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Abstract

The problem of finding a local minimum of a black-box function is central for understanding local
search as well as quantum adiabatic algorithms. For functions on the Boolean hypercube {0,1}", we
show a lower bound of (2"/ 4 /n ) on the number of queries needed by a quantum computer to solve this
problem. More surprisingly, our approach, based on Ambainis’ quantum adversary method, also yields
a lower bound of Q (27/2 /n2 on the problem’s classical randomized query complexity. This improves

and simplifies a 1983 result of Aldous. Finally, in both the randomized and quantum cases, we give the
first nontrivial lower bounds for finding local minima on grids of constant dimension greater than 2.

1 Introduction
This paper deals with the following problem.

LOCAL SEARCH. Given an undirected graph G = (V,E) and a function f:V — N, find a local
minimum of f—that is, a vertex v such that f (v) < f (w) for all neighbors w of v.

We are interested in the number of queries that an algorithm needs to solve this problem, where a query
just returns f (v) given v. We consider deterministic, randomized, and quantum algorithms. Section 2
motivates the problem theoretically and practically; this section explains our results.

We start with some simple observations. If G is the complete graph of size IV, then clearly 2 (V) queries

are needed to find a local minimum (or Q (\/N ) with a quantum computer [8]). At the other extreme, if

G is a line of length NV, then even a deterministic algorithm can find a local minimum in O (log V) queries,
using binary search: query the middle two vertices, v and w. If f (v) < f (w), then search the line of length
(N — 2) /2 connected to v; otherwise search the line connected to w. Continue recursively in this manner
until a local minimum is found.

So the interesting case is when G is a graph of ‘intermediate’ connectedness—for example, the Boolean
hypercube {0,1}", with two vertices adjacent if and only if they have Hamming distance 1. For this graph,
Llewellyn, Tovey, and Trick [20] showed a 2 (2"/+/n) lower bound on the number of queries needed by any
deterministic algorithm, using a simple adversary argument. TIntuitively, until the set of vertices queried so
far comprises a vertez cut (that is, splits the graph into two or more connected components), an adversary is
free to return a descending sequence of f-values: f(v1) = 2" for the first vertex v; queried by the algorithm,
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f(va) = 2™ —1 for the second vertex queried, and so on. Moreover, once the set of queried vertices does
comprise a cut, the adversary can choose the largest connected component of unqueried vertices, and restrict
the problem recursively to that component. So to lower-bound the deterministic query complexity, it suffices
to lower-bound the size of any cut that splits the graph into two reasonably large components.! For the
Boolean hypercube, Llewellyn et al. showed that the best one can do is essentially to query all (2" /\/n)
vertices of Hamming weight n/2.

Llewellyn et al.’s argument fails completely in the case of randomized algorithms. By Yao’s minimax
principle, what we want here is a fixed distribution D over functions f : {0,1}" — N, such that any
deterministic algorithm needs many queries to find a local minimum of f, with high probability if f is drawn
from D. Taking D to be uniform will not do, since a local minimum of a uniform random function is easily
found. However, Aldous [2] had the idea of defining D via a random walk, as follows. Choose a vertex
vo € {0,1}" uniformly at random; then perform an unbiased walk? vg,vq,vs, ... starting from vy. For each
vertex v, set f (v) equal to the first hitting time of the walk at v—that is, f (v) = min{¢ : v; = v}. Clearly
any f produced in this way has a unique local minimum at vg, since for all £ > 0, if vertex v; is visited for
the first time at step ¢ then f (v¢) > f (v;—1). Using sophisticated random walk analysis, Aldous managed
to show a lower bound of 2%/2-2(") on the expected number of queries needed by any randomized algorithm
to find vg. (As we will see in Section 3, this lower bound is close to tight.) Tntuitively, since a random walk
on the hypercube mixes in O (nlogn) steps, an algorithm that has not queried a v with f (v) < 27/2 has
almost no useful information about where the unique minimum v is, so its next query will just be a “stab
in the dark.”

Aldous’ result leaves several questions about LOCAL SEARCH unanswered. What if the graph G is a 3-D
cube, on which a random walk does not mix very rapidly? Can we still lower-bound the randomized query
complexity of finding a local minimum? More generally, what parameters of G make the problem hard or
easy? Also, what is the quantum query complexity of LOCAL SEARCH?

This paper presents a new approach to LOCAL SEARCH, which we believe points the way to a complete
understanding of its complexity. Our approach is based on the quantum adversary method, introduced by
Ambainis [4] to prove lower bounds on quantum query complexity. Surprisingly, our approach yields new
and simpler lower bounds for the problem’s classical randomized query complexity, in addition to quantum
lower bounds. To our knowledge, the only previous example of a classical lower bound proved via a quantum
argument is a result of Kerenidis and de Wolf [17] on locally decodable codes.

Our results are as follows. For the Boolean hypercube G = {0,1}", we show that any quantum algorithm
needs ) (2"/ 4/n) queries to find a local minimum on (, and any randomized algorithm needs €2 (2"/ 2 /n2)
queries (improving the 2n/2=0(n) lower bound of Aldous [2]). Our proofs are elementary and do not require
random walk analysis. By comparison, the best known upper bounds, which we show in Section 3, are
0 (2"/ 3pl/ 3) for a quantum algorithm and O (2"/ Qﬁ) for a randomized algorithm. Tf G is a d-dimensional
grid of size N4 x --- x N4 where d > 3 is a constant, then we show that any quantum algorithm

needs 2 ( N1/2-1/d[log N ) queries to find a local minimum on G, and any randomized algorithm needs

Q (N 1/2-1/d /log N ) queries. No nontrivial lower bounds (randomized or quantum) were previously known
in this case.?

