Electronic Collogquium on Computational Complexity, Report No. 61 (2003)

Free Binary Decision Diagrams for Computation
of EAR,

Jan Kiéra Daniel Kral’*

Abstract

Free binary decision diagrams (FBDDs) are graph—based data struc-
tures representing Boolean functions with a constraint (additional to bi-
nary decision diagrams) that each variable is tested at most once during
the computation. The function EAR,, is the following Boolean function
defined for n x n Boolean matrices: EAR, (M) = 1 iff the matrix M
contains two equal adjacent rows. We prove that each FBDD computing
EAR,, must have size at least 2°-%3 logz n—O(log nloglogn) o1 e present a

2
construction of such diagrams of size 91-89log; n+0(logn)

1 Introduction

Graph-based data structures representing Boolean functions are important both
from the practical (verification of circuits) and from the theoretical (combina-
torial properties of Boolean functions) point of view. The sizes of minimal rep-
resentations of different Boolean functions in a certain class of data structures
and the relation between the sizes in different classes are intensively studied.
We refer the reader to a recent monograph [7] on the topic by Wegener. In
this paper, we show that the optimal size of representation of a certain natural
matrix-based Boolean function is neither polynomial nor exponential.

A binary decision diagram (BDD) is a directed graph where vertices are
labelled with input variables and each vertex except for so-called sinks has out-
degree two. The two outgoing arcs at each vertex are labelled with values 0 and
1 (0 is understood to be false and 1 to be true). The computation is started
in a special vertex called a source and guided in the natural way by the input
to one of the two special vertices called sinks — one of them is an accepting
sink (the 1-sink) and the other one is a rejecting sink (the 0-sink). We refer
the reader to a more formal definition in the next section. So-called free binary
decision diagrams (FBDDs) are studied in this paper. These are just BDDs
with an additional constraint that each variable is tested at most once during

*Department of Applied Mathematics and Institute for Theoretical Computer Science,
Charles University, Malostranské namésti 25, 118 00 Prague 1, Czech Republic. E-mail:
{kara,kral}@kam.mff.cuni.cz. Institute for Theoretical Computer Science (ITI) is supported
by Ministry of Education of Czech Republic as project LN0O0A056.

ISSN 1433-8092

the computation. FBDDs were introduced by Masek in [4] (he called them read—
once branching programs) already in 1976. Lots of upper and lower bounds on
the sizes of FBDDs have been proved since: The first exponential lower bound
was proved in [8, 9] and further ones were proved later, e.g., [1, 3, 5, 6].

The function EAR,, is defined on n x n Boolean matrices as follows: The
value of EAR,, (M) is 1 iff M contains two adjacent equal rows, i.e. if there exists
1 <ig < n such that M[ig, j] = M[io + 1,4] for all 1 < j < n (throughout the
paper, following the usual notation, the first coordinates always correspond to
the rows of the matrix). The problem to decide whether the function EAR,, has
FBDDs of a polynomial size was mentioned as an open problem in [7] (Problem
6.17). We prove that the size of optimal FBDDs for the function EAR,, (M) is
29(log2n), na,mely it is between 20-63 log? n—O(log nloglog n) and 21-89 log? n4+0O(log n)
(in the whole paper, the bases of all logarithms are equal to 2). This settles the
original problem of Wegener. The interest in the size of FBDDs for EAR,, is
amplified by the fact that the size of its optimal FBDDs is neither polynomial
nor exponential.

The paper is based on a conference paper [2] of the authors. The conference
paper [2] contains a proof that the size of optimal FBDDs for the function
EAR,, is 20(109”n) without computing the multiplicative constants of the factors
log2 n in the exponents. If the constants are computed, the lower bound on
the size of FBDDs computing EAR,, presented in [2] is 218" 7/(21083) ~O(log n) o,
20:31510g7 n—0(10gn) and the upper bound is 225108” n+0(9gn) Thyg both the
bounds have been refined compared to the conference version of the paper.

The paper is structured as follows: We recall basic definitions related to
(free) binary decision diagrams in Section 2. Next, in Section 3, the upper
bound of 21:89108 n+0(10g 1) oy the size of FBDDs computing the function EAR,,
is proved (Theorem 1). The asymptotically matching lower bound on the size
of such FBDDs, the bound of 20-63108* n—O(lognloglogn) js proved in Section 4
(Theorem 3). We also state a little more general version of Theorem 3, namely
Theorem 2, which is used to deduce some lower bounds for modifications of the
problem in the final Section 5 where we also pose several related open problems.

2 Definitions and Notation

A binary decision diagram (BDD, branching program) B is an acyclic directed
graph with three special vertices: a source, a 0—sink and a 1-sink. The vertices
of B are called nodes. Each node except for the sinks has out—degree exactly
two and it is assigned one of the input variables: One of the two arcs leading
from such a node is labelled with 0 and the other with 1. The out—degrees of
the two sinks are zero. The size of a BDD is the number of its nodes.

