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Abstract

Given a polynomial f(X) with rational coefficients as input we study the problem
of (a) finding the order of the Galois group of f(X), and (b) determining the Galois
group of f(X) by finding a small generator set.

Assuming the generalized Riemann hypothesis, we prove the following complexity
bounds.

(1) The order of the Galois group of an arbitrary polynomial f(X) € Z[X] can be
computed in p#P. Hence, the order can be approximated by a randomized
polynomial-time algorithm with access to an NP oracle.

(2) For polynomials f with solvable Galois group we show that the order can be
computed exactly by a randomized polynomial-time algorithm with access to an
NP oracle.

(3) For all polynomials f with abelian Galois group we show that a generator set
for the Galois group (as a permutation group acting on the roots of f) can be
computed in randomized polynomial time.

These results also hold for polynomials f € K[X], where the field K = Q(0) is
specified by giving the minimal polynomial of 6.

Introduction

A fundamental problem in computational algebraic number theory is to determine the Galois
group of a polynomial f(X) € Q[X]. Formally, in this paper we study the computational
complexity of the following problem:

{probl}

Problem 1.1. Given a nonzero polynomial f(X) over the rationals Q,

(a) determine the Galois group of f over Q.
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(b) determine the order of the Galois group of f over Q.

Given two fields, L O K, the Galois group of the extension L/K (written as Gal (L/K))
is the set of all automorphisms of L that fixes K. Given a polynomial f(X) € K[X], the
splitting field of f(X) is the smallest field L O K such that f(X) factorizes into linear
factors in L. We denote the splitting field of f(X) € K[X] by K;. Given a polynomial
f(X) € K[X] its Galois group G is completely determined by its action on the roots of f
in Ky. We assume w.l.o.g throughout this paper that f is square-free. Otherwise, we can
replace f by f/ged(f.f') which is square-free with the same Galois group. Thus, if we label
the n distinct zeroes of f, we can consider G as a subgroup of the symmetric group S,.
Notice that this subgroup is determined only up to conjugacy (as the labeling of the zeroes
of f is arbitrary). Since every subgroup of S, has a generator set of size n — 1 (c.f. [14] and
[11]), we can specify the Galois group G in size polynomial in n. By computing the Galois
group G of a polynomial f we mean finding a small generator set for G' as a subgroup of S,,.

We first explain the size of a natural encoding of polynomials f(X) € Q[X]. Let size(a)
denote the length of the binary encoding of an integer a. For a rational r = p/q such
that ged(p,q) = 1, let size(r) = size(p) + size(q). A polynomial is encoded as a list of its
coefficients. For a polynomial f(X) = Y ;X € Q[X] we define size(f) = >_ size(a;). Thus,
for an algorithm taking a polynomial f as input, the input size is size(f).

Given as input f(X) € Q[X] there is a deterministic algorithm due to Landau [7] that
computes the Galois group of f in time polynomial in the cardinality of the Galois group (also
see [4]). However, this is not an efficient algorithm as the Galois group can be of cardinality
exponential in n. It is still open if Problem 1.1(a), or even Problem 1.1(b), has a polynomial
(in size(f)) time algorithm (c.f. the survey by Adleman and McCurley [1]). Neither is a
better upper bound than the exponential-time algorithm mentioned above known, nor is
any nontrivial hardness result known for the problem. Problem 1.1(b) is polynomial-time
reducible to Problem 1.1(a).!

The Galois group of a polynomial is a fundamental object of study in algebraic number
theory. We recall the celebrated result of Galois: a polynomial f over Q is said to be solvable
by radicals if we can compute its zeroes from the coefficients by the standard arithmetic
operations and taking rth roots, for any positive integer r. Galois theorem states that a
polynomial f € Q[X] is solvable by radicals if and only if its Galois group is a solvable
group. Landau and Miller in [8] showed that the problem of testing whether the Galois
group of a polynomial f € Q[X] is solvable can be done in polynomial time. However, even

when the Galois group is solvable, no polynomial-time algorithm is known for Problem 1.1(a)
or Problem 1.1(b).

Summary of results

In this paper we prove the following new complexity upper bounds for some special cases of
Problems 1.1(a) and (b), assuming the generalized Riemann hypothesis (henceforth GRH).

1. Given a polynomial f € Q[X], the order of its Galois group can be computed by a poly-
nomial time algorithm with one query to a #P oracle. This yields a polynomial-space

!Given a generator set for a subgroup G of S, we can compute |G| in time polynomial in n [11].
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algorithm for Problem 1.1(b). In contrast, we observe here that Landau’s algorithm
[7] requires more than polynomial space.

2. If the Galois group of the polynomial is solvable then we get a randomized algorithm
with NP oracle that eractly computes the order of its Galois group.

3. Assuming the GRH, we have a polynomial time randomized algorithm for comput-
ing the Galois group for a polynomial f with abelian Galois group. Previously, a
polynomial-time algorithm was known only for the case when f is irreducible and has
an abelian Galois group [7] (also see [4]), because in that case the Galois group has
only deg(f) many elements.

Our main tool is an effective version of the Chebotarev density theorem, which holds
assuming the GRH.

1.1 Galois theory background

We now recall some basic facts of Galois theory from [9, 16]. An extension of a field K is a
field L that contains K. The extension is written as L/K. If L/K is a field extension then
L is a vector space over K, its dimension is called the degree of the extension and is denoted
by [L : K|. If [L : K] is finite then L/K is a finite extension. If L/M and M/K are finite
extensions then [L: K| =[L: M].[M : K].

Let K[X] denotes the ring of polynomials with indeterminate X and coefficients from the
field K. K[X] is a unique factorization domain. A polynomial f(X) € K[X] is irreducible
if it has no nontrivial factor. If L/K is an extension, any polynomial in K[X] is also a
polynomial in L[X]. The splitting field of a polynomial f(X) € K[X] (denoted by K/) is
the smallest extension L of K such that f factorizes into linear factors in L. An extension
L/K is normal if for any irreducible polynomial f(X) € K[X], f either splits in L or has
no root in L. Any normal extension over K is the splitting field of a set of polynomials in
K[X]. An extension L/K is separable if for all irreducible polynomials f(X) € K[X] there
are no multiple roots in L. A normal and separable finite extension L/K is called a Galois
extension.

An automorphism of a field L is a field isomorphism ¢ : L — L. The Galois group of a
field extension L/K (denoted by Gal (L/K)) is the subgroup of the group of automorphisms
of L that leaves K fixed: i.e. for every o0 € Gal (L/K), o(a) = a for all ¢ € K. By the Galois
group of a polynomial f € K[X] we mean the Galois group Gal (K;/K). For a subgroup G
of automorphisms of L, the fired field L¢ is the largest subfield of L fixed by G. We now
state the fundamental theorem of Galois.

Theorem 1.2. [9, Theorem 1.1 Chapter VI| Let L/K be a Galois ertension with Galois
group G. There is a one-to-one correspondence between subfields E of L containing K and
subgroups H of G, given by E = L. The Galois group of Gal (L/E) is H and E/K is a
Galois extension if and only if H is a normal subgroup of G. If H is a normal subgroup of
G and E = L then the Galois group of Gal (E/K) is G/H.

{funda:g



Roots of polynomials over Q are algebraic numbers. The minimal polynomial T € Q[X]
of an algebraic number « is the unique monic polynomial of least degree with a as a root.
Algebraic integers are roots of monic polynomials in Z[X]. A number field is a finite extension
of Q. We can consider number fields as subfields of C, the field of complex numbers. For an
algebraic number «, Q(«) denotes the smallest number field that contains . If f(X) is the
minimal polynomial of o then Q(«) can be identified with the quotient QX]/(f(X)Q[X]).
Every number field K has an element « such that K = Q(«) (see [9, Theorem 4.6 Chapter
V]). Such elements are called primitive elements of the field K.

