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Abstract

In constraint satisfaction problems over finite domains, some vari-
ables can be frozen, that is, they take the same value in all possible so-
lutions. We study the complexity of the problem of recognizing frozen
variables with restricted sets of constraint relations allowed in the in-
stances. We show that the complexity of such problems is determined
by certain algebraic properties of these relations. We characterize all
tractable problems, and describe large classes of NP-complete, coNP-
complete, and DP-complete problems. As an application of these re-
sults, we completely classify the complexity of the problem in two cases:
(1) with domain size 2; and (2) when all unary relations are present.
We also give a rough classification for domain size 3.

1 Introduction

The constraint satisfaction problem (CSP) is a powerful general framework
in which a variety of combinatorial problems can be expressed [11, 30]. The
aim in a constraint satisfaction problem is to find an assignment of values to
the variables subject to specified constraints. This framework is used across
a variety of research areas in artificial intelligence, including planning [26],
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scheduling [46], and image processing [32], and in computer science, in-
cluding combinatorial optimization [11, 20], database theory [18, 28], and
complexity theory [13, 16], one of the most important applications being
constraint programming [30].

In constraint satisfaction problems over finite domains, some variables
can be frozen, that is, they take the same value in all possible solutions.
We note that frozen variables and closely related objects such as spines [2],
frozen pairs [12], backbones [17, 31, 43], and unary prime implicates [36]
appear frequently in the CSP literature and that they are actively used in,
for instance, the study of phase transition phenomena. It is well-known
that CSP can be viewed as the homomorphism problem for relational struc-
tures [19, 28]. The version of CSP we study is known to be equivalent to the
non-uniform homomorphism problem [28]: we fix a relational structure B
and ask whether a given structure A admits a homomorphism to B. In this
setting, the frozen variable problem can be expressed as follows: in the input
structure A we choose some elements and ask whether A homomorphically
maps to B and, in addition, all homomorphisms from A to B agree on each
chosen element.

The problem of recognizing frozen variables is closely related to the well-
known UNIQUE SAT problem (i.e. recognizing SAT-instances with a unique
satisfying assignment). This is an intriguing problem, as it is one of the few
(natural) versions of the propositional satisfiability problem that are not
known to be complete for any standard complexity class [25, 33]. It is easy
to see that the problem of recognizing frozen variables is a generalization
of UNIQUE SAT, as the number of possible values is not restricted to two,
clauses are replaced by arbitrary predicates, and the uniqueness requirement
may be applied to some, but not necessarily all, variables.

Another related problem was considered in connection with databases
that support statistical queries. For instance, consider a relation with at-
tributes (name, age, salary) supporting statistical queries of the form ‘give
me the sum of salaries of all individuals whose age satisifes a certain con-
dition’. If we assume that the projection (name,age) is publicly available,
what measures suffice to protect the confidentiality of the salary informa-
tion? This is the statistical database security problem [1] and one approach
to solve this problem is to audit the statistical queries in order to determine
when enough information has been given out so that compromise becomes
possible. Kleinberg et al. [27] have studied the complexity of this problem.
By slightly generalising their formalisation to attributes having an arbitrary
number of values, we have the follwing problem which we call AUDIT:



INSTANCE: A set {z1,...,z,} of variables taking their values from the set
D ={0,1,...,K}, a family of subsets § = {S1,...,Sn} of {1,...,n}, and

m integers by,...,bp,.

QUESTION: Is there an ¢ < n such that in all 0-1-...-K solutions of the
system of equations Eiesj z; = bj, j = 1,...,m, the variable z; has the
same value.

For Boolean domains (where D = {0,1}), Kleinberg et al. show that this
problem is coNP-complete. Clearly, this problem is closely related to the
frozen variable problem where the constraints are specified by the equations
given above. We would like to point out one subtle difference between the
two problems: in the frozen variable problem, an instance is considered to
be a ‘no’-instance if it has no solution; in the AUDIT problem, an instance
is considered to be a ‘yes’-instance if the equation system has no solution.
However, it is easy to modify our results and use them for showing that
AuDIT is coNP-complete for all finite domains with more than two elements;
it also gives an alternative proof of Kleinberg et al.’s results. Furthermore,
our results are applicable to a wider range of statistical queries and not only
summation queries.

We will now begin our investigation of the complexity of the frozen vari-
able recognition problem. Note that it is not clear a priori whether there is
any dependence between efficient deciding of satisfiability and efficient recog-
niton of frozen variables in CSPs. For example, CSPs such as NOT-ALL-
EQUAL-SAT and GRAPH k-COLORING, k > 3, (see Examples 2.3 and 2.4)
are NP-complete, but the frozen variable problem for them is trivial because
no variable can be frozen in these problems, due to certain symmetries.

Constraints are usually specified by relations, or predicates, and the
standard constraint satisfaction problem can therefore be parameterized by
restricting the set of allowed relations which can be used as constraints. The
problem of determining (up to complete classification) the complexity of the
CSP and its many variants for all possible parameter sets has attracted much
attention (see, e.g., [4, 6,11, 16]). For the Boolean (i.e., two-valued) case, the
complexity of the standard constraint satisfaction problem has been studied
from the above perspective [42], as well as a number of related problems
(see [11, 25, 29] for a selection of those); such problems are sometimes refered
to as “generalized satisfiability problems”.

It is widely acknowledged that, compared to the Boolean case, one
needs more advanced tools to make progress with non-Boolean constraint
satisfaction problems. Such tools based on algebra, logic, and graph the-
ory were developed in [4, 6, 8, 9, 13, 16, 18, 22, 23, 28]. The algebraic



method [4, 6, 8, 9, 22, 23], which proved to be quite powerful, builds on the
fact that one can extract much information about the structure and the com-
plexity of restricted constraint satisfaction problems from knowing certain
operations, called polymorphisms, connected with the constraint relations.
More exactly, polymorphisms provide a covenient ‘dual’ language for de-
scribing relations and, more importantly, they allow one to show that one
constraint can be simulated by other constraints without giving an explicit
construction.

In this paper we apply the algebraic method to study the complexity of
the parameterized problems of recognizing frozen variables. We characterize
all tractable problems (i.e., those in PTIME) and show that in this case
the unique values for all frozen variables in an instance, if there are any,
can be found efficiently, and we also present large classes of problems that
are NP-complete, coNP-complete, and DP-complete. As an application
of these results, we completely classify the complexity of the problem with
domain size 2, and with arbitrary domain, but in the presence of all unary
relations, and also give a rough classification for domain size 3. We observe
that CSP problems containing all unary relations is a generalisation of the
well-studied LiIsT HOMOMORPHISM problems for graphs [6, 14, 15].

