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Abstract

Lattices have received considerable attention as a potential source of computational hardness to be
used in cryptography, after a breakthrough result of Ajtai (STOC 1996) connecting the average-case and
worst-case complexity of various lattice problems. The purpose of this paper is twofold. On the expository
side, we present a rigorous self contained proof of results along the lines of Ajtai’s seminal work. At the
same time, we explore to what extent Ajtai’s original results can be quantitatively improved. As a by-
product, we define a random class of lattices such that computing short nonzero vectors in the class with
non-negligible probability is at least as hard as approximating the length of the shortest nonzero vector
in any n-dimensional lattice within worst-case approximation factors v(n) = n®w(y/Iog nloglogn). This
improves previously known best connection factor y(n) = n**¢ (Cai and Nerurkar, FOCS 1997) by more
that w(n). We also show how our reduction implies the existence of collision resistant cryptographic
hash functions based on the worst-case inapproximability of the shortest vector problem within factors
7(n) = n*w(v/lognloglog n).

In the process we distill various new lattice problems that might be of independent interest, related to
the covering radius, the bounded distance decoding problem, approximate counting of lattice points inside
convex bodies, and the efficient construction of lattices with good geometric and algorithmic decoding
properties. We also show how further investigation of these new lattice problems might lead to even
stronger connections between the average-case and worst-case complexity of the shortest vector problem,
possibly leading to connection factors as low as y(n) = n'*w(log n)

1 Introduction

It has long been realized that the relevant notion of hardness in cryptography is average-case hardness: if
the key of a cryptographic function is chosen at random, then no probabilistic polynomial time algorithm
can break the scheme with non-negligible probability. In the past few years, computational problems on
point lattices have attracted considerable interest for their potential cryptographic applications because of a
remarkable connection discovered by Ajtai [1] between their worst-case and average-case complexity. Specif-
ically, Ajtai defined a class of random lattices such that finding short vectors in a lattice chosen uniformly
at random from the class is at least as hard as approximating the length of the shortest nonzero vector in
any n-dimensional lattice (as well as solving various other lattice problems) within a factor polynomial in
n. This allows to build secure cryptographic functions based on the conjectured worst-case intractability of
the underlying lattice problem. In particular, [1] showed that if no algorithm can efficiently approximate the
length of the shortest nonzero vector in any n-dimensional lattice within (worst-case) polynomial approxi-
mation factors v(n) = n?) then one-way functions exist. Subsequently, Goldreich, Goldwasser and Halevi
[15] observed that under essentially the same assumptions as Ajtai’s, one can prove the existence of collision
resistant hash functions, a particularly useful kind of one-way function families with many applications in

cryptography.
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It should be remarked that building cryptographic functions that are as hard to break as the worst
case instance of the underlying mathematical problem is especially important in the case of lattices because
lattice approximation algorithms (like the LLL algorithm [23]) are believed to perform much better on the
average than their worst-case theoretical upper bounds. Still, the worst case approximation factor achieved
by the best (probabilistic) polynomial time lattice approximation algorithm known to date [36, 3] is almost
exponential in the rank n of the lattice, so it is reasonable to assume that achieving polynomial approximation
factors y(n) = n®M is computationally hard (in the worst case). However, as lattice problems get easier
and easier as the approximation factor «(n) increases, it is both theoretically interesting and practically
important to determine the smallest factor y(n) such that finding short vectors in a suitably chosen random
lattice is at least as hard as approximating some other lattice problem within worst-case factor v(n).

No specific polynomial y(n) is given in [1]. In fact, the proof in [1] shows! that if one can efficiently
find short vectors in random lattices with non-negligible probability §(n) = 1/n°®) then one can efficiently
approximate the length of the shortest nonzero vector in any n-dimensional lattice within a polynomial factor
v(n) = n®M /§(n), where the smaller the success probability §(n), the larger the approximation factor y(n).2
Moreover, even for large §(n) (say d(n) = 1/2), the factor y(n) given by [1] is rather large.> Following Ajtai’s
seminal work, Cai and Nerurkar [8] showed that finding short vectors in Ajtai’s random lattices (with non-
negligible probability §(n) = 1/n°(") is at least as hard as computing maximal sets of linearly independent
vectors that are within a factor n®t¢ from the shortest (for any fixed € > 0, independently of the success
probability d(n)). It immediately follows (using standard relations between lattice problems) that finding
short vectors in Ajtai’s random lattices is at least as hard as approximating the length of the shortest nonzero
vector in any n-dimensional lattice within a factor y(n) = n*te.

In this paper we explore to what extent these factors connecting the average-case with the worst-case
complexity of lattice problems can be further reduced. In the process, we introduce and start investigating
various new lattice problems that might be of independent interest, and are discussed in more detail in the
following subsections. On one side, we introduce a kind of lattices (that we call “almost perfect” in analogy
with perfect codes), and use them to define a new random class of lattices such that finding short vectors on
the average is potentially harder than in the random class proposed by Ajtai. On the other side, we connect
the average-case complexity of finding short vectors in our random class to the worst-case complexity of
various new lattice problems, like approximating the covering radius of a lattice. Using these new problems,
we are able to improve the connection factor for the shortest vector problem established in [1, 8]. Specifically,
we show that finding short vectors in our random lattices (with non-negligible probability), is at least as
hard as

e approximating the length of the shortest nonzero vector in any n-dimensional lattice within a factor
v(n) = 7(n)-n*5w(logn), where 7(n) € [1,+/n] is a function that depends only on the family of almost
perfect lattices used and w(logn) is an arbitrary superlogarithmic function.

Even for 7(n) = y/n (which corresponds to Ajtai’s random class of lattices as a special case), this improves
the connection factor y(n) = n**¢ of [8] by more than a factor n. We also relate the average case complexity
of computing short lattice vectors in our random lattices to other (worst-case) lattice problems, like

e computing maximal sets of linearly independent vectors that are within a factor y(n) = 7(n)-n%-w(logn)
from the shortest,

e approximating within a factor y(n) = 7(n) - n? - w(logn) the covering radius of any n-dimensional
lattice,

e finding, given an n-dimensional lattice B and a target point t, a lattice point whose distance from

1To be ;g?c)ise, [1] only proves the result for §(n) = 1/2, and remarks that the proof can be generalized to any non-negligible
§(n) =1/nC1),

21t should be remarked that, as observed in [1], setting §(n) = 1/2 already gives weak one-way functions, which can be
transformed (using standard techniques, see [13]) into strong one-way functions based on the hardness of approximating the
shortest vector problem within a fixed polynomial factor v(n) = nP) . However, in order to argue that no efficient algorithm
can find short vectors in random lattices with non-negligible probability, [1] seems to require that no efficient algorithm can
approximate the worst-case lattice problems within eny polynomial factors.

