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Abstract

We consider here a certain modular representation of multi-linear polynomials. The modulo 6
representation of polynomial g is just any polynomial g + 6e. The 1-a-strong representation of g
modulo 6 is polynomial g + 3f + 4h, where no two of g, f and h has common monomials.

Using this representation, we describe some surprising applications: we show that the n homo-
geneous linear polynomials z1, s, ..., Z, can be linearly transformed to n°") linear polynomials,’
and from these linear polynomials we get back the 1-a-strong representations of the original ones,
also with linear transformations. We define Probabilistic Memory Cells (PMC’s), and show how
to encode n bits into n PMC’s, transform n PMC’s to n°(!) PMC’s (we call this form Hyperdense
Coding), and we show how one can transform back these n°(Y) PMC’s to n PMC’s, and from these
we can get back the original bits, while from the hyperdense form we could have got back only
n°(") bits. We also show that n x n matrices can be converted to n°) x n°(!) matrices and from
these tiny matrices we can retrieve 1-a-strong representations of the original ones, also with linear
transformations. Applying PMC’s to this case will return the original matrix, and not only the
representation.

We also show that a 1-a-strong representation of the matrix-product can be computed with only
n°) multiplications, significantly improving our earlier result.

1 Introduction

Let f be an n-variable, multi-linear polynomial (that is, every variable appears on the power of
0 or 1) with integer coefficients, for example f(z1,z2,23) = 34z122 + 23z12923. For any positive
integer m > 1, we say that multi-linear polynomial g is a mod m representation of polynomial
f, if the corresponding coefficients of the two polynomials are congruent modulo m; for example,
g9(z1, T2, 23) = 4129 + 3112223 + 522 is @ mod 5 representation of the f in the previous example. If
we choose a non-prime-power, composite modulus, say m = 6, then the modulo 6 representation of
polynomial f is also a modulo 3 and modulo 2 representation at the same time. This means, that if we
examine the properties of the modulo 6 representations of multi-linear polynomials (or, equivalently,
multi-linear polynomials over ring Zg), it is not probable that we get more interesting properties over
Zg than over fields Fy or Fj.

Over composite, non-prime-power moduli (say 6), however, we can consider different representa-
tions as well. We will define 1-a-strong representations of polynomials formally in the next section,
but now it is enough to say that the 1-a-strong representation of multi-linear polynomial f modulo 6
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is a polynomial f + 3g + 4h, where no two of g, f and h have common monomials. The last restriction
is necessary, since otherwise the constant polynomial 0 would be the 1-a-strong representation modulo
6 of an arbitrary polynomial f, simply because 0 = f + 3f — 4f.

A similar polynomial representation modulo non-prime-power composites was considered in
[Gro03a]. There we proved, that a representation (what we call a 0-a-strong representation in the
next section) of the elementary symmetric polynomials can be computed dramatically faster than over
prime moduli. This result plays a main réle in the proofs of the present work.

1.1 On the motivation

It is pretty natural to ask about the motivation of examining such a strange-looking representation
of polynomials. Before giving the motivation, let us recall that quantum computers, proposed by
Feynman [Fey82] in 1981 for performing quantum-mechanical computations for the description of
quantum-systems, for more than a decade draw the interest of quantum-physicists only. After the
work of Deutsch [Deu85], Deutsch and Jozsa [DJ92], Simon [Sim94a, Sim94b]|, Bernstein and Vazirani
[BV93], it was the break-through results of Shor [Sho97] and Grover [Gro96] which moved the area
into the mainstream computer science. The reason for this was not the simplicity, the clarity of the
definition of the quantum computers, or the feasibility of constructing quantum computers, but the
fast algorithms which solve problems that are not believed to be in P (in case of [Sho97]), or for which
do not exist sub-linear algorithms on Turing machines (in case of [Gro96]).