The paper is organized as follows. In Section 2, we give basic definitions
and discuss the algebraic method that will be used in the paper. In Section 3,
we show that the algebraic technique is applicable to the problems we study
and that the complexity of these problems depends in a certain way on the
complexity of the basic satisfiability problem for given constraints. Section 4
is devoted to a characterization of the tractable cases of the problem, and it
also contains a sufficient condition for a problem to be coNP-complete. In
Section 5, we study NP-complete and DP-complete cases of the problem.
In Section 6, we give two complete classifications of complexity for two
important special cases of the problem: one is the Boolean case, and the
other is when all unary relations are available. Section 7 contains some
conclusions about the work we have done.

2 Preliminaries

Throughout the paper we use the standard correspondence between predi-
cates and relations: a relation consists of all tuples of values for which the
corresponding predicate holds. We will use the same symbol for a predicate
and its corresponding relation, since the meaning will always be clear from
the context. We will use Rgn) to denote the set of all m-ary relations (or



predicates) over a fized finite set D, and Rp to denote the set |, Rgn).
Note that unary relations on D are simply the subsets of D.

Definition 2.1 A constraint language over D is an arbitrary subset of Rp.
The constraint satisfaction problem over the constraint language I' C Rp,
denoted CSP(T'), is the decision problem with instance I = (V,D,C), where

e V is a finite set of variables,
e D is a set of values (sometimes called a domain), and

e C is a set of constraints {C1,...,Cq},

in which each constraint C; is a pair (s;,0;) with s; a list of variables
of length m;, called the constraint scope, and g; an m;-ary relation
over the set D, belonging to T', called the constraint relation.

The question is whether there exists a solution to I, that is, a function
¢ : V — D such that, for each constraint in C, the image of the constraint
scope is a member of the constraint relation. If I has a solution then we also
say that I is satisfiable.

The size of a problem instance is the length of the encoding of all tuples
in all constraints.

Definition 2.2 We say that CSP(T) is tractable if, for every finiteT' C T,
CSP(IV) is in PTIME. Similarly, we say that CSP(T") is NP-, or coNP-,
or DP-complete if the problem the corresponding complexity class and, for
some finite ' CT', CSP(IV) has the corresponding completeness property.

Throughout this paper we assume that NP # coNP (and consequently
PTIME # NP).

Example 2.3 Let N and N’ be the following ternary relations on {0,1}:
N ={(1,0,0),(0,1,0),(0,0,1)}, N'={0,1}*\{(0,0,0),(1,1,1)}.

It is easy to see that the 1-IN-3-SAT and the NOT-ALL-EQUAL-SAT prob-
lems (as defined in [42]) can be expressed as CSP({N}) and CSP({N'}),
respectively. Both problems are known to be NP-complete [42].

Example 2.4 Let #p be the binary disequality relation on any finite D.
Then CSP(#p) is ezactly the GRAPH |D|-COLORING problem. It is known
to be tractable if |D| = 2 and NP-complete otherwise [33].



A number of other combinatorial problems, including HOMOMORPHISM,
CLIQUE, and GRAPH REACHABILITY problems, expressed as CSPs, can be
found in [22].

In addition to predicates and relations we will also consider arbitrary
operations on the set of values. We will use Og) to denote the set of all
n-ary operations on a set D (that is, the set of mappings f: D" — D), and
Op to denote the set |J,° ; g‘).

Any operation on D can be extended in a standard way to an operation

on tuples over D, as follows. For any operation f € ng), and any collection
of tuples dy,ds,...,a, € D™, where @; = (@;(1),...,d;(m)), i = 1,...,n,
define

f@y, ... d@n) = (f(@1(1),...,@n(1)),..., f(@1(m),...,dn(m))).
Definition 2.5 For any relation o € R(L;n), and any operation f € ng), if
f(ay,...,a,) € o for all @y,...,a, € o, then g is said to be invariant under
f, and f is called a polymorphism of o.

Note that unary polymorphisms of a relation can be seen as a generalization
of the notion of an endomorphism (that is, homomorphism into itself) for
graphs; indeed, for graphs, the two notions coincide.

The set of all relations that are invariant under each operation from some
set C C Op will be denoted Inv(C). The set of all operations that are poly-
morphisms of every relation from some set I' C Rp will be denoted Pol(T').
By Pol,,(I") we will denote the set of all n-ary members of Pol(I'). We remark
that the operators Inv and Pol form a Galois correspondence between Rp
and Op (see survey [38] or Proposition 1.1.14 in [39]). A basic introduction
to this correspondence can be found in [37, 38], and a comprehensive study
in [39].

It is easy to see that CSP(I") can be expressed as a logical problem as
follows: is it true that a first-order formula g1(s1) A... A g4(8q), where each
0; is an atomic formula involving a predicate from I', is satisfiable?

Definition 2.6 For any set I' C Rp the set (') consists of all predicates
that can be expressed using

1. predicates from T U{=p},
2. comjunction,

3. existential quantification.



A relation belongs to (I') if and only if it can be represented as the
projection of the set of all solutions to some CSP(I')-instance onto some
subset of variables [24]. Intuitively, constraints using relations from (I') are
exactly those which can be ‘simulated’ by constraints using relations in T'.
In fact, (I') can be characterized in a number of ways [39], and one of them
is most important for our purposes.

Theorem 2.7 ([39]) For every set T' C Rp, (') = Inv(Pol(T)).

Theorem 2.7 is the corner-stone of the algebraic method, since it shows
that the expressive power of constraints is determined by polymorphisms.
In particular, in order to show that a relation p can be expressed by relations
in I, one does not have to give an explicit construction, but instead one can
show that g is invariant under all polymorphisms of I', which often turns out
to be significantly easier. Moreover, sets of operations of the form Pol(T")
are known as clones, that is, they are precisely the sets C of operations on
D with the following properties:

e C contains all projections, i.e. operations satisfying the condition
f(z1,...,2,) = x; for some 1 < ¢ <n and all z1,...,z, € D;

e ( is closed under superposition, that is, for any n-ary f € C and any
m-ary operations gi,...,g, € C, the operation

f(gl(xl, e ,wm),- b ,gn(wl,- b ,xm))
also belongs to C

Note that there exist several equivalent definitions of a clone; this one fol-
lows [44]. Clones are well-studied objetcs in algebra (see, e.g., [39, 44] for
more information including the just mentioned equivalence), and they are
all known for the case |D| = 2 [40]. In this paper we will use the following
result from [40] (see also [41], Chapter 1.4 [37], or Corollary 1.14 [44]) .

