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Approximability of Hypergraph
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Abstract

We prove that the problems of minimum bisection on k-uniform
hypergraphs are almost exactly as hard to approximate, up to the fac-
tor k/3, as the problem of minimum bisection on graphs. On a positive
side, our argument gives also the first approximation algorithms for
the problem of minimum bisection on k-uniform hypergraphs, for ev-
ery integer k, of a comparable guarantee as for the minimum bisection
on graphs. Moreover, we prove that the problems of minimum bisec-
tion on wvery sparse 2-reqular k-uniform hypergraphs are precisely as
hard to approximate as the general minimum bisection problem on
arbitrary graphs for every integer £ > 3.

1 Introduction

Hypergraph minimum partitioning and bisection problems and some heuris-
tics for these problems became to have important applications in several
problems like task scheduling, machine vision, design of integrated circuits,
and databases, see cf. [KK99] and the references thereof. Despite their im-
portance, and the fact that they are all NP-hard in exact setting [L.73], very
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little 1s known about their approximation complexity status, and in partic-
ular, about an existence of acceptable approximation algorithms within the
provable approximation ratios.

The problem of approximation hardness of minimum bisection on uniform
hypergraphs was raised in [H02] (see also [HKO03]), in a context of some
generalizations of the problem of minimum bisection on graphs. The research
in [HO2] and [HK03] was also motivated by our current inability of proving
lower approximation bounds for that latter problem, see also [K02].

In this paper we tie for the first time the approximation complexity of
minimum bisection of k-uniform hypergraphs, for every fixed integer k, to
the approximation complexity of minimum bisection on graphs, showing the
existence of approximation algorithms for the later problem of a comparable
quality with approximation algorithms for the minimum graph bisection.

2 Preliminaries

Given a k-uniform hypergraph G = (V| E) with a set of hyperedges E C
{hlh C V and |h| = k}. For a set U C V we denote by Cut(U) = {h|h €
E, hnU # @ and h \ U # @} the set of hyperedges which are cut by U;
we also define cut(U) = |Cut(U)|, and if |U| = |V|/2 we say that U is a
bisection of G.

The minimum bisection problem on a k-uniform hypergraph G is the
problem of constructing a bisection B of G so as to minimize the number
of hyperedges which are cut by B, i.e. the number cut(B). For a given
integer k£, we will denote this problem by MIN-Hk-BISECTION. The min-
imum bisection problem on graphs (MIN-H2-BISECTION) will be denoted
by MIN-BISECTION. We will also consider a weighted version of MIN-
BISECTION, where the edges of the input graph have arbitrary nonnegative
weights w : £ — R4 and we minimize the sum of the weights of edges
w(Cut(B)) which are cut by B.

It is well known that for every k, MIN-Hk-BISECTION problem is NP-
hard in exact setting (cf. [L73]). The approximation status of MIN-Hk-
BISECTION remained open for all £ > 3. For the case of & = 2, although
no approximation hardness results are currently known (cf. [BKO01], [K02]),
an O(log®n) approximation algorithm was recently designed by Feige and
Krauthgamer [FK00]. Recently, Feige [F02] also proved a relative approxi-
mation lower bound of 4/3 for that problem under a hypothesis that 3SAT



is hard to approximate on average. Special cases of minimum bisection on
dense as well as metric graphs are known to have PTASs [AKK95|, [FKK02].

This paper is concerned with the approximation hardness of MIN-HE-
BISECTION problems relative to the MIN-BISECTION problem.

For a given two functions r : N — R4, ¢t : N — N, we call an ap-
prozimalion algorithm A for an optimization problem P, an (r(n),t(n))-
approximation algorithm for P, if A approximates P to within an approxi-
mation ratio r(n) and A runs in O ({(n)) time for n an instance size.

3 Main Result

We are going to prove now our main result connecting closely approximation

complexity of MIN-HA-BISECTION to that of MIN-BISECTION for every
integer k > 3.

Theorem 1 [fthere exists an (r(n),t(n))-approxrimation algorithm for MIN-
BISECTION, then there exists a (%r(nQ logn), t(n*log n))-approximation al-
gorithm for MIN-Hk-BISECTION for any k > 3.

Proof. Given a hypergraph GG = (V, E) we construct a complete weighted
graph G' = (V, E') where the weight of an edge ¢ = {u, v} is the number of
hyperedges in which e is contained. Consider a possible bisection B C V. A
hyperedge of G that is cut by B has k nodes and thus it contributes between
k —1 and |k/2][k/2] to the value of the cut B in G'. Therefore, if we find
a bisection B in G’ that has cut value r times larger than the optimum,
this B has cut value in (G that is at most WT‘ times larger then the
optimum. If & is odd then W = ]‘:zli < %, and if k£ is even, then
T

We will reduce now the problem of MIN-BISECTION in a weighted graph
with n nodes to a similar problem in an unweighted graph with O(n?log n)
nodes using a similar approach to that of Feige and Krauthgamer [FKO00].
In the latter paper the reduction produces about n® nodes, so we describe a

more efficient reduction in some detail.