3No specific value of y(n) is given in [1], but [8] estimates a factor v(n) = n8

can be derived from the proof.



the target t is at most y(n) = 7(n) - n? - w(logn) times the maximum possible distance p(B) =

maxy dist(t’, £L(B)) where t' ranges over the entire space spanned by B.

Even for 7(n) = y/n, the first relation improves previously known best connection factor n3+¢ of [8] by more
than /n. The other two relations are the first results connecting the complexity of finding short vectors to
the covering radius problem. Although both problems have not been previously considered in computational
complexity, they are both natural computational problems on lattices that might be of independent interest.
Computing the covering radius is a problem that is not even known to be solvable in non-deterministic
polynomial time. The last problem is a “bounded distance decoding” variant of the well studied closest
vector problem, where the error instead of being measured with respect to the distance of the given target,
is measured with respect to the worst case distance over all possible target vectors.

All our results are obtained as corollaries to a main theorem that shows that finding short vectors in our
random lattices is at least as hard as finding maximal sets of linearly independent vectors of length at most
7(n)y/n - w(logn) times a new lattice invariant that we call the “generalized uniform radius”. Notice how
this factor is extremely small: depending on the value of 7(n), v(n) can be as small as \/n - w(logn) This
suggests that further investigation of almost perfect lattices and the connection between the uniform radius
and other lattice invariants might lead to even stronger connections between the average-case and worst-case
complexity of computing short lattice vectors. In particular, we conjecture that there exists random classes
of lattices such that finding short vectors on the average in lattices randomly chosen from the class is at
least as hard as approximating the length of the shortest nonzero vector in any n-dimensional lattice within
a factor vy(n) = n'® - w(logn).

1.1 New lattice problems.

Two fundamental constants associated to any lattice are the packing radius and the covering radius: the
packing radius is the largest radius such that (open) spheres centered at distinct lattice points do not
intersect, and the packing radius is the smallest radius such that (closed) spheres centered at all lattice
points cover the entire space. Equivalently, the packing radius can be defined as the largest r such that any
(open) sphere of radius r contains at most one lattice point. Similarly, the covering radius can be defined
as the smallest r such that any (closed) sphere of radius r contains at least one lattice point. In this paper
we introduce a new quantity, the uniform radius, defined as the smallest 7 such that all spheres of radius
r contain approzimately the same number of lattice points. (See Section 3 for a formal definition.) For
technical reasons, we introduce also a variant of the uniform radius, the generalized uniform radius, which
considers not only spheres, but arbitrary convex bodies.

Of all these quantities, only the packing radius has received some attention from a computational com-
plexity point of view. It is easy to see that for any lattice, the packing radius equals half the length of the
shortest nonzero lattice vector, so (approximately) computing the packing radius is computationally equiv-
alent to computing the (approximate) length of the shortest nonzero lattice vector. (See Subsection 2.2 for
a discussion of the computational complexity of this problem.)

Determining the covering radius of a lattice is a classic problem in the geometry of numbers, but it has
received so far very little attention from a computational complexity point of view. We suggest that the
covering radius is, by itself, an interesting problem to be studied as a potential source of computational
hardness. No NP-hardness result for the problem is known at the time of this writing. However, the
exact solution to the covering radius problem is not even known to be computable in NP (non-deterministic
polynomial time), and the analogous problem for linear codes is known to be complete for the second level
of the polynomial hierarchy [26], a class of problems presumably much harder than NP-complete ones.

The problem of estimating the (generalized) uniform radius, has been implicitly considered before in
connection with vector quantization [25], and volume estimation problems [21], but only for the special case
of the integer lattice Z™ and specific convex bodies (spheres or polyhedra). In this paper we generalize this
natural geometric problem to arbitrary lattices and convex bodies, and show how the problem naturally
arises in the analysis of the average-case hardness of lattice problems.



1.2 Almost perfect lattices.

The packing radius and covering radius have been extensively studied in coding theory. Codes are sets of
strings (called codewords) of some fixed length n over a finite alphabet X, with the (Hamming) distance
between strings measured as the number of positions in which the two strings differ. Similarly to lattices,
the packing radius and covering radius of a code are defined as the largest and smallest radii such that
the Hamming spheres centered at codewords are disjoint or cover the entire space X", respectively. A code
is called perfect if the packing radius equals the covering radius. In other words, the code is perfect if
it is possible to partition the entire space X" with equal (Hamming) spheres centered at the codewords.
Interestingly, perfect codes are rare but do exist (see [17, Section 5]). However, the same is not true for
lattices: it is not possible to partition the Euclidean space R™ with equal spheres of radius bounded away
from 0. However, one can attempt to partition Euclidean space with almost spherical bodies. Any lattice
naturally defines a partition of space into regions, the Voronoi cells, each associated to a lattice point. The
cell of lattice point x is the set of all points that are closer to x than to any other lattice point. It is easy
to see that each Voronoi cell contains a sphere of radius equal to the packing radius, and is completely
contained in a sphere of radius equal to the covering radius. The covering radius is always at least as large
as the packing radius, and the smaller the gap between the two radii, the closer the Voronoi cells to perfect
spheres. We say that a lattice is 7-perfect if the covering radius is at most 7 times the packing radius. We
are interested in lattices that are 7-perfect for 7 > 1 as small as possible. Notice that the integer lattice Z™
is 7(n)-perfect for 7(n) = y/n, so we can assume without loss of generality that 7(n) € [1,4/n]. We say that
a sequence of lattices is almost perfect if it is 7(n)-perfect for some constant 7(n) = O(1) independent of the
dimension n. With some abuse of terminology, we will also informally use the term “almost perfect” to refer
to any 7(n)-perfect lattice where 7(n) = o(1/n) is asymptotically better than the integer lattice Z™.

Another fundamental problem in coding theory is the maximum likelihood decoding: given a target point,
find the codeword closest to the target. The analogous problem on lattices is usually called the closest vector
problem: given a lattice and a target vector, find the lattice point closest to it. Differently from lattices, in
coding theory most work has focused on finding efficient decoding algorithms for specific codes, whereas in
the closest vector problem the lattice is usually considered as part of the input. In this paper, we consider the
lattice decoding problem for specific lattices. We say that a lattice is easily decodable if there is an efficient
algorithm that on input a target point, outputs the lattice point closest to the target. (Formally, we need to
consider a sequence of lattices in higher and higher dimension. See Section 4 for details.) For example, the
integer lattice Z™ is easily decodable: given a target point y € Q", the closest lattice point is easily found
by rounding each coordinate of y to the closest integer.