Proposition 2.8 Let C be a clone on {0,1}. FEither C consists of all pro-
jections (and then Inv(C) = Ry 13), or else C contains at least one of the
following 7 operations:

(a) the constant operation 0,
(b) the constant operation 1,

(c) the negation operation —z,



(d) the disjunction operation x V y,

(e) the congunction operation x Ay,

(f) the majority operation (xVy)A(zVz)A(yVz),
(9) the affine operation z —y+ z (mod 2).

Example 2.9 Reconsider the relation N from Ezample 2.3. It is easy to
check that none of the 7 operations from Proposition 2.8 is a polymorphism
of N. Since Pol({N}) is a clone, it follows from Proposition 2.8 that it
consists of all projections. Moreover, it is easy to verify that any relation
is invariant under every projection, and them, by Theorem 2.7, we have

({N}) = Ryo,13-

Example 2.9 illustrates how Theorem 2.7 allows one to make use of
known results from algebraic clone theory. Moreover, using Theorem 2.7,
the following result was obtained in [22].

Theorem 2.10 ([22]) LetI'; and I'y be sets of predicates over a finite set,
such that Ty is finite. If Pol(T'y) C Pol(T'y) then CSP(T'1) is polynomial-time
reducible to CSP(T's).

This result shows that finite sets of relations with the same polymorphisms
give rise to constraint satisfaction problems which are mutually reducible. In
other words, the complexity of CSP(T") is determined by the polymorphisms
of T.

A number of results on the complexity of constraint satisfaction problems
have been obtained via this approach (e.g., [3, 4, 5, 6, 7, 8, 9, 10, 13, 22, 23]).
For example, it is shown in [22] that Schaefer’s Dichotomy Theorem [42],
when appropriately re-stated, easily follows from Theorem 2.10 and well-
known algebraic results [40].

Theorem 2.11 ([42]) For any set I' C Ryq 13, CSP(T) is tractable when
Pol(T") contains at least one of the operations (a)-(b) or (d)-(g) from Propo-
sition 2.8. In all other cases CSP(T") is NP -complete.

We now define the main objects of our study in this paper.

Definition 2.12 Let I = (V,D,C) be an instance of CSP(T), and x € V.
Then z is said to be frozen in I if |{o(z) | ¢ is a solution to I}| = 1. We
say that V' CV is frozen in I if every x € V' is frozen in I.



Definition 2.13 Let T' C Rp. An instance of FV-CSP(T") is a pair (I,V")
where I is an instance of CSP(T'), with a set V of variables, and V' is a
non-empty subset of V. The question is whether V' is frozen in I.

Example 2.14 The conjunctive-query evaluation problem [28] in database
theory is to find the predicate (or decide whether it is non-empty) on vari-
ables y1,...,ym given by a formula of the form (3xq)...(3z,) C where
C=01(s1)N...Nog(sq), and z1,...,Zn,Y1,...,Ym are the variables used in
C. It is easy to see that the problem of deciding whether a conjunctive query
has a unique answer is precisely the problem of deciding whether {y1,...,ym}
is frozen in C.

Example 2.15 If we restrict FV-CSP(Ryq13) to instances with V! =V
then we obtain the generalized UNIQUE SAT problem [25].

The UNIQUE SAT problem is known to belong to DP. Moreover, it is
not known to belong to any weaker complexity class and it is known to be
DP-complete only under randomized reductions [45]. Recall that DP is
the complexity class {LNL' | L € NP,L' € coNP} [33] and that this class
contains both NP and coNP. A number of problems including MINIMAL
UnNsAT, TSP FACETS, CRITICAL CLIQUE, MAXIMAL NON-HAMILTONIAN
GRAPH, and MINIMAL 3-COLORABILITY are known to be DP-complete [34,
35].

The ultimate goal of this investigation is to determine the complexity of
FV-CSP(T') for all possible I'. We start with the following basic fact that
sets an upper bound for the complexity of this problem.

Proposition 2.16 FV-CSP(T") is in DP for every constraint language I'.

Proof. Let I = (V,D,C) be an instance of CSP(I'), and V' C V. To
prove that V' is frozen in I, we need (1) check that I has a solution (NP-
part), and (2), check that there do not exist two solutions ¢1, @2 such that
v1(v) # p2(v) for some v € V' (coNP-part). n

3 Reduction and separation

In this section we prove that the complexity of FV-CSP(T") is determined
by the polymorphisms of I', and hence the algebraic technique is applicable.
We also show how the complexity of FV-CSP(T") strongly depends on the
set Poly(I") of unary polymorphisms of I' and on the complexity of CSP(T").



Lemma 3.1 LetT' C Rp and g € (') for some o € Rp. Then, the problems
FV-CSP(I' U {g}) and FV-CSP(T") are polynomial-time equivalent.

Proof. By the remark after Definition 2.6, each occurence of p in every
instance I of CSP(I' U {p}) can be replaced by the corresponding collection
of constraints involving only relations from I'U{=p} (with possible renaming
of variables to avoid name clashes). The equality constraint can then be
removed by identifying variables. It is easy to see that transforming an
arbitrary instance (I, V') of FV-CSP(T" U {g}) in the same way and keeping
V' the same gives us a polynomial-time reduction from FV-CSP(T' U {p}) to
FV-CSP(T'). The reduction in the other direction is trivial. n

Theorem 3.2 Arbitrarily choose I'1,I's C Rp and assume that 'y is fi-
nite. If Pol(T'y) C Pol(T'y) then FV-CSP(T'y) is polynomial-time reducible to
FV-CSP(T's).

Proof. Follows from Lemma 3.1, Theorem 2.7, and the obvious fact that
the operator Inv is antimonotone (i.e. inclusion-reversing). [

Similarly to Theorem 2.10, Theorem 3.2 shows that the complexity of
FV-CSP(I") is determined by the polymorphisms of I'.

Remark 3.3 It is easy to see that if ¢ is a solution to an instance I of
CSP(T') then so is fo for every f € Poly(T). It follows that if p(x) = a
for some variable x in I then, for every b € D with b = f(a) for some
f € Poly(T'), there is another solution that maps z to b.

