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Abstract

We consider here a certain modular representation of polynomials. The well-known
modulo 6 representation of polynomial g is just polynomial g + 6e. The 1-a-strong rep-
resentation of g modulo 6 is polynomial g 4+ 3f + 4h, where no two of g, f and h has
common monomials. In some cases the retrieval of g from its 1-a-strong representation is
not hard: e.g., from x; + 3z2 + 4x3 one can get back x; simply by running through the
values of z; on the set {0,1,2,3,4,5}, and noticing that only z; has period 6, (3z5 has
period 2, 4z3 has period 3).

Using this representation, we describe some surprising applications: we show how to
encode z1,Zs,. .., T, into n°) numbers!, and how to retrieve the 1-a-strong represen-
tations of the z;’s from them using simple linear transformations. We show that n x n
matrices can be converted to n°(") x n°1) matrices and from these tiny matrices we can
retrieve similar representations of the original ones, also with linear transformations. We
call this phenomenon a dimension-defying property of 1-a-strong representations. We also
show that a 1-a-strong representation of the matrix-product can be computed with only
n°1) multiplications. We post the following open problem: by using this matrix product
upto O(n?) times (even for different matrices) compute the (exact) matrix product of
two n X n matrices. Solution for this open problem would yield a matrix-multiplication
algorithm with only O(n?*°(1)) multiplications.

We are building here to the results of paper (V. Grolmusz, Computing Elementary
Symmetric Polynomials with a Sub-Polynomial Number of Multiplications, STAM Journal
on Computing, Vol. 32. No. 6.(2003), pp. 1475-1487).

1 Introduction

We consider here a certain modular representation of polynomials. The well-known modulo
6 representation of polynomial g is just any polynomial of the form g + 6e. Note, that a
modulo 6 representation of polynomial g is also a modulo 3 and modulo 2 representation at
the same time. This means, that if we examine the properties of the modulo 6 representations
of polynomials (or, equivalently, polynomials over ring Zg), it is not probable that we get
more interesting properties over Zg than over fields F» or Fj.
Over composite, non-prime-power moduli (say 6), however, we can consider different

representations as well. We will define 1-a-strong representations of polynomials formally in
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!Quantity o(1) here denotes a positive number which goes to 0 as n goes to infinity
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the next section, but now it is enough to say that the 1-a-strong representation of ¢ modulo
6 is a polynomial g + 3f 4+ 4h, where no two of g, f and h has common monomials. The last
restriction is necessary, since otherwise constant 0 would be the 1-a-strong representation
modulo 6 of an arbitrary polynomial g, simply because 0 = g + 3g — 4g.

In some cases the retrieval of g from its 1-a-strong representation is not hard; let us call
this procedure filtering:

Filtering

Suppose, that we know the value of the sum A = x1 + 32 + 4x3 for some fixed x; = a; €
{0,1}, i = 1,2,3, and we would like to learn the value of a;. Now, one can get back the
value of 1 = a1 simply by running through the values of x; = aa; for i = 1,2,3 one after
the other, where . € {0,1,2,3,4,5}, and observing A each time. Obviously, if we learn that
A has period 6, then a; = 1, since only x; may have period 6. (3zo has period 2, 4z3 has
period 3). If we do not observe the period of A to be 6, then a; = 0.

A similar polynomial representation modulo non-prime-power composites was considered
in [Gro03a). There we proved, that a representation (what we call a 0-a-strong representation
in the next section) of the elementary symmetric polynomials can be computed dramatically
faster than over prime moduli. This result plays a main réle in the proofs of the present
work.

1.1 Our Results
1.1.1 “Hyperdense coding”

Let z1,z9,...,2, be a sequence of n variables. Then, using linear transforms modulo 6,
we can compute ¢ = n°1) linear forms of the z;’s, denoted by z1, 2o, ..., z;, such that using
another linear transform to these z;’s, we get back the 1-a-strong representations of the z;’s,
namely

i+ 3(@iy + @iy + -+ + 33,) + 4z + 2+ + T5),

for i =1,2,...,n, where the different indices mean different numbers.