The paper is organized as follows. Section 2 motivates lower bounds on LLOCAL SEARCH, pointing out
connections to simulated annealing, quantum adiabatic algorithms, and the complexity class TFNP of total
function problems. Section 3 defines notation and reviews basic facts about LLOCAL SEARCH, including

ITJewellyn et al. actually give a tight characterization of deterministic query complexity in terms of vertex cuts.
2 Actually, Aldous used a continuous-time random walk, so the functions would be from {0,1}" to R.
3 A lower bound on deterministic query complexity is known for such graphs [19].



the known upper bounds. In Section 4 we give an intuitive explanation of Ambainis’ quantum adversary
method, then state and prove a classical analogue of Ambainis’ main lower bound theorem. We call the
resulting classical lower bound method the “relational adversary method.” Section 5 introduces snakes, a
construction by which we apply the two adversary methods to LOCAL SEARCH. We show there that to
prove lower bounds for any graph G, it suffices to upper-bound a combinatorial parameter £ of a ‘snake
distribution’ on G. Section 6 applies this framework to specific examples of graphs: the Boolean hypercube
in Section 6.1, and the d-dimensional grid in Section 6.2. We conclude in Section 7 with some open problems.

2 Motivation

Local search is the most effective weapon ever devised against hard optimization problems. For many real
applications, neither backtrack search, nor approximation algorithms, nor even Grover’s algorithm (assuming
we had a quantum computer) can compare. Furthermore, along with quantum computing, local search
(broadly defined) is one of the most interesting links between computer science and Nature. Tt is related to
evolutionary biology via genetic algorithms, and to the physics of materials via simulated annealing. Thus
it is both practically and scientifically important to understand its performance.

The conventional wisdom is that, although local search performs well in practice, its central (indeed
deﬁning) flaw is a tendency to get stuck at local optima. If this were correct, one corollary would be that
the reason local search performs so well is that the problem it really solves—finding a local optimum—is
intrinsically easy. Tt would thus be unnecessary to seek further explanations for its performance. Another
corollary would be that, for unimodal functions (Which have no local optima besides the global optirnurn),
the global optimum would be easily found.

However, the conventional wisdom is false. The results of Llewellyn et al. [20] and Aldous [2] show that
even if f is unimodal, any classical algorithm that treats f as a black box needs exponential time to find
the global minimum of f in general. Our results extend this conclusion to quantum algorithms. Tn our
view, the practical upshot of these results is that they force us to confront the question: What is it about
‘real-world’ problems that makes it easy to find a local optimum? That is, why do exponentially long chains
of descending values, such as those used for lower bounds, almost never occur in practice (even in functions
with large range sizes)? We do not know a good answer to this.

Our results are relevant as well to understanding the quantum adiabatic algorithm proposed by Farhi et
al. [15], which can be seen as a quantum analogue of simulated annealing. The main open question about
this algorithm is, under exactly what circumstances does it ‘tunnel’ through barriers to reach global instead
of local optima? (Farhi, Goldstone, and Gutmann [14] give functions for which it does tunnel; van Dam,
Mosca, and Vazirani [11] give others for which it does not.) However, there is another question, which arises
from a curious phenomenon observed by van Dam et al. [11]. Given the unimodal function f : {0,1}" — N
defined by f () = |z|, where |z| is the Hamming weight of z, the adiabatic algorithm converges to the unique
minimum of 0" in O (1) queries, as compared to O (n) queries for classical local search. So one can ask: in
general, how much faster is the adiabatic algorithm than (say) simulated annealing at finding local optima?
Our results yield the first class of functions for which it is provably only polynomially faster.

Finally, our results have implications for so-called total function problems in complexity theory. Megiddo
and Papadimitriou [21] defined a complexity class* TFNP, consisting (informally) of those NP search problems
for which a solution always exists. For example, we might be given a function f : {0, 1 }" — {0, ]}n_l as
a Boolean circuit, and asked to find any distinct 2,y pair such that f (z) = f (y). This particular problem

4See the Complexity Zoo (http://www.cs.berkeley.edu/~aaronson/zoo.html) for details about the complexity classes men-
tioned in this paper.



belongs to a subclass of TFNP called PPP (Polynomial Pigeonhole Principle). Notice that no promise is
involved—the combinatorial nature of the problem itself forces a solution to exist, even if we have no idea
how to find it. Tn a recent talk, Papadimitriou [22] asked broadly whether such ‘nonconstructive existence
problems’ might be good candidates for efficient quantum algorithms. Tn the case of PPP problems, the
collision lower bound of Aaronson [1] implies a negative answer in the black-box setting. For other subclasses
of TFNP, such as PODN (Polynomial Odd-Degree Node), a quantum black-box lower bound follows easily
from the optimality of Grover’s search algorithm.

However, there is one important subclass of TFNP for which no quantum lower bound was previously
known. This is PLS (Polynomial Local Search), defined by Johnson, Papadimitriou, and Yannakakis [16]
as a class of optimization problems whose cost function f and neighborhood function # (that is, the set of
neighbors of a given point) are both computable in polynomial time. Given such a problem, the task is
to output any local minimum of the cost function—that is, a v such that f(v) < f(w) for all w € 5 (v).
The lower bound of Llewellyn et al. [20] yields an oracle A relative to which FpA #* PLS“, by a standard
diagonalization argument along the lines of Baker, Gill, and Solovay [6]. Likewise, the lower bound of
Aldous [2] yields an oracle relative to which PLS ¢ FBPP, where FBPP is simply the function version of
BPP. Our results yield the first oracle relative to which PLS ¢ FBQP. Tn light of this oracle separation,
we raise an admittedly vague question: is there a nontrivial “combinatorial” subclass of TFNP that we can
show is contained in FBQP?

3 Preliminaries

Tn the LOCAL SEARCH problem, we are given an undirected graph G = (V, E) with N = |V|, and oracle
access to a function f: V — N. The goal is to find any local minimum of f, defined as a vertex v € V such
that f (v) < f (w) for all neighbors w of v. Clearly such a local minimum exists. We want to find one using
as few queries as possible, where a query returns f (v) given v. Queries can be adaptive; that is, can depend
on the outcomes of previous queries. We assume G is known in advance, so that only f needs to be queried.
Since we care only about query complexity, not computation time, there is no difficulty in dealing with an
infinite range for f—though for our lower bounds, it will turn out that a range of size O (|V]) suffices.