This remark shows that unary polymorphisms are very important in
recognizing frozen variables. For example, if f(d) # d for some f € Poly(T)
then d cannot be the value taken by a frozen variable in an instance of
CSP(T). In fact, the condition {d € D | f(d) = d for all f € Poly(T)} =0
can be shown to be equivalent to saying that no variable in any instance of
CSP(T") can be frozen.

Proposition 3.4 LetT' C Rp. If

{deD| f(d) =d for all f € Poly(T")} # 0

then CSP(T") is polynomial-time reducible to FV-CSP(T').
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Proof. Let d € D be such that f(d) = d for all f € Pol;(I"). Then, since
f'(z,...,z) € Pol{(T') for all f' € Pol(T'), we have f'(d,...,d) = d for all
f' € Pol(T'). By Theorem 2.7, {d} € (I'). By Lemma 3.1, we may assume
that {d} € I. Take an arbitrary instance I of CSP(I") and transform it to
an instance (I',{z}) of FV-CSP(T") as follows: introduce a new variable z
and add a constraint (z,{d}). It is obvious that z is frozen in I' if and only
if I is satisfiable. n

Proposition 3.4 answers a question, mentioned in the introduction, about
the dependence between efficient deciding of satisfiability and efficient frozen
variable recognition. Indeed, we now see that whenever there are frozen
variables in instances of FV-CSP(T"), this problem is not easier than CSP(T'),
that is, the problems having ‘symmetries’, like NOT-ALL-EQUAL-SAT and
GRAPH k-COLORING, k > 3, as mentioned in the introduction, are in fact
the only problems where the frozen variable problem is easier (trivial) than
the satisfiability problem. Note that Proposition 3.4, though seemingly easy,
would be very difficult to prove without the algebraic approach.

Theorem 3.5 Let ' C Rp. If {d € D | f(d) = d for all f € Poly(T')} =0
then FV-CSP(T") is trivial. Otherwise, FV-CSP(T") is in coNP if CSP(T")
is tractable and it is NP-hard if CSP(T') is NP-complete.

Proof. If there is no d € D such that f(d) = d for all f € Poly(T") then,
since fy is a solution to an instance whenever ¢ is such, no variable can be
frozen in any instance. Therefore, in this case FV-CSP(T') is trivial.

Suppose that CSP(T") is tractable. If (I, V') is an instance of FV-CSP(T")
then it can be decided in polynomial time whether I is satisfiable. If it is
not then V' is not frozen in I, otherwise the problem is equivalent to the
one of deciding whether I does not have two solutions that are distinct on
V' which is easily seen to be in coONP.

The last part part of the theorem follows from Proposition 3.4. "

For p € Rp and a unary f € Op, let f(o) = {f(@) | @ € o}. Also,
let f(T') = {f(0) | o € T'}. Note that if p € T and f € Poli(I") then
f(o) C o. It is known [9, 22] and easy to show that if f € Pol{(I') then
CSP(T") is polynomial-time equivalent to CSP(f(T")). This fact is often used
in the analysis of constraint satisfaction problems to reduce the set of pos-
sible values to a minimum. Unfortunately, for problems FV-CSP(T), this
equivalence works in neither direction, as the following examples show.

11



Example 3.6 Let I' C Ryg 1y consist of all relations that contain a tuple
(1,...,1). The operation f that maps both 0 and 1 to 1 is a polymorphism
of . The problem FV-CSP(f(T)) is trivial, but FV-CSP(I') is coNP-
complete, as shown in Section 6.

Example 3.7 Let D = {0,1,2,3} and let f : D — {0,1} be such that
f(0) = f(2) =0 and f(1) = f(3) = 1. Take T C Ry 1} as in Ezample 3.6
and let T' C Rp be the set {f (o) | 0 € T} where @ € f~1(p) if and only
if f(@) € o. No instance of FV-CSP(I) has frozen variables because the
constraints in I cannot distinguish 0 and 2, and 1 and 3. So FV-CSP(IV)
is trivial. It is obvious that f € Poli (') and f(I') =T, and, as shown in
Section 6, FV-CSP(T") is coNP -complete.

4 Tractable and coNP-complete problems

In this section we completely characterize all tractable problems FV-CSP(T")
and give examples of coNP-complete problems. To state our theorem we
need to introduce some notation.

Let C denote the quasi-order on D defined by the following rule: a C b
if and only if f(a) = b for some f € Poli(T'). It is well known and easy to
show that the relation 8, such that a 8 b if and only ifa C b and b C a, is an
equivalence relation on D. Let [a] denote the #-class containing a. It is also
well known and easy to show that the relation <, on the set of all #-classes,
such that [a] < [b] if and only if a C b, is well-defined and is a partial order.
Let P denote the corresponding poset. We will often omit # and call the
elements of P classes. The intuition behind the poset P is simple: if, in some
instance, a variable can take some value a in a solution then by Remark 3.3
it also takes, in some other solution, any other value lying in the same class
as a or in a class that is above [a] in P. In particular, values taken by frozen
variables must belong to maximal classes in P that are one-element. Note
that the condition {d € D | f(d) = d for all f € Pol;(T')} = () mentioned in
Theorem 3.5 and in the next theorem means that each maximal class in P
is not a singleton.

Let Z = {Bi,...,By} be the set of all #-classes B with the following
property: there exists a maximal class [a] € P such that [a] = {a} and [a] is
the only class in P with B < [a]; let a; denote the element a corresponding
to B; in this definiton. Finally, if Z # (), fix arbitrary b; € B;, i = 1,...,k,
and let T'; denote T" U {{b; }}.

12



Now we are ready to give a complete characterization of tractability of
FV-CSP(T"). Note that Proposition 3.4 implies that any such characteriza-
tion must, for all non-trivial problems FV-CSP(T'), contain the tractability
condition for the corresponding CSP(I'). We begin by proving a technical
lemma that is used in the proof of Theorem 4.2.

Lemma 4.1 IfT is a mazimal class in P or if T = B;U{a;} then T € (T').

Proof. Let T be a maximal class in P and let t' = f(t1,...,t,) for some
f € Pol,(T) and t4,...,t, € T. Maximality implies that for each 1 <7 <n
there exist f; € Poli(T') with f;(t1) = t;- One can see that the function
f'(z) = f(fi(z),..., fu(z)) is a member of Poly(T") and f'(t1) = t'. Using
maximality of T again we infer that ¢’ € T. Therefore, T € Inv(Pol(T)), and,
by Theorem 2.7, the result follows.