That means, that the mere existence of fast and striking algorithms in a model of computation
demonstrates the viability of the model itself, despite the serious problems (e.g., decoherence) and
strong scepticism in — even the theoretical — constructibility of computing devices in the model.

The motivation of our examination of the 1-a-strong representation of the polynomials is definitely
the following list of results in the present work:

1.1.1 Ouwur Results:

Let m be a non-prime power composite constant (that is, it is constant in n, e.g., m = 6).

(a) From the n variables zi,z9,...,2,, (each seen as a l-variable linear function,) we compute
t = n°M linear functions z1, 22, . . . , z, and from these ¢ linear functions again n linear functions
zh,xh, ..., o, such that z} is a 1-a-strong representation of linear function (i.e., variable) z;, for
1 =1,2,...,n. Both computations are linear transformations.

(b) We define Probabilistic Memory Cells (PMC’s). By an observation of a PMC one can get a
constant amount of information. We encode n bits into n PMC’s: one bit into one PMC, and we
use the first linear transformation in (a) to transform the n PMC’s to ¢ = n°() PM(C’s (observing
these ¢t PMC’s would yield only O(n°") bits of information), and then we transform these ¢
PMC'’s back to n PMC’s, also with a linear transformation, and the observation of the resulting
n PMC’s will yield the original n bits. We call this phenomenon hyperdense coding modulo m.

(c) For any n x n matrix X with elements from set Z,,, we compute an n°!) x n°(t) matrix Z
with elements from set Z,,, such that from Z, one can retrieve the 1-a-strong representation of
the n x m matrix X; here both operations (the computing and the retrieval) are simple linear
transformations. Note, that this means that with n = N'%0, even an N'% x N190 matrix X can
be converted to '‘VN x '%N matrix Z, and back to an N0 x N100 matrix X’ with linear
transformations, for large enough N.



(d) Using Probabilistic Memory Cells for storing each entry of the binary matrix X in (c), matrix
Z can be stored with n°) PMC’s, from which we can compute the original n X n matrix X,
by using the second linear transform of (c) and observations of the resulting n? PMC’s. We call
this phenomenon the dimension defying property of the 1-a-strong representation.

(e) For n x n matrices X and Y, with elements from set Z,,, we compute the 1-a-strong repre-
sentation of the product matrix XY, with only n°() multiplications, significantly improving
our earlier result of computing the 1-a-strong representation of the matrix-product with n2to(1)
multiplications [Gro03b].

2 Preliminaries

2.1 A-strong representations

In [Gro03a] we gave the definition of the a-strong (i.e., alternative-strong) representation of poly-
nomials. Here we define the alternative, and the 0-a-strong and the 1-a-strong representations of
polynomials. Note that the 0-a-strong representation, defined here, coincides with the a-strong repre-
sentation of the paper [Gro03a].

Note also, that for prime or prime-power moduli, polynomials and their representations (defined
below), coincide. This fact also motivates the examination of such representations.

Definition 1 Let m be a composite number with prime-factorization m = p'p3? -+ p;t. Let Zp,
denote the ring of modulo m integers. Let f be a multi-linear polynomial of n variables over Z,,:

flx1,29,...,2,) = Z arxy,

Ic{1,2,...,n}
where ar € Zy, 1 = [l;cr ©i. Then we say that
g(z1, 22, ..., Tp) = Z brxy,
Ic{1,2,...,n}

18 an
e alternative representation of f modulo m, if

VIC{1,2,...,n} 3j€{L,2,....¢}: ar=br (modp]);

e (-a-strong representation of f modulo m, if it is an alternative representation, and, furthermore,
if for some i, ar # by (mod p;?), then by =0 (mod p;’);

e l-a-strong representation of f modulo m, if it is an alternative representation, and, furthermore,
if for some i, ar # by (mod p;*), then ay =0 (mod m);

Example 2 Let m = 6, and let f(x1,%9,73) = 122 + Tox3 + T123, then g(x1,x9,,%3) = 3x1T9 +
dzox3+x173 is a 0-a-strong representation of f modulo 6; g(x1, T2, ,23) = T1To+Tox3+T123+357 +419
is a 1-a-strong representation of f modulo 6; g(z1,x9,,23) = 3x122 + 4x923 + T123 + 33:% + 4z is an
alternative representation modulo 6.