Our model of query algorithms is the standard one; see [10] for a survey. Given a graph G, the
deterministic query complexity of LOCAL SEARCH on G, which we denote DLS (G), is

min rn?xT(F, f,G)

where the minimum ranges over all deterministic algorithms I", the maximum ranges over all f, and T'(T', f, G)
is the number of queries made to f by T" before it halts and outputs a local minimum of f (or co if T' fails to
do s0). The randomized query complexity RLS (G) is defined similarly, except that now the algorithm has
access to an infinite random string R, and must only output a local minimum with probability at least 2/3
over R. The number of queries T is taken as an expectation over R.

In the quantum model, an algorithm’s state has the form

Z Ay 25 |U7 Z, S) ’
v,2,8

where v is the label of a vertex in G, and z and s are nonnegative integers written in binary (representing
the answer register and workspace respectively). The «, . ,’s are complex amplitudes satisfying

Z |OZ,U’Z7S|2 = 1

v,%,8



Starting from an arbitrary (ﬁxed) initial state, the algorithm proceeds by an alternating sequence of queries
and algorithm steps. A query maps each |v,z,s) to [v,z@® f (v),s), where @ denotes bitwise exclusive-OR.
An algorithm step multiplies the vector of a, , ;’s by an arbitrary unitary matrix that does not depend on
f. Letting M denote the set of local minima of f, the algorithm succeeds if at the end

S ez

v,z,8 : VEM¢

Then the bounded-error quantum query complexity, or QLS (G), is defined as the minimum number of
queries used by a quantum algorithm that succeeds on every f.
Tt is immediate that

QLS (G) < RLS(G) < DLS(G) < N.

Also, letting 6 be the maximum degree of GG, we have the following trivial lower bound.
Proposition 1 RLS (G) = Q(4) and QLS (G) = Q (\/5) .

Proof. Let v be a vertex of G with degree 6. Choose a neighbor w of v uniformly at random, and let
f(w)=1. Let f (v) =2, and f (u) = 3 for all neighbors u of v other than w. Let S be the neighbor set of v
(including v itself); then for all z ¢ S, let f(z) =3+ A(z,S) where A (z,S) is the minimum distance from
z to a vertex in S. Clearly f has a unique local minimum at w. However, finding ¥ requires exhaustive
search among the é neighbors of v. m

A corollary of Proposition 1 is that classically, zero-error randomized query complexity is equivalent to
bounded-error up to a constant factor. For given a candidate local minimum v, one can check using O (9)
queries that v is indeed a local minimum. Since Q(§) queries are needed anyway, this verification step does
not affect the overall complexity.

As pointed out by Aldous [2], a classical randomized algorithm can find a local minimum of f with high

probability in O (\/ N 5) queries. The algorithm just queries VN vertices uniformly at random, and lets v*

be a queried vertex for which f (v) is minimal. Tt then follows v* to a local minimum by steepest descent.
That is, it sets vg = v* and then for £ = 0,1,2,. .., queries all neighbors of v;, halts if v; is a local minimum,
and otherwise sets v;41 to be the neighbor w of v; for which f (w) is minimal (breaking ties by lexicographic
ordering). 'The same idea yields an improved quantum upper bound.

Proposition 2 For any graph G, QLS (G) = O (N1/3 min {51/3, (0log N) 1/6}).

2/3

Proof. For the O ((N5)1/3) bound, the algorithm first chooses (N6)™~ vertices of G uniformly at random,

then uses Grover search to find a chosen vertex v* for which f(v) is minimal. By a result of Diirr and
Hgyer [13], this can be done with high probability in O (N 1/361/ 3) queries. Next the algorithm follows v*
to a local minimum by steepest descent as in the classical case. We claim that with high probability, this
second phase reaches a local minimum after at most N'/35-2/3 iterations, requiring O ((N 5)1/ 3) queries.
For steepest descent partitions (G into trees of vertices, whose roots are local minima. Suppose we order all
vertices v by increasing f (v), breaking ties arbitrarily. Let S consist of the first N 1/3§-2/3 vertices in the
list; then no v € S can have distance more than N'/3§=2/3 to the root of its respective tree. Furthermore,
when we choose (N 5)2/ 3 Vertices uniformly at random, with high probability at least one of them belongs
to S, in which case the Grover search chooses v* € S with high probability.



For the O (N 1/3 (6log N )1/ 6) bound, we make two changes to the above algorithm. Tn the first phase,

we choose N?/3 (6log N) 1/3 \niform random vertices instead of (Vo) 23, Also, in the second phase, we use

Grover search to find the lexicographically first minimum neighbor of each v;. By a result of Buhrman et
al. [9], this can be done in O (\/ olog N ) queries with error probability at most 1/N. So the second phase
succeeds with €2 (1) probability, and analogously to the above takes expected time at most

0 ( N : \/m> =0 <N1/3 (5logN)1/6) .

N2/3 (§1log N)'/?

4 The Relational Adversary Method

We know of essentially two methods for proving lower bounds on quantum query complexity: the polynomial
method of Beals et al. [7], and the quantum adversary method of Ambainis [4].5 For a few problems, such
as the collision problem [1], the polynomial method succeeded where the adversary method failed. However,
for problems that lack permutation symmetry (such as LOCAL SEARCH), the adversary method has proven
more effective.’

How could a quantum lower bound method possibly be applied classically? When proving lower bounds
on randomized query complexity, the tendency is to attack “bare-handed”: fix a distribution over inputs,
and let x1,...,2; be the locations queried so far by the algorithm. Show that for small ¢, the posterior
distribution over inputs, conditioned on x1,. .., x;, is still ‘hard’ with high probability—so that the algorithm
knows almost nothing even about which location z;,; to query next. This is essentially the approach taken
by Aldous [2] to prove a 2"/27°(") lower bound on RLS ({0,1}").

Tn the quantum case, however, it is unclear how to specify what an algorithm ‘knows’ after a given
number of queries. So we are almost forced to step back, and identify general combinatorial properties of
input sets that make them hard to distinguish. Once we have such properties, we can then try to exhibit
them in functions of interest.