The computation path in B for the input zi,...,z, is the (unique) path
Ug, . ..,V from the source vy to a sink vy with the following property: If the
node v;,0 <4 < k — 1, is assigned a variable z;, then v;;1 is the unique node
to which an arc labelled with the value of z; leads from v; to. The value of the

function fg(zi,...,%,) is equal to 1 (true) if the last node of the computation
path for 21, ..., z, is the 1-sink. We also say that B accepts the input z1,. .., 2,.
Otherwise, the function is equal to 0 (false) and we say that B rejects the input.
The function fz is computed by B and the diagram B represents the function
fB. We say that B is reduced if each its node is on a computation path for some
choice of values of the input variables and there are no parallel arcs in B. It is
straightforward (cf. [7]) to prove that for each binary decision diagram there
exists one which is reduced and which computes the same function. We say
that a binary decision diagram B is a free binary decision diagram (FBDD,
read—-once branching program) if for any choice of values of the input variables,
the computation path for them does not contain two vertices with the same
variable assigned, i.e., during the computation each variable is tested at most
once.

Fix a (free) binary decision diagram B, input variables z1,...,z, and the
node v of the computation path for zi,...,z, in B. The variable assigned to
v is said to be scanned at the node v and the variables assigned to the nodes
before v on the path are said to have been scanned by the computation of the
diagram B.

3 Upper Bound

Fix a size n of the input matrix throughout this section. We design a re-
cursive procedure test (rowl,row2,column,bit) which computes the function
EAR,,. The procedure tests whether the submatrix formed by the rows from
rowl to row2 and the columns from column to n contains two equal adjacent
rows. The procedure assumes that the entry at the row rowl and the column
column is equal to the value of bit. The procedure starts sweeping the en-
tries of the column column from the row rowl to the row row2. If it finds
two non-equal adjacent entries (for the first time) in the same column, let us
say matrix[i,column]<>matrix[i+1,column], then it sets row2 to be i and it
newly defines row3 to be i+1 and row4 to be the original value of row2. The pro-
cedure now continues testing whether the submatrix formed by the rows from
rowl to row2 and the columns from column+1 to n or the submatrix formed
by the rows from row3 to row4 and the columns from column to n contain two
equal adjacent rows.

If the procedure finds another pair of non-equal adjacent entries, the sub-
matrix which the procedure was called with is now split into three parts (their
borders are the two pairs of rows with non-equal adjacent entries). The proce-
dure now recursively calls itself to the part with the least number of rows. If
no two non-equal adjacent entries are found, the value of column is increased
by one and the procedure continues sweeping the next column. The procedure
continues in the just described fashion until both the parts vanish, i.e., they
collapse to a single row, or column exceeds n. In the latter case, the original
submatrix contains a pair of equal adjacent rows and the procedure accepts.

A C-like pseudocode of the procedure test follows (see also some comments

to it below):

Algorithm 1
Initial call: test(1, n, 1, matrix[1,1])

int i,j;

void test(int rowl, int row2, int column, int bit) {
if (rowl==row2) return;
if (column>n) accept;
one_block:
if (rowl==row2) return;
for (i=rowl; i<row2; i++)
if (matrix[i+1,column]!'=bit) {
row3=i+1; row4=row2; row2=i; bit=!bit;
goto two_blocks_second;
}
if (column++==n) accept;
bit=matrix[rowl,column]; goto one_block;
two_blocks:
if (rowl==row2) {
rowl=row3; row2=row4; bit=matrix[row3,column];
goto one_block;
}
for (i=rowl; i<row2; i++)
if (matrix[i+1,column]'!'=bit) {
if ((i-rowl<=row2-(i+1))&&(i-rowl<=rowd4-row3)) {
j=rowl; rowl=i+l; bit=!bit;
test(j,i,column+1,matrix[j,column+1]);
goto two_blocks;
}
if ((row2-(i+1)<=i-rowl)&&(row2-(i+1)<=rowd-row3)) {
j=row2; row2=i; test(i+1l,j,column,!bit);
bit=matrix[row3,column]; goto two_blocks_second;
}
if (row4-row3<=i-rowl)&&(rowd-row3<=row2-(i+1))) {
j=row4; rowd=row2; row2=i; i=row3; row3=row2+l;
test(i,j,column,matrix[i,column]);
bit=!'bit; goto two_blocks_second;
}
}
bit=matrix[row3,column];
two_blocks_second:
if (row3==row4d) {
if (column++==n)
if (rowl<row2) accept; else return;

bit=matrix[rowl,column];
goto one_block;
}
for (i=row3; i<row4; i++)
if (matrix[i+1,column]!'=bit) {

}
if (column++==n) accept;
bit=matrix[rowl,column]; goto two_blocks;

}

The pseudocode of the algorithm consists of three parts delimited by the
labels one_block:, two_blocks: and two_blocks_second:. The omitted code
in the third part is analogical to the corresponding code in the second one. In
the first part, the algorithm sweeps a submatrix formed by the rows from the
row rowl to the row row2. In the second and the third part, the submatrix is
split into two blocks, one formed by the rows from the row rowl to the row row2
and the other by the rows from the row row3 to the row row4. The first block
is swept in the part of the pseudocode after the label two_blocks:, while the
second block in the part of the pseudocode after the label two_blocks_second:.