In other words, for modulus 6, in the alternative representation, each coefficient is correct either
modulo 2 or modulo 3, but not necessarily both.

In the 0-a-strong representation, the 0 coefficients are always correct both modulo 2 and 3, the
non-zeroes are allowed to be correct either modulo 2 or 3, and if they are not correct modulo one of
them, say 2, then they should be 0 mod 2. That is, coefficient 1 can be represented by 1, 3 or 4, and
nothing else.

In the 1-a-strong representation, the non-zero coeflicients of f are correct for both moduli in g,
but the zero coefficients of f can be non-zero either modulo 2 or modulo 3 in g, but not both.

Example 3 Let m = 6. Then 0 = zy —3zy+ 2zy is not a I1-a-strong representation of xy. Similarly,
polynomial f + 29+ 3h is a mod 6 1-a-strong representation of polynomial f if and only if g and h do
not have common monomials with f, and g does not have common monomials with h.

2.2 Previous results for a-strong representations

We considered elementary symmetric polynomials

So= > Il=

ICc{1,2,..., n} (€1
|I|=k

in [Gro03a], and proved that for constant k’s, 0-a-strong representations of elementary symmetric
polynomials S¥ can be computed dramatically faster over non-prime-power composites than over
primes.

In [Gro03a], we proved the following theorem:

Theorem 4 ([Gro03a)]) Let the prime factorization of positive integer m be m = p$'ps? - - - py¢, where
£ > 1. Then a degree-2 0-a-strong representation of

S%(.’L‘,y) = Z ZiYj, (1)

$§€{1,2,...,n}
i

modulo m:

> aiyTiy; (2)
i,7€{1,2,...,n}
i#]
can be computed as the following product:

t—1 n n
<Z bﬁ'ﬂi) (Z Ci'j?/i>
j=1 \i=1 i=1

where t = exp(O(\e/log n(loglogn)¢—1)) = n°1). Moreover, this representation satisfies that Vi # j :

aij = Q.

O
The following result is the basis of our theorems in the present paper.



Theorem 5 ([Gro03b]) Let m = p{'p5*-- - p}t, where £ > 1, and pi1,pa,...,pe are primes. Then a
degree-2, 1-a-strong representation of the dot-product f(x1,T2,...,Tn,Y1,Y2,---,Yn) = Doiq TilYi CaAN

be computed with t = exp(O(\l/log n(loglogn)t=1)) = n°Y) multiplications of the form

Z <Z bzﬂz) (Z_il Cz‘j?h‘) (3)

j=1

Proof: Let g(z,y) = g(z1,22,---,Tn,Y1,Y2,---,Yn) be the degree-2 polynomial from Theorem 4
which is a 0-a-strong representation of S2(x,%y). Then consider polynomial

h(z,y) = (z1 + T2+ ...+ 2n)(y1 + Y2 + - +yn) — 9(z, 7). (4)

In h(z,y), the coefficients of monomials z;y; are all 1’s modulo m, and the coefficients of monomials
z;yj, for i # j are 0 at least for one prime-power divisor of m, and if it is not 0 for some prime divisor,
then it is 1. Consequently, by Definition 1, h(z,y) is a 1l-a-strong representation of the dot-product

f(z,y). O

3 Dimension-Defying: Linear Functions

For simplicity, let m = 6.
By Theorem 5, a 1-a-strong representation of the dot-product Y i ; z;y; can be computed as

t n n
chzyz +3g(z,y) + 4h(z,y) = D ( bijiﬂi) (Z Cij%’) (5)
i=1 7j=1 \i=1 i=1

where b;;, c;; € {0,1} and where both g and h has the following form: 37, ., a;;7;y;, and no term z;y;