We believe this “gloved” attack can be useful for classical lower bounds as well as quantum ones. Tn
our relational adversary method, we assume there exists a T-query randomized algorithm for function F.
We consider a set A of O-inputs of F, a set B of 1-inputs, and an arbitrary real-valued relation function
R(A,B) >0 for A€ Aand B € B. Tntuitively, R(A, B) should be large if A and B differ in only a few
locations. We then fix a probability distribution D over inputs; by Yao’s minimax principle, there exists a
T-query deterministic algorithm I'* that succeeds with high probability on inputs drawn from D. Let W4
be the set of O-inputs and Wg the set of 1-inputs on which I'* succeeds. Using the relation function R, we
define a separation measure S between W4 and Wg, and show that (1) initially S = 0, (2) by the end of the
computation S must be large, and (3) S increases by only a small amount as the result of each query. Tt
follows that 7" must be large.

Undoubtedly any randomized lower bound proved using our relational method could also be proved
“bare-handed,” without any quantum intuition. However, our method makes it easier to focus on what is
unique about a problem, and ignore what is common among many problems.

5We are thinking here of the hybrid method [8] as a cousin of the adversary method.
6Indeed, Ambainis [3] has given problems for which the adversary method provably yields a better lower bound than the
polynomial method.



Our starting point is Ambainis’ “most general” adversary theorem (Theorem 6in [4]), which he introduced
to prove a quantum lower bound for the problem of inverting a permutation. Here the input is a permutation
o(1),...,0(N), and the task is to output 0 if 6= (1) < N/2 and 1 otherwise. To lower-bound this problem’s
query complexity, what we would like to say is this:

Given any O-input o and any location x, if we choose a random 1-input T that is ‘related’ to o,
then the probability 0 (o,x) over T that o (x) does not equal T (x) is small. In other words, the
algorithm is unlikely to distinguish o from a random neighbor T of o by querying x.

Unfortunately, the above claim is false. Lettingz = o' (1), we have that o (z) # 7 (z) for every 1-input
T, and thus 6 (0,2) = 1. Ambainis resolves this difficulty by letting us take the maximum, over all O-inputs o

and T-inputs 7 that are related and differ at z, of the geometric mean /0 (o,2) 0 (1,z). Evenif 0 (o,z) =1,

the geometric mean is still small provided that 8 (7,z) is small. More formally:

Theorem 3 (Ambainis) Let A€ F~1(0) and B € F~1(1) be sets of inputs to function F. Let R(A,B) >

0 be a real-valued function, and for A € A, B € B, and location x, let

D BrcB : A(n)£B(z) B2 (A, BY) DoAred s A (n)pB(n) (A", B)
YpesR(ABY) 7 S aeaR(AB)

where the denominators are all nonzero. Then the number of quantum queries needed to evaluate F' with at
least 9/10 probability is Q (1 /Ugeom), where

0(A,zx) = 0(B,x) =

VO (A,x)0(B,x).

v = max
8SOM T Ac A, BEB, x : R(A,B)>0, A(z)#B(z)

To illustrate we show the following.
Proposition 4 (Ambainis) The quantum query complexity of inverting a permutation is Q (\/N) .

Proof. Let A be the set of all permutations o with o~ ! (1) < N/2, and B be the set of permutations 7 with
771(1) > N/2. Given 0 € Aand 7 € B, let R(0,7) = 1 if 0 and 7 differ only at locations ="' (1) and
771(1), and R(0,7) = 0 otherwise. Then given 0,7 with R(0,7) =1, if z # 0~ (1) then 6 (o,z) = 2/N,
and if z # 771 (1) then @ (7,2) =2/N. So

max \/H(U,m)H(T,x)z\/z.
z : o(z)#7(x) N
]

The only difference between Theorem 3 and our relational adversary theorem is that in the latter, we
take the minimum of 6 (A, x) and 6 (B, x) instead of the geometric mean. Taking the reciprocal then gives
up to a quadratically better lower bound—for example, we obtain that the randomized query complexity of
inverting a permutation is {2 (V). However, the proofs of the two theorems are completely different.

Theorem 5 Let A, B, R, 0 be as in Theorem 3. Then given A, the number of randomized queries needed to
evaluate F' with at least 9/10 probability is Q (1 /Umin), where
min {0 (A,z),0(B,z)}.

Umin =

max
ACA, BEB, = : R(A,B)>0, A(z)#B(x)



Proof. Let I’ be a randomized algorithm that, given an input A, returns F' (A) with at least 9/10 probability.
Let T be the number of queries made by I'; we assume without loss of generality that T is the same for all

runs. For all A € B, B € B, define
M (A) = Z R(A,B*),

M(B)= Y R(A",B),
A*eA
M= Y M(A)= > M(B").
A*c A B*€B

Now consider the following distribution D over inputs: with probability 1/2, choose an A € A with probability
proportional to M (A); and with probability 1/2, choose a B € B with probability proportional to M (B).
By Yao’s minimax principle, there exists a deterministic algorithm I'* that makes 7' queries, and succeeds
with at least 9/10 probability given an input drawn from D. So letting W4 be the set of A € A and Wp
the set of B € B on which I'* succeeds, we have

> M(A)zi;M, > M(B)z

AEW 4 BeWsg

M.

Ut =

Let the set X ® (A) consist of the first ¢ indices queried by T'* if A is the input. Also, for all A € B,
B € B, define score functions

S0 (4) = > R(A,B*), SU(B)= > R(A*,B).

B*€B : AzeX (9 (A) A(z)#B*(z) A*CA : FzeX®)(B) A*(z)#B(z)

>80 A)=>" s (B).

AcA BeB

We claim that for all £,

To see this, suppose that at the t** query, S (A) receives a new contribution of R (A, B) > 0 from some
pair (A, B). That can only be because a set X\{m} of t —1 indices on which A and B agree, was augmented
by querying an z on which A and B disagree. If A and B already disagreed on some index in X \ {m},
then S®) (A) would already have a contribution from (A,B). But this implies that X® (4) = X (B),
and hence S (B) must receive a contribution of R (A, B) from (A, B), just as S (A) does.

Let
SO =3" 504 =Y s (B).