Clearly, such phenomenon is impossible with representations of the form z;+6 ) z;, since
z; + 6> xj, seen modulo 3 is z;, and this would contradict the dimension non-increasing
property of linear transforms (over the 3-element field): clearly, linear forms 2z, z9,..., 2
generates a space of dimension at most ¢, while linear forms 1, zs, ..., z, has dimension n.

Note, that if the values of z1,z9,...,z, are bits, then z;’s are elements of Zg, and the
(z1,%9,...,2n) = (21, 22,...,2) correspondence is not an injection over Zg.

From z; + 6 ) z; it is easy to get back z;: one should just reduce modulo 6. However,
from our representation one can get back the actual z;’s by using filtering, described in the
introduction. Naturally, this phenomenon does not violate obvious information-theoretical
bounds, since in the course of filtering one should several times re-compute the z;’s.

1.1.2 Matrix-results

For n x n matrices X and Y with elements from set {0, 1,2,3,4,5}, our results include:

e The computation of n°(!) x n°1) matrix X’ with elements from set {0,1,2,3,4,5}, such
that from X', one can retrieve the 1-a-strong representation of the n x m matrix X;
here both operations are simple linear transformations.
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e The computation of the 1-a-strong representation of the product matrix XY, with
only n°(!) multiplications, significantly improving our earlier result of computing the
1-a-strong representation of the matrix-product with n2t°(t) multiplications [Gro03b).

1.2 Earlier Results: Superdense Coding

It is one of the first tasks in any undergraduate information theory or computer science course
to show that general n-bit sequences cannot be compressed to a shorter sequence or cannot
be encoded by less than n bits. The proof of these statements are based on the fact that any
injective image of a 2"-element set must contain exactly 2" elements, and 2" elements cannot
be encoded with binary sequences of length less than n.

However, using some fascinating physical phenomena and different models of computation,
superdense coding is possible. Bennet and Wiesner [BW92], using Einstein-Podolski-Rosen
entangled pairs, showed that n classic bits can be encoded by [n/2] quantum bits.

1.3 Earlier Results: Matrix Product

The matrix multiplication is a basic operation in mathematics in applications in almost
every branch of mathematics itself, and also in the science and engineering in general. An
important problem is finding algorithms for fast matrix multiplication. The natural algorithm
for computing the product of two n x n matrices uses n® multiplications. The first, surprising
algorithm for fast matrix multiplication was the recursive method of Strassen [Str69], with
O(n?8') multiplications. After a long line of results, the best known algorithm today was
given by Coppersmith and Winograd [CW90], requiring only O(n?-*76) multiplications. Some
of these methods can be applied successfully in practice for the multiplication of large matrices
[Bai88].

The best lower bounds for the number of needed multiplications are between 2.5n2 and
3n2, depending on the underlying fields (see [B1499], [Bsh89], [Shp01]). A celebrated result of
Raz [Raz02] is an Q(n?logn) lower bound for the number of multiplications, if only bounded
scalar multipliers can be used in the algorithm.

In [Gro03b] we gave an algorithm with n>+°() multiplications for computing the 1-a-
strong representation of the matrix product modulo non-prime power composite numbers
(e.g., 6). The algorithm was an application of a method of computing the representation of
the dot-product of two length-n vectors with only n°() multiplications.

In the present work, we significantly improve the results of [Gro03b], we give an algorithm
for computing the 1-a-strong representation of the product of two n x n matrices with only
n°1) multiplications.

1.3.1 Why do we count only the multiplications?

In algebraic algorithms it is quite usual to count only the multiplications in a computation.
The reason for this is that the multiplication is considered to be a harder operation than
the addition in most practical applications, and moreover, the multiplication is proven to be
harder in most theoretical models of computation.

