, a truth assignment falsifying 7 would transfer *
into a sequence of 0’s and 1’s which has no first occurrence of 0. That
contradicts the minimization principle for A%-formulas valid in the model
(by T4). Hence Tp proves the soundness of [P, F] and we are done (the
opposite simulation [P, F| >, P follows by the remark after the proof of
Lemma 3.2. In fact, P =, [P, F| =, [P, R].

Acknowledgements: I thank P. Pudlik for discussions over the draft of
this paper.

References

[1] S. R. Buss, Bounded Arithmetic. Naples, (1986), Bibliopolis.

[2] S. A. CoOK, Feasibly constructive proofs and the propositional calcu-

lus, in: Proc. 7 Annual ACM Symp.on Theory of Computing, (1975),
pp- 83-97. ACM Press.

[3] S. A. Cook and A. R. RECKHOW, The relative efficiency of proposi-
tional proof systems, J. Symbolic Logic, 44(1), (1979), pp.36-50.

[4] J. KrAJICEK, Exponentiation and Second Order Bounded Arithmetic,
Annals of Pure and Applied Logic, 48(3), (1990), pp. 261-276.

[6] J. KRAJICEK, Bounded arithmetic, propositional logic, and complezity
theory, Encyclopedia of Mathematics and Its Applications, Vol. 60,
Cambridge University Press, (1995).

12



[6] J. KrRAJICEK, P. PUDLAK, Propositional Proof Systems, the Consis-
tency of First Order Theories and the Complexity of Computations, J.
Symbolic Logic, 54(3), (1989), pp. 1063-1079.

[7] J. KrAJICEK, P. PUDLAK, Quantified propositional calculi and frag-
ments of bounded arithmetic, Zeitschrift f. Mathematische Logik u.
Grundlagen d. Mathematik, 36, (1990), pp. 29-46.

[8] J. KrRAJICEK, G. TAKEUTI, On Bounded ¥ 1-Polynomial Induction, in:
Feasible Mathematics, eds. S.R. Buss and P.J. Scott, (1990), Birkhauser,
pp- 259-280.

Mailing address:
Mathematical Institute
Academy of Sciences
Zitna 25, Prague 1, CZ - 115 67
The Czech Republic
krajicek@math.cas.cz

13

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’