The following two propositions can be proved by induction on column =
N,...,1 and row2 —rowl = 1,...,n — 1 (for the values at the time of the
procedure call). We leave their very straightforward proofs to the reader:

Proposition 1 The procedure test from Algorithm 1 accesses only the entries
of the matriz with the coordinates [z,y] which satisfy one of the following con-
ditions:

rowl < z < row2 and y = column

rowl <z < row2 and column < y <n

Moreover, the procedure test accesses each such entry at most once.

Proposition 2 The procedure test accepts iff there are two equal adjacent rows
in the submatriz of the input matriz formed by the rows from the row rowl to
the row row2 and by the columns from the column column to the column n.

Since when a new recursive call is made, the number of rows of the new
submatrix is at most one third of the rows of the original submatrix, we have
the following:

Proposition 3 The depth of recursion of the procedure test from Algorithm 1
is at most logs n = logn/log3.

Theorem 1 There is a free binary decision diagram B computing EAR,, of size
2(3/ log 3) log® n+0(log n) ~ 21.8910g2 n+0(log n)

Proof: The number of recursive calls of Algorithm 1 is at most logn/log3
by Proposition 3. At each call, the variables rowl, row2, row3, row4, column
and bit need to be stored. Note that the variables i and j are global ones.
There are logn bits and 1 bit needed to store the variables column and bit,
respectively. The number of bits needed to store each of the variables rowi,
row2, row3 and rowé at the first call of the procedure is logn, at the second
one logn — log 3, at the third one logn — 2log 3, etc. because at each call the
number of rows of the submatrix is (at least) three times smaller. Hence the
overall number of bits needed for all instances of the procedure is logn/log3 -
(41logn/2+1logn +0(1)) = 3log® n/log3 + O(logn). In addition, O(logn) bits
are needed to store values of the global variables i and j. The space complexity
of Algorithm 1 is hence 3 log® n/ log 3+0(logn) (measured in the number of used
bits). The number of different states which may be reached by Algorithm 1 is
thus at most 23108° 7/10g3+0(10gn) Note that the state also includes, in addition
to the content of variables, the pointer to the instruction to be executed — since
the code of the algorithm is finite, this adds only a finite number of bits per
recursion level and this can be estimated by O(logn).

We create a BDD B with 23108”n/10g3+0(logn) nodes which simulates the
computation of Algorithm 1: The nodes of B correspond to the states of Algo-
rithm 1 just before accessing an entry of the input matrix and depending on
the value of the entry the computation (in the diagram) continues to one of the
consequent nodes. The computation reaches the 1-sink if Algorithm 1 accepts.
B computes the function EAR,, by Proposition 2. By Proposition 1 applied to
the initial call of the procedure, the diagram B scans each entry of the matrix
at most once and hence B is a free binary decision diagram.

|

4 Lower Bound

The lower bound proof proceeds as follows: We fix a FBDD B computing the
function EAR,,. An adversary constructs on-line an input matrix for the di-
agram based on the actual computation and the computation is stopped at a
certain moment. The way in which the adversary constructs the input and
when it stops the computation depends on parameters which are fixed in ad-
vance. Then, it is showed that a single node of the diagram can be final only for
a limited number of combinations of adversary parameters and the lower bound
is derived.

4.1 Adversary Parameters

The adversary strategy is described by a quadruple (p, 7, B, c). For the sake of
brevity, the quadruple (p, 7, B, ¢) is called adversary strategy in the rest. The
first element of the quadruple, p, is a positive number less than 1/2. Fix R now

I(p) I2(p)

H B

0 24 36 60 72 96

I(p,0) I7(p,0) I,.(p) In(p,1) I3(p,1) I7(p) I5(p,2) I7(p,2)

0 69 1518 24 36 4245 5154 60 72 7881 8790 96

Figure 1: Intervals I¥(p) and IF(p,a;) for n = 96, p = 1/8, k = 1,2 and
a; = 0, 1,2.

as follows:

| logpn
log - —32,;

We always assume that n is at least n >
that by the choice of R, we have:

n<1_32p)R21/p>2 1)

In the rest, the actual values of n and p which determine R are always clear from
the context and hence we decided not to add any subscript to R to emphasize
this dependence.