appears in both f and g; and t = exp(O(v/lognloglogn)) = n°Y). Note that every monomial ziY;,
1 # j has really a coefficient which is a multiple of 3 or 4, since 1-4=3 and 1-4=3 modulo 6.
Now, let us observe that for each j =1,2,...,¢,

n
zj =Y bijx; (6)
=1

is a linear combination of variables x;.
Let these ¢ = n°() linear forms be the encoding of the n 0-1 variables zts. The decoding is done
also from (5): the 1-a-strong representation of x; can be computed by plugging in

y' =(0,0,...,”1,0,...,0).

Obviously, on the LHS of (5) we get the 1-a-strong representation of z;, and on the RHS we get a
linear combination of the z;’s of (6).

By matrix-notation, if = is a length-n vector, and B = {b;;} is an n x t matrix with b;;’s given in
(5), and C' = {c¢;j} is an n x ¢ matrix with ¢;;’s given in (5), then we can write that

z=21B, and ' = 20T = zBCT.

Consequently, z' = BCT is a length-n vector, such that for i = 1,2,...,n, & = z; + 3g;(z) + 4h;(z)
where g(z) and h(z) are integer linear combinations (that is, homogeneous linear functions) of the



coordinates of x such that none of which contains z; and they do not contain the same z; with non-zero
coefficients. The proof of this fact is obvious from (5). It is easy to see that we proved the following
Theorem (stating for general m this time):

Theorem 6 For any non-prime-power positive integer m, and positive integer n, there exist effectively
computable constant n x t matrices B and C over Zny,, with t = n°Y, such that for any wvector

z = (z1,22,...,%,) with variables as coordinates, the coordinate i of the length-n vector xBC is a
1-a-strong representation of polynomial x; modulo m, for i =1,2,...,n.
O

Note, that zB has t coordinates (linear functions), while zBCT has again n coordinates (linear
functions). Note that similar representation is impossible with m prime and ¢ < n.
For an application of this striking observation we need the definition of Probabilistic Memory Cells.

4 Probabilistic Memory

The words ”probabilistic” and "memory” are rarely mixed well: a probabilistically behaving memory
element — typically — is not desirable in any computer. Here we consider 1-0 step functions on the real
interval [0, 1], describing some physical object changing its state from 1 to 0 in a random point of the
interval [0,1]. We assume that the distribution of this point is uniform in the the real interval [0, 1].
We also assume that the distribution of these random points are independent. The randomness will
assure us that with high probability (more exactly, with probability 1) no two different functions have
the state-change at the same moment. We intend to use integer linear combinations of these functions
for dense data storage. The formal definition is as follows:

Definition 7 An m-Probabilistic Memory Cell (m-PMC in short) is a step-function p : [0,1] = Z,,
such that p(i)~!, fori =0,1,...,m—1, is a finite union of subintervals of the interval [0,1]. a € [0,1] is
a step-point of p if limy, p # lim_, p. The step-value in step-point a is equal to lim, p—lim_, p modulo
m. An m-PMC is simple, if there exists an a € [0, 1] such that p~1(1) = [0, a], and p~1(0) = (a,1]. A
collection of m-PMC’s p1,pa, ..., pn is called a proper-(n,m)-PMC, if

o cvery p; is a simple m-PMC, and
o for all i # j, the step-points of p; and p; differ.

The observation operator O(p) returns the (un-ordered) set of step-values, modulo m, in all the step-
points of m-PMC p, that is, O(p) C {0,1,...,m — 1}, for any m-PMC p.

Note, that the set of the m-PMC’s forms a module over the integer ring Z,,. Note also, that the
set of step-points of an integer linear combination of several m-PMC’s is a subset of the union of the
step-points of the individual PMC’s.

Fact. If the step-points are distributed uniformly and independently in each of the n simple m-PMC’s,
then their collection will form a proper-(n, m)-PMC with probability 1.