The random classes of lattices defined in this paper are based on easily decodable 7(n)-perfect lattices,
and the smaller 7(n) is, the harder is to find short vectors in the random lattices. So, it is natural to ask
what is the smallest value of 7(n) for which we can efficiently build easily decodable 7(n)-perfect lattices. It
is known [35, 7] that almost perfect lattices exist. Unfortunately, the proofs in [35, 7] do not give an efficient
procedure to build and decode these lattices. Various examples of easily decodable lattices are given in [9],
but they are all 7(n)-perfect for 7(n) = ©(y/n). It is natural to ask if almost perfect easily decodable lattices
exist at all. In this paper we initiate the study of almost perfect lattices from a computational point of view,
and we give the first efficient construction of easily decodable lattices with 7(n) = O(y/nloglogn/logn)
asymptotically smaller than /n.

Our almost perfect lattices allow to slightly improve (by a factor O(y/logn/loglogn)) the connection
between the worst-case and average-case complexity of lattice problems. Although not substantial, this
improvement in the connection factor is significant because it shows that there are random classes of lattices
for which finding short vectors is potentially harder than for the random class originally considered by Ajtai.
Moreover, it suggests that it might be possible to find even better easily decodable almost perfect lattices
that allow to further reduce the connection factors for all lattice problems considered in this paper by almost

V.
1.3 Related work

This work is directly builds upon techniques of Ajtai [1], Cai and Nerurkar [8] and Goldreich, Goldwasser
and Halevi [15], and it is the final version of [30]. Below we review some additional papers that are less



directly related, but still relevant to this work.

The question of determining under what conditions the number of lattice points inside a convex body Q
is roughly proportional to the volume has been extensively studied, but mostly for the case of the integer
lattice Z™. For example Mazo and Odlyzko [25] study the problem when Q is a sphere of radius r, in
connection with universal quantization and low density subset sum problems. In particular they show that
for 1 = O(y/n) the number of integer lattice points in the sphere can deviate from the expected value by
factors exponential in n, but claim that if r = n'/2*¢ (for any € > 0) then the number of integer lattice
points in the sphere is always asymptotic to the volume, no matter where the center is located. A different
class of convex bodies is considered by Kannan and Vempala in [21], but, as usual, only for the special case
of the integer lattice Z™. In [21] Q is an n-dimensional convex polytope with m facets, and the result is that
the number of integer lattice points in Q is proportional to the volume provided that Q contains a sphere of
radius O(n - v/Iogm).* A result for arbitrary convex bodies is proved by Dyer, Frieze and Kannan [11] who
show that the number of integer lattice points in Q is proportional to the volume of Q, provided Q contains
a sphere of radius O(n'-%). In Section 3 we generalize the result of [11] to arbitrary lattices, and show that
the number of lattice points in Q is proportional to the volume provided that Q contains a sphere of radius
O(n) times bigger than the covering radius of the lattice (see Theorem 1).

The covering radius problem has been extensively studied from a mathematical point of view, leading
for example to the transference theorems of Banaszczyk [4], but it has received little or no attention from
a computational point of view. Two relevant results about the covering radius problem are McLoughlin’s
proof [26] that the analogous problem on linear codes is hard for the second level of the polynomial hierarchy,
and Kannan’s algorithm [20] showing that a variant of the covering radius problem (where the norm defined
by an input parallelotope is used, instead of the usual Euclidean norm) can be solved in polynomial time
for any fixed dimension. Kannan’s result is quite remarkable because finding fixed dimension polynomial
time algorithms for problems at the second level of the polynomial hierarchy is usually much harder than
for problems solvable in non-deterministic polynomial time.

The problem of decoding specific lattices has been considered in coding theory, for example in connection
with vector quantization. In [9] Conway and Sloane give polynomial time decoding algorithms for the
root lattices A,,, D, and their duals A%, D}, as well as various other low dimensional lattices.® From a
computational complexity point of view, the problem has been considered under the name “closest vector
problem with preprocessing”. Adapting similar results of Bruck and Naor [6] and Lobstein [24] for coding
and subset-sum problems, Micciancio [27] showed that there are sequences of lattices such that solving the
closest vector problem is NP-hard. These results have been improved by Feige and Micciancio [12] and then
Regev [33] to show that (unless P = NP) there are lattices and codes that cannot be efficiently decoded even
approximately, up to some constant factor. Notice that the goal of [27, 12, 33] is opposite to ours: while
[27, 12, 33] give explicit constructions of lattices that cannot be easily decoded, in this paper we search for
explicit constructions of easily decodable lattices.

Almost perfect lattices have been extensively studied from a mathematical point of view. In particular,
Rogers [35] proved that there exist 7(n)-perfect lattices for 7(n) < 3, and Butler [7] improved the result to
7(n) =2+ o(1). Our exponential time construction of almost perfect lattices in Theorem 2 is essentially an
algorithmic variant of the Rogers’ proof. Butler’s proof does not seem to easily yield any algorithm.

In this paper we consider the worst case complexity of computing short vectors (as well as solving other
computational lattice approximation problems) in any lattice. In a recent breakthrough paper [34], Regev
has given encryption schemes and collision resistant hash functions that are as hard to break as computing
shortest nonzero vectors in lattices with special structure. The results proved in [34] achieve approximation
factors O(n!®) smaller than any other known reduction, but only for lattices where the shortest vector
is unique is some technical sense. This special structure is common in the construction of lattice based
public key encryption schemes [2], but does not seem necessary to build one-way or collision resistant hash
functions. In Section 9 we explain how the techniques presented in this paper might lead to one-way and
collision resistant hash functions that are as hard to break as solving the shortest vector problem (or other

4As a side remark, the motivation to study this problem in [21] is somehow opposite to ours, as they count the number of
lattice points in a polytope to estimate its volume. Here, we try to get a bound on the number of lattice points, for convex
bodies Q of known volume.

5 Asymptotically, only results for infinite families of lattices are interesting because the closest vector problem is known to
be solvable in polynomial time in any fixed dimension [19].



lattice problems) in any lattice, within approximation factors similar to those established in [34] for the
special class of lattices possessing unique shortest vectors.