Let f € QX]| with roots a1, oy, ..., o, € Qf. How do we obtain a primitive element for
Q;? A well known lemma [16] states that Q; has a primitive element of the form Y | ¢y
for integers ¢;. The proof actually yields a probabilistic version which states that > c;o
is primitive for most c;.

Lemma 1.3. Let f € Q[X] be a degree n polynomial with roots oy, aa, - .., o For a random
choice of integers cy, ¢y, . ..,y such that size(c;) < n? the algebraic integer

n
0 = E C;0;
=1

is such that L = Q(6) with probability 1 — —*

20(n2) .

Let L be a number field and Of, be the ring of algebraic integers in L. We can write Oy,
as O = {Zfil a;w; | a; € Z} where wy,ws,...,wy is its Z-basis. The discriminant dy of
the field L is defined as the determinant of the matrix (Tr(w;w;));; where Tr : L — Q is the
trace map. The discriminant dy is always a nonzero integer. Let # be an algebraic integer
that is a primitive element of L and 7'(X) be the minimal polynomial of , which is also of
degree N. The discriminant d(T') of the polynomial T is defined as d(T) = [[,,;(0; — 6;),
where 6,0, ...,0y are the N distinct roots of 7" (i.e. all the conjugates of ). The following
is important property that relates d(7T") and dy.

Proposition 1.4. [3, Proposition 4.4.4] Let L be a number field and T be the minimal
polynomial of a primitive element 0 of L. Then dy, | d(T). More precisely, d(T) = d, - t2,
for an integer t.

For any polynomial g(X) = ag + a1 X + ... + a, X™ with complex coefficients, let |g|, =
v/ > |a;|?. Applying an inequality [6] which bounds every root 1 of g by |g|2, we obtain the
following.

Theorem 1.5. Let f(X) € Z[X] be a monic polynomial of degree n with splitting field L.
Let oy, g, ..., a, be the roots of f. Consider an element of the form 6 = ¢y, ¢; € Z,
and let T be the minimal polynomial of 6. If N = deg(T) then d(T) < (2¢|f|2)N", where
c=max{|¢]| : 1 <i<n}. Asa consequence, dy < (27°|f|2)™ andlogdy < (n+1)1.size(f).

A polynomial f(X) € Q[X] is said to be solvable by radicals if the roots of f can be
expressed, starting with the coefficients of f, using only field operations and taking r** roots
for integer r. Galois showed that a polynomial is solvable by radicals if and only if its

4
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Galois group is solvable. Implicit in his proof is an exponential-time algorithm to check if
a polynomial is solvable by radicals. As already mentioned, Landau and Miller in [8] give
a polynomial-time algorithm to check whether a given polynomial is solvable by radicals by
avoiding the computation of the Galois group.

We now state Landau’s result on computing the Galois group of a polynomial f. Its
worst case running time is exponential in size(f).

Theorem 1.6. [7] Given a polynomial f € F[X], where the number field F is given as a
vector space over Q, the Galois group G of f over F can be computed in time polynomial in

|G| and size(f).

1.2 Complexity Theory definitions

We briefly recall the definitions and notation for some standard complexity classes. Details
can be found in a standard text, e.g. [2]. Let P denote the class of languages (decision
problems) that are accepted by deterministic Turing machines in time bounded by a poly-
nomial in input size, and NP denote the class of languages accepted by nondeterministic
Turing machines in polynomial time. Likewise, we denote by BPP the class of decision prob-
lems that are accepted by polynomial-time bounded randomized Turing machines with error
probability bounded by 1/3. By abuse of notation we also denote functions computable in
deterministic polynomial time by P, and denote by BPP the class of functions computable
by polynomial-time bounded randomized Turing machines with error probability bounded
by 1/3.

A function f :{0,1}* — N is said to be in the counting class #P if there is a polynomial
time nondeterministic Turing machine M such that f(z) is the number of accepting paths
of M on input x. We recall that #P functions can be computed in polynomial space.

A function f in the class P? is computable by polynomial-time deterministic oracle
Turing machine M which has access to oracle A: M can enter a special query state and
query the membership of a string y in A. We can similarly define P/ for a function oracle
f, and the classes BPP# and BPP/.

2 Chebotarev Density theorem

The main tool in the proofs of our complexity results is the Chebotarev density theorem. In
this section we explain the theorem statement and also state it in a form that is suitable for
our applications.

Let L be a number field and Oy, be the ring of algebraic integers in L. Let n = [L : Q)
be the degree of L. For any prime p € Q consider the principal ideal pOj generated by p
(which we denote by p). Suppose the ideal p factorizes in Op as p = p{'p5? ... pg°-

Then for each i, Op/p; is a finite field of characteristic p with p/i elements for positive
integers f; such that n = Y 7, e;f;. Furthermore, if L is a Galois extension of Q then
ep =€ =...=¢,=cand f; = fo =... = f, = f for positive integers e and f, and thus
efg = n. For the rest of this section we assume that L/Q is a Galois extension.

{splitf:



The prime p is said to be ramified in L if e > 1 and unramified otherwise. It is a basic fact
about number fields that a prime p is ramified in L if and only if p divides the discriminant
of L (see [13]).

For any unramified prime p if p|p in Oy, then there is an element (MTQ

) € Gal (L)Q)

known as the Frobenius element such that

(L/TQ> a=adf (mod p), a € Oy,

Furthermore, it is known that the set

) e}

is a conjugacy class in the Galois group G.
Now, for any conjugacy class C' of G define the integer-valued function 7 (z) as follows

mo(r) = Hp < z : p unramified prime and [L/TQ] = C’H .

We are now ready to state the Chebotarev density theorem.

{chebo}
Theorem 2.1 (Chebotarev density theorem). Let L/Q be a Galois extension and G =
Gal (L/Q) be its Galois group. Then for every conjugacy class C of G, wc(x) converges to
Cl =
%'logw as T — 00.
In order to apply the above theorem in a complexity-theoretic context, we need the
following effective version due to Lagarias and Odlyzko [5] proved assuming the GRH.
{eff :che
Theorem 2.2. Let L/Q be a Galois extension and G = Gal (L/Q) be its Galois group. If
the GRH 1s true then there is an absolute constant xy such that for all x > xy:
Cl = Cl 1) 1
- = O | = a'?logd ?logx.|G|) .
7o (x) GlTogz | = |G‘x ogds, +x /*logx.|G|
A useful special case is for the conjugacy class C = {1}, the identity element in G. A
L
prime p such that [%] = {1} is called a split prime. By definition, 7 (z) denotes the
number of split primes p < z.
{eff :sp]

Corollary 2.3. Let G = Gal (L/Q) for a Galois extension L/Q. If the GRH is true then
there is an absolute constant xqo such that for all x > xq:

(z) 1 =z
x —_—
m |G| logzx| —

1
0 (@xlﬂ log dy, + z'/? logx.\G|) .



3 Computing the order of Galois Groups

Let f(X) € Z[X] be a monic polynomial of degree n without multiple roots and let L denote
the splitting field of f. Suppose {1, o, ..., ay,} is the set of roots of f. Let d(f) # 0 denote
the discriminant of f.

The Galois group G = Gal (L/Q) can be seen as a subgroup of S,, because each ¢ € G
is completely determined by the way it permutes the n roots of f. Each ¢ € G, when
considered as a permutation in S, can be expressed as a product of disjoint cycles. Looking
at the lengths of these cycles we get the cycle pattern (my, mo, ..., m,) of o, where m; is the
number of cycles of length 7, 1 <17 < n.

If p is a prime such that p { d(f), we can factorize f = g1g2...¢s into its distinct
irreducible factors g; over F,. Looking at the degrees of these irreducible factors we get the
decomposition pattern (mi,ma,...,my,) of f(mod p), where m; is the number of irreducible
factors of degree 1.

We now state an interesting fact from Galois theory (see [16, page 198] and [9, Theorem
2.9, Chapter VII]).