A ternary sequence of length [is a sequence of [integers between 0 and 2.
Let I¥(p,a1,...,a;) for k = 1,2 and a ternary sequence ay, . ..,a;, 0 <[< R—1,
be the following interval (cf. Figure 1):

m, in particular, R > 1. Observe

Ig(paala"'aal) =

o (B2). (152) o (200 (152
n- (k(1;P)> . <1_32”>l+;n- <ai(13+p)) _ (1—32,))*—1>

Observe that the length of I¥(p,a1,...,a;) is equal to np (%ﬂ)l By (1), the

length is at least 1 and hence Iﬁ(p, ai,-..,a;) contains at least one integer. Note
that an interval I¥(p,ay,...,a;) can contain integers only between 1 and n — 1

(inclusively). Observe also that all the intervals I¥(p,ai,...,q;) are disjoint.

Moreover, the distance between any two of them is at least n (%)R >1/p
which is more than 2 by (1).

We now describe the remaining three elements of the quadruple (p, 7, B, ¢).
The second element 7 is a pair (71, 72) of mappings from all ternary sequences
of length at most R — 1 (including the empty sequence) to integers. A sequence
ai,...,a; is mapped by 7 to an integer from the interval I*(p,as,...,a;). The
third element B is a binary matrix of size R x n. There is no restriction on
B. The last element ¢ is a sequence ci,...,cg of length R which consists of
positive integers such that ¢; € ((i —1) [n/2R—1| + L,i|n/2R —1|) where

L= [log 3 log® nJ In the rest, we always assume that n is so large that n/2R —

1> L. Note also that n/2 > cg. The value of L is not accidental, it was chosen
in such a way that 2 is (at least) the desired lower bound (cf. Lemma 3).

4.2 Description of Adversary Strategy

Let n and the quadruple (p, T, B, c) be fixed in this subsection. The adversary
creates the matrix M in a way which depends on the actual computation of the
diagram B. A column of the input matrix is clear if no entry of it was scanned
by B so far. If B attempts to scan an entry from a clear column, then the
adversary fixes the entries of the whole column for the rest of the computation.
Such a column is said to be fized. Let T}, for k = 1,..., R be the union of image
sets of the mappings 7 and 72 restricted to ternary sequences of length at most
k — 1. Note that |T1| =2, |[T2| =2+3-2=38, |T5| =2+ 3-2+9-2 = 26, etc.
We also have Ty C T> C T3--- C Tgr by the definition of 7). For the sake of
brevity (in the rest of the paper), define Tj to be the empty set. Let us define
fork=1,...,Rand [=1,...,n column vectors m** of size n as follows:

1 |TyN(1,i—1)| is odd and By, = 1,
mt = ¢ 1 |T,n(1,i—1)| is even and By; =0,
0 otherwise,

wherei = 1,...,n. As observed in the previous subsection, the distance between
any two intervals I (p, a1, ...,q;) is at least 1/p > 2 and hence the difference be-
tween any two elements of Ty is at least 3. The first ¢; columns are fixed by the
adversary to be m!-!,..., m'°t. The next c; —c; columns are fixed by the adver-
sary to be m®!,...,m?° ¢ the next cs —cy columns to be m%1!,... m3cs—c2,
etc. In this way, the adversary creates (a part of) an input matrix M. Note
that some columns, e.g. m!*1*1 are not used by the adversary at all.

The k-th and (k + 1)-th row form the k-th pair of rows. The computation
discovered difference of the k-th pair of rows if there exists ¢ such that B scanned
the entries M}, ; and My 1 ; of the input matrix M and M}, ; # Mg41,;. Observe
that if R is the set of k’s such that difference of the k-th pair of rows was
discovered, then R C Tg. A column of M is said to be open if it is fixed and
there is ¢ € R such that exactly one of the entries of the column in the i-th
and (i + 1)-th row was scanned. A column of the input matrix is said to be

k-scanned, 1 < k < R, if there are ¢ € T, U {0} and j € T}, U {n}, i < j, such
that all the entries of the column between the rows i+1 and j (inclusively) were
scanned during the computation.

The adversary stops the computation when B attempts to scan the (cg + 1)-
th column. The adversary can also (prematurely) abort the computation: The
adversary aborts the computation if there are (at least) L open columns. Let
Up,r,B,c be the node of B at which the computation is stopped or aborted for
the strategy determined by the quadruple (p,7,B,c). In the case that the
computation is stopped, v, r B, is the node at which B attempts to scan the
(cr + 1)-th column. In the case that the computation is aborted, v, , B, is
the node at which there are L open columns before B scans the entry of M
determined by the node v, ; B,.. If some elements of the quadruple (p, 7, B,c)
are clear from the context, we omit them in the subscript of v, r B c.

4.3 Analysis of the Strategy

Let B be a fixed free binary decision diagram computing the function EAR,,
throughout this subsection.

Lemma 1 Let (p,7,B,c) and (p',7',B',c') be two different adversary strate-
gies. Let R, R', respectively, be the set of k’s such that difference of the k-th
pair of rows was discovered before reaching the node v, r B.c, Vp 7' B! ¢, TESPEC-
tively. If R # R/, then v, r B.c # Vp 7',B" o' -

Proof: Assume for the sake of contradiction that R # R’ and v, ;B =
Uy .81, Since R # R', we can assume that there is io € R’ \ R. We show
that B does not compute the function EAR,,. Since n/2 > cg and n/2 > cf,
there is k such that the k-th column is clear for both the computations. Let M
be the part of the input matrix scanned at the node v, - .. Add to M as the
k-th column such a vector that only the ¢o-th pair of the rows of the matrix can
be equal and then fill M in such a way that the i¢-th pair of the rows is equal.
This can be done by the choice of k and because iy € R. Let My be the whole
resulting matrix.