For example, computing the PARITY is reduced to computing the multiplication of two
n-bit sequences, and, consequently, two n-bit sequences cannot be multiplied on a polynomial-
size, constant-depth Boolean circuit [FSS84], while it is well known, that two n-bit sequences
can be added in such a circuit.
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Another example is the communication complexity [KN97] of the computation of multi-
variable polynomials. Here two players, Alice and Bob, want to co-operatively compute the
value of a 2n-variable polynomial f(z,y) modulo m, where the polynomial f is known for
both players, while z is known only for Alice, and y is known only for Bob. If f is a linear
polynomial, then they can compute f(z,y) with communicating only O(log m) bits: Indeed,
if f(z,y) = X, aiz; + > bjy;, then Alice communicates to Bob the value }°; a;z; mod m,
then Bob will know the value of f(z,y). Similarly, if f(x,y) can be given as the sum of u
products, each with v clauses:

u v
-T y Z H Z Qi Ti + b];u/yja
: : ‘7

then f(z,y) can be computed with O(uvlogm) bits of communication. This example also
shows that in communication complexity the multiplications may be harder than the addi-
tions. Chor and Goldreich [CG85] proved that even approximating the dot-product function
flz,y) = Y i q ziy; needs Q(n) bits of communication; consequently, multiplications are
really hard in the communication model.

1.4 Earlier Results: Matrix Storage

There are lots of results concerning sparse matrix-storage and operations. Here we do not
assume anything about the sparsity of our input matrices.

We should mention here the works of Frieze and Kannan [FK99] and Frieze, Kannan and
Vempala [FKV98] on approximations of large matrices with small rank matrices, having short
descriptions, with very fast algorithms.

Our results give a fast way to compress large matrices, but we cannot retrieve the same
matrix from this much smaller matrix, just the 1-a-strong representation of the entries of the
matrix. If we need to know the exact values of the entries, then we should perform some
filtering procedures, similar to the example in the Introduction.

2 Preliminaries

2.1 A-strong representations

In [Gro03a] we gave the definition of the a-strong (i.e., alternative-strong) representation of
polynomials. Here we define the alternative, and the 0-a-strong and the 1-a-strong represen-
tations of polynomials. Note that the 0-a-strong representation, defined here, coincides with
the a-strong representation of the paper [Gro03a).

Note also, that for prime or prime-power moduli, polynomials and their representations
(defined below), coincide. Perhaps that is the reason that such representations were not
defined before.

Definition 1 Let m be a composite number m = p$'ps? - - pzl. Let Z,, denote the ring of
modulo m integers. Let f be a polynomial of n variables over Zy,:

f(.’I,'l,:IIQ,...,.’,I}n) = Z arxy,

I€{0,1,2,...,d}"
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where ar € Zm, z1 = [}y z;", where I = {v1,va,...,vn} € {0,1,2,...,d}". Then we say
that

9(x1,T9, ..., Tp) = Z brzy,
1€{0,1,2,....d}"

18 an
e alternative representation of f modulo m, if

VIe{l,2,...,d}" 3j€{1,2,...,£}: a;=b; (modp});

e (-a-strong representation of f modulo m, if it is an alternative representation, and,
furthermore, if for some i, a # by (mod pi?), then by =0 (mod p5*);

e l-a-strong representation of f modulo m, if it is an alternative representation, and,
furthermore, if for some i, ar Z by (mod pi*), then af =0 (mod m);

Example 2 Let m = 6, and let f(x1,%2,%3) = x1T2 + Tox3 + T123, then
g9(x1,22,,x3) = 3x1T2 + 42073 + T123
is a 0-a-strong representation of f modulo 6;
g(x1, 9, ,x3) = 2129 + Toxs + T 23 + 37 + 4y
is a 1-a-strong representation of f modulo 6;
g(z1,x2,,x3) = 3r172 + 42973 + T 123 + 3$% + 4y
is an alternative representation modulo 6.

In other words, for modulus 6, in the alternative representation, each coefficient is correct
either modulo 2 or modulo 3, but not necessarily both.

In the 0-a-strong representation, the 0 coefficients are always correct both modulo 2 and
3, the non-zeroes are allowed to be correct either modulo 2 or 3, and if they are not correct
modulo one of them, say 2, then they should be 0 mod 2.