Feige and Krauthgammer [FK00] have constructed an approximation al-
gorithm for MIN-BISECTION without edge weights with approximation ra-
tio (clogn)? for some constant ¢. Our reduction will use this algorithm as a
subroutine.



We first obtain a very rough estimate of the value of minimum bisection.
To do it, we start with an empty edge set E’ and then we insert to it edges
of F in an order of non-increasing weights. After each edge insertion we can
check if the connected components of (V, E’) can be grouped into two sets,
each with n/2 nodes. Suppose that it becomes impossible after an insertion
of an edge with weight a.. Then each bisection is cut by an edge with a weight
« or more, and there exists a bisection that is cut only by edges of cost « or
less. Thus the minimum cut of a bisection, say 3%, satisfies o < 8* < an®/4.
Therefore we can try 2log n different values for 5 and one of them will satisfy
B < p* < 2B. Our later analysis will be based on the assumption that we
deal with a “correct” 3.

We rescale the weights so that # = n?. Next, we round down all the
weights. The latter does not increase the cost of the optimum solution, and
if an algorithm finds a solution with cost 7, the true cost of this solution is
below v+ n?/4. Therefore the rounding can increase the approximation ratio
by a factor less than 5/4. (We can rescale weights so that 8 = kn? for some
k > 1; this would make this factor very close to 1.) Now we may assume
that n? < 8*2n?.

Let g = 9cnlog n.

We translate our instance of weighted MIN-BISECTION with n nodes
and integer weights into an instance of unweighted MIN-BISECTION with
gn nodes. We replace each node u with a clique of g nodes, say G,. The
edges between (7, and &, depend on the weight of the edge {u,v}, w(u,v).
If w(u,v) > 2n* we say that the edge {u,v} is heavy, in this case the
connection between G, and G, will be a full bipartite graph. Otherwise, for
some integers a < 2n*/g,b < g we will have w(u,v) = ag — b. We create
a disjoint matchings between G, and G, and from the last matching we
remove b edges.

Suppose that A C V' is an optimum bisection of the original instance, i.e.
|A| = n/2 and cut(A) = $*. One can see that Cut(A) does not contain any
heavy edges, as the cost of a heave edge is larger then 2n%. We can transform
Ainto G4 = UuEA
are equal, i.e. cut(G4) = cut(A).

Gy, 1t 1s easy to see that the values of corresponding cuts

Conversely, suppose that we have a bisection B for the new instance
that is found by an approximation algorithm. Because we assume that this
algorithm is at least as good as the one of Feige and Krauthgammer [FK00],



we know that it produces a bisection with cut not larger then

(clog(gn))’ x 2rn* < (because g < n”)

(3clogn)® x 2n* = 692.

Assuming that cut(B) < 2¢* we will find a solution A for the original instance
such that cut(A) < cut(B). It suffices to show that we can modify B to a
bisection B’ such cut(B’) < cut(B) and for every group G, either G, C B’
or G, C EI, where B is the complement of B’.

To define B’, for every u € V we compare the sizes of |G, N B| and
|G N B|, the larger of these sets is called a majority of G,,, and the smaller
its minorily. Every element of a minority is connected to at least g/2 edges
that go to the respective majority, and thus belong to Cut(B). Because
cut(B) < %gQ, all minorities have together less than %g nodes. We define B’
as the union of GG,,’s such that the majority of GG, is in B. We can show that
B’ is a bisection and cut(B’') < cut(B).

B’ is a bisection because ng/2 — g < |B'| < ng/2+ 3g and |B'| is a
multiple of g, thus |B’| = ng/2.

It remains to show that cut(B’) < cut(B).

Because the joint size of the minorities in B is equal to the joint size of
minorities in the complement of B, no minority is larger than %g.

For some GG, C B’ let k be the number of complete matchings that connect
G/, with groups that are contained in B. In such a matching, edges from
majority to majority belong to Cut(B), so the matching contains at least gg
edges of Cut(B). Therefore ggk < %_(]2, and thus k£ < %g.

We change B into B’ by moving minority nodes to the respective ma-
jorities. Consider moving of the minority node =z € G, C B’; z is incident
to at least gg edges with the other end in the majority of GG, these edges
belong to Cut(B) — Cut(B'). For every edge in Cut(B’) that is incident to
x we have a matching that connect G, with a group contained in E/, there
are at most 2g + n/2 < }g such matchings. Consequently, moving z to the
majority decreased the cut.