If the computation continues from the node v, B, the diagram B must
accept because My contains a pair of equal adjacent rows (the io-th pair).

Let M' be the part of the input matrix scanned by the diagram at the node
Uy ,B',c'- Set missing entries of M’ to be equal to the corresponding entries of
My. Let M| be the resulting matrix. By the choice of k, the k-th columns of
My and M are equal. Since ip € R', M| does not contain two equal adjacent
rows. If the computation continues from the node v, ;' pr s, the diagram B can
scan only the entries of M{ not contained in M’ (and these entries are equal to
the corresponding entries of My) and hence B accepts. But M| does not contain
two equal adjacent rows as noted above — contradiction.

|

Lemma 2 Let (p,7,B,c) and (p',7',B',c') be two different adversary strate-
gies. Let M, M', be the set of entries of the input matriz scanned by the com-
putation before reaching the node v, - B.c, Vy Bt Tespectively. If M # M',
then Up,7,B,c 75 Up',7!,B' ' -

Proof: Assume for the sake of contradiction that M # M’ and v, ;B =
Up,71,B',cr- We show that B does not compute the function EAR,. Let R,
R, be the set of k’s such that difference of the k-th pair of rows was discovered
before reaching the node v, r,B,¢c, vy 7/,B ¢!, espectively. By Lemma 1, we have
R=7R

Let 79 and jo be such that the entry of the io-th row and the jo-th column is
contained in M but not in M’. Since the difference between any two numbers
of R is at least 3,79 —1 € R =R’ orig € R = R'. Assume that iqg & R; the
other case is symmetric. Since n/2 > cg and n/2 > cf, there is kg such that
the kg-th column is clear with respect to both M and M'. Let M be the part
of the input matrix scanned at the node v, ... Add to M as the ko-th column
such a vector that only the ig-th pair of the rows of the matrix can be equal and
then fill M in such a way that the rows of the ig-th pair of the rows are equal.
This can be done by the choice of ky and because ig € R. Let My be the whole
resulting matrix.

If the computation continues from the node v, B, the diagram B must
accept because My contains a pair of equal adjacent rows (namely, the ig-th
pair).

Let M' be the part of the input matrix scanned by the diagram at the node
Uy 71,B ¢’ Set missing entries of M’ to be equal to the corresponding entries
of My. Let M| be the resulting matrix. Let M{' be obtained from M] by
complementing its entry at the ig-th row and the jp-th column. By the choice
of ko, the ko-th columns of My, M| and M are equal. Hence, if M} or My
contain two equal adjacent rows, then this is the ¢o-th pair of the rows. On the
other hand, they differ at the entry at the ig-th row and the jp-th column, and
thus at least one of them does not contain a pair of equal adjacent rows. If
the computation continues from the node v, 1 p s, the diagram can scan only
the entries contained in neither M nor M’ (and these entries are equal to the
corresponding entries of My both for M) and M) and hence B accepts both
the matrices M, and M{' — contradiction.

|

Lemma 3 If there exists p, T and ¢ such that for each matriz B, the adversary
following the strategy (p, T, B,c) aborts the computation, then the size of B is at
least 2 = 2l meslog”n]

Proof: Let p, 7 and c be fixed throughout the proof. Let V be the set of nodes
of B at which the computation is aborted for the strategy (p, 7, B, c) with some
B. We show that |V| > 2. Assume for the sake of contradiction the opposite,
i.e., |[V| < 2L. Consider a node vy € V and let By be the set of all matrices B

10

such that the computation is aborted at the vertex vg. Since |V| < 2L, there is
a node vy such that |By| > 28"~L. Fix such a node vy for the rest of the proof.

Let R be the set of k’s such that difference of the k-th pair of rows was
discovered when the computation was aborted at vy for some B € B;. By
Lemma 1, R is the same for all choices B € By. Let M be the set of entries
scanned by the computation before abortion at vy for some B € By. Again, M
does not depend on the actual choice of B € By (by Lemma 2). Observe that it
can be determined whether a column is open from the sets R and M. Hence,
for each choice of B € By, the same L columns are open when the computation
is aborted. Let now ji,...,Jjr be indices of the open columns at vyg. By the
definition of an open column, there exists iy for each ji, such that exactly one
of the entries with the coordinates [if, jx] and [ix + 1, ji] is contained in M and
ir € R.