1.4 Outline.

The rest of the paper is organized as follows. In Section 2 we introduce some notation and give some back-
ground about lattice problems and their computational complexity. In Section 3 we define the (generalized)
uniform radius and relate it to other lattice quantities. In Section 4 we initiate the algorithmic study of
almost perfect lattices and present a polynomial time construction of easily decodable 7(n)-perfect lattices
with 7(n) = o(y/n). These lattices are used in Section 5 to define a new random class of lattices that gener-
alizes Ajtai’s one. In Sections 6 and 7 we prove that finding short vectors in the random lattices of Section 5
is at least as hard as finding short (relative to the generalized uniform radius) linearly independent vectors in
the worst case. In Section 8 we relate this problem to other well known lattice problems, like approximating
the length of the shortest vector in a lattice. Section 9 concludes with a brief summary of our main results,
and some open problems whose solution would allow to improve the connection factors established in this

paper.

2 Preliminaries

In this section, after introducing some notation that will be used in the paper, we briefly recall some basic
notions about lattices (including their computational complexity and their connection with finite groups)
and statistical distance. For more detailed exposition of this background material the reader is referred to
[31].

For any finite set S, the size of S is denoted #S. Let R and Z be the sets of the reals and the integers,
respectively. The m-dimensional Euclidean space is denoted R™. We use bold lower case letters (e.g., x) to
denote vectors, and bold upper case letters (e.g., M) to denote matrices. If Q@ C R” is an arbitrary region
of space, and x € R” is a vector, @ + x = {y + x:y € Q} denotes a copy of Q shifted by x. The £, norm of
a vector x € R” is defined as ||x|| = v/>_ #?. For a matrix M = [my, ..., m,)], we define ||M|| = max; ||my]|,
where m; are the columns of M. For vector x € R" and set S C R, let dist(v,S) = minwes ||v — w|| be the
distance between v and S. For vector x € R” and real r, let B(v,r) = {w € R" : dist(v,w) < r} be the open
ball of radius r centered in v, and B(v,r) = {w € R* : dist(v,w) < r} its topological closure. When the
center v = 0 is the origin, then we simply write B(r) and B(r). We often use matrix notation to denote sets
of vectors. For example, matrix S € R™*" represents the set of m-dimensional vectors {sy,...,s,}, where
S1,...,Sy are the columns of S. The linear space spanned by a set of vectors S is denoted span(S). For any
set of linearly independent vectors S, we define the half open parallelepiped P(S) = {Sx: 0 < z; < 1}.

For any two positive reals a,b > 0, we write a 2 bif a = (1/2) - b, and a S bif a < (3/2) - b. We say
that a is approximately equal to b (written a = b), if both a < b and a > b, i.e., the relative additive error
|a —b|/bis at most 1/2. Notice that a = b is not a symmetric relation, i.e., a & b does not imply b ~ a. For
any a,b,c >0, if a =~ ¢ and b ~ ¢, then a and b are within a factor 3 from the other, i.e., a/3 < b < 3a.

2.1 Lattices

An m-dimensional lattice is the set of all integer combinations {Z?:l x;b;:x; € Z} of n linearly independent
vectors by,...,b, in R™ (m > n). The set of vectors by,...,b, is called a basis for the lattice, and the
integer n = dim(span(B)) is called the rank of the lattice. If the rank n equals the dimension m, then
the lattice is called full rank or full dimensional. Lattices are infinite Abelian groups with respect to the
vector addition operation, and can be equivalently defined as discrete additive subgroups of R™. A basis
can be compactly represented by the matrix B = [by]...|b,] € R™*" having the basis vectors as columns.
The lattice generated by B is denoted £(B). Notice that £(B) = {Bx:x € Z"}, where Bx is the usual
matrix-vector multiplication. We use notation £(B) to denote the set {Bx:x € Z"} even when vectors B
are not linearly independent.



The minimum distance of a lattice £(B), (denoted A1 (B)), is the minimum distance between any two
(distinct) lattice points and equals the length of the shortest nonzero lattice vector:

A1(B) = min{dist(x,y) : x #y € £L(B)} = min{||x|| : x € £L(B) \ {0}}.

This definition can be generalized to define the ith successive minimum as the smallest ); such that B();)
contains 7 linearly independent lattice points:

Ai(B) = min{r: dim(span(£(B) N B(r))) > i}

Another important constant associated to a lattice is the covering radius: the covering radius p(B) of a
lattice is the maximum distance dist(x, £(B)) where x ranges over the linear span of B:

p(B) = _max  {dist(x, £(B))}.

A sublattice of £(B) is a lattice £(S) such that £(S) C £L(B). £(S) is a full rank sublattice of £(B) if it has
the same rank as £(B). The determinant of a (rank n) lattice det(L£(B)) is the (n-dimensional) volume of
the fundamental parallelepiped P(B). If £(B) is full dimensional, then det(£(B)) equals the absolute value
of the determinant of the n x n basis matrix | det(B)|. Hadamard’s bound give a simple way to bound the
determinant of a lattice as det(£(B)) < [], ||bi||. Hadamard’s bound can be much larger than the actual
value of the determinant, and it equals the determinant if and only if the basis B is orthogonal. The ratio
defect(B) = [], ||bi||/ det(£(B)) is called the orthogonality defect of B. Minkowski’s first theorem states
that any rank n lattice £(B) contains a nonzero vector of length at most

A1(B) < v/ndet(L(B))/".
The following definition plays an important role in our proofs.

Definition 1 Let A be a lattice and x € A an arbitrary lattice point. The (open) Voronoi cell of x is the set
V(x,A) of all points z € span(A) that are closer to x than to any other lattice point:

V(x,A) = {z € span(A) | Vy € L(B).dist(z,x) < dist(z,y)}.

The closed cell V(x, A) is the topological closure of V(x,A), i.e., the set of all points that are at least as close
to x as to any other lattice point:

V(x,A) = {z € span(A) | Vy € L(B).dist(z,x) < dist(z,y)}. 1)

For simplicity, the Voronoi cell of the origin x = 0 is denoted V(A). We need some simple properties
about Voronoi cells, as listed below. All properties are easily verified and their proof is left to the reader.