Theorem 3.1. Let f(X) € Z[X] be a monic polynomial of degree n such that d(f) # 0, and
let L denote its splitting field. Let G = Gal (L/Q). Let p be a prime such that p{ d(f). Then
there is a conjugacy class C' of G such that for each o € C the cycle pattern of o is the same
as the decomposition pattern of f factorized over F,. Furthermore, if {a1, o, ..., 0} are
the n roots of f in its splitting field and if Fym is the extension of F, where f (mod p) splits
then there is an ordering of the roots {of,ab, ..., ab} of f inFym such that for all indices k
and l, o(ag) = oy if and only if the Frobenius automorphism x — zP of Fym maps o to .

Now, given a degree-n polynomial f and d(f) # 0, for a partition m = (my, ma, ..., my,)
of n, let m7(z) = {p prime | p < z, f has decomposition pattern 7 in F, }. Let Gz be the
set of all elements in G with n as cycle pattern. Since all elements of the Galois group G
in the same conjugacy class have the same cycle pattern, combining Theorem 3.1 with the
effective Chebotarev density theorem (Theorem 2.2) we get the following consequence.

Lemma 3.2. Let f be a degree-n polynomial with d(f) # 0 and let m = (my,ma, ..., my,) be
a partition of n. If the GRH is true then

_Gal =
|G| logx

()

<0 <|%ﬁ||x1/2 logdy, + z'/? logx|G|2> ,

where L is the splitting field of f.

The above theorem is easily proved by noting that G5 is a union of conjugacy classes of
G, and by applying Theorem 2.2 for each conjugacy class contained in Gz. When we add up
the inequalities for each conjugacy class we obtain the theorem. Notice that we get |G|? in
the second term as an upper bound for |G||Gx|. We can now show that the prime factors of
|Gal (L/Q) | can be computed in polynomial time with access to an NP oracle given a monic
f € Z[X] as input.

{orderse
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Theorem 3.3. Assuming GRH, the following problem is in NP: Given a prime p < n, and
a monic polynomial f € Z[X]| with d(f) # 0 as input, test if p divides the order of the Galois

group of f. As a consequence, the set of prime factors of |Gal (Qf/Q) | can be computed in
NP
P

Proof. Let G denote the Galois group of f and s denote size(f). Let X, denote the set of
elements of G of order p. Then X, is non-empty if and only if p divides |G|. Furthermore,
X, is a union of conjugacy classes of G. Consider the set Y, = {prime ¢ | ¢ < =z, and f
factorizes in IF, into distinct irreducible factors of degrees 1 or p with at least one degree p
factor }, for any positive integer z. Applying Lemma 3.2, we can see that for z > (n+1)!5s*
we have Y, is non-empty if and only if X, is nonempty. Now, to test if p divides |G|, the
NP procedure can first guess a prime g < (n + 1)!%s*. To verify that ¢ € Y,, the procedure
next guesses and verifies the factorization of f in IF,, and then checks that each irreducible
factor is of degree 1 or p and there is at least one degree p factor.

Since all prime factors of |G| are bounded by n, using the above NP procedure as oracle
we can find all the prime factors of |G| in polynomial time. O

We are ready to state the main result of this section: computing the order of the Galois
group of a given f € Z[X]. Assuming GRH we show that it can be computed in P#P,
which, to the best of our knowledge, gives the first polynomial-space bounded algorithm for
the problem. The result is proved by a careful application of Corollary 2.3.

We require the following result on number fields, which we state from Cohen’s book [3,
Theorem 4.8.13].

Theorem 3.4. Let K = Q(6) be a number field where 6 is an algebraic integer with monic
minimal polynomial T'(X). Let t be the index of 0, i.e. t =[Ok : Z[0]]. Then for any prime

p not dwviding t if
9

T(X) = [[ Z:(X)" (mod p),

i=1

g9
p=]]p
=1

in Ok, where, for each i, the finite field O [p; is F,r, for f; = degT;.

then

Theorem 3.5. Assuming GRH, the order of the Galois group of a monic polynomial f €
Z[X] can be computed in p#P

Proof. Let K/Q be a Galois extension of degree N. If p is a split prime over K then

N
b= sz,
=1

{primes-
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for N distinct prime ideals p; (c.f. [13]). Let G = Gal (K/Q). By Corollary 2.3 we have for
all x > zy:

1 =z 1
I P g

G|logz |~ |G|

If we can count the number 7, () of split primes less that x, then using the above bounds
we can estimate ﬁ 1ogz Well enough to find |G|. However, the difficulty is that we do not know
how to test whether a prime p is a split prime or not in time polynomial in size(f) + size(p).
Thus, instead of directly computing 71(x) we consider the following set A,, for the given
polynomial f € Z[X]: A, = {p prime | p < z, f splits in F,}. Note that the language
L={(xz,p, f) | pprime, f € Z[X], p < z, and p € A} is in P. For, in time polynomial in
size(f) and size(p) we can check if all the factors of f in I, are linear [17]. Thus the function
h(f,z) = |Ag| is in #P. We will now argue that |A,| approximates 7 (z) closely enough for
us to compute |G| using the bounds of Corollary 2.3.

Let S, denote the set of split primes bounded by z. We observe that S, C A,. To see
this, let p € S, and p be any prime ideal that divides p. Then the field Or/p is isomorphic
to I, because p is a split prime. Now, notice that f splits in the field O /p: the roots of f
in the field O /p are o; + p,1 < i < n. Thus, f also splits in F,, implying that p € A,.

Next, we argue that |A, \ S| is small relative to |A;|. Consider a primitive element
0 =" ciay, size(c;) < n?, of Qs. Such an element is guaranteed to exist by Lemma 1.3.
Notice that for every prime p € A;, the minimal polynomial T'(X) of # also splits in F,. This
is because, 6 and its conjugates are all integer linear combinations of the roots of f and hence
they all lie in F,. Thus, if p € A, such that p { d(T") then, by Theorem 3.4, p is actually
a split prime. Therefore, if a prime in A, is not a split prime it must be a divisor of d(T).
More precisely, A, \ S; is contained in the set of prime divisors of d(7"). From the bound in
Theorem 1.5, it follows that | A, \ S;| < size(f).((n + 1)!)?. Hence, if we substitute |A,| for
m1(z) in the inequality given by Corollary 2.3, the bound assumes the following form:

71 (z) 2% logdy + z/? log z.|G).

1 1
‘|A$| — @loggﬁx < —x'logdy + 2'/?log z.|G| + size(f).((n + 1)!)?,

— G|

where the last term size(f).((n + 1)!)? accounts for the discrepancy between m;(z) and |A4,]|.

Let s denote size(f). The following claim, which is an easy consequence of the above
inequality, shows that if we choose z > (n + 1)!'%s2, then |A,| approximates () closely
enough to compute |G| using the above inequality.

Claim 3.5.1.
1. If £ > (n + 1)!%(log dz)? then

1 1 =z
Al > [1— — )
4] 2 ( (n—l—l)!) |G| log z

2. If £ > (n+1)!1"%? then

1 1 =z
< <
(n+1)! = |Az|logz —

G| -

* (n+ 1)1

{claim-e



We are now ready to describe the P#P procedure for computing the order of Galois
groups. We first observe that the language L = {(x,p) | p prime and p < x,p € A,} is

clearly in P. Thus, the function h(z) = |A,| is in #P. The p#L procedure for computing
|G| is as follows: for z = (n + 1)!'%s% compute h(z) = |A,| with one #P query. Finally,

the procedure will compute (in polynomial time) the integer nearest to A A |log$, which is the

required value of |G|. This completes the proof. O

Next we consider the approximate counting problem.

Definition 3.6. A randomized algorithm A is an r-approximation algorithm for a #P func-
tion f with error probability 6 < % if for all z € {0,1}*:

Az, y)
f(=z)

where y is a uniformly chosen random string used by the algorithm A on input x.

Prob, |[1 - [ <r(e)| 216

Stockmeyer [15] showed that for any #P function there is a n~?()-approximation BppNP
algorithm. This immediately yields the following approximate counting algorithm for the
order of the Galois group of f(X) € Z[X].