This is the reason that the word “Probabilistic” appears in Definition 7.

Example 1: On Figure 1, the linear combination of simple PMC’s p and &, 2p + 3£ is also a PMC,
and O(2p + 3¢) = {—2,—-3} = {4,3}, with m = 6.
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Figure 1: Linear combination of PMC’s p and &.

Example 2: The sum of the members of the proper-(n,6)-PMC pq, po,...,p, is also a 6-PMC
€= S0, py, and dlearly, O(€) = {5).

Motivation: We defined PMC'’s in order to get applications for our main results in this work. We do
not examine the feasibility of that PMC’s in the physical world, but we imagine a PMC as a physical
object with m inner states changing in time (corresponding to the interval [0,1]), but we can observe
only the change of that inner states (and not the identities of the states). For example, we can observe
the wave-lengths (or spectrum) of the photons emitted by that physical object in the state-change.
Note, that during an observation we are not measuring the multiplicity, the timing, or any pattern
of the change, just the set of differences of the states, modulo m. Consequently, observing any PMC
returns a subset of set {0,1,...,m — 1}, that is, for constant m we get information, encodeable with
a constant number of bits.

5 Hyperdense Coding

Let hq,ho,...,hy, be n bits. Let p1,p2,...,pn be a proper (n,6) PMC. Now define z; = h;p;, for
i=1,2,...,n, and let z = (z1,z2,...,z,). Clearly, the z;’s are also PMC’s. Now, let us use matrices
B and C from Theorem 6. Let z = 2B be a vector, and each of the t = n°}) coordinates of it is a
PMC. Note, that observing any coordinate of z yields only O(1) bits of information, O(n°(")) in total.
However, if we do not observe the coordinates of z, but instead of that we apply the linear transform
CT to it, then we would get back the 1-a-strong representation of polynomials z; in each coordinate of
20T = zBCT in case of variables as z}s, that is: z} = z; + 3g;(z) + 4h;(z). But now we have PMC'’s
instead of linear functions.
What happens if we observe z? Clearly, for m = 6,

hi =1 <= 5¢€ O(z}),

since in case of h; = 0 every step-value is a multiple of 2 or 3. That means that by observing the n



PMC’s in the coordinates of zCT = zBCT, we get back the n bits of ki, ho, ..., hy.

Note, that the ¢ coordinates of z also contained the information on the n input-bits, but with
observations we were not able to recover it. We call z the hyperdense coding of bits hi, ho, ..., hy,.
Consequently, we have proved (again stating for general m):

Theorem 8 For any non-prime-power positive integer m, and positive integer n, there exist effectively
computable constant n x t matrices B and C over Zp,, with t = n°Y, such that for any bit-sequence
hi,ho, ..., hy can be encoded into n m-PMC’s x = (x1,%2,...,%y,), and these m-PMC’s can be linearly
transformed into t m-PM(C’s z = xzB, and these PMC(C’s can be linearly transformed to n PMC(C’s
z! = 2CT = £BCT, such that the observation of the PMC’s in the coordinates of «' yields the original
values of hi,ha, ..., hy.

O

Note, that in a completely different model, Bennet and Wiesner [BW92], using Einstein-Podolski-
Rosen entangled pairs, showed that n classic bits can be encoded by [n/2] quantum bits. They called
their result superdense coding.

6 Our Result for Matrix Compression

Definition 9 Let X = {z;;} be an n x n matriz with one-variable homogeneous linear functions (that
18, xgjs) as entries. Then'Y = {y,;;} is a 1-a-strong representation of the matriz X modulo m if for
1 <4,5 < n, the polynomial y;; of n? variables {Ty,} is a 1-a-strong representation of polynomial Tij
modulo m.