Proposition 1 Let A be a lattice with covering radius p and minimum distance A\1. Then the Voronoi cells
of A satisfy the following properties:

o All Voronoi cells V(x,A) (with x € A) are shifted copies V(x,A) = V(A) + x of the fundamental cell
associated to the origin.

e V(x,A) is a bounded, open, convex set, symmetric about lattice point x.

o Fach cell V(x,A) contains a sphere of radius A1 /2, and it is completely contained in a sphere of radius
p: B(x,A1/2) CV(x,A) C B(x, p).

e The volume of V(x,A) (or, equivalently, V(x,A)) equals vol(V(x,A)) = vol(V(x,A)) = det(A).

e For any two distinct lattice points x # y € A, the corresponding Voronoi cells are disjoint, i.e.,

V(x,A)NV(y,A) =0.

o The union of all closed Voronoi cells covers the entire space, i.e., |Jycp V(x,A) = span(A) .



2.2 Computational problems on lattices

When discussing computational issues related to lattices, it is customary to assume that the lattices are
represented by a basis matrix B and that B has integer entries. Other representations are possible, e.g.,
an integer lattice can be defined as the set of integer solutions to a system of homogeneous modular linear
equations. These alternative representations are computationally equivalent to giving a basis, i.e., for exam-
ple, given a system of homogeneous modular linear equations one can compute in polynomial time a basis
for the corresponding lattice.

In this paper we consider the following problems on lattices. All problems are defined in their approx-
imation version, where the approximation factor y(n) can be a function of the rank n of the lattice. The
exact version of the problems correspond to approximation factor v(n) = 1.

Definition 2 The Shortest Vector Problem (SVP), given a lattice basis B, asks for a nonzero lattice vector
v € L(B) of length at most y(n) - A1(B). The problem can be defined also in a length estimation version,
where given o basis B, one only has to find a value Ay such that A\ (B) < A1 <~v(n) - A1 (B).

The two versions of the problem are not known to be equivalent for v(n) > 1, i.e., given an oracle to
(approximately) compute the length of the shortest nonzero lattice vector in any lattice, it is not clear how
to find short lattice vectors.% The shortest vector problem is NP-hard (under randomized reductions), even
in its length estimation version, for any approximation factors vy(n) < v/2 [29]. The (decision version of the)
problem is clearly solvable in NP. For v(n) = O(y/n/logn) the problem is in coAM [14], and for v(n) = n it is
also in coNP [22, 4]. Finally, when y(n) = e@(nloglogn/logn) the problem can be solved in random polynomial
time [3], and deterministic polynomial time solutions are known only for y(n) = e@(n(loglog n)*/logn) [36].

Definition 3 The Shortest Independent Vectors Problem (SIVP), given a lattice basis B of rank n, asks
for a set of n linearly independent lattice vectors S C L(B) such that ||S|| < v(n) - An(B). The problem can

be defined also in a length estimation version, where given a basis B, one only has to find a value An such
that A\n(B) < Ay < v(n) - An(B).

SIVP is NP-hard (as usual, already in the length estimation version) for any constant factor v(n) = O(1)
[5]. The (decision version of) SIVP is clearly in NP. On the algorithmic side, it is possible to reduce
approximating SIVP within a factor v/n - y(n) (or ny(n) in the length estimation version) to approximating
SVP within a factor y(n). This immediately gives polynomial time algorithms for approximation factors
,Y(n) — ¢O(n(loglog n)?/log n).

Definition 4 The Covering Radius Problem (CRP), given a lattice basis B, asks for a value p such that
p(B) < p <~(n)- p(B).

At the time of this writing, no NP-hardness result is known for CRP. However, we do not even know how
to solve the problem (in its exact version, i.e., y(n) = 1) in non-deterministic polynomial time (NP), and
the analogous problem for linear codes is known to be hard for the second level of the polynomial hierarchy
[26]. So, it is reasonable to conjecture that the same is true for the covering radius problem on lattices.

Definition 5 The Closest Vector Problem (CVP), given a lattice basis B and target vector t, asks for a
lattice point v € L(B) such that dist(t,v) < vy(n) - dist(t, L(B)). The problem can be defined also in a

distance estimation version, where given a basis B and target t, one only has to find a value d such that
dist(t, £(B)) < d < v(n) - dist(t, £(B)).

The closest vector problem is known to be at least as hard as the shortest vector problem [16] for any
approximation factor «y(n). Moreover, it is NP-hard for quasi polynomial approximation factors v(n) =
n@(1/leglogn) [10]. For y(n) = O(y/n/logn) the problem is in coAM [14], and for v(n) = n the problem

6 A reduction for the exact case (y = 1) is given in [18]. This is the only direct reduction known to date. Technically, a
reduction between the two problems also exists for approximation factors -y for which approximating A; is NP-hard or finding
short vectors is solvable in polynomial time. No reduction is known for any other intermediate approximation factor.



is also in coNP [22, 4]. Finally, the problem can be approximated in deterministic polynomial time within
,.Y(n) — ¢O(n(loglog n)?/logn) [36, ].8]

In the closest vector problem, the target point t can be arbitrarily far from the lattice. In coding theory,
Vardy [37] has considered a variant of the closest vector problem where the distance of the target from
the code is guaranteed to be less than the packing radius of the code. This problem (called the bounded
distance decoding problem, BDD) is interesting because decoding within the packing radius, if solvable,
has unique solution. (For this reason, the packing radius is sometime called also the “unique decoding”
radius.) For lattices, the analogous problem would be the following: given a lattice B and a point t within
distance d = A1(B)/2 from £(B), find a (unique) lattice point within distance d from t. In general we
can consider the bounded distance decoding problem on lattices for values of d different from \;(B)/2,
although when d > A1(B)/2 the solution is not guaranteed to be unique. Another interesting case is
when d = p(B) = maxy dist(x, £(B)) equals the covering radius of the lattice. This value is interesting
because there is always a lattice point within distance p(B) from the target. Below we formally define an
approximation version of this problem.

Definition 6 The Covering Bounded Distance Decoding problem (BDD?”), given a lattice B and a target
point t € span(B), asks for a lattice point x € L(B) such that ||t — x|| < v(n)p(B).