Theorem 3.7. Let f(X) € Z[X] be a degree n polynomial, G be its Galois group, and s

pNP

denote size(f). For any constant ¢ > 0 there is a BP algorithm that computes an

approzimation A of |G| such that

with probability greater than %

We now derive a useful lemma as an immediate consequence of the above result.

Lemma 3.8. Let f and g be monic polynomials in Z| X | with nonzero discriminant. Suppose
the splitting field Q, of g is contained in Q; of f and [Qy : Q] is a prime power p'. There is

o BPPNP algorithm that computes [Qy : Q] exactly, assuming that |Gal (Q,/Q) | is already
computed.

Proof. To see this it suffices to note that as [Qy : Q,] is a prime power of a small prime p <
n = deg f, if we approximate [Q; : Q,] using the BppNP algorithm of Theorem 3.7 to within
an inverse polynomial fraction, we will compute [Q; : Q,] exactly. Such an approximation
can be computed by first computing [Q; : Q] approximately and dividing it by [Q, : Q),
which is already computed by assumption. O

10
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4 Computing the order of solvable Galois Groups

In this section we show that if the Galois group G of f € Z[X] is solvable then |G| can

be computed exactly in BPPNP, assuming GRH. In fact, we show that for solvable Galois
groups, finding |G| is polynomial-time reducible to approximating |G|. In this section we
rely heavily on the results from the seminal paper by Landau and Miller [8]. We begin by
recalling some definitions.

A group G is said to be solvable if there is a composition series of G, G = Gy > G1 >
...D> Gy = 1 such that G;/G;41 is a cyclic group of prime order. Throughout this section by
composition series we mean such a composition series.

A Galois extension K/F is said to be solvable if Gal (K/F) is a solvable group. Let
G =Gy> G >...> Gy =1 be a composition series of G. We can find a corresponding
tower of fields ' = FEy C E; C ... C E; = K such that Gal (K/E;) = G;. Moreover if K/F
is Galois then by the fundamental theorem of Galois (Theorem 1.2), since G; > G;41, the
extension F;,1/FE; is Galois.

At this point we recall some permutation group theory (c.f. [18]): Let G be a subgroup
of S, acting on a set Q = {1,2,...,n} of n elements. G is said to be transitive if for every
pair of distinct elements 7,7 € (2, there is a ¢ € G such that ¢ maps i to j, written as
1° = j. A block is a subset B C ) such that for every o € G either B = B or B°N B = ().
If G is transitive then under G-action blocks are mapped to blocks, so that starting with
a block By C Q we get a complete block system {Bi, Bs,...,Bs} which is a partition of
2. Notice that singleton sets and (2 are blocks for any permutation group. These are the
trivial blocks. A transitive group G is primitive if it has only trivial blocks. Otherwise it
is called imprimitive. A minimal block of an imprimitive group is a nontrivial block of least
cardinality. The corresponding block system is a minimal block system.

The following result about solvable primitive permutation groups [12] has been used to
show polynomial time bounds for several permutation group algorithms [11]. In particular,
it plays a crucial role in the Landau-Miller results [8].

Theorem 4.1 (Palfy’s bound). [12] If G < S,, is a solvable primitive group then |G| <
n325

Let f(X) € Z[X] be a monic irreducible polynomial and let G be the Galois group
Gal (Q;/Q) which acts transitively on the set of roots Q = {oq,as,...,a,} of f. Let
{Bi, By, ..., Bs} be the minimal block system of Q under the action of G and H be the
subgroup of G' that setwise stabilizes all the blocks: i.e. elements of H map B; to B; for
each i. Let By = {aj,as,...,a4}, where &k = n/s. Consider the polynomial p(X) =
[T (X — o) = S0 6:X°

In [8] it is shown that p(X) € Q(1)[X] and there is a polynomial time deterministic
algorithm to find p(X): the algorithm computes each coefficient ¢; as a polynomial p;(a)
with rational coefficients. In polynomial time we can compute a primitive element 3; of
Q(0,01,...,0k) [8] so that Q(B1) = Q(do,01,...,0k). Let g(X) € Z[X] be the minimal
polynomial of ;. In the following theorem we recall some results from [8], suitably rephrased.

Theorem 4.2.
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1. The degree of g(X) is s.

2. H=Gal (Qf/Q,) and Gal (Q,/Q) = G/H.
3. The Galois group Gal (Q(B;)/Q(51)) acts primitively on Bj.

Let Gal (Q(B;)/Q(B)) = GB* = Gy > G > ... > Gy = 1 be a composition series of the
solvable group G®' and let Q(3;) = Ky € K; C ... C K; = Q(B;) be the corresponding
tower of subfields of the extension Q(B;)/Q(f;). Since K;.;/K; is an extension of prime
degree for each 7 we have the following proposition.

{minimal
Proposition 4.3. For all 0 < i <t if K’ be any field such that K; C K' C K;,1 then either
K, = Kz or K, = Ki—l—l-
For each field K; in the above tower, let §; be a primitive element, 0 < j < t. Le.
Q(8,;) = K, for each j. Let h;(X) € K, 1[X] be the minimal polynomial of 8; over K;_;.
We can consider h;(X) as h;(X,6;_1), a polynomial over Q in the indeterminate X and the
algebraic number 6;_, as parameter. As before let G = U;j_; Ho;. For each field K; let Kj;
be the conjugate field under the action of o;. More precisely, let K;; = KJ(-” and 0;; = 0;”
We have the following proposition which follows from the fact that o; is a field isomorphism
which maps the extension Q(B;)/Q(5:1) to Q(B;)/Q(5;), for each i.
Proposition 4.4.
1. Ky C Ky C ... C Ky forms a tower of fields of the extension Q(B;)/Q(B;) corre-
sponding to the composition series of Gal (Q(B;)/Q(5;))-
2. Gal (K’Lt/KZ]) = O',L-_IG]'O'Z'.
3. Kij = Q((gw), where (91']' = 0;1
4. The minimal polynomial of 0;; over the field K;; 1 is hij(X) = h;(X, 6;;_1).
For each i, let h;(X) denote the minimal polynomial of 6; over Q and let n; be its degree.
We have the following lemma about h;’s.
{hbar}

Lemma 4.5.
1. ng =[Q(51) : Q| and n; = pin;_1, where [K; : K; 1] = p; for each i.
2. If C; be the set of all conjugates of 0; then hi 1 (X) = [Ioec, hiv1(X,0).

Proof. Since hy = g, the minimal polynomial of 6y = f; it follows that ny = [Q(5:) : Q].
Furthermore, since Q(6;) = Q[X|/h; we have

n; = [Q(Gi) : Q] = [Q(Oi) : Q(az’—l)]-[@(ei—l) : Q] = Di-Ni—1.

Notice that n; = ny. Hlepl.
Let h*(X) = [Ijcc, hivi(X,0). Since C; is the set of all conjugates of 6;, it follows that
h*(X) € Q[X]. Furthermore, since h;y1(X,6;) | h*(X) and since h;;1(X,6;) is the minimal
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polynomial of 6; 1 over Q(6;), ;11 is a root of A*. Notice that |C;| is the number of conjugates
of 0; over Q, which is [Q(0;) : Q] = n;. Thus, the degree of h* is pi11.n; = n;y. It follows
that h* has to be the minimal polynomial h;,; of 6;,1 over Q.

[

We first recall a lemma from Lang [9, Theorem 1.12, Chapter VI].

Lemma 4.6. Let K D k be number fields such that K/k is a Galois extension. Let F be an
arbitrary finite extension of k then KF/F is Galois and Gal (KF/F) = Gal (K/KNF).

Let E; = Qﬁi, 0<i<t sothat Ey C E; C ... E; is a tower of field extensions, where
E;/Q is a Galois extension for each i. Notice that Q; = E; and Q, = E,. We prove the
following theorem on the structure of each of the Galois groups Gal (E;;1/E;).