Fix k to be an integer between 1 and L. Assume that the entry with the
coordinate [ix, ji] is contained in M and the entry with the coordinate [ix+1, ji]
is not (the other case is symmetric). We show that the value of the entry at
the ix-th row and at the ji-th column is the same for all B € By. Let B; and
B> be two matrices of By. Let M; and M be the parts of the input matrix
scanned for B; and Bs, respectively. We now complete the matrix M;. Since
n > n/2 > cg, there is at least one clear column. Fix this column in such a way
that the only pair of rows which may be equal is the i;-th pair and complete the
rest of the matrix in such a way that the rows of the i;-th pair are equal (this is
possible because i, & R). Let M/ be the resulting matrix. If the computation
continues with the matrix M|, the diagram B accepts (the rows of the ix-th
pair are equal). Now set missing entries of M> to be equal to corresponding
entries of M. Let Mj be the obtained matrix. Since both the matrices are
equal outside M, the diagram B also accepts M;. The only two equal adjacent
rows of M} can be the i;-th pair of rows and since B accepts M}, they are equal.
The entries of M{ and M} with the coordinate [if, + 1, ji] are the same (they are
outside M) both in M; and MJ. Hence, the entries with the coordinate [if, jx]
must be also the same.

We now show that |By| < 2B"~L. When the computation starts scanning
a column with the index ji for k = 1,..., L, the value of the entry of B € By
which determines the ji-th column of the input matrix is determined because
the entry with the coordinates [if, jx] or [ir + 1, jx] is the same for all B € B.
Hence, L out of Rn entries of the matrix B cannot be chosen arbitrarily and
|Bo| < 2Bn—L — contradiction.

|

Lemma 4 Let (p, T, B, c) be a quadruple for which the adversary stops the com-
putation. When the computation is stopped, the number of ko-scanned columns
is at least cxy — L+ 1 for all kg =1,...,R.

Proof: We show that at the time when the diagram attempts to scan the
(Cky + 1)-th column, there are at least cy, — L + 1 ko-scanned columns. Let m**!

11

be column vectors and T}, sets as in Subsection 4.2. Observe that if a column
fixed to m** with k < kg is not ky-scanned at the time when B attempts to
scan the (cg, + 1)-th column, it must be open. Since at that time, there are
at most L — 1 open columns (otherwise, the computation is aborted), there at
least ¢y, — L + 1 kp-scanned columns.

| |

Lemma 5 Let (p, T, B,c) be a quadruple for which the adversary stops the com-
putation. Let R be the set of i’s such that difference of the i-th pair of rows was
discovered before reaching the node v, r g .. Let Ty, 1 < k < R, be as in Sub-
section 4.2. Then |R N (Tgy \ Tho—1)| > 1 for each kg =1,...,R.

Proof: Let m*! be column vectors defined as in Subsection 4.2. Consider the
moment when the diagram attempts to scan the (cg, + 1)-th column. At that
moment, at least one of the columns fixed to be m*o:! for some [is not open —
otherwise the computation is aborted. Then, by the definition of m*o, there is
© € Ty, \ Thy—1 such that difference of the i-th pair of rows was discovered.

|

Lemma 6 Let (p, T, B,c) be a quadruple for which the adversary stops the com-
putation and let kg be an integer between 2 and R. Let R be the set of i’s such
that difference of the i-th pair of rows was discovered before reaching the node
Up,r,B,c- Let Ty, 1 <k < R, be as in Subsection 4.2. If the number of (ko — 1)-
scanned columns is at least cpo—1 + 1, then |R N (Thy \ Tho—1)| > 2.

Proof: Let m"! be column vectors defined as in Subsection 4.2. Since at least
Cko—1+1 columns are (kg—1)-scanned, there is a (kg —1)-scanned column fixed to
m*o for some kj > ko and some [. Then, there are integers i € Ty, U{0} and
Jj € Ty,—1U{n}, i < j, such that all the entries of the column m*o! between the
rows ¢+1 and j were scanned. Observe now that |[i+1, 5 —1]N(Tko \ The—1)| > 2.
Hence, |R N (Tky \ Tho—1)| > 2.

|

4.4 The Bound

Theorem 2 Fiz a number p and assume that for each T and c, there exists a
matrix B such that the computation is stopped by the adversary for the quadruple
(p,7,B,c). Let S be the following number:

oo o () | (52] e

If a FBDD B computes the function EAR,,, then its size must be at least S.

12

Proof: Fix a matrix B for each 7 and ¢ such that the computation is stopped
by the adversary for the quadruple (p, 7, B,c). Let v, . be the node at which
the computation is stopped and let V' be the set of all such nodes v, .. Let
R, and M, for v € V be the set of discovered differences of pairs of rows and
scanned entries of the input matrix, respectively, before reaching the node v.
By Lemmas 1 and 2, the values of sets R, and M, do not depend on the choice
of 7 and ¢ for which v = v, .. Let ¢}, 1 <i < R, be the number of i-scanned
columns at v (this is determined by R, and M,). Let Ty for 1 <4 < R be a set
T; corresponding to 7 defined as in Subsection 4.2. Let further I;, 71 =1,..., R,
be the union of all intervals IJ(p, a1, ...,a;) where the union is taken over all
possible ternary sequences of length at most 1 — 1 (i.e., I < i — 1) and over
j =1,2. In addition, set I to the empty set. Clearly, we have T; C I;.