If we plug in column-vectors instead of just variables in the homogeneous linear forms of Theorem
6, then we will get linear combinations of the column-vectors. Consequently, we proved the following
implication of Theorem 5:

Theorem 10 For any non-prime-power positive integer m, and positive integer n, there exist effec-
tively computable constant n x t matrices B and C, such that for any n x n matrizc X = {z;;}, XBCT
is a 1-a-strong representation of matriz X modulo m, where t = n°).

The dimension-defying implication of Theorem 10 is that X is an n x n matrix, X B is an n x n°(!)
matrix, and X BCT is again an n x n matrix.
An easy corollary of Theorem 10, that

Corollary 11 With the notations of Theorem 10, CBT X is a 1-a-strong representation of matriz X
modulo m, where t = n°®).

Our main result in this section is the following implication of Corollary 11 and Theorem 10:

Theorem 12 For any non-prime-power m > 1, there exist effectively computable constant n X t
matrices B and C, such that for any matriz X = {z;;}, BTXB is a t x t matriz, where t = n°Y, and
matriz CBT XBC" is a 1-a-strong representation of matriz X modulo m.

The dimension-defying implication of Theorem 12 is that from the n X n matrix X with simple
linear transformations we make the tiny n°(1) x n°(!) matrix BT X B, and from this, again with simple
linear transformations, n x n matrix CBT X BCT, where it is a 1-a-strong representation of matrix X
modulo m.



7 Dimension Defying

Similarly as in Section 5, where we changed our result from linear functions to numbers with using
PMC’s, now we repeat the same method.

Theorem 13 For any non-prime-power m > 1, and for any positive integer n, there exist effectively
computable constant n x t matrices B and C, such that any H = {h;;} a 0-1 n X n matriz can be
encoded into an n X n matriz X = {z;;} with n? PMC’s as entries, applying two linear transforms
to this matriz we get an t x t matriz BT X B which contains t> m-PMC’s, and applying two further
linear transforms, we get the n x n matrizc CBT X BCT', with n> PMC’s as entries, whose observation
returns the original 0-1 values of the matriz H.

Proof:  Let pi1,p12,.-.,pnn be a proper (n?,m)-PMC, and let us define the z;; = h;jp;;. Clearly,
the entries of CBT X BCT are 1-a-strong representations of ngs, so by observing its (7,7) entry, z;j
the following holds:

hij =1<4= m-1¢ O(.’II;])

a

8 Our result for matrix multiplication

The matrix multiplication is a basic operation in mathematics in applications in almost every branch of
mathematics itself, and also in the science and engineering in general. An important problem is finding
algorithms for fast matrix multiplication. The natural algorithm for computing the product of two
n X n matrices uses n® multiplications. The first, surprising algorithm for fast matrix multiplication
was the recursive method of Strassen [Str69], with O(n?8!) multiplications. After a long line of
results, the best known algorithm today was given by Coppersmith and Winograd [CW90], requiring
only O(n?37%) multiplications. Some of these methods can be applied successfully in practice for the
multiplication of large matrices [Bai88].

The best lower bounds for the number of needed multiplications are between 2.5n? and 3n?,
depending on the underlying fields (see [Bl499], [Bsh89], [Shp01]). A result of Raz [Raz02] gives an
Q(n?logn) lower bound for the number of multiplications, if only bounded scalar multipliers can be
used in the algorithm.

In [Gro03b] we gave an algorithm with n2+e(1) multiplications for computing the 1-a-strong repre-
sentation of the matrix product modulo non-prime power composite numbers (e.g., 6). The algorithm
was an application of a method of computing a representation of the dot-product of two length-n
vectors with only n°() multiplications.

In the present work, we significantly improve the results of [Gro03b], we give an algorithm for
computing the 1-a-strong representation of the product of two n X n matrices with only n°(!) multi-
plications.

Definition 14 Let X = {z;;} and Y = {y;;} be two n x n matrices with 2n?-variable homogeneous
linear functions (that is, J;;js and yéjs as entries. We say that matriz V = {v;;} is a I-a-strong
representation of the product-matriz XY, if for 1 < 1i,5 < n, v, as a 2n2-variable polynomial, is a

1-a-strong representation of polynomial Y }_| T;ryx; modulo m.