Theorem 4.7. Let p; be the order of G;/G;_1. For everyi there is al; such that Gal (E;/E;_1)
s an abelian group of order pi’ Furthermore Gal (E;/E;_1) is an elementary abelian p;-
group.

Proof. To prove the theorem it suffices to show that there is a tower of field extensions
E,1=LyC Ly C...L,=E,; such that L;/L; ; is of degree p;.

We know that h; = [lsec, , hi(X,0), where C; 1 is the set of conjugates of 6; ; (whose
minimal polynomial over Q is h; ;).

In the sequel, let w = n; and p = p;. Let C; 1 = {&1,&s,...,&} be the conjugates of
0;_1 = &. Similarly, denote by 7; the element ;. The minimal polynomial of 7; (i.e. 6;) over
Q(&) is hi(X,&). For 1 < j < u consider the polynomial h;(X,&;), choose and fix one of
its p roots, and call it 77;. The following claim is immediate because h;(X, &) over Q(&;) is
a primitive polynomial.

Claim 4.7.1.
1. Q(n;)/Q(&;) is a cyclic Galois extension of degree p.

2. F;, = Q(m,ﬂz,---,ﬂu)-

Now, for any j, 1 < j < wu, define the field L; = Q(m,n2,...,1;,&+1---&). In
Lemma 4.6, let K = Q(n;), k¥ = Q(;) and F = Q(m,...,nj-1,&;,---,&). Note that
KF =L; and F = L;_;. Using the Lemma 4.6 we have Gal (L;/L;_,) = Gal (K/K N F).
By Proposition 4.3 there is no subfield between K and k. Therefore, either Gal (L;/L;_1) is
trivial or it is a cyclic group of order p. Hence

[Ez'—i—l : Ez] = [Lu . Lu—l]-[Lu—l : Lu_g] ‘e [L1 : Lo] = pl

for some [. Consider the degree-p polynomial h;(X,&;). We claim that h;(X,¢&;) is either
irreducible or splits over F;. For, otherwise there will be some other prime smaller than
p that divides [E;;; : E;] = p' which is not possible. It follows that the Galois group
Gal (E;1/E:) is a subgroup of the product group Gal (Q(n)/Q(&)) x Gal (Q(1:)/Q(€)) X

. X Gal (Q(ny)/Q(&y))- Since each of Gal (Q(n;)/Q(&;)) is a cyclic group of order p, it
follows that Gal (E;;1/FE;) is an elementary abelian p-group of order p'. O

Before we prove the main result of this section we describe how the 6,’s and h; can be
computed in polynomial time.

13

{diamonc

{main:t!



4.1 Computing 6;’s and h;

Before we describe the exact counting algorithm, we explain how we can efficiently com-
pute the polynomials ; and the elements #; described above. We repeatedly use Landau’s
algorithm (Theorem 1.6).

Recall that GP! is solvable permutation group whose action on B; is primitive. By Palfy’s
bound, we know that |G®'| = O(n®?5). Therefore, by Theorem 1.6 we can find the splitting
field Q(ay, ..., ax) of p(X), and thus we can explicitly find GP' which is the Galois group
of p(X) over Q(5).

Since |G| is O(n3?®), we can explicitly list the elements of G®' and hence find a composi-
tion series for it, all in time polynomial in n and size(f). Let GP* =Gy > G, > ... > Gy =1
be a composition series for GB!. Theorem 1.6 can also be used to compute in polynomial
time a primitive element v € Q(«, ..., ax), where v = Zle ¢;; for some positive integers
¢;. Thus, Q(y) = Q(au,-..,ax). Recall that the tower of fields corresponding to the com-
puted composition series has the form Q(3;) = Ko C K; C ... C K; = Q(y). We find a
primitive element 6; = ¢;(y) € Q(f1)[y] for each K; inductively for increasing values of i.
Notice that ;’s are polynomials of degree bounded by |G®!| which is n®(1). First, 6, = B, is
already computed. Suppose we have computed 61, ...,6;_;. In order to compute 6; consider
the polynomial

r(X) = H (X —oy)=a+aX+...a,X™
oc€G;

As 07, 0 € (; exhausts the conjugates of v over Kj;, it follows that r is the minimal
polynomial of v over K;. Hence Q(ag,ay,...,a,) = K;i: Q(ag,ay,...,a,) C K; and r is
also the minimal polynomial of v over Q(ag, a1, ...,a,). Not all the coefficients of r can
be in K; 1 otherwise r will also be the minimal polynomial of v over K;_; which leads to
the contradiction K; = K;_;. Pick a coefficient a; ¢ K,_; of r. Now, K;_; = Q(#;—1) C
Q(aj,0;,_1) C K;. However, since there is no field between K; and K; ; (Proposition 4.3),
Q(0;-1,a;) = K;. As a result, by the primitive element Theorem [16], K; has a primitive
element of the form 6, 1 + c.a; for a positive integer ¢, where 1 < ¢ < |GP!|. To find such
a ¢, we can cycle over 1 < ¢ < |G|, compute the minimal polynomial M; of 6;_; + c.q,
over Q(53;) and check if its degree is [K; : Q(f1)]. Thus we can find 0; = 6,1 + c.a; as a
polynomial ¢;(y) with coefficients in Q(f).

Finally, to compute the minimal polynomial h; of #; over Q we can use the following
property of resultants.

Lemma 4.8. Given two monic polynomials f(X) and g(X) over a unique factorization
domain R

Res(f,9)= [ 8.

BERoots(g)

For the unique factorization domain Q[X, Y] let Resx(f, g) be the resultant of f and g
considered as polynomials in y over Q[X]. If M; is the minimal polynomial of 6; over Q(5;),
we have

Ei = HMZ(Xa ﬁz) = ReSX(Miag)a

=1
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where g is the minimal polynomial of 3;. Since the resultant can be computed in polynomial
time [17], we obtain an efficient method to compute h; for each i.
We now prove the main result of this section.

Theorem 4.9. Assuming the GRH, there is a BppNP procedure that takes as input a
monic polynomial f € Z[X] such that d(f) # 0, and computes |Gal (Q;/Q) | ezxactly when
Gal (Qf/Q) is solvable.

Proof. We first consider the case when f is an irreducible polynomial. Applying the Landau-
Miller algorithm [8], the procedure first checks in deterministic polynomial time if G =
Gal (Qf/Q) is solvable. Next, as done in the Landau-Miller paper [8], the procedure com-
putes a minimal block system {Bj, Bs, ..., Bs} for G acting on the set {a4,...,a,} of roots
of f. As before let [], .p (X — ;) = > 6;X*, and Q(B1) = Q(p,d1,---,0%). Let g(X) be
the minimal polynomial of 3;. All this can be computed in polynomial time [8].

As explained before, we can compute the polynomials k;, 0 < i < t, where hg = ¢ and we
have a tower of fields:

Q;, CQ; C...CQy,,

where, by Theorem 4.7, Gal (Q,;Z/Q,;l_l) is of order p! for some positive integer .

The computation of |Gal (Qf/Q) | is inductively done. Assume that the algorithm has
already computed |Gal (Q,/Q) |. Furthermore, assume inductively that the procedure has

already computed |Gal (Q,;H /Q) | exactly. Now, by Lemma 3.8, there is a BPPNP com-

putation that will exactly compute |Gal (Q;./Q) |. Proceeding thus, the BppNP procedure

can compute |Gal (Q/Q) |, given |Gal (Q,/Q) |.

The task of computing |Gal (Q,/Q) | by the procedure is recursively done: applying the
Landau-Miller algorithm, we can first compute a chain of blocks B; C Bj C .. .By), where
B is the smallest block of G that properly contains B; and so on. Corresponding to each
block By), we can obtain a polynomial ¢\ (like g(X) corresponds to B;). Thus, in the
recursive step, the roles of polynomials f and g is replaced by ¢~ and ¢\). This completes
the description of the BppNP procedure.