We say that a node v is consistent with 7 and c¢ if the following conditions
are satisfied:

1. R, CTF,

2. it holds that Ry, N (J41 \ Ix)| > 2 for each k =1,...,R— 1 with ¢} > ¢}
and

3. ¢, —L+1<cjforeach k=1,...,R.

Fix a pair 7 and c and let us consider the node v = v, .. Since all intervals
Ii(p,ai,...,a;) are disjoint, we have |[R, N (I \ I;_1)| > 1forallk=1,...,R
by Lemma 5. By Lemma 6, the inequality ¢, > c; for k = 1,..., R — 1 implies
Ry N (Ig+1 \ Ix)| > 2. Finally, we have ¢y, — L +1 < ¢} foreachk =1,...,R
by Lemma 4. Hence, we can conclude that if v = v, ., then v is consistent with
7 and c.

We now compute the number of all possible pairs 7 and ¢. Functions 7, and
Ty can be chosen in the following number of ways (let it be denoted by S;):

o= I1 T IEGan....a)|

(a1,mmrap) k=1,2
0<I<R—1

where the outer product ranges over all ternary sequences with length at most
R—1and ||If(p,a1,...,a;)|| is the number of integers contained in the interval
I¥(p,a1,...,a;). The sequence c can be chosen in S, := |n/2R — L|® ways.
Hence, the number of pairs 7 and c is S;S.. We show that a single node v € V
is consistent with at most S;S./S pairs of 7 and c. This immediately implies
that |V| > S and the lower bound from the statement of the theorem follows.

Fix a node v € V of the diagram B. The number of pairs of mappings 7
with which the node v is consistent is equal to the following:

S;_ = H H ||Iﬁ(p,a1,...,al)||

(@1emrap) k=1,2
0<I<R—1 1K (p,ay,...,a;)NRy=0

This is because all the intervals I¥(p, ai, .. ., a;) are disjoint and R,, C Tg. Since
1% (p, a1, - .., a))l| > [IT(p, an, .- ., a1)|] = [np(%)’J, we have that S is at

13

most:

s,
k| RoN(Ti1\1r)|
)']

R—1
II [np (22
k=0

We establish an upper bound on the number of sequences ¢ consistent with the
node v. Recall that if |[R, N (Ix4+1 \Ix)| < 2,k =1,...,R—1, and c is consistent
with v, then ¢ — L+ 1 < ¢} < ¢;. In addition, the last inequality always holds
for kK = R from trivial reasons. Thus, we have the following upper bound on the
number of consistent sequences c:

L- II L- II In/2R—L| =

k=1,...,R—1 k=1,...,R—1
[RwN(Tg 1\ I3)I1<2 IRy NI 1 \Ig)122
L L
SC R — <
[(n/2R) - L] kzl,H,R_l l(n/2R) — L]

[RoN(Ip 41\ Ip)I<2

L L
S, = . -~
¢ (n/2R)—L-1 kleR_l (n/2R)—L -1
IR (g1 \Tg)|<2
Thus, the node v is consistent with at most the following number of pairs 7 and

¢ (recall that R, N (I \ Ix—1) # 0 for each k=1,...,R):

Sy -8,
<
Rl:ll [np (%ﬂ)kJ‘Ruﬂ(Ik+l\Ik)| ‘ M ‘ I Lﬂ@[& <
- Rty s i 1<
9,001
sr.sc.[np(%e)J N .
R-1 . B 12 B -) — <
T i { o (52" o (1)) - 222
ST ’ Sc _ S‘r * Sc
R-1 =
H min{[np (%)kr’ [np(1;2p)kJ . (n/2R%—L_1} S
k=0
|]

Theorem 3 Let B be a FBDD computing the function EAR,,. Then, the size
of B is at least 91eg3 1087 n—O(log n-loglogn) , 90.6310g” n—0(log n-loglog n)

Proof: In the proof, we assume that n is sufficiently large (the bound on n is
implicitly stated at the end of this paragraph). Let p = (logn)~!. The number
R is the following:

R= log pn _l log p + logn J_[logn +log p J_
B logﬁ ~ |log3 —log(1—2p)] |[log3+2p+0(p?)|

14

logn + log p logn loglogn
log 3 log3 +0(")) +0(1) log 3 log 3 +0(1)

Assume in the rest that n is so large that p < 1/2, R > 1 and (n/2R) — 1 > L.
The inequality (n/2R) — 1 > L is satisfied for n sufficiently large, because
(n/2R) — 1 = ©(n/logn) and L = O(log® n).