In the 1-a-strong representation, the non-zero coefficients of f are correct for both moduli

in g, but the zero coefficients of f can be non-zero either modulo 2 or modulo 3 in g, but not
both.

Example 3 Let m = 6. Then 0 = zy — 3zy + 2zy is not a 1-a-strong representation of xy.
Similarly, polynomial f + 2g + 3h is a mod 6 1-a-strong representation of polynomial f if
and only if g and h do not have common monomials with f, and g does not have common
monomials with h.
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2.2 Previous results for a-strong representations

We considered elementary symmetric polynomials

k
Sn= 2. Il=
1c{1,2,....n} i€l
=

in [Gro03a], and proved that for constant k’s, 0-a-strong representations of elementary sym-
metric polynomials S¥ can be computed dramatically faster over non-prime-power composites
than over primes: we gave a depth-3 multilinear arithmetic circuit with sub-polynomial num-
ber of multiplications (i.e., n®,Ve > 0), while over fields or prime moduli computing these
polynomials on depth-3 multilinear circuits needs polynomial (i.e., n®(!)) multiplications.
Here depth-3 multi-linear, homogeneous arithmetic circuits computes polynomials of the

form
t £ n
S I D ajwiwi (1)
j=lk=11i=1

These circuits are sometimes called XIIX circuits.
In [Gro03a], we proved the following theorem:

Theorem 4 ([Gro03a]) Let m = pipa, where p1 # pa are primes. Then a degree-2 0-a-
strong representation of
i,5€{1,2,..., n}
i#]
modulo m:

> aymiy; (2)
i,5€{1,2,..., n}
i#j

can be computed on a bilinear LTI circuit of size exp(O(y/Tog nloglogn)) = n°M. Moreover,
this representation satisfies that Vi # j : a;; = aj;.

a

Corollary 5 The 0-a-strong representation (2) can be computed using exp(O(y/lognloglogn)) =
n°®) maultiplications.

The following result is the basis of our theorems in the present paper.

Theorem 6 ([Gro03b]) Let m = pips, where p1 # pa are primes. Then a degree-2, 1-a-
strong representation of the dot-product f(z1,%2,...,%Tn,Y1,Y2,---,Yn) = iy TiYi can be

computed with t = exp(O(y/lognloglogn)) multiplications of the form

2 (3 (Ero

i=1
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Proof: Let g(z,y) = g(x1,%2,.-.,Tn,Y1,Y2,---,Yn) be the degree-2 polynomial from The-
orem 8 which is a 0-a-strong representation of S2(z,y). Then consider polynomial

hz,y) = (@1 +zo+ ...+ z)(y1 +y2+ .. +yn) — g(z,y) (5)

In h(z,y), the coefficients of monomials z;y; are all 1’s modulo m, and the coefficients of
monomials z;y;, for i # j are 0 at least for one prime divisor of m, and if it is not 0 for some
prime divisor, then it is 1. Consequently, by Definition 1, hA(z, y) is a 1-a-strong representation
of the dot-product f(z,y). O

The following definition is a natural generalization of the a-strong representations for
matrices:

Definition 7 Let A = {a;;} and B = {b;;} be two nxn matrices over Zy,. Then C = {c;;} is
the alternative (1-a-strong, 0-a-strong) representation of the matriz A if for 1 <1i,5 < n, the
polynomial ¢;j of n? variables {a;;} is an alternative (1-a-strong, 0-a-strong) representation
of polynomial a;j.

Consequently, we say that matric D = {d;;} is an alternative (I1-a-strong, 0-a-strong)
representation of the product-matriz AB, if for 1 <1,j <n, d;j is an alternative (1-a-strong,
0-a-strong) representation of polynomial Y ;_, a;pbx; modulo m, respectively.