We now prove the general case (when f is not necessarily irreducible). Let f = f1fo... fs
be the factorization of f into irreducible factors f; € Z[X], all monic. This can be computed
in polynomial time by the LLL algorithm [10]. Let K denote the splitting field of f and L
denote the splitting field of f5... fs. We can write

Gal (K/Q) | = |Gal (L/Q) |.|Gal (K/L)| = [K : LLIL : Q.

Now the idea is to first compute |Gal (L/Q) | and then compute |Gal (K/L) | by applying
Lemma 4.6 and reducing to the case of the irreducible polynomial f;. Proceeding as for
irreducible polynomials, we first compute polynomials h;,0 < i < t, where hy = ¢ and
Qy, = Qy, such that the tower of fields Q; C ... C Qy, satisfies the condition that each
extension Q. / Qy,,_, is of order a power of a prime p;. We can now write

|Gal (K/Q) | = [LQy, : Q = [LQy, : Q. H[LQF” Ly, -
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Again, assume that the BppNP procedure has recursively computed |Gal (LQ,;O /Q) l,
which is [LQy, : Q], exactly. It only remains to exactly compute [LQy : LQy;,  for0 <i <t.
Recursively, assume that the procedure has computed [LQy;.  :Q]. Now, by Lemma 4.6 we
have

[LQy, - LQy,_,] = [Qg, = F],

where F' = Q. N LQy, - But Qz _ € F C Q.. Thus [Qy, : F]is also a power of p;.
Now, by applying Lemma 3.8 we can compute [LQ; : LQy; || exactly, as we have
already computed [LQy. , : Q. The product of these two integers also gives [LQy, : Q).

This completes the description of the BppNP procedure. The pseudo-code is given in the
appendix. O

5 Finding the Galois group of an abelian extension

Let f be a polynomial over Z[X] such that Gal (Q;/Q) is abelian. In this section we
give a polynomial-time randomized algorithm that computes the Galois group (as a set
of generators) with constant success probability.

Suppose f € Z[X] is monic, irreducible, degree n polynomial with Galois group G. Since
G is a transitive subgroup of S,, if G is abelian then |G| = n. Thus, given an irreducible
f € Z[X], the algorithm of Theorem 1.6 gives a (size(f))°® algorithm for testing if its
Galois group is abelian, and if so, finding the group explicitly. On the other hand, when f is
reducible with abelian Galois group, no polynomial time algorithm is known for computing
the Galois group (c.f. Lenstra [4]). However, for any polynomial f testing if its Galois group
is abelian can be done in polynomial time: we only need to test if the Galois group of each
irreducible factors of f is abelian.

Let f be a polynomial over Z[X] such that Gal (Q;/Q) is abelian. Let f = fifo... fi
be its factorization into irreducible factors f;. Notice that if Gal (Q;/Q) is abelian then
Gal (Qy, /Q) is abelian for each i. Consequently, each f; is a primitive polynomial (i.e. f;
splits in any number field containing at least one root of f;). Let G = Gal (Q;/Q) and let
Gi = Gal (Qy, /Q) for each i. Notice that G < G; x Gy x ... G}.

Let n; be the degree of f;. Since each f; is a primitive polynomial, |G;| = n;. Let 6; be
any root of f;, 1 < i < t. Then, Qs = Q(6;) for each i. Factorizing f; in Q(6;), we can
express the other roots of f; as A;;(6;), where A;;(X) are all polynomials of degree at most
ni, 1 < j < mn;. We can efficiently find these polynomials A;;(X) for 1 <i<t,1<j <n,.
Thus we can write f;(X) = [[;1, (X — Aj;(6;)), where 6; is one of the roots of f;. We prove
the following lemma which allows us to identify the polynomials A;; with the elements of
the group G; in an unambiguous manner.

Lemma 5.1. Let § be any root of f; and let A;j be polynomials of degree less than deg(f;)
such that fi(X) = [[;1,(X — Ai(0)). Then for 1 < j < deg(f;), we have Ay;(Ay(0)) =
Aix(A;i;(8)). Furthermore, for every o € G; there is an index k,1 < k < n; such that for any
root n of fi(X) we have o(n) = Ai(n).
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Proof. All the roots of the polynomial f; are given by 6, = Ay (0),1 < k < n;. Since f; is
irreducible, for each k there is a element of G; that maps 6 to ;. Let o, be the element of
G; that maps 0 to 6, = Ay (0). We have

Aij(Ai(0)) = 0k(A4;(0)) = oko;(0) = ojok(0), because G; is abelian. But, o;o,(0) =
Air(Aij(0)). Thus, Aj;(Ai(0)) = Ai(Ai(0)).

Now, consider any root n of f;. There is a j such that =0;
above identity, notice that o, maps 1 to A;;(Aix(0)) = Ai(A; 9))

= A;;(0). Applying the
Air(n)- O
From the above lemma it follows that for each 7,1 <7 < ¢, the polynomials 4;;, 1 < j < n;
are independent of the choice of the root 6 of f; because the Galois group is abelian.
Now, let 0;; denote the unique automorphism of Qy, that maps 6 to A;;(#) for every root
f of f;. Since G < G1 X G4 X ... X G4, any element o € G is a t-tuple

0= <0-1j1’0-2j2’ SRR O-tjt>’

for indices ji, jo, ..., Ji-

We will apply the Chebotarev density theorem to determine a generator set for G.

Let ¢ be a prime such that ¢ { d(f) and F;m be the extension of F, where f splits. Observe
that since G is abelian every conjugacy class of G is a singleton set. Let m,(z) denote the

number [{p < z | p a prime and [L/i(@} = {g}}|. By Theorem 2.1 7w (x) converges to

w Assuming GRH we have, by Theorem 2.2, for every g € G

/% logdy,
— G|.z'% logz. 1
o)~ | S G+ 0l ons W

Next, fix i and let {aq, aa, . . ., oy, } be the roots of f;. By Theorem 3.1, there is an ordering
{@1,0s,...,0p,,} of the roots of f; in Fym such that the Frobenius automorphism z — x4
maps @ to @; if and only if the element g (the unique Frobenius element corresponding to
g) maps oy to . If the element g = (0y;,,09j,,...,0t,) we can determine o;;; as follows:
find the splitting field F» of f;. Since f; is a primitive polynomial, £ < n;, thus F can be
found efficiently.? Now, factorize f; in F. Pick any root fe Fyx of f;. Then 9" = A;;(0) for
exactly one polynomial A;;,, which can be found by trying all of them. This gives us 0.

Thus, we can determine ¢ as a t-tuple in polynomial time, in a manner independent of
the choice of the root  of f; in IF,x, which works correctly because of Lemma 5.1.

As a consequence of inequality 1, we have a nearly uniform polynomial-time sampling
algorithm from the Galois group G. More precisely, if we choose x > (n!)!0.size(f)?, then
the algorithm samples g € G with probability in the range (1/|G| — 1/2Y/4,1/|G| + 1/z'/4).

The following claim shows that by picking a polynomial-sized sample using the sampling
algorithm, we can find a generator set for G with high probability. We prove the claim for
uniform sampling. The nearly uniform sampler from G = Gal (Q;/Q) described above can
only introduce an additive term that is inverse exponential.

2In fact k|n; because k is the order of the corresponding Frobenius element which is in the Galois group
of f;, and the order of the Galois group is n;.
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Lemma 5.2. Suppose we have a uniform sampling procedure A from a subgroup G of S,.
Then for every constant ¢ > 0, there is a polynomial-time randomized algorithm with A as
subroutine that outputs a generator set for G with error probability bounded by 2~™ .

Proof. To see this, let g1, gs,-..,9,m be a random sample drawn from G using A, where
m = n°® will be chosen later. To each g; associate the 0/1 random variable X; which takes
the value 0 if either (g1,...,9,.1) = G or g; € {g1,...,9;—1) and the value 1 otherwise. Let

p; = Prob[{g1,...,9i-1) = G| and ¢; = Prob[g; & {(g1,--.,9-1)|{91,---,9i—1) # G]. Since G
is a group and A is a uniform sampler from G, clearly ¢; > 1/2. Thus, we have

Let X = ). X;. Applying Markov’s inequality we get that
Prob[X < 3m/4] > 1/3.