O

Theorem 1, combined with an approximation algorithm of [FKO00] for
minimum bisection on graphs entails



Theorem 2 For every integer k, there exists a polynomial time approxima-
tion algorithm for MIN-Hk-BISECTION with approzimation ratio k-c(log n)?

for ¢ a constant independent on k.

Theorem 1 entails also the following MIN-BISECTION approximation
hardness result relative to the hardness of MIN-Hk-BISECTION problems.

Theorem 3 [f MIN-Hk-BISECTION, for arbitrary k > 3, is hard to approx-
imate lo within an approzimalion ratio r(n) > 5; then MIN-BISECTION is
hard to approzimate to within a ratio 3r(y/n)/k.

4 Approximation Hardness of Very Sparse
Instances of MIN-HAi-BISECTION

We study now approximation hardness of very sparse and regular instances
of MIN-HE-BISECTION for &£ > 3. We describe a translation from MIN-
BISECTION problem to 2-MIN-HE-BISECTION, which we define as a re-
striction of MIN-HA-BISECTION problem to the 2-regular instances in which
each vertex belongs to exactly two hyperedges. We refer to [BK01] for the
corresponding hardness results for MIN-BISECTION as well as the construc-

tions used in the proofs.

Theorem 4 Assume k > 3. If there exists an (r(n),t(n))-approzimation
algorithm for 2-MIN-Hk-BISECTION, then there exists an (r(n®),t(n*))-
approximation algorithm for MIN-BISECTION.

Proof. Hypergraphs that are instances of 2-MIN-Hk-BISECTION are in
some sense dual to k-regular graphs. Thus we can rephrase the 2-MIN-Hk-
BISECTION as an equivalent problem for such k-regular graphs:

E-DUAL-BISECTION: Given a k-regular graph with 4n nodes
and 2kn edges, color kn edges white and kn edges black, while
minimizing the number of mized nodes i.e. nodes adjacent to
edges of different colors.



We present here only the proof for £k = 3, since it is easy to generalize
it for arbitrary &. We will reduce graph minimum bisection to 3-DUAL-
BISECTION, so that a graph G with 2n nodes is translated into a 3-regular
graph G’ with 4n(3n — 1)2n nodes.

We construct an instance G’ of 3-DUAL BISECTION as follows. For
each node u of G we create a subset of edges E, of G': it has 2n — 1 rows
numbered 1 to 2n — 1, each row consists of 6n nodes and 6n edges connected
into a ring, and nodes of row ¢ alternate between those connected to row 1 —1
and those connected to row 7 + 1.

In rows 1 and 2n — 1 we have 6n nodes not connected to other rows,
instead they are incident to 6n new distinct edges of F, that are viewed as
as 2n triples. To each neighbor of u, say v, we assign endpoints of one of
these triples and we call them a,b?,c’. For a triple that is not assigned to
a neighbor we create a new node connected to the elements of this triple.

If {u,v} is an edge of (&, then we create a pair of nodes Py, = {d, e}, we
connect d to ay, b and ¢! and e to a¥, b, and ¢} as shown in Fig. refgadget].

One can see that F, contains 2n — 1 rings of 6n edges each, 3n edges
between each pair of rings and 6n edges that are grouped in triples, so |E,| =
(2rn—1)x6n+(2n—2)x3n+6n = 6n(3n—1) edges, thus we created 4n(3n—1)
nodes per node in G.

Now, given an edge coloring of G', we normalize it so that each F, is
colored with one color. Such a coloring is equivalent to a bisection of nodes
in G; an edge {u,v} belongs to this bisection if and only if both elements
of P,y are mixed; consequently the ratio between the number of mixed
nodes in a normalized coloring and the number of edges in the cut of the
equivalent bisection is always 2. To show that finding a good coloring leads
to an equally good bisection we need to show that we can normalize without
increasing the number of mixed nodes.

Consider F, such that at least n rows consist of edges of two colors. Such
rows contain at least two mixed nodes, so the rings of F, contain at least
2n mixed nodes. We move such F, into the reserve; once we are done with
re-coloring of other edge sets we set the color of F, in such a way as to create
the bisection; as a result it may happen that nodes of up to n pairs of the
form Py, .y will become mixed (only n because we know that v belongs to
the other part in the bisection). This is amortized by 2n or more nodes from
the rows of F, that ceased to be mixed.

Similarly, suppose that F, contains one purely white ring and one purely
black ring. There exist 3n node disjoint paths connecting these two rings,
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Figure 1: Edge sets E, and E, and the translation of edge {u,v}. The edge
sets are completely depicted if n = 3 and we identify the leftmost edges
(without left endpoints) with the rightmost edges (without right endpoints).

and each path must contain a mixed node. Again, we can move F, into the
reserve.

It remains to consider F, such that at least n rows are completely white
(black). Then we convert all edges of F, to white (black).