AcA BeB

Clearly S(® = 0 initially. Furthermore, by the end we need S(T) > 3M /5. To see this, observe that for
every pair (A, B) with A € W4 and B € Wp, the algorithm I'* must query an z such that A (z) # B (z).
Thus 4

s> 3 RAB)= Y MA- > M(B)ng—%M.

AEW,, BEWE AW, B¢WB
Tt remains only to upper-bound how much S can increase as the result of a single query. Let
AS® (A) = S® (A) — S~V (A),
AS® — g _ g(t-1)



We claim that AS® < 3vmin M for all £, from which it follows that
3M
T > /5 = ! .
- 3'Umin]\4 5Umin

Suppose not; we will obtain a contradiction.

Let C4 be the set of A € A for which AS® (A) > Umin M (A). Since

> ASD (A) > BuminM,
AcA
it follows that 9
> ASD(4) > 5AS@.
A€eCy
Similarly, letting C'z be the set of B € B for which AS® (B) > vpim M (B), we have

> AsY(B) > gAs@).

BeCp

Hence, by a ‘pigeonhole’ argument, there exists a pair A € Cy, B € Cp such that S (A) and S® (B)

both receive a new contribution of R(A,B) > 0 from (A, B) as a result of the t** query. So by previous

reasoning, there exists an = with A (z) # B (z), such that the ¢** index queried by I'* is x whether the input
is Aor B. Then

o < ASOA)  Ypcn . a@mpn RABY) 0 (A 2)

T M4 T Y.pres (A, BY) T

and similarly Umin < @ (B,2). This contradicts the definition of Umin, and we are done. ®

5 Snakes

For our lower bounds, it will be convenient to generalize random walks to arbitrary distributions over paths,
which we call snakes.

Definition 6 Given a vertex h in G and a positive integer L, a snake distribution Dy 1, (parameterized by
h and L) is a probability distribution over paths (zo,...,xr_1) in G, such that each x; is either equal or
adjacent to Ty 1, and xp_1 = h. Let Dy 1 be the support of Dh,L. Then an element of Dy 1 is called a
snake; the part near xo s the tail and the part near xy_1 = h s the head.

Given a snake X and integer ¢, we use X [t] as shorthand for {zy,...,2;}.

Definition 7 We say a snake X € Dy, ;, is e-good if the following holds. Choose j uniformly at random
from {0,...,L—1}, and let Y = (yo,...,yr—1) be a snake drawn from Dy j, conditioned on x; = y; for all
t>73. Then

(i) Letting Sx v be the set of vertices z in X NY such that
min{t: 2z, =z} = min{t : y, = 2},
we have

9
Pr(XNY = Sxy]> —.
al ST



Large 06(fy,v) X. .=V,
but small 8(f,,v) i+1=Yjr1

Large 6(f,,v)
but small 6(fy,v)

Figure 1: For every vertex v such that fx (v) # fy (v), either when snake X flicks its tail v is not hit with
high probability, or when snake Y flicks its tail v is not hit with high probability.

(it) For all vertices v,
PriveY[j]]<Le.
7Y

The procedure above—wherein we choose a j uniformly at random, then draw a Y from D}, 1, consistent
with X on all steps later than j—will be important in what follows. We call it the snake X flicking its tail.
Tntuitively, a snake is good if it is spread out fairly evenly in G—so that when it flicks its tail, (1) with high
probability the old and new tails do not intersect, and (2) any particular vertex is hit by the new tail with
probability at most €.

We now explain our ‘snake method’ for proving lower bounds for LOCAL SEARCH. Given a snake X, we
define an input fx with a unique local minimum at g, and f-values that decrease along X from head to tail.
Then, given inputs fx and fy with X NY = Sx vy, we let the relation function R (fx, fy) be proportional
to the probability that snake Y is obtained by X flicking its tail. (If X NY # Sx y we let R =0.) Let fx
and gy be inputs with R(fx,gy) > 0, and let v be a vertex such that fx (v) # gy (v). Then if all snakes
were good, there would be two mutually exclusive cases: (1) v belongs to the tail of X, or (2) v belongs to
the tail of Y. Tn case (1), v is hit with small probability when Y flicks its tail, so 8 (fy,v) is small. Tn
case (2), v is hit with small probability when X flicks its tail, so 6 (fx,v) is small. Tn either case, then,
the geometric mean /0 (fx,v) 0 (fy,v) and minimum min {0 (fx,v),0(fy,v)} are small. So even though
0 (fx,v) or 8(fy,v) could be large individually, Theorems 3 and 5 yield a good lower bound, as in the case
of inverting a permutation (see Figure 1).

One difficulty is that not all snakes are good—at best, a large fraction of them are. We could try deleting
all inputs fx such that X is not good, but that might ruin some remaining inputs, which would then have

10



fewer neighbors. So we would have to delete those inputs as well, and so on ad infinitum. What we need
is basically a way to replace “all inputs” by “most inputs” in Theorems 3 and 5.

Fortunately, a simple graph-theoretic lemma can accomplish this. The lemma (see Diestel [12, p.6] for
example) says that any graph with average degree at least k contains an induced subgraph with minimum
degree at least k/2. Here we prove a weighted analogue of the lemma.

Lemma 8 Let p(1),...,p(m) be positive reals summing to 1. Also let w(i,7) for i,j € {1,...,m} be an
array of nonnegative reals satisfying w(i,7) = w (5, i) and ), ;W (2,7) > r. Then there exists a nonemply
subset U C {1,...,m} such that for alli € U,

.. T .
Zw(z,y) > §p(z).
jeu
Proof. Tf r = 0 then the lemma trivially holds, so assume r > 0. We construct U via an iterative procedure.
Let U (0) = {1,...,m}. Then for all £, if there exists an i* € U (t) for which

> w(ig) < 5p00),

JEU(?)

thenset U (t+1) = U (¢) \ {¢*}. Otherwise halt and return U = U (t). To see that the U so constructed is
nonempty, observe that when we remove ¢*, the sum ZieU(t) p (2) decreases by p (i*), while . jerm W (,7)

decreases by at most
ST ow(@ )+ D> w(iit) <rp(i).
JEU(t) JEU(?)
So since ). jeum W (¢,7) was positive to begin with, it must still be positive at the end of the procedure;

hence U must be nonempty. =
We can now prove the main result of the section.