Let T' = B; U {a;}. Since {a;} is a maximal class in P, the argument
above shows that f(a;,...,a;) = a; for all f € Pol(T). Let t' = f(t1,...,tn)
where f € Pol,(T'), t1,...,t, € T, and at least one of the t;, say t1, belongs
to B;. By the definition of B;, there exist f1,...,fn € Poli(I') such that
fi(t1) = t; for all 1 < i < n. Since f'(z) = f(fi(z),-.., fa(z)) € Poli(T),
t' = f'(t1), and the fact that {a;} is the only element in P above B;, we
conclude that t' € B; U {a;}. As above, it follows that T € (T). n

Theorem 4.2 1. FV-CSP(T') is tractable if and only if one of the fol-
lowing conditions holds:

(a) {d€ D | f(d) =d for all f € Pol;(T')} =0,
(b) CSP(T) is tractable and Z =0,
(c) CSP(T;) is tractable for all 1 <i <k.

2. If CSP(T) is tractable and CSP(T;) is NP-complete for some1 <i <k
then FV-CSP(T") is coNP-complete.

Proof. First we prove that conditions (a)-(c) in part 1) are sufficient.

If (I, V') is an instance of FV-CSP(T"), v € V' is fixed, and T is a maximal
class in P, let Iy denote the instance of CSP(T") obtained by adding the
constraint (v,7") to I. Note that by Lemma 4.1 and Lemma 3.1, we may
assume that 7' € I'. Furthermore, if Z # 0, let I;, 1 < j < k, denote the
instance of CSP(I';) obtained by adding the constraint (v, {b;}) to I.

We assume that Pol;(I'), the poset P, and all maximal classes in P are
already computed. It is easy to see that, since D is fixed, this can be done
in polynomial time.
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Input: An instance (I,V') of FV-CSP(T') and a variable v € V'
Output: ‘Yes’ if v is frozen in I and ‘No’ otherwise.

1 for each maximal T in P solve I

2 if Iy is satisfiable for no 7' then Output ‘No’

3 if I is satisfiable for more than one T then Output ‘No’
4 if Iy is satisfiable for exactly one T and |T'| > 1 then Output ‘No’
5 if Iy is satisfiable for exactly one T and T' = {a} then

6 ifZ=0or{Bj|aj=a}=0 then Output ‘Yes’

7  else for each j with a;j = a solve I;

8 if some I; with a; = a is satisfiable then Output ‘No
9 else Output ‘Yes’.

I

Figure 1: Algorithm for deciding tractable FV-CSP(I")

If condition (a) holds then FV-CSP(I') is trivial by Theorem 3.5. Sup-
pose now that one of conditions (b) and (c) holds. We prove that the
polynoimal-time algorithm shown in Fig. 1 correctly decides whether a given
variable is frozen in an instance of FV-CSP(T"). Obviously, this is sufficient
to prove tractability of this problem.

It is easy to see that this algorithm runs in polynomial time because
all the Iy and all the I; (if Z # ) are instances of tractable problems.
Let us prove correctness of the algorithm. It is not hard to verify that
the conditions checked in the algorithm are jointly exhaustive and pairwise
incompatible. Therefore, it is sufficient to show that every line produces the
correct output, if any. Fix an instance (I, V') of FV-CSP(T") and a variable
v € V'. Tt follows from Remark 3.3 that if I is satisfiable then it has a
solution ¢ with ¢(v) € T for some maximal class 7" in P. Consequently, the
algorithms outputs ’'No’ in line 2 if and only if I is not satisfiable. Since
different classes in P do not intersect, fulfillment of conditions of line 3
implies that v is not frozen, so this line outputs the right answer. If the
conditions in line 4 are satisfied then, by definition of T', v takes all values
in T in solutions to I, that is, v is not frozen.

Assume now that the condition in line 5 is satisfied. Then we know that,
for any solution ¢ to I, ¢(v) can take only values b such that {a} is the only
maximal class in P satisfying [b] < {a}. Moreover, if ¢(v) # a for some
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solution ¢ then, by Remark 3.3 and by the choice of Z, there is a solution
¢’ such that ¢'(v) € B; for some 1 < j < k, and then any element in B;
is a value of z in some solution. This argument justifies lines 6-9 of the
algorithm.

We now prove the necessity of conditions (a)-(c). Assume, for contradic-
tion, that none of these conditions holds. If condition (a) does not hold then,
by Proposition 3.4, CSP(T") reduces to FV-CSP(T'). Therefore, if CSP(T")
is intractable, so is FV-CSP(I'). Suppose now that CSP(T") is tractable.
Since neither of conditons (b) and (c) holds, it follows that CSP(T;) is in-
tractable for some i, say ¢ = 1. We present a polynomial-time reduction
from the complement of this problem to FV-CSP(T"). Note that {a;} € (')
and B; U {a1} € (I') by Lemma 4.1. By Lemma 3.1, we may assume that
both relations are in I'. Let I be an arbitrary instance of CSP(I';). Modify
I to an instance I' of CSP(T") as follows:

1. introduce a new variable z and a constraint (z, B; U {a1}),
2. for every constraint of the form (v, {b1}) in I,

e remove this constraint from I,

e identify all occurences of v in I (if they exist) with z.

Since CSP(T") is tractable, I' can be decided in polynomial time. It is
easy to see that if I' is not satisfiable then neither is I. If this is the case,
map I to the one-constraint instance (z,{a;1}) of FV-CSP(T').

If I' is satisfiable, then map I to the instance (I',{z}) of FV-CSP(T).
We show that I is not satisfiable if and only if z is frozen in I'. If 2 is frozen
in I' then z is assigned a; in all solutions to I’ because b C a; for any b € By
(see Remark 3.3). We conclude that I is not satisfiable. If z is not frozen in
I’ then, since I’ is satisfiable, it takes some value b € B; in some solution ¢.
By the definition of By, there is f € Pol;(I") such that f(b) = b;. Therefore,
f is a solution to 1.

We conclude that FV-CSP(I") cannot be tractable since, otherwise, the
problem CSP(I';) is tractable which contradicts the assumption made. Note
that the second part of the theorem also follows from the reduction given
above. n

The next corollary says that, whenever FV-CSP(T") is tractable, not only
can the frozen variables be recognized efficiently, but also the unique values
for them can be found in polynomial time.
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Corollary 4.3 Let FV-CSP(T') be tractable. Then the unique values for all
frozen variables in any instance of CSP(I") can be found efficiently.