The following relations are known among the parameters of a lattice £(B) (see [31, 4]).
Proposition 2 For any rank n lattice B,
A1(B) < A (B) < 2p(B) < vnAy(B). 2)
Moreover, if B* is the dual lattice” of B, then
1< M(B)2p(BY) <n ®3)

and
1 < M (B)A,(B*) < n. (4)

2.3 Lattices and Groups

Let £(L) be a lattice. Any sublattice £(M) C L(L) defines a natural equivalence relation on £(L) as follows:
two lattice points x,y € £L(L) are equivalent (written x =p y) if and only if x —y € £(M). The reader can
easily check that = is an equivalence relation, i.e., it is reflexive (x =pm X), symmetric (X =My © ¥y =M X)
and transitive (x =M y Ay =m 2 = x =M z). The =pm-equivalence class of x € £(L) (denoted [x]m) is the
set of all y € £(L) such that x =pg y. The quotient £(L)/£(M) is the set of all =pp-equivalence classes of
L(L). The equivalence relation =y is a congruence relation with respect to the addition operation, i.e., if
x=mx andy =My, then (x+y) =m (X' +y'). It follows that for any two equivalence classes [x]n and
[y]m, the sum [x + y]m is well defined, i.e., it does not depend on the choice of representatives x, y, and
the quotient £(L)/L(M) is an additive group with the sum operation just described. Notice that if £(L) is
regarded as an Abelian group, then sublattice £(M) is a subgroup of £(L) and (£(L)/£(M), +) is just the
standard quotient group.

Group L(L)/L(M) is finite if and only if £(M) is a full rank sublattice of £(L), in which case, the
cardinality of the group is

#(L(L)/L(MD)) = | det(M)/ det(L)].

Elements of this group can be represented using several standard techniques, e.g., selecting a unique repre-
sentative from each equivalence class. It is easy to see that for every equivalence class [x]n there exists a

"The dual lattice of £(B) is the set of all vectors x € span(B) that have integer scalar product with all lattice vectors. We
won’t use any property of dual lattices other The only properties of dual lattices used in this paper (beside the one stated in
the proposition) are that a basis for the dual lattice can be computed in polynomial time given B, and that the dual of the
dual is the original lattice.



unique element x' € £L(L) N P(M) such that x =m x'. So, a possible set of (unique) representatives is given
by the set
L(L) Nn'P(M)

of all lattice points that belong to the half open parallelepiped P(M). Given an arbitrary lattice point
x € L£(B), the corresponding representative can be efficiently computed as follows: write x as Mz, define
zi =|zi] foralli=1,...,n, and set x' = M(z — z').

The representation of group elements using vectors in P(M) N £(L), although polynomial, is not very
efficient. In particular, the number of bits necessary to store a single group elements can be much larger
than log, #G. Other more efficient ways to represent group elements are possible, for example using the
Hermite Normal Form, or Smith Normal Form. These representations allow to store group elements using
only log |G| bits, and perform the group operations in linear time. The techniques described in this paper
are largely independent from the way group elements are represented, so we do not elaborate on this any
further, and refer the reader to [28, 31] for more details.

Later in this paper we need to sample elements from group G = £(L)/£(M) uniformly at random. This
can be easily done using an elementary group theoretic technique described in the following proposition.

Proposition 3 Let G be a finite Abelian group and gi,...,9, a generating set for G. Then, if dy,...,d,
are chosen uniformly at random in {1,...,#G}, the group element

n
9= Z d;gi
i—1
is distributed uniformly at random over G.

Proof: It easily follows by decomposing G into the product of cyclic groups. O

Of particular interest in this paper are quotient groups G = L(L)/L£(M) where M defines an almost or-
thogonal sublattice of £L(L). The following lemma gives a possible way to build almost orthogonal sublattices
for any input lattice L(L).

Lemma 1 Let A be a full rank n-dimensional lattice, o a positive real, and D be a decoding procedure that
on input a vector x € R returns a lattice point D(x) € A such that dist(D(x),x) < o. For any a > 2¢/n-o,
one can efficiently find (with n calls to D) a basis of a full rank sublattice S C A such that for all x € R”

[ISx|| ~ a - [|x]|

Proof: Let s; = D(a - e;), where ey, ..., e, are the standard unit vectors in R”. Clearly s; € A for all
i =1,...,n. Let x € R" be an arbitrary vector. We want to prove that ||Sx|| ~ « - ||x||. We know that
s; = a - e; +r; where ||r;]| = [|D(a - €;) — a - e;]| < o. Therefore,

[Sx[| = [[(e- T+ R)x[| = [l - x + Rx].

By triangle inequality,
a - [jx]| - |Rx|| < [|Sx]| < a - [|x[| + [|Rx]I.

So, we need to prove that ||Rx|| < &[|x[|. By triangle inequality and Cauchy-Swartz,

n n
o
IRx[| <Y vl - |z < o= |ai| < Vo - [[x[| < 5 Il

i=1 =1

This proves that ||Sx|| & «-||x||. The linear independence of vectors S immediately follows because if S were
linearly dependent, then one could find a nonzero vector x such that Sx = 0, contradicting ||Sx|| & a-||x|| > 0.
O

So far, we have shown how to use lattices and sublattices to define finite Abelian groups. It is also
possible to use finite Abelian groups to define lattices.
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Proposition 4 Let G be a finite Abelian group, and g1, ...,9, a sequence of elements of G. Then, the set
n
A(gi,---:9n) = {x € 2™ ) wig; = 0}
i=1

is a lattice, and its determinant satisfies

det(A(g1,---,9n)) < #G.

Proof: The fact A(g1,--.,9n) is a lattice is elementary. The bound on the determinant can be easily proved
using the decomposition of G into the product of cyclic groups. O

2.4 Statistical distance

The statistical distance is a measure of how two probability distributions are far apart from each other, and
it is a convenient tool in the analysis of randomized algorithms and reductions. In this subsection we define
the statistical distance and prove some simple facts that will be used in the analysis of the algorithms in this
paper. All the properties of the statistical distance stated in this subsection are easily verified. For more
details the reader is referred to [31].

Definition 7 Let X and Y be two discrete random variables over a (countable) set A. The statistical
distance between X and Y is the quantity

AX,Y) = % S |Pr(X = a} — Pr{Y = a}].
acA

We say that two random variables X,Y are identically distributed (written X = Y) if and only if
Pr{X = a} = Pr{Y = a} for every a € A. The reader can easily check that the statistical distance
satisfies the usual properties of distance functions, i.e., A(X,Y) > 0 (with equality if and only if X = Y),
AX,Y) =AY, X),and A(X,2Z) < A(X,Y) + A(Y, Z).

The following property of the statistical distance is useful when analyzing a probabilistic algorithm that
is part of a larger randomized process.

Proposition 5 Let X,Y be random variables over a set A, and let Z be a third random variable over a
(possibly different) set B. If Z is statistically independent from X and Y. Then

A((X, 2),(Y,2)) = A(X,Y).
Using Proposition 5 and the triangle inequality we get the following useful bound.