Theorem 9 Suppose a snake drawn from Dy, 1, is e-good with probability at least 0.9. Then

RLS(G)=Q(1/),  QLS(G)=Q (\/m) .

Proof. Given a snake X € Dy 1, we construct an input function fx as follows. For each v € X, let
fx (v) = min {¢ : z; = v}; and for each v ¢ X, let fx (v) = A(v,h)+ L where A (v,h) is the distance from
v to h in GG. Clearly fx so defined has a unique local minimum at zg. To obtain a decision problem, we
stipulate that querying z reveals an answer bit (0 or 1) in addition to fx (z1); the algorithm’s goal is then
to return the answer bit. Obviously a lower bound for the decision problem implies a corresponding lower
bound for the search problem.

Let us first prove the theorem in the case that all snakes in Dy, ;, are e-good. Let p (X) be the probability
of drawing snake X from Dj ;. Also, given snakes X,Y and j € {0,...,L —1}, let ¢; (X,Y) be the
probability that X* =Y, if X* is drawn from Dy, 1, conditioned on agreeing with X on all steps later than
7. Then define

w(X,Y) = 1@ z_:qj (X,Y).

Our first claim is that w is symmetric—that is, w (X,Y) = w (Y, X). It suffices to show that

P(X) g (X,Y) =p(Y)q; (¥, X)

11



for all j. We can assume X agrees with Y on all steps later than j, since otherwise ¢; (X,Y) = ¢; (Y, X) = 0.
Given an X* € Dy, 1, let A denote the event that X* agrees with X (or equivalently Y) on all steps later
than j, and let Bx (resp. By ) denote the event that X* agrees with X (resp. Y') on steps 1 to 5. Then

p(X) q; (X,Y) = Pr[A] Pr[Bx|A] - Pr[By|A] = p(Y) ¢; (Y, X).

Now let F(X,Y) denote the event that X NY = Sx y, where Sx y is as in Definition 7. Also, let fx
be the input obtained from X that has answer bit 0, and gx be the input that has answer bit 1. To apply
Theorems 3 and 5, take A= {fx : X € Dy 1.} and B={gx : X € Dy 1}. Then take R(fx,gy) =w(X,Y)
if E(X,Y) holds, and R(fx,gy) = O otherwise. Given fx € A and gy € B with R(fx,gy) > 0, and
letting v be a vertex such that fx (v) # gy (v), we must then have either v ¢ X or v ¢ Y. Suppose the
former case; then

L—-1
> p(Y) 3 .
R(fX*rgY)S I2 . q](Y7X )SEP(Y),
fxx €A+ fxx(v)#gy (v) fxx €A ¢ fxx(v)#gy (v) Jj=0

since Y is e-good. Thus

Do fxn €A+ Ixr)tey ) B (X5 97) <. er(Y)
i ca B(fx9v) ~ 0.9 (Y)

Similarly, if v ¢ Y then 0 (fx,v) < &/0.9 by symmetry. Hence

0 (gy,v) =

€
Umin = max min {6 ,),0(gy,v)t < —,
fx€A, gy €B, v : R(fx,gv)>0, fx(v)#gy (v) { (fX ) (gY } 0.9
€
Ugeom = max 0 ,u)6 W) < 4 —,
8 fx €A, gy €B, v : R(fx,9v)>0, fx(v)#gy (v) \/ (x,0) 0 (gv,0) 0.9

the latter since 6 (fx,v) <1 and 6 (gy,v) <1 for all fx,gy and v.

We now turn to the general case, in which a snake drawn from D}, 7, is e-good with probability at least 0.9.
Let G (X) denote the event that X is e-good. Take A* = {fx € A: G(X)} and B* = {gy € B: G(Y)},
and take R (fx,gy) as before. Then since

Y w(X, Y)Y 09p(X) =00,
X,Y : B(X,Y) X
by the union bound we have

S R(Ux.ov) > ) wEY) - Y ) - Y p()

Fx €A, gy €B* XY : GX)AG(Y)AE(X,Y) X : 1G(X) Y : G(Y)
>09-0.1-01=0.7

So by Lemma 8, there exist subsets A C A* and B C B* such that for all fx € A and gy € B,

> R(fx,gv-) = 0.35p(X), > R(fx-,9v) 2 035p(Y).
QY*EE Fxx cA

So for all fx,gy with R(fx,gy) > 0, and all v such that fx (v) # gy (v), either 0 (fx,v) < £/0.35 or
0 (gv,v) <e/0.35. Hence Umin < €/0.35 and Ugeom < /€/0.35. m
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6 Specific Graphs

In this section we apply the ‘snake method’ developed in Section 5 to specific examples of graphs: the
Boolean hypercube in Section 6.1, and the d-dimensional cubic grid (for d > 3) in Section 6.2.

6.1 Boolean Hypercube

Abusing notation, we let {0, 1}" denote the n-dimensional Boolean hypercube—that is, the graph whose
vertices are n-bit strings, with two vertices adjacent if and only if they have Hamming distance 1. Given a
vertex v € {0,1}", we let v [0],...,v [n — 1] denote the n bits of v, and let v® denote the neighbor obtained
by flipping bit v [¢]. Tn this section we lower-bound RLS ({0,1}") and QLS ({0,1}").

Fix a ‘snake head’ h € {O, 1 }n and take L = 2"/2/100. We define the snake distribution D1, via what

we call a coordinate loop, as follows. Starting from xo = h, for each ¢ take z;1 = z; with 1/2 probability,

and Ty = Igtm(’d ) with 1/2 probability. The following is a basic fact about this distribution.

Proposition 10 The coordinate loop mizes completely in n steps, in the sense that if t* > t +n, then x:«
is a uniform random vertex conditioned on x;.

We could also use the random walk distribution, following Aldous [2]. However, not only is the coordinate
loop distribution easier to work with (since it produces fewer self-intersections), it also yields a better lower
bound (since it mixes completely in n steps, as opposed to approximately in nlogn steps).