The nodes of F, can be partitioned into 3n disjoint connected paths,
called columns that cover all the nodes in the rings, such paths are shown in
gray in Fig. refgadgetl. A column has exactly 2 nodes in each ring, and thus
4dn — 3 edges. We extend this path with edges adjacent to the first and the
last node and which belong to the triples). We insert edges that connect two
column to the column on the left, now each column has 6n — 2 edges. We



remove from each column edges that belong to purely white rings, this splits
a column into connected components which we call sub-columns. Because a
sub-column may have edges in at most n — 1 rings, it may contain at most
3(n — 1) + 1 = 3n — 2 edges. We consider sub-columns in which at least one
edge was black before the conversion to white. In each such sub-column at
least one node ceases to be mixed after the conversion.

If a sub-column is not adjacent to a pair of the form Py, ,, we eliminate
one mixed node after converting at most 3n — 2 edges.

Now consider a pair of the form Py, ,}; in F, it is adjacent to three sub-
columns. If in each of these sub-columns we converted an edge, we eliminate
at least 3 mixed nodes, but now the nodes of Py, ,, may become mixed, so
the net gain is the elimination of at least 1 mixed node, while we converted at
most 3(3n—2) edges. Suppose that we have converted an edge in two of these
three columns. Then one of these columns was pure white, and the node of
Pryy adjacent to this column was mixed or pure white. Thus we eliminate 2
mixed nodes in two columns and we get at most 1 new mixed node in Py, .y,
for the net gain of 1 node, while we converted at most 2(3n — 2) edges. It
remains to consider the case when we converted an edge in only one of the 3
colummns.

If this column contains aj, or ¢}, then both nodes of Pp,,; are mixed
or white, the conversion does not add any new mixed nodes and eliminates
one. In the remaining case, columns of al and ¢! are purely white. Suppose
that the 4-edge path from a! to ¢! is not purely white, then our conversion
removes two mixed nodes from this path while adding at most one new mixed
node, e. In the remaining case we convert only edge {b;,, e} without changing
the number of mixed nodes.

Summarizing, either we gain at least 1 node while converting at most
3n(3n — 2) edges, or we have a special case in which we have no loss or gain
and we convert at most one edge.

Suppose that not counting the special cases we have converted K edges.
To have a bisection, we may need to re-convert up to K edges — if there exists
the reserve, or if we have converted both white and black edges then we need

to re-convert fewer edges. Thus it suffices to re-convert at most Lﬁj

sets of the form F,, which may create up to QNLﬁJ < |_3(372%1)J new
K

mixed nodes. But when we converted K edges we eliminated at least EEro)]
mixed nodes, so there is no net loss. At this point we have a balance of the

bisection except for the impact of special cases, However, there can be at
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most 2n(2n — 1)/2 = n(2n — 1) special cases, so we need to re-convert at
most n(2n—1) edges. This would be less than the size of a single E,,, which is
not possible, therefore we already have achieved the balance of the bisection.

To adapt the above proof to k-DUAL-BISECTION, we would have to
construct a k-regular graph rather than 3-regular one. We can do it by
adding more edges inside node gadgets. The new edges will make it even less
profitable to bisect the edge colorings that split node gadgets.

Thus, we get under assumption that there exists an (r(n),t(n))-
approximation algorithm for 2-MIN-HE-BISECTION for every integer k£ >
3, the existence of an (r(n?),t(n’))-approximation algorithm for MIN-
BISECTION for arbitrary graphs.

O

We are going to prove now, using Theorem 4, approximation lower bounds
for 2-MIN-HE-BISECTION problems under average complexity assumption
of [F02].

We refer to [F02] for the background on the average case complexity and
its connection to the approximation complexity.

We will say that the optimization problem P is R3SAT-hard to approxi-
mate to within approximation ratio p, if the existence of a polynomial time
algorithm for P within an approximation ratio p contradicts Hypothesis 2 of

[F02].

Theorem 5 ([F02]). MIN-BISECTION is R3SAT-hard to approzimate to

within a ratio below %.

We have the following result on sparse hypergraphs:

Theorem 6 For every integer k > 3, 2-MIN-Hk-BISECTION is R3SAT-

hard to approzimate to within a ratio below %.

Proof. By combining Theorems 4 and 5.
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5 Further Research

An interesting open question remains whether the dependence on the dimen-
sion k in Theorem 1 can be somehow reduced. This will require a new sparser
reduction in a dimension of a hypergraph than the one used in Theorem 1.
Holmerin and Khot in [H02], [HKO03] prove approximation hardness of 4-
and 3-dimensional equational extension of MIN-BISECTION (this extension
however does not define valid hypergraph bisections). A very interesting
question is whether there is any meaningful connection between the hard-
ness of the 3-dimensional or higher dimensional equational extension and the
problem of MIN-HA-BISECTION. Such a connection might ultimately shed

some light on approximation hardness of the minimum graph bisection.
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