If there is 7 and ¢ such that for each B, the computation of B is aborted,
then the lower bound follows from Lemma 3. Otherwise, Theorem 2 can be

used. Before we show that the lower bound on the size of the diagram B from
logZ n—O(log n-log log n)
)

Theorem 2 is at least 273 some auxiliary computations
_op\ R
need to be performed. Recall that by the choice of R, we have pn (%ﬂ) >

p/p > 1, in particular, log (pn (222)R) > 0. Thus, the following inequality
holds for each i =0, ..., R:

1—925\° .
log pn (Tp> =logpn —i-log 1—32p > % -log pn =

% - (logn — loglogn + O(1)) (2)

By Theorem 2, the size of B is at least S where:

§= H mm“ (1‘32f’) JZ, {np<1—32p)"J _ (n/2R)L—L_1}

The bounds on logarithms of members of the product are computed using (2):

R

1-2p\° (n/2R)—L—1
log {np (Tp) J +logf =

- (logn — loglogn + O(1)) +1logn —log R — log L + O(1) =

log {np (%) J = HR-9) (logn — loglogn + O(1)) (3)

(R —1)

? - (logn — loglogn + O(1)) +logn — 3loglogn + O(1) 4)
Comparing (3) and (4) immediately yields:
R-1 .
2R —
log S > % - (logn — O(loglogn) + O(1)) =
=0
2(R+1)

1
5 - (logn — O(loglogn) + O(1)) = —— log® n — O(log nloglogn)

log 3

Hence, the size of B must be really at least 91es3 10" n—O(log n-loglog n)

15

5 Open problems

In this section, we pose two open problems. First of all, the multiplicative
constants of the factor log2 n in the exponent of our lower and upper bounds do
not match. Hence, we have the following problem:

Problem 1 Determine ¢ such that the size of optimal FBDDs computing the
function EAR,, is 2¢108” nto(log® n)

Theorems 1 and 3 imply that $ <c< @.

As pointed out to us by Jifi Sgall, our lower bound proof also works for
“narrow” matrices. More precisely, if we consider n x Q(log® n) matrices instead
of n x n matrices, we have also a lower bound on FBDDs of order 22(log”n); Jyst
set p to a fixed constant and L = ©(log® n) both in Lemma 3 and Theorem 2. We
find interesting to determine what is the size of optimal FBDDs for n x © (log® n)
matrices for 1 < k < 3 (note that if k¥ < 1, it is easy to construct FBDDs of size
polynomial in n):

Problem 2 Find a function f(k) for 1 < k < 3 such that the size of optimal
FBDDs for n x (log® n) matrices is 20(1og” ™ n)

Our lower bound proof can be modified for such narrow matrices: Set p to a
fixed constant, R = O(log*"1/2n) and L = O(log*+1/2). Then, we have a
lower bound of 222006“"""*7) by Temma 3 and Theorem 2. On the other hand,
we miss any non-trivial upper bounds: If ¥ > 2, our only upper bound on the
size of FBDDs for such n x (logk n) matrices is 20(0g*n) and if 1 < k < 2, we
have only a trivial upper bound of order 200°¢" ") Thus, we know only the
following estimates on the function f(k) from Problem 2:

Bl < f(k) <k forl<k<2and
Bl < f(k) <2 for2<k<3.

Acknowledgement

The second author would like to thank Petr Savicky for introducing binary
decision diagrams during his outstanding lectures on the topic. Both the au-
thors would like to thank Petr Savicky and Ji#i Sgall for their comments on the
problem.

References

[1] Babai, L., Hajnal, P., Szemerédi, E., Turdn, G.: A lower bound for read—
once only branching programs. Journal of Computer and System Sciences
35 (1987) 153-162.

16

[2] Kéra, J., Krdl’, D.: Optimal Free Binary Decision Diagrams for Computa-
tion of EAR,,, Proc. 27th International Symposium on Mathematical Foun-
dations of Computer Science 2002, LNCS vol. 2420 (2002) 411-422.

[3] Kriegel, K., Waack, S.: Lower bounds on the complexity of real-time branch-
ing programs. RATRO — Theoretical Informatics and Applications 22 (1988)
447-459.

[4] Masek, W.: A fast algorithm for the string editing problem and decision
graph complexity. M. Sc. Thesis, MIT (1976).

[5] Savicky, P., Zék, S.: A large lower bound for 1-branching programs. ECCC
report 96-036 (1996).

[6] Savicky, P., Z&k, S.: A read-once lower bound and (1,+k)-hierarchy
for branching programs. Theoretical Computer Science 238(1-2) (2000)
347-362.

[7] Wegener, I.: Branching Programs and Binary Decision Diagrams — Theory
and Applications. STAM Monographs on Discrete Mathematics and Appli-
cations 4 (2000).

[8] Wegener, I.: On the complexity of branching programs and decision trees
for clique functions, Journal of the ACM 35 (1988) 461-471.

[9] 73k, S.: An exponential lower bound for one-time-only branching programs.
Proc. 11th International Symposium on Mathematical Foundations of Com-
puter Science 1984, LNCS vol. 176 (1984) 562-566.

17

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