In [Gro03b] we proved by n? applications of Theorem 6 that the 1-a-strong representa-
tions modulo 6 of the product of two n X n can be computed with n2t°() multiplications.
Here we significantly improve this result: we show that the l-a-strong representation can
be computed by n°) multiplications. Moreover, the computation can be performed on a
depth-3 homogeneous, bi-linear EII¥ circuit (bi-linear means that £ = 2 in (1)).

Note, that we emphasize that the computation can be performed on such a circuit because
this circuit is perhaps the simplest model of computation in which matrix-product can be
computed; the main result is that a certain representation of the matrix product can be
computed by so few multiplications.

3 Our Result for Hyperdense Coding

For simplicity, we prove our result here only for modulus 6; for other moduli, the poof is very
similar, and is given in the full version of this work.

If we do not say otherwise from now on, the computations are modulo 6.

By Theorem 6, a 1-a-strong representation of the dot-product >~7' ; z;y; can be computed

as n t n n
> ziyi + 3g(x,y) + 4h(z,y) =) (Z bij-Ti) <Z Cijyi> (6)
j=1 \i=1 i=1

=1

where b;;,c;j € {0,1} and where both g and A has the following form: > i4j GijTiYj, aij mod

6 € {0,1}, and no term z;y; appears in both f and g; and t = exp(O(y/lognloglogn)) = ne),
Now, let us observe that for each j = 1,2,...,1,

n
zj =Y bijz; (7)
iz

is a linear combination of variables x;.
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Let these t = n°(!) linear forms be the encoding of the n 0-1 variable zs. The decoding
is done also from (6): the 1-a-strong representation of z; can be computed by plugging in
i

. =
y' =(0,0,...,71,0,...,0).

Obviously, on the LHS of (6) we get the 1-a-strong representation of z;, and on the RHS we
get a linear combination of the z;’s of (7).

4 QOur Result for Matrix Compression

If we plug in vectors instead of just variables in these homogeneous linear forms, then we will
get linear combinations of the vectors.

Now, let X denote an n X n matrix with entries as variables {z;;}, and let z; denote its
i*® column, for ¢ = 1,2,...,n and let B = {b;;}, an n X ¢ matrix of (6) and let C = {¢;;} an
n X t matrix of (6).

The columns of the n Xt matrix-product X B gives the linear combinations specified by (7).
However, X BCT is an n X n matrix, such that its column v is equal to z, +3g, (X) + 4h, (X)
where g, (X) and h,u(X) are linear combinations of the columns of X such that none of
which contains z, and they do not contain the same column with non-zero coefficients. The
proof of this fact is obvious from (6), observing that plugging in again

v

=
y’ =(0,0,...,71,0,...,0)

we simply generate some linear combinations of the columns of matrix X B, and the coefficient
in these combinations are nothing else that the rows of C.
Consequently, we proved the following implication of Theorem 6:

Theorem 8 There exist effectively computable constant n x t matrices B and C, such that
for any n x n matriz X = {z;;}, XBCT is a 1-a-strong representation of matriz X modulo
m, where t is equal to quantity (4), that is, t = n°®),

The dimension-defying implication of Theorem 8 is that X is an n X n matrix, X B is an
n x n°1) matrix, and X BCT is again an n x n matrix, all over the 6 element ring.
An easy corollary of Theorem 8, that

Corollary 9 With the notations of Theorem 8, CBTX is a 1-a-strong representation of
matriz X modulo m, where t is equal to formula (4), that is, t = no)

Our main result in this section is the following

Theorem 10 For any non-prime-power m > 1, there exist effectively computable constant
n X t matrices B and C, such that for any matric X = {z;;}, BTXB is a t x t matriz,
where t is equal to quantity (4), that is, t = n°Y) | and matric CBTXBCT is a 1-a-strong
representation of matriz X modulo m.