Proof. If condition (a) of part 1 of Theorem 4.2 is satisfied then no variable
in any instance of CSP(T") is frozen. Otherwise, for a given instance I of
CSP(T"), apply the algorithm in Fig. 1 to each variable v in I and, if v is
frozen in I, it takes value a from line 5 of the algorithm. "

We now give some examples to show how Theorem 4.2 works.

Example 4.4 If CSP(T") is tractable and all f € Poly(I") are permutations
then FV-CSP(T') is tractable. Indeed, since Poli(T") is a permutation group,
the poset P is an antichain (all classes are pairwise incomparable). There-
fore, Z =0 and we can apply Theorem 4.2.

Example 4.5 Let D = {0,1,2} and I" consist of two relations, g1 and g2,
on D where 91 = {(0,0,0),(0,1,1),(0,1,2)} and

o2 = {(0,0,0,0),(1,0,0,1),(1,0,1,0),(1,1,0,0),(1,0,0,2) }.

Obviously, CSP(T") is tractable, since one can always satisfy all constraints
by assigning 0 to all variables. It is easy to calculate that Poli(I') consists
of three operations f1, f2, f3 whose values on (0,1,2) are the tuples in 01. In
particular, fi is the 0 operation and f3 = idp is the identity operation on
D. Then the quasi-order C satisfies 2 C 1 C 0 and 0 [Z 1 [Z 2. Therefore,
we have Z = {B1} where By = {1} and a; = 0. Then I'1 = {01, 02,{1}}-
Consider the relation o' defined by

Q,(xayaz) = (Hu)(EI'v)(EIw)(u =1A gz(’U,,iL',y,Z) A Ql(’U,Z,’U)))-

One can easily check that o' is exactly the relation N defined in Example 2.3.
So, N € (I'1), and, by Theorems 2.7, 2.10 and Ezample 2.3, CSP(I'1) is
NP-complete. Thus, by Theorem 4.2, FV-CSP(T") is coNP-complete.

Example 4.6 In Example 4.5, replace the only occurence of 2 in g2 by
0. Let ¢y denote the obtained relation and let T" = {01, 04}. Again, it is
easy to compute that Poly(I') coincides with Poli(T"), and, therefore, the
quasi-order C 1is the same as in Ezample 4.5, and so Ty = {o1,05,{1}}.
One can straightforwardly check that the binary operation min(z,y) on D,
which takes the minimum of x and y with respect to the natural order on D,
belongs to Pol(T}). It follows from [23] that CSP(T'}) is tractable. Thus, by
Theorem 4.2, FV-CSP(I") is tractable.
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Note that if the conjecture that every CSP(T") is either tractable or NP-
complete holds (and there is strong evidence that it does [4, 5, 6, 7, 8, 9, 10,
16, 21, 22, 42]) then Theorems 3.5 and 4.2 also give a complete characteriza-
tion of coNP-complete problems FV-CSP(T"). It was proved in [4] that, for
|D| < 3, this conjecture is true and, moreover, there is a polynomial-time
algorithm which determines, for a given finite I' C Rp, whether CSP(T") is
tractable or NP-complete. Combining this with Theorems 3.5 and 4.2 we
get the following trichotomy result.

Corollary 4.7 Let |D| < 3. Then, for everyI' C Rp, FV-CSP(T') is either
tractable, or coNP-complete, or NP -hard. Moreover, there is a polynomial-

time algorithm which determines, for a given finite T' C Rp, into which case
the problem FV-CSP(T") falls.

In Section 6 we will give a more precise classification for the case |D| = 2
and when I' contains all unary relations.

5 NP-complete and DP-complete problems

In this section, we exhibit sufficient conditions for FV-CSP(I") to be DP-
complete and NP-complete.

Assume that I can express all relations of the form {a}, that is, {a} € (T
for all @ € D. This is equivalent to saying that Pol;(I') = {idp}. Indeed,
if {a} € (') for all @ € D then Pol;(I'") = {idp} by Theorem 2.7 and the
definition of a polymorphism. Conversely, since f'(z,...,z) € Pol;(T) for
all f' € Pol(T"), it follows that, for all a € D, f'(a,...,a) = a, and, by
Theorem 2.7, {a} € (I'). By Lemma 3.1, we may assume that I' contains
all unary relations of the form {a}, a € D. We know from Example 4.4
that in this case FV-CSP(I') is tractable whenever CSP(I') is tractable. We
will show that if CSP(T") is NP-complete then in many cases FV-CSP(T') is
DP-complete.

Lemma 5.1 Let I' C Rp and Pol{(T') = {idp}. Suppose that there ezists a
subset A C D such that A € (T'), and an equivalence relation € € (T') on A,
with exactly two classes A1 and As, such that the ternary relation

0 = {(a,b,c) € A3 | [{a,b,c} NA1| =1}

(with some choice of A1) belongs to (I'). Then CSP(T") is NP-complete.
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Proof of Lemma 5.1. It is easy to see that g is the 1-IN-3-SAT relation
N, as defined in Example 2.3, with elements from A; playing the role of 1,
and elements of Ay playing the role of 0. Since CSP({/N}) is NP-complete
(see Example 2.3), CSP({o¢}) is NP-complete as well. By Theorems 2.7
and 2.10, CSP(T") is NP-complete. ]

It was proved in [8, 9] that, to classify the complexity of problems CSP(I")
over all finite domains, it is enough to look at the problems CSP(I') with
Pol;(T") = {idp}, and it was conjectured (with appropriate reformulation in
terms of universal algebras) [4, 8, 9] that all NP-complete problems CSP(I")
with Pol;(I') = {idp} are described in Lemma 5.1, and that all other prob-
lems CSP(T') with the given property are tractable. This conjecture is con-
firmed in many special cases, in particular, it is true when |D| < 3 [4, 22, 42]
or when I' contains all unary relations [6].

We say that elements a and b are indistinguishable in a relation p if,
in any tuple in g, we can replace any occurence of a by b or vice versa
without affecting membership in p. It is easy to see that elements from each
equivalence class of € are indistinguishable in g,.

Lemma 5.2 The set ({oc}) consists of all relations o on A such that ele-
ments from each equivalence class of € are indistinguishable in o.