Proposition 6 Let X1,..., X, and Y1,...,Y} be two lists of totally independent random variables. Then
k
A((Xlaan)a(leaayk)) SZA(XMY;) (5)
i=1
The following proposition shows that applying a (possibly randomized) function to two distributions does

not increase the statistical distance.

Proposition 7 Let X,Y be two random variables over a common set A. For any (possibly randomized)
function f with domain A, the statistical distance between f(X) and f(Y) is at most

A(f(X), f(Y)) SA(X,Y) (6)

The next proposition and corollary show how to use the statistical distance to estimate expectations and
probabilities.
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Proposition 8 If X andY are random variables over set A and f: A — [a,b] is a real valued function, then
| Ezp[f (X)] — Ezp[f(Y)]| < [b—a| - A(X,Y) (7)
As a corollary, we immediately obtain the following.
Corollary 1 If X and Y are random variables over set A and p: A — {0,1} is a predicate, then
| Pr[p(X) = 1] = Pr[p(Y) = 1]| < A(X,Y). ®)

The last proposition gives a standard amplification technique that allows to generate almost uniform
samples from a group by adding a relatively small number of independent samples that are not too far from
uniform.

Proposition 9 Let (G, +) be a finite group and let Ay, ..., Ay be k independent (but possibly not identically
distributed) random variables over G such that® Pr{A; = g} ~ 1/#G for alli = 1,...,k and any g € G.

Then, the statistical distance between the sum A = Zle A; and the uniform distribution U over G is at

most
Z’“ 1

i=1

3 Covering radius and uniform radius

Let £(B) be an n-dimensional lattice and let Q be a convex body in R™. It can be shown that if we consider
a randomly shifted copy of the body Q + x (where x is chosen uniformly at random)?, then the expected
number of lattice points equals exactly

Exp[#(£(B) N (Q+x))] = %
In particular, if Q is a sphere of radius r, then
PN~ g

This corresponds to the intuition that the determinant | det(B)| is the inverse of the density of lattice points
in space. Notice that the actual number of lattice points in a specific @ may deviate arbitrarily from the
expectation, even for the special case of spherical Q. Consider for example a lattice generated by two
orthogonal vectors e; and Des, where D is a large constant. Notice that the determinant of the lattice is D,
so on the average we would expect to find vol(Q)/D lattice points inside Q. Now, let Q = B(x,v/D) be the
open disc of radius V/D. The area of Q is vol(Q) = wD, so on the average we would expect to find 7 lattice
points in Q. However, if x = 0, the number of lattice points in Q is 2[v/D] — 3. Even worse, if x = (D/2)e,
then Q does not contain any lattice point at all.

We define the uniform radius of a lattice as the smallest value r = ((B) such that any sphere B(x,r)
contains a number of lattice points close to the expected value.

Definition 8 For any n-dimensional lattice £(B), the uniform radius ((B) is the smallest positive real r
such that
vol(B(r))
|

#(£(B) N B(x,r) Tt

for any x € span(B).

8Remember that a ~ b means that the relative error |a — b|/|b| is at most 1/2.

9ntuitively, we would like to choose x uniformly at random from R™, but this is not possible because R” has infinite measure.
This problems is easily solved observing that it is enough to choose x uniformly at random from the fundamental region P(B)
of the lattice, because the lattice repeats identically when translated by Bx for x € Z™.
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The following proposition shows that the uniform radius {(B) is at least as large as the covering radius
p(B). Later we will also show that the uniform radius is never much bigger than that.

Proposition 10 For any lattice B, p(B) < ((B).

Proof: The proof is immediate because for r < p(B) any sphere of radius r centered in a deep hole (i.e., a
point in space at distance p(B) from the lattice) does not contain any lattice point. O

The uniform radius can be used to estimate the number of lattice points contained in a sphere. Later in
this paper, we need to estimate the number of lattice points inside arbitrary convex bodies. So, we generalize
the definition of the uniform radius to arbitrary convex bodies.

Definition 9 For any n-dimensional lattice £(B), the generalized uniform radius ¢(B) is the smallest posi-
tive real v such that for any convex body Q containing a sphere B(x,r) C Q of radius r, the number of lattice

points inside the body satisfies ©
vol

Clearly, the generalized uniform radius is at least as large at the uniform radius: for any lattice B,
¢(B) < ((B). In particular, {(B) is always at least as large as the covering radius p(B). We bound the
(generalized) uniform radius from above, and show that for any lattice B, the (generalized) uniform radius
is not much larger than then covering radius. Specifically, we show that ((B) = O(n- p(B)). A similar result
was proved by Dyer, Frieze and Kannan in [11], for the special case of £(B) = Z™ We observe that the
proof of [11] is a general volume argument and it does not use any special property of lattice Z". So, it can
be easily adapted to arbitrary lattices. Below we recall two simple geometric lemmas proved in [11], and
then use them to prove the bound on ((B).

Lemma 2 ([11, Proposition 1]) Suppose Q is a convez body in R™ containing the unit ball B(1), and let
€ > 0 be any positive real. Then all points within distance € from Q belong to (1 + €)Q.

Lemma 3 ([11, Proposition 2]) Suppose Q is a convez body in R™ containing the unit ball B(1), and let
0 < € < 1. Then, all points within distance € from (1 — €)Q belong to Q.

We can now prove the bound on the uniform radius in terms of the covering radius.

Theorem 1 For any n-dimensional lattice B,

{(B) < 3np(B).
Proof: Let B be a full rank lattice in R” with covering radius p(B), and let Q be a convex body containing a
sphere of radius r = 3np(B). We want to prove that #(L(B)NQ) ~ gzl((%)) Define B' = B/r and Q' = Q/r,
and let

S=LB)NQ = E(B)%Q.

Clearly, #S = #(L(B')N Q") = #(£(B) N Q). We want to prove that

vol(Q')  wvol(Q)

#S N Tien(B)] ~ [det(B)]"

Consider the union of all open Voronoi cells V(x,B’) with centers x € S. Notice that all points y € V(x,B’)
are within distance p(B') = p(B)/r from x. Moreover Q' contains a sphere of radius 1. Therefore, by
Lemma 2, forallx € SC @ andy € V(x,B'), wehavey € Q"-(1+p(B)/r), i.e., V(x,B') C (14+p(B)/r)-Q".
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(Scaling performed using as origin the center of the unit sphere contained in Q'.) Since all V(x,B') are
disjoint, and have the same volume, we have

5 s vl (V(x, BY)
vol(V(B'))

vol (Uxes V(x,B))
vol(V(B"))

< Yol(Q'-(1+p(B)/r))

- | det(B)]

_ p(B)\" vol(Q)

B <1+ r ) |det B

#S =

Finally, using the assumption r > 3np(B), we get

(1+£§9)" < (1+3n{1)"

IN
I

This proves the upper bound #S < vol(Q)/|det B.