Hence, letting m = 4(logn!), the set {g1, go,...,gm} generates G with probability 1/3.
The success probability can be boosted by suitably increasing the sample size. Notice that
we can use the sifting algorithm for permutation groups (c.f [11]) to prune the generator set
to O(n?) size. This completes the proof of the claim. O

We have thus proved the following theorem. The algorithm in pseudo-code for finding
abelian Galois groups is given in the appendix.

Theorem 5.3. There is a randomized polynomial time algorithm for computing a generator
set for the Galois group of a polynomial f € Z|X]| if it is abelian.

6 Galois group problems over arbitrary number fields

In this section we extend the complexity results of the previous sections to polynomials
f € K[X], where K is an arbitrary number field. We assume that the field K is specified
by giving the minimal polynomial T'(X) € Q[X] of a primitive element 6 of K, so that
K =Q() = QIX]/T(X).

W.lo.g. we can assume that the polynomial f € K[X] is monic and we can write f as
f =" ,ai(0)X", where a;’s are polynomials in Z[X] of degree at most m — 1. By size(f)
we mean y . size(a;(X)). Thus the input size is size(f) + size(T).

Let L = K; and let G = Gal (L/K). As in the previous sections, we will be applying
the effective Chebotarev density theorem over K. For an ideal a of O, let N(a) denote its
norm over Q (which is the finite index of the additive subgroup a of O). For a prime ideal
p of Ok let P be a prime ideal of Oy, that divides pO;, (which we write as p). Then Oy, /B is
a finite field extension of Ok /p. Since L/K is a Galois extension the ideal p of Of, factorizes
as

p=PrP;5. .. Py
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As before p is ramified in L if and only if e > 1. If p is an unramified prime then for

every P | p there is a Frobenius (L/TK> € Gal (L/K) such that

( L%K ) a=a"® (mod P)

for all @ in Oy, Similarly the subset [ L{J K ] of Gal (L/K) defined by

L) )

forms a conjugacy class of Gal (L/K).
Let C be any conjugacy class of G and let m¢(z) denote the function

To(z) = Hp : [L/TK} =C and N(p) < :c} .

We have by the effective version of the Chebotarev density theorem [5].
Theorem 6.1.

(@)~ (012
el |G| log x

<O (Vzlogdy +|Clv/zlogz) .

Throughout this section p, ¢ etc. will denote primes in Z, p, q etc. will denote primes in
Ok and P, Q etc. will denote primes in Op. For a prime p the p;’s will denote its prime
factors in O. Likewise for a prime p, ‘B;’s will denote its prime factors in Ofy..

We first show, analogous to Theorem 3.5, that [L : K] can be computed in polynomial
time with a #P oracle. Observe that if ay,as,...,qa, are the roots of f then, by the
primitive element theorem, there are integers ci,...,c,, size(c;) < (mn)? such that for
y=0+Y", ca;, L=0Q(y). Let S(X) be the minimal polynomial of y and 1,7, ..., 7~
be the conjugates of v = ;.

Let t = (size(f)size(T))%. Recall that for any polynomial with complex coefficients
g9(X) = >0, a;z’, we define |glo = 1/ |a;|2, and every root n of g by |g|2 [6]. Applying
this bound we can easily see the following bound on the discriminant of S.

Lemma 6.2. The discriminant of S, d(S), is bounded by C*™"*  and hence logd(S) =
O (t.m.n!?), where C > 0 is an absolute constant.

We will now get a suitable estimate of 71 (x), the number of split prime ideals p of Ok
with N(p) < z. Let A, be the set of prime ideals p of Ok satisfying the following conditions.

L. N(p) <=
2. f(X) splits in Og/p.

3. If p is the prime such that p N Q = pZ then p 1 d(T).
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We first show that |A,| is a #P-computable function of x. If p is a prime in Q such
that p t d(T) then p is unramified in K. If T;’s are the irreducible factors of 7" in F, then
the prime ideals of Ok that divide p are p; = pOx + T;(0)Og. Also, implicit in the proof
of Theorem 3.4 is the fact Ok /p; = Z[0]/(p, T;(6)) (see [3]). Now, consider the language
L consisting of tuples (x,p, g), where z and p are binary encodings of numbers and ¢ is a
suitable encoding of a polynomial in T, satisfying the conditions:

e p is a prime such that p 1 d(T).

e ¢(X) is a irreducible factor of T in F,.

o pieale) < g,

o If n =X (mod g(X)) in F,[X]/g then f(Y) = f(Y,n) € F,(n)[Y] splits in Fy(n).

Clearly |A,| = [{(p,9) : (x,p,g) € L}|. Since L € P it follows that |A;| is #P-computable.
Now we estimate how well |A;| approximates 7 (). We first state a lemma that will be
useful in the proof.

Lemma 6.3. Let L/K be a number field extension and let Op, and Ok be the corresponding
ring of integers. Let p be an ideal of Ok and P be any one of the prime factors of pOr in
Op. Let P(X) € K[X] be any polynomial such that for some a € Ok, in the ring Ok we
have P(a) =0 (mod p). Then in Oy we have P(a) =0 (mod P).

Proof. P(a) =0 (mod p) is same as saying P(a) € p. Since p = pOx C pO;, C B we have
P(a) € B. Hence P(a) =0 (mod P) in Oy. O

Lemma 6.4.
| Az — mi(x)| < m(logd(S) +logd(T)).

Proof. Let S, be the set of prime ideals of Ok that are split in Oy with N(p) < z. Notice
that if p € S, and if p is the corresponding prime in Z such that p { d(T') then p € A,. Since
p can have 1 m factors in Ok |S; \ 4| < mlogd(T).

Consider any prime p in A, and let p be the corresponding prime in Z. Clearly p t d(T)
and hence p = pOg + g(0)Ok for some irreducible factor g(X) of T'(X) (mod p) € F,[X].
Also O /p = Z[0]/(p,g(0)). If p 1 d(S) then any prime factor P of p over Oy, is given by
B = pOr + h(y)Or and O /P = Z[vy]/(p, h(7)), where h(X) is some irreducible factor of
S(X) modulo p. We claim that in this case p is split over Or. To prove this we have to show
that [OL/‘B : OK/D] =1.

Observe that since f splits in Ok /p we have elements 71,7, ...,7, € Ok such that
f(n:) =0 (mod p). Using Lemma 6.3 we have 7; (mod ), 1 < i < n, are the roots of f in
OL/PB. OL/P being a field and «; (mod P) being roots of f in OL/P we can without lose
of generality assume that «; = 7; (mod ).

If kK =[Ok/p : F,] then nfk —1; =0 (mod p). Hence we have

k k

& —a;=n —n; =0 (mod P).
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Also 67 —9 =0 (mod PB). Since 7 is a Z linear combination of § and «;’s we have APy =
0 (mod PB). Hence O/P = Z[y]/(p, h(7)) = Fpr = Og/p and therefore p is a split prime
over Or. As aresult for every prime p € A,, p € S; if ptd(S). As there are at most m primes
that divide p in Ok we have |A;\ S| < mlogd(S). Since |A;| —m1(z) = |Az \ Sz| =[Sz \ Az,
we have

|Az| — m(z)| < mlogd(T) + mlogd(S)).

O

As in the proof of Theorem 3.5, we can compute [L : K| by first computing |A,| for some
suitably large 2 such that size(z) = (size(f) + size(T))°M) using a single #P query and

then computing the integer closest to %@- Hence we have the following theorem.

Theorem 6.5. Let K = Q[X|/T(X) be a finite extension of Q and let f(X) € K[X]|. There
is a polynomial time algorithm (polynomial in size(T) + size(f)) that makes one query to a
#P oracle and computes [K; : K|.