We first upper-bound the probability, over X, j, and Y [j], that X NY # Sx y (where Sx y is as in
Definition 7).

Lemma 11 Suppose X is drawn from Dy, 1, j is drawn uniformly from {0,...,L —1}, and Y [j] is drauwn
from Dy, ;. Then

Pr [XNY = Sxy] > 0.9999.
X5,

Proof. Call a disagreement a vertex v such that
min{t: z; =0} # min {t* : y» = v}.

Clearly if there are no disagreements then X NY = Sx y. If v is a disagreement, then by the definition of
Dp,1, we cannot have both £ > j —n and t* > j —n. So by Proposition 10, either g+ is uniformly random
conditioned on X, or z; is uniformly random conditioned on Y [j]. Hence

Pr o= ye] = o
x gy T YT e

So by the union bound,

Pr [XNY # Sx.y] < == =0.0001.

L2

X,3,Y 4] A
]

We now argue that, unless X spends a ‘pathological’ amount of time in one part of the hypercube, the

probability of any vertex v being hit when X flicks its tail is small. To prove this, we define a notion of

sparseness, and then show that (1) almost all snakes drawn from D}, ;, are sparse (Lemma 13), and (2) sparse

snakes are unlikely to hit any given vertex v (Lemma 14).
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Definition 12 Given vertices v,w and i € {O,...,n — ]}, let A(z,v,1) be the number of steps needed to
reach v from x by first setting x [i] := v [i], then setting x[i — 1] .= v [i — 1], and so on. (After we set x[0]
we wrap around to x [n —1].) Then X is sparse if there exists a constant ¢ such that for allv € {0,1}" and
all k,

L
[{t : A(z¢,v,tmodn) =k}| < cn (n+ 2n_k> .

Lemma 13 If X is drawn from Dy, 1, then X is sparse with probability 1 — o (1).

Proof. For each i € {0,...,n— 1}, the number of ¢ € {0, ..., L — 1} such that ¢ =i (modn) is at most L/n.
For such a t, let E§” %) he the event that A (z¢,v,%) < k; then E,E”"“) holds if and only if

i) =vi],...,xei—k+1]=v[i—k+1]

(where we wrap around to z; [n — 1] after reaching z;[0]). This occurs with probability 2¥/2" over X.
Furthermore, by Proposition 10, the Et(v’z’k) events for different ¢’s are independent. So let

_L 2k-
P = on

then for fixed v,1, k, the expected number of ¢’s for which E,E”’i’k) holds is at most pg. Thus by a Chernoff

bound, if gz > 1 then
cn—1 Y\ Hk
Pr[{t:E(”’i’k)}‘>CTL-/~Lk} < £ <L
X ¢ (en)™ 22n

for sufficiently large ¢. Similarly, if gz < 1 then

i ecn/‘uk—l Hie ]
{t : Et(v’l’k)}‘ > cn] < PR < om
(en/ )" Hie 24m

for sufficiently large ¢. By the union bound, then,

Pr[
X

v,1,k L
[{: B0 <en- o +uk)=c(n+2n_k)
for every v,1, k triple simultaneously with probability at least

n2on

- 22n

=1—o0(1).
Summing over all 7’s produces the additional factor of n. =

Lemma 14 If X is sparse, then for every v € {0,1}",

f;[veY[jn=0(”f2).
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Proof. By assumption, for every k € {0,...,n},

t:A tmodn) = k L
Pr[A (z;,v,jmodn) = k] < [{t: A (@e,v,tmodn) = k}| _ cn <n+2n_k).
J

L - L
Consider the probability that v € Y [j] in the event that A (z;,v, jmodn) = k. Clearly

1
P;I‘ [U € {yj_n+1,. .. 7yj}] = 2_k

Also, Proposition 10 implies that for every ¢ < j — n, the probability that y; = v is 2™. So by the union
bound,
Prive { Hs o
v e Yila ] < —.
Yr Yo, 2 Y5 on
Then

PriveY[j]]= ZPr [A(z;,v,jmodn) =k|Pr[v e Y [j] | A(z;,v,j modn) = k|
A ' Y

" en L 1 L cn?
< — — —+—)=0(—
<25 (o) (3+20) =0 ()

k=0
as can be verified by breaking the sum into cases and doing some manipulations. ®
The main result follows easily:
Theorem 15
n 271/ 2 n 2'n,/4
msoar=a(2r). asqm=a(20).

n2 n

Proof. Take ¢ = n2/2"/2. Then by Theorem 9, it suffices to show that a snake X drawn from Dy, 7, is
O (¢)-good with probability at least 0.9. First, since

Pr [XNY = Sx.y] > 0.9999
X.3,Y1j]

by Lemma 11, a simple counting argument shows that

Pr| Pr [XNY = Sxy] > 0.9] > 0.95.
X [4Y[

Second, by Lemma 13, X is sparse with probability 1 — o (1), and by Lemma 14, if X is sparse then

rpevil=o(%) =0

for every v. So both requirements of Definition 7 hold simultaneously with probability at least 0.9. =
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/

Figure 2: Tn d = 3 dimensions, a snake drawn from Dj ;, moves a random distance left or right, then a
random distance up or down, then a random distance inward or outward, etc.

6.2 Constant-Dimensional Grid Graph

Tn the Boolean hypercube case, we defined Dy, 1, by a ‘coordinate loop’ instead of the usual random walk
mainly for convenience. When we move to the d-dimensional grid, though, the drawbacks of random walks
become more serious: first, the mixing time is too long, and second, there are too many self-intersections,
particularly if d < 4. Our snake distribution will instead use straight lines of randomly chosen lengths
attached at the endpoints, as in Figure 2.

Let G4 n be a d-dimensional grid graph with d > 3. That is, G4 v has N vertices of the form v =
(v[0],...,v[d—1]), where each v [i] is in {1 Ve ,Nl/d} (we assume for simplicity that N is a d'* power).
Vertices v and w are adjacent if and only if |v [i] —w[i]| =1 for some i € {0,...,d—1}, and v [j] = w [§] for
all j # i (so G4y does not wrap around at the boundaries).