The dimension-defying implication of Theorem 10 is that from the n X n matrix X with
simple linear transformations we make the tiny n°() x n°®) matrix BT X B, and from this,
again with simple linear transformations, n x n matrix CBT X BCT | where it is a 1-a-strong
representation of matrix X modulo m.
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Proof:  From Theorem 8, XBC" is a 1-a-strong representation of matrix X modulo m.
Moreover, every column of X BC” is a linear combination of the columns of X. By Corollary
9, for any n x n' Y, CBTY is a l-a-strong representation of matrix ¥ modulo m, and, every
row of CBTY is a linear combination of the rows of Y. Plugging in Y = XBCT, we get that
the matrix CBT XBCT is a l-a-strong representation of the matrix X BCT, moreover, its
rows are linear combinations of the rows of X BCT, that is, CBT X BC? is also a 1-a-strong
representation of the original X. O

5 Our result for matrix multiplication

5.1 Preliminaries

We need to define a sort of generalization of the matrix-product:

Definition 11 f: R?" — R is a homogeneous bilinear function over ring R if

@1, D0, B Y1, Y2, Un) = D GiTiYj
1<i,j<n
for some a; j € R. Let U = {u;j} be an u X n matriz over ring R, and let V = {vye} be an
n X v matriz over R. Then U(f)V denotes the u x v matriz over R with entries w;s, where

wig = f(Uit, Wiy - -+, Win, V1e, V205« - -, Upe)-

Note, that if f is the dot-product, then U(f)V is just the simple matrix-product.
First we need a simple lemma, stating that the associativity of the matrix multiplication
is satisfied also for the “strange” matrix-multiplication defined in Definition 11:

Lemma 12 Let
f(‘rlax?a"'amnaylay?a'"7yn) = Z Q35 T3Y4

1<i,j<n
and let
9(T1, T2y Ty Y1 Y2y - Yo) = D bijTiy;
1<4,j<v
be homogeneous bilinear functions over the ring R. Let U = {u;;} be an u x n matriz,

and let V = {vre} be an n x v matriz, and W = {w;;} be a v X w matriz over R, where
u,m,w are positive integers. Then (U(f)V) (¢9)W = U(f) (V(9)W), that is, the “strange”
matriz-multiplication, given in Definition 11, is associative.

Proof 1: The proof is obvious from the homogeneous bi-linearity of f and g.
Proof 2: We also give a more detailed proof for the lemma. The entry of row 7 and column
k of matrix U(f)V can be written as

Z Aot Us 2 Vi -
2.t

Consequently, the entry in row ¢ and column r of (U(f)V)(g)W is

D bke | D azuizvn | wer
k.l 2,
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On the other hand, entry (¢,7) in V(g)W is

> brevewer,
k.l

and entry (i,7) in U(f)(V(g)W) is

Z At Usjy Z brevikwer,
2t k.l

and this proves our statement.O
Now we are in the position of stating and proving our main theorem for matrix multipli-
cations:

Theorem 13 Let X and Y two n xXn matrices, and let m > 1 be a non-prime-power integer.
Then the 1-a-strong representation of the matriz-product XY can be computed with t = no®)
multiplication, where t is given by (4).

Proof:  We use Theorem 8 and Corollary 9. Let us consider ¢ x n matrix BY'X and t x n
matrix Y B; these matrices can be computed without any multiplications from X and Y (we

do not count multiplications by constants). Let h(z,y) be the homogeneous bi-linear function
(5). Then
BTX(h)YB

can be computed with n°() multiplications (Note, that because of Lemma 12, the associativity
holds). Now compute matrix

CBTX(f)YBC" = (CB™Y)(f)(YBC")

without any further (non-constant) multiplication. By Theorem 8 and Corollary 9, CBT X
and YBCT is a 1-a-strong representations of X and Y respectively, and they are the linear
combinations of the rows of X and columns of Y, respectively. Consequently, using Theorem
6, CBTX(f)YBCT is a 1-a-strong representation of XY. O

6 Open Problem
It is a great challenge to prove or disprove the computability of the matrix product with only
n2t°() multiplication. We post here the following problem:

By using our computation of the 1-a-strong representation of the matrix product upto O(n?)
times (even for different matrices), compute the (exact, not the representation) matrix prod-
uct of two n X n matrices.

Solution for this open problem would yield a matrix-multiplication algorithm with only
O(n?t°M) multiplications.
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