Likewise, we can show the following lemma, analogous to Lemma 3.8.

Lemma 6.6. Let K = Q[X]|/T(X) be a finite extension of Q and let f and g be monic poly-
nomials in K[X| with nonzero discriminant. Suppose the splitting field K, of g is contained

in Ky of f and [K; : K] is a prime power p'. There is a BppNP algorithm that computes
(K : K| exactly, assuming that |Gal (K,/K) | is already computed.

Proceeding exactly as in Section 4 and applying Lemma 6.6, we can prove the following
generalization of Theorem 4.9.

Theorem 6.7. If K;/K is a solvable extension then there is a randomized polynomial time
algorithm with NP oracle that computes [K; : K.

We now show that if the Galois group of a given f € K[X] is abelian then there is a ran-
domized polynomial-time algorithm to find a small generator set for it. If G = Gal (K;/K)
we show that there is a polynomial-time sampling algorithm for G, such that that for any

o € @G the probability that the algorithm generates ¢ is in the range (ﬁ — €, ‘1?' + 6),

where m = [K : Q] and € is inverse exponential in the input size. Using this sampling 0, like
in Lemma 5.2, we can easily get a polynomial-time randomized algorithm to compute G.

As before, K = Q() is given by the minimal polynomial of §. More 0, K = Q(f) =
Q[X]/T. Let L = K; and let G = Gal (L/K). Pick a prime p € Z such that p { d(T).
Let T;’s be the factors of T" over F,. The prime ideals of Ok that divides p are given by
p; = pOk + T;(0)Ok. Since G is abelian, all conjugacy classes are singleton sets, and hence
for any two primes PB; and P, dividing p in O we have

SRRIE DIk
p B B '

Let f € K[X] be a polynomial such that G = Gal (K;/K) is abelian. Let f = fify... fi
be its factorization into irreducible factors f; over K and let G; = Gal (K, /K) for each

21

{Kstar}



i. Then G < G7 x Gy X ...Gy. Since each G, is abelian, it follows that each f; is a
primitive polynomial. Thus, |G;| = deg(f;) = n; and Ky, = K(6;), where 6; is any root of
fi- Factorizing f; in K(6;), we can express the other roots of f; as A;;(6;), where A;;(X)
are polynomials of degree at most n;, 1 < j < n;. We can efficiently find these polynomials
Ai(X) for 1 <4 < ¢, 1 <j <m. Thus, fi(X) = [[;1, (X — A;(6:)), where 0; is one of
the roots of f;. Exactly like Lemma 5.1 we can unambiguously identify the polynomials A;;
with the elements of the group G;.

Thus, for any p|p in Ok, if f(X) has no multiple roots over Ok /p then we can recover

L/K

the action of the Frobenius <7 on the roots of f for any PB|p in polynomial time.

P

We sketch the description of the almost uniform sampling algorithm for sampling prime
ideals of Ok. The details are similar to Lemma 5.2. Let f(X) = f(X,0) and let f(X) €
Q[X] be f(X) = Ilperootscr) f(X,0). In the sampling procedure we consider only those

primes p that do not divide the discriminant of 7" and 7_. Notice that we will miss out at
most logd(T') + logd(f) many primes. The polynomial f can be computed by computing
Resx(f(X,Y),T(Y)) as in section 4.1. The sampling algorithm is given below.

Input: Polynomials 7" and f and an integer x
Output: Prime ideal p of Ok such that N(p) < z.

Pick a prime p 1 d(T)d(f) and p < z randomly;
Factorize T over T, let the factors be T;’s;
Pick a factor 7; randomly and return (p, 7;(6));

Algorithm 1: Almost uniform sampler for prime ideals of O

ForanyaEGletP[,:{p: L/TK

factors, we can easily argue that the probability that the sampling algorithm 1 returns a

= {0}}. Since any prime p has at most m prime

prime p in P, is in the range ﬁ — €, ﬁ + e), where € is inverse exponential in the input
size. The fraction € accounts for the primes missed out because of considering only those

ptd(T)d(f). The above sampling procedure is such that for any ¢ € G the probability of
picking ¢ is in the range m — ¢, ‘1?' + e). This probability range is good enough to prove

the following result, similar to Theorem 5.3.

Theorem 6.8. Let K be a number field given by K = Q) = Q[X]|/T for some monic
irreducible T(X) € Z[X]. Let f(X) € Z[0][X]. If K;/K is an abelian extension then there
is a randomized polynomial time algorithm (polynomial in size(T) + size(f)) that computes
the Galois group Gal (K;/K).

7 Concluding Remarks

In this paper we have studied the problem of (a) computing the order of the Galois group of
a given polynomial f(X) € Z[X], and (b) determining the Galois group of f(X) € Z[X] by
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finding a small generator set. Our approach is complexity theoretic, with the broad aim of
classifying these problems in complexity classes. Assuming the GRH, we show that in general

the order of the Galois group can be computed in P#P, and when the Galois group is solvable

it can be computed in BPPNY Thus, we have a polynomial space-bounded algorithm for
finding the order of the Galois group. In particular, when the group is solvable, finding
the order is in the polynomial hierarchy. Our results suitably extend to the case when f is
defined over an arbitrary number field.

In terms of computing the Galois group as a permutation group, for polynomials with
abelian Galois group we show that this can be done in randomized polynomial time, assuming
GRH. In the general case, no nontrivial upper bound for computing the Galois group other
than exponential time is known even when the Galois group is solvable. On the other
hand, the problem is not known to be even NP-hard. A challenging question is to precisely
characterize the computational complexity of this important problem.

There are polynomial time algorithms for testing if the Galois group is abelian or solvable
[7, 8]. However, no efficient algorithm for testing supersolvability or nilpotence of the Galois
group is known. This is another intriguing open question.
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Appendix

{Galc
Function Order (C(X) € Z[X])
Input: C(X) € Z[X] and C is solvable by radicals

Output: [Qc¢ : Q)
begin
if C is a constant polynomial or is of degree 1 then
return 1
end
Let C(X) = B(X)f(X) where f is an irreducible polynomial in Z[X];
Let {Bj, Bs, ..., Bx} be the minimal block system of Q = Roots(f) under the action
of Gal (Q;/Q);
(*
*)
Compute p(X) = [[,ep, (X —a) = 36X

Compute the polynomial g(X) such that QX]/g = Q(1,...,0,);
(*

E 3
)
Find polynomials hg, b1, . .., he;
Let zy := Order (B(X)g(X));
for::=1totdo
Using the pppNP algorithm compute a 0.1-approximate value of [Qgp, : Q]. ;
Let it be y;. Find the unique /; such that

If f is a primitive polynomial then we take {Q2} as the minimal block system.

If f is a primitive polynomial, g can be taken as the constant polynomial 1

Yiocph <11 h
Ti—1 Ti—1

0.9

._ li .
T '= TP
end

return z; ;
end

Algorithm 2: Computing the order of solvable Galois groups
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{Galc
Input: f(X) € Z[X] such that Gal (Q;/Q) is abelian

Output: A generator set S for Gal (Q;/Q)
Let B = (n+ 1)!"%size(f)?
(*

By Claim 3.5.1.

fi are its irreducible factors obtained using LLL.

*
)

Let n; = deg f; and M =[] n;
S = 0;
for1:=1toT =4logM do

pick prime ¢ < B at random;

if g { discr(f) then

for j:==1 tot do 7;; := Recover(s,q) ;

Ti = (Tijys Tija « - > Tige )3
S=5Ur7;;
end

end
Function Recover(k, q)
Input: ¢4 discr(f)

Output: 0 € Gal (Qf, /Q) whose action on roots of f coincides with the action of

g

Let f; = fi(mod g); -
Let F = ;- be the splitting field of f, over F, ;
Let § = x (mod f,(X)) in F;
for j :=1 to ny do
if 6" = A;;(#) then break
end
return oy;

Algorithm 3: Computing Galois group of Abelian extensions
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