Note, that this definition is not implied by Definition 9. We need to define a sort of generalization
of the matrix-product:



Definition 15 f: R?™ — R is a homogeneous bilinear function over ring R if

f("I"la'TQa"'amnaylay%"wyn) = Z ;LY
1<i,7<n

for some a;; € R. Let U = {u;;} be an u x n matriz over ring R, and let V = {vge} be an n x v
matriz over R. Then U(f)V denotes the u x v matriz over R with entries w;y, where

Wiy = f(uilaui27 ey Uin, V1, V24, - - - 71071[)'

Note, that if f is the dot-product, then U(f)V is just the simple matrix-product.
First we need a simple lemma, stating that the associativity of the matrix multiplication is satisfied
also for the “strange” matrix-multiplication defined in Definition 15:

Lemma 16 Let

f(l‘la'/L‘Za"'7xnay1ay27"'ayn) = Z Ai5L5Y5
1<4,5<n

and let

g(xlaan"'am’Uayl’yQa"'7y1)) = Z b’t]xzy]
1<i,j<v

be homogeneous bilinear functions over the ring R. Let U = {u;;} be an uxn matriz, and let V = {vye}
be an n xv matriz, and W = {w;;} be a v x w matriz over R, where u,n,w are positive integers. Then
UHIV) (W =U(f)(V(g)W), that is, the “strange” matriz-multiplication, given in Definition 15,
18 associative.

Proof 1: The proof is obvious from the homogeneous bi-linearity of f and g.
Proof 2: We also give a more detailed proof for the lemma. The entry of row 7 and column k of
matrix U(f)V can be written as

D azui v
2,

Consequently, the entry in row ¢ and column 7 of (U(f)V)(g)W is

Zbkf Zaztuiz'utk Wy -
k£ 2,

On the other hand, entry (¢,7) in V(g)W is

> brevirwer,
kol

and entry (i,7) in U(f)(V(g)W) is

D aztiz Y beevikwer,
z,t k,l

and this proves our statement.O
Now we are in the position of stating and proving our main theorem for matrix multiplications:

10



Theorem 17 Let X and Y two n X n maitrices, and let m > 1 be a non-prime-power integer. Then
the 1-a-strong representation of the matriz-product XY can be computed with t3 = n°Y) non-scalar
multiplications.

Proof: = We use Theorem 10 and Corollary 11. Let us consider ¢ x n matrix BT X and ¢ x n matrix
Y B; these matrices can be computed without any multiplications from X and Y (we do not count mul-
tiplications by constants). Let h(z,y) be the homogeneous bi-linear function (4). Then BT X (h)Y B
can be computed with n°(!) multiplications (Note, that because of Lemma 16, the associativity holds).
Now compute matrix CBT X (f)Y BCT = (CBTY)(f)(YBCT) without any further (non-constant)
multiplication. By Theorem 10 and Corollary 11, CB”X and YBCT is a 1-a-strong representations
of X and Y respectively, and they are the linear combinations of the rows of X and columns of Y,
respectively. Consequently, using Theorem 5, CBT X (f)Y BC7 is a 1-a-strong representation of XY'.
O

9 Open Problem

It is a great challenge to prove or disprove the computability of the matrix product with only n2o(!)

multiplication. We post here the following problem:

By using our computation of the 1-a-strong representation of the matrix product upto O(n?) times
(even for different matrices), compute the (exact, not a representation) matrix product of two n x n
matrices.

Solution for this open problem would yield a matrix-multiplication algorithm with only O(n?*+°(1))

multiplications.

Note. A Maple 7 (tm) worksheet can be downloaded with examples of matrices B and C from the
address:
http://www.cs.elte.hu/~grolmusz/supporting. mws
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