Proof. The result follows from Example 2.9 together with the observation
made before the lemma. "

It follows from Lemma 5.2 that, in Lemma 5.1, if g € (T') for one choice
of A, then the same is true for the other choice of A; too.

Theorem 5.3 Suppose that I' C Rp satisfies the conditions of Lemma 5.1,
and A, €, and Ay can be chosen so that A, is one-element. Then FV-CSP(T")
is DP-complete.

Proof. By Lemma 3.1, we may assume that g € I'. An instance of the
SAT-UNSAT problem is given by a pair (F,F') of propositional formulas.
The question is whether it is true that F' is satisfiable and F”’ is not. This
problem is known to be DP-complete [33, 35]. A very similar proof shows
that 3SAT-3UNSAT, a restriction of the above problem with F and F’ having
three literals per clause, is also DP-complete. We will reduce 3SAT-3UNSAT
to FV-CSP(T").

Let Ay = {a} and A the set of all at most 4-ary relations in (g).
Consider the function f : A — {0,1} given by f(a) = 1 and f(b) = 0 if
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b # a. Arbitrarily choose a 3SAT-3UNSAT instance (F, F') and construct an
FV-CSP(A) instance (I,{u}) with I = (V,D,C) defined as follows. Let V'
be the set of variables used in (F, F') together with one new variable u. For
every clause ¢(z,y, z) in F introduce constraint ((z,y, z), o.) where

(a1,a2,a3) € 0. & c(f(a1), f(a2), f(a3)) = 1.

Then, every clause in ¢/(z,y, 2) in F’, introduce a constraint ((z,y, z,u), 0¢)
where

(a1,a2,a3,04) € 0o < (c'(f(ar), f(a2), f(as)) = 1 or f(as) =1).

Let C be the collection of constraints obtained in this way. Note that the
constraints built from F mimic clauses in F' with a playing the role of
1, and all (indistinguishable) elements of A playing the role of 0. The
constraints built from F’ effectively say that if F’ is satisfied then u can
take any value, but if F’ is not satisfied then u must take value a. Note
that, by Lemma 5.2, all constraint relations introduced belong to ({gc}),
and, therefore, to A. Moreover, since D is fixed, the transformation can be
performed in polynomial time.

We prove that u is frozen in I if and only if (F, F') is a ‘yes’-instance of
3SAT-3UNSAT. Assume that F is not satisfiable. Then neither is I. Assume
that both F and F” are satisfiable. Then I has one solution in which u takes
value @ and one in which u takes some other value. Finally, assume that F'
is satisfiable and F’ is not. In this case, p(u) = a for every solution ¢ to
I. Hence, FV-CSP(A) is DP-complete. By Lemma 3.1, we conclude that
FV-CSP({o}) (and, hence, FV-CSP(I")) is DP-complete. n

Example 5.4 Reconsider relation N from Erample 2.3. In this case, DP-
completeness of FV-CSP({N}) follows immediately from Theorem 5.3. Let
us now consider the AUDIT problem which was defined in Section 1. First,
the fact that N(z,y,z) holds iff x + y + z = 1 suggests that the AUDIT
problem could be viewed as a subproblem of FV-CSP({N}). However, if
the given set of equations has mo solution, then the corresponding AUDIT
instance is considered to be a ‘yes’-instance (and mot a ‘no’-instance). A
straightforward modification of Theorem 5.3 solves this problem: simply do
the reduction from the coNP-complete problem 3UNSAT (instead of the DP-
complete problem 3SAT-3UNSAT) by removing the 3SAT-formula F from the
transformed instance (F, F'). This reduction shows that the AUDIT problem
is coNP-complete.
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We would like to point out that the difference in problem definition
between FV-CSP and AUDIT (i.e. in the AUDIT problem, we check whether
at least one variable is frozen or not) does not affect the complexity in the
example above. We also would like to point out that the AUDIT problem
is coNP-complete for a wider range of statistical queries than summation
queries. In fact, as soon as the set of relations which are expressible by
the statistical queries satisfies the preconditions of Theorem 5.3, then the
AUDIT problem for such queries is coNP-complete.

It can be derived from Corollary 4.7, Theorem 5.3, the proof of Theorem
7 [9], the fact that (N) = Ryg 13 [39, 40, 42], and the results of [4] that the
following holds.

Corollary 5.5 Let |[D| < 3, ' C Rp and {d} € (T') for alld € D. Then
FV-CSP(T) is either tractable or DP -complete.

We now give some examples of NP-complete problems FV-CSP(T"). Let
f : D — E be onto and such that |[f~!(e)] > 1 for all e € E. Take
any I'' C Rp such that CSP(IV) is NP-complete, and consider ' C Rp
consisting of all relations f~1(p),0 € I, where @ € f~(p) if and only if

f(@) € o
Proposition 5.6 FV-CSP(I' U {{d} | d € D}) is NP-complete.

Proof. It is easy to see that CSP(I") is NP-complete which implies that
CSP(I' U {{d} | d € D}) is NP-complete. In every solution ¢ of every satis-
fiable instance of CSP(T'), the value ¢(z) of any variable z can be changed
to any other value a such that f(a) = f(¢(z)). Take an arbitrary instance
(I, V") of FV-CSP(T' U {{d} | d € D}). If there is a variable in v € V' on
which no constraint of the form (v,{d}) is imposed, or if there are two such
constraints with the same v but different d, then V' is not frozen in I, since
no solution (if it exists) is unique on V. If, in I, there is a unique constraint
of the form (v,{d}) for every v € V' then the problem is equivalent to decid-
ing whether I is satisfiable. Hence, FV-CSP(I'U {{d} | d € D}) is in NP.
Now the result follows from Proposition 3.4. "

Example 5.7 Let D = {0,1,...,k}, k > 3, and f : D — {0,1} be such
that f(0) = f(1) =0 and f(a) =1 otherwise. Reconsider relation N defined
in Ezample 2.3, and let o = f *(N). It follows from Proposition 5.6 and
Ezample 2.3 that FV-CSP ({0, {0},{1},...,{k}}) is NP-complete.

20



Proposition 5.8 Fiza € D and let D' = D\{a}. LetT C Rp: be such that
CSP(T") is NP-complete and {d € D' | f(d) = d for all f € Pol{(T")} = 0.
Then FV-CSP(I' U {{a}}) is NP-complete.