We take L = VN /100, and define the snake distribution D}, ;, as follows. Starting from 2o = h, for each
T we take y1/a(r11) identical to z 1 /a7, but with the (7' mod d)th coordinate x y1/a¢p4 1y [T mod d] replaced

by a uniform random value in {1, .. ,Nl/d}. We then take the vertices Ty1/ar q,...,ZN1/e7iN1/a_1 tO
lie along the shortest path from zpyi1/ap to ZTn1/a(T41), stalling’ at Zyi/a(pyq) once that vertex has been
reached. We call

‘1>T = (INl/dT, ey le/dT+N1/d71)
a line of vertices, whose direction is T'mod d. As in the Boolean hypercube case, we have:

Proposition 16 Dj, ;, mizes completely in AN/ steps, in the sense that if T* > T + d, then Tyi/aps 1S Q
uniform random vertex conditioned on T y1jap.

Lemma 11 in Section 6.1 goes through essentially without change.

Definition 17 Letting A (x,v,t) be as before, we say X is sparse if there exists a constant ¢ (possibly
dependent on d) such that for all vertices v and all k,

|{t LA (mt,v, [t/Nl/dJ modd) - k}‘ < (clogN) (Nl/d + ﬁ) .
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Lemma 18 If X is drawn from Dy, 1, then X is sparse with probability 1 — o (M).
Proof. Similar to Lemma 13. Let ®7 be a line of Verti(;es with direction ¢ = 7'mod d, and notice that
A (z4¢,v,1) is the same for every vertex x; in ®r. Let Egrv’l’k) denote the event that A (z:,v,%) < k for the
z¢’s in @p. Then E;”’I’k) occurs with probability N(k’l)/d/N over X. Furthermore, if |T'—T*| > d then
Egj k) and E(Tuf’k) are independent events. So let

Nk=1)/d
TN
then for fixed v, 1, k, the expected number of lines for which Eg,f’ %) holds is at most pr- Thus, by a Chernoff
bound, if g > 1 then

Pr[
X

for sufficiently large ¢. Similarly, if gz < 1 then

. (clog N)/pi—1 S
) (v,z,k)}‘ ] €
T:E >clogN| < <
{ T ((C IOgN) /,U:k)(Clog N)Y/ e N2

ur =1L

(v,i.k) eclogN—l e 1
T B }‘>clogN-uk} <l ) <=
{ T (C IOg N)c log N N2

Pr[
X

for sufficiently large ¢. So by the union bound, with probability 1 — o (1) it holds that for all v, k, letting
i = |t/N'/?| mod d,

. L
[{t: A(zs0,i) = K} < clog N - (1 + i) - N9 = (clog N) (N”d * ﬁ> |
| ]

Lemma 19 If X is sparse, then for every v € Gy n,

Prip e Y [j]]=0 <1°iN) :

where the big-O hides a constant dependent on d.

Proof. Similarly to Lemma 14, setting i, = [j/Nl/dJ mod d we obtain

d
f;[veY[j]]:;f;r[A(mj,u,ij):k]l;r[oeym | A (2),0,15) = K
d
clog N 1/d L 1 Ly _ log N
S;—L <N + v ) (veovaty ) =2~ )

]
Taking ¢ = (log N) /\/N we get, by the same proof as for Theorem 15:

Theorem 20 Neglecting a constant dependent on d, for alld > 3

S (G q N1/2—1/d s(GQ q N1/2-1/d
RL ( d,N)= (W>y QL ( d,N)z W
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7 Discussion

Our results highlight what one might call the “unreasonable effectiveness” of Ambainis’ quantum adversary
method [4]. The method takes what appears to be a daunting task—analyzing all possible ways that an
algorithm could gain information from a large set of queries—and reduces this task to the analysis of a single
query (in our case, a query of vertex ’U). This reduction is sufficiently powerful that, although originally
developed for quantum lower bounds, it leads to new classical lower bounds as well.

We now offer some open problems, besides those mentioned in Section 2.

(1)

(2)

3)

Can our Q) (2”/2/n2) lower bound on RLS({0,1}") be improved to (2”/2ﬁ)? Also, can our
Q (Nl/z_l/d/log N) lower bound on RLS (G4 x) be improved to £ (\/N)" This would imply that the

steepest descent algorithm of Proposition 2 is exactly optimal in these cases.

Can we show any lower bound better than 2 (log/N) on randomized query complexity for the 2-D
square grid? The techniques of Section 6.2 fail because the diameter of the grid, v/N, exactly matches
the desired value of L. However, one could try a different snake distribution—for example, a sequence
of (approxirnate) line segments connected at the endpoints, where the angle 8; between the " segment
and the grid boundary is §;_; + & with 1/2 probability and 6;_, — ¢ with 1/2 probability.

Can our lower bounds be generalized to any graph with (say) reasonably good expansion properties?
Most ambitiously, we conjecture the following.

Conjecture 21 For every family of graphs {Gn}ys,, DLS(Gn), RLS(Gy), and QLS (Gn) are all
polynomially related. B

For any total Boolean function f, Beals et al. [7] showed that D (f) = O (Qg (f)6)—that is, the

deterministic and bounded-error quantum query complexities are polynomially related. @ However,
TL.OCAL SEARCH is not total, since a cost function can have many local minima, all of which are valid
outputs. TIf we require a unique local minimum, we obtain a promise problem.

We conjecture that all three problems above can be resolved by upper-bounding € in our Theorem 9.

(4)

(5)

8

Can we close the gap between O (2”/4) and O (2"/3) on the quantum query complexity QLS ({0,1}")?
We conjecture that the upper bound is closer to the truth—but a recent result of Ambainis [5], giving
an O (n2/ 3) quantum algorithm for the element distinctness problem (for which many people thought

O (n3/ 4) was optimal), gives us pause.

Can we obtain other classical lower bounds using analogues of the quantum adversary method? As
pointed out to us by A. Wigderson, Theorems 3 and 5 are reminiscent of a formula-size lower bound
of Krapchenko [18]; perhaps this connection can be made explicit.
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