Proof. Similar to that of Proposition 5.6. ]

Example 5.9 Let D = {0,1,2} and let N' be as defined in Example 2.3. It
is easy to see that the permutation that swaps 0 and 1 is a polymorphism of
N'. Therefore, FV-CSP({N',{2}}) is NP-complete by Proposition 5.8.

6 Two complete classifications

In this section we show how results from the previous sections work. Apply-
ing Theorems 3.5, 4.2, and 5.3, one can obtain the following classification
result.

Theorem 6.1 LetT' C R{o,1}- Then

1. if Pol(T') contains both constant operations, 0 and 1, or one of the
operations (c)-(g) from Proposition 2.8 then FV-CSP(T") is tractable;

2. else, if exactly one of 0 and 1 is in Pol(T') then FV-CSP(T') is coNP-

complete;

3. else, FV-CSP(TI") is DP-complete.

Proof of Theorem 6.1. 1) The cases when Pol(I") contains both constant
operations or the negation operation are trivial by Theorem 3.5. In cases
(d)-(g), the problem CSP(I' U {{0},{1}}) is tractable by Theorem 2.11, and
we can apply Theorem 4.2.

2) Assume that 1 € Poli(I') and 0 ¢ Pol;(I"). In this case, CSP(T") is
tractable by Theorem 2.11. We have Pol;(I") = {idf¢,1},1}. Therefore the
quasi-order defined before Theorem 4.2 satisfies 0 C 1 and 1 Z 0, and we
have Z = {B1} where B; = {0} and a; = 1. It follows from Theorem 2.11
that CSP(I' U {{0}}) is NP-complete. By Theorem 4.2, we conlcude that
FV-CSP(T") is coNP-complete.

3) If " does not satisfisy any of the conditions mentioned in 1) and 2)
then, by Proposition 2.8 and Theorem 2.7, we have (I') = Ry 13. It follows
from Lemma 3.1 and Example 5.4 that FV-CSP(T") is DP-complete. n
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It is easy to see that all conditions in Theorem 6.1 can be verified
efficiently for any finite I' C Ryg 3. Another interesting consequence of
Theorem 6.1 (and Propositions 5.6 and 5.8) is that NP-complete problems
FV-CSP(T'), I' C Rp, exist if and only if |D| > 2.

Note that the first two parts of Theorem 6.1 coincide (when appropri-
ately re-stated) with the corresponding parts of the classification for UNIQUE
SAT(T') [25], while the last part of Theorem 6.1 gives more precise informa-
tion than the corresponding part in [25].

Now let us consider conservative CSPs that are a generalization of the
well-studied LisT HOMOMORPHISM problems for graphs [6, 14, 15]. Let D
be arbitrary finite, and suppose that Rg) CT C Rp, that is I" contains all
unary relations. This condition means that one can specify, for each vari-
able in any instance of CSP(T'), its own domain within D. It also follows
that, for every f € Pol(I') and every B C D, f(b1,...,b,) € B whenever
bi,...,by, € B, and we can therefore consider restrictions of polymorphisms
onto arbitrary subsets. The complexity of CSP(I") for such sets I' is com-
pletely classified in [6]. Let f|p denote the restriction of a function f onto
a set B.

Theorem 6.2 ([6]) Let D be arbitrary finite and Rg) CT C Rp. I,
for every two-element B C D, there is an at most ternary f € Pol(T")
such that f|p (up to the names of elements) is one of the functions (c)-(f)
from Theorem 6.1 then CSP(T") is tractable. Otherwise it is NP-complete.
Moreover, the tractable cases can be recognized efficiently.

Applying Theorems 6.2, 4.2, and 5.3, one can obtain the following clas-
sification result.

Theorem 6.3 Let D be finite and R\ C T C Rp. Then FV-CSP(T) is
tractable if CSP(T") is tractable, and it is DP-complete otherwise.

Proof of Theorem 6.3. Since {d} € I for each d € D, we have Pol;(I") =
{idp}. If CSP(T') is tractable then, by Example 4.4, so is FV-CSP(T).
Assume now that CSP(T") is NP-complete. Then there is two-element B C
D (say, B = {0,1}) such that, for each f € Pol(T"), f|g is not of the form
(d)-(g) of Proposition 2.8. Using the superposition-based definition of a
clone, it is easy to show that C = {f|g | f € Pol(T")} is a clone on {0,1}.
Since Pol;(T") = {idp}, it follows that for each f € Pol(I'), f|p is not of the
form (a)-(c) of Proposition 2.8. Hence, by Proposition 2.8, C consists of all
projections on {0,1}. Then, by Example 2.9, we have N € Inv(C). By the
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definiton of C and the fact that every operation in Pol(T") preserves {0,1},
we have N € Inv(Pol(I")) = (T'). It follows from Lemma 3.1 and Example 5.4
that FV-CSP(I") is DP-complete. n

Moreover, as noticed in [6], all conditions in Theorem 6.2 can be verified
efficiently for any finite ' C Rp.

7 Conclusion

We have continued the study of connections between algebraic theory and
the computational complexity of constraint satisfaction problems. This idea
was originally developed for studying the standard constraint satisfaction
problems where the question is to decide the existence of a solution. This
paper clearly shows that this approach leads to general results for a wider
range of problems with different computational properties. For example, the
frozen variable problems in constraint satisfaction can be tractable, NP-,
coNP- and DP-complete.

One of the results in this paper is a characterization of the tractable
cases of the frozen variable problem, which also provides a characterization
of coNP-complete cases if the dichotomy conjecture for the standard CSP
holds. We have shown that further progress in classifying the complexity of
the frozen variable problem will strongly, though not completely, depend on
the progress with the standard CSP. Indeed, even assuming dichotomy for
the standard CSP and also that hard CSPs give rise only to NP-complete
or DP-complete cases of FV-CSP(T"), it remains open to separate the cases
for non-Boolean domains, which seems to be quite a challenging task. For
|D| = 3, this can probably be accomplished by refining the techniques used
in this paper and combining them with the algebraic results achieved in
the process of completely classifying the complexity of the standard CSP
problem over a three-element domain [4].

An interesting direction of future research would also be to find out to
what extent our results on the frozen variable problem can be applied to the
UNIQUE CSP problem which is the problem of recognizing CSP instances
with a unique solution. Is it true that tractable cases of the two problems
are the same? Obviously, every tractable case of the frozen variable problem
gives rise to a tractable case of UNIQUE CSP, and implication in the other
direction is also true for |[D| = 2, as mentioned in Section 6.
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