We now turn to the lower bound. Let S’ be the set of all lattice points x € B’ such that the closed
Voronoi cell V(x,B’) intersects (1 — p(B)/r)Q’. Notice that if V(x,B’) intersects (1 — p(B)/r)Q’, then x
must be within distance p(B') = p(B)/r from (1 — p(B)/r) - Q'. So, by Lemma 3, x € Q'. This proves
that S’ C S, and #S > #5’. Since Voronoi cells cover R”, (1 — p(B)/r)Q’ is fully contained in the union
Uxes V(x,B’), and

Yxes vol(V(x,B'))
vol(V(B"))
vol(Uyes V(x,B'))
vol(V(B'))
vol((1 — p(B)/r)Q")
| det(B’ )|

(. p®)\" vol(Q)
= (1 r ) Jdet(®)]

#5'

Using the assumption 7 > 3np(B), we immediately get

(L) SR LT

This proves the lower bound #S > vol(Q)/| det(B)|, and completes the proof of the theorem. O
Using inequality p(B) < v/n - A, (B)/2 from (2) we can bound {(B) in terms of \,(B):
A 3
{(B) < S oA (B). ©)
Similarly, using transference theorem (3), we can bound ¢(B) in terms of the length of the shortest nonzero

vector in the dual lattice: 3
¢(B) < Enz/Al(B*). (10)
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These bounds can be used to relate the average-case complexity of finding short vectors in random lattices
to the to the worst-case complexity of approximating SIVP or the length estimation version of SVP.

It would be interesting to improve bounds (9) and (10). In particular, is it true that ((B) = O(n-A,(B))
for any n-dimensional lattice B? Is it true that ((B) = O(n/A\ (B*))? Proving these improved bounds
would immediately result in a reduction of the connection factor for SIVP by a factor O(y/n), and for SVP
by a factor O(n).

4 Easily decodable almost perfect lattices

We are interested in lattices that have both good algorithmic and geometric properties. Algorithmically,
we would like lattices where the closest vector problem can be efficiently solved. Notice that, despite the
NP-hardness of CVP, the closest vector problem may be efficiently solvable for specific lattices. For example,
in the integer lattice Z", a lattice vector x € Z™ closest to a given target t € Q" can be easily found rounding
each coordinate of t to the closest integer x; = [t;]|. Since for any fixed dimension the closest vector problem
can be solved in polynomial time, in order to properly formulate this problem one needs to consider not a
single lattice, but an infinite sequence of lattices in increasing dimension. For simplicity, in the definition
below we focus on full dimensional lattices, although this restriction is not necessary.

Definition 10 Let {L,},>1 be a sequence of full rank lattices L(L,) C R™. We say that the sequence
{Lp}n>1 is easily decodable if there exists a polynomial time algorithm CVPy, such that for anyn > 1 and
t € ", CVPL(t) outputs a lattice vector in L(L,) closest to t.

The simplest example of easily decodable sequence of lattices is given by the integer lattices Z™ defined
by matrices L, = I,,. Other easily decodable lattices considered in [9] are the root lattices A, Dy, and their
duals D}, and Ar .10

From a geometric point of view, we would like the Voronoi cells of the lattice to be as spherical as possible.
Remember that the Voronoi cell V(L,,) contains a sphere B(A;1/2) with radius equal to the packing radius,
and is completely contained in a sphere B(p(L,,)) with radius equal to the covering radius. So, the closer the
covering radius is to the packing radius, the better Voronoi cells are approximated by spheres. This motivate
the following definition.

Definition 11 For any 7 > 1, a lattice L(L) is 7-perfect if

L) <7 (#) |

For any function 7(n), a sequence of (full rank) lattices {Lp}n>1 (where n is the dimension of L(Ly)) is
7(n)-perfect if L(L,,) is 7(n)-perfect for any n > 1.

We are interested in sequences of lattices such that 7(n) is as small as possible. Moreover, we would like
the lattices to be easily decodable. The integer lattice Z", as well as all other sequences A,, A}, D,, D} of
easily decodable lattices considered in [9], are 7(n)-perfect for 7(n) = ©(y/n). So, it is natural to ask if non
trivial easily decodable almost perfect lattices (i.e., 7(n)-perfect lattices with 7(n) = o(y/n)) exist, or the
o(y/n)-perfectness and easy decodability requirements are incompatible.

In this section we start the algorithmic study of almost perfect lattices and give the first efficient con-
struction of non-trivial easily decodable almost perfect lattices. Our lattices are 7(n)-perfect for 7(n) =
vnloglogn/logn = o(y/n). Although this is not a substantial improvement over 7(n) = ©(y/n) from a
quantitative point of view, it is qualitatively interesting because it shows that non-trivial easily decodable
almost perfect lattices exist.

We first present a construction of 3-perfect lattices such that the construction and the decoding algo-
rithm run in exponential time n°(™. Then we show how to use small dimensional lattices obtained using
this construction to efficiently construct O(y/nloglogn/logn)-perfect lattices such that the closest vector
problem can be solved in polynomial time. The construction is based on the following simple lemma.

10Conway and Sloane [9] also describe other efficient decoding algorithms for specific lattices, but Z", Ay, A%, Dy, D} are
the only infinite sequences of lattices considered for which the problem of efficient decoding admits an interesting asymptotic
formulation.
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Lemma 4 For any lattice B, there exist a lattice vector v € L(B) such that dist(v/3,L£(B)) > (2/3)p(B).
In particular, if p(B) >3- A1 (B)/2 then dist(v/3,£(B)) > A\ (B).

Proof: Let h be a deep hole, i.e., a point in span(B) at distance p(B) from £(B). Consider the point 3h, and
let v € £(B) be a lattice point closest to 3h. By definition of covering radius, it must be ||[v — 3h|| < p(B).
Therefore, dividing by 3 we get ||v/3 — h|| < p(B)/3, and by triangle inequality

1

dist(v/3, £(B)) > dist(h, £L(B)) — dist(v/3,h) > p(B) — = p(B) =

) 2 n(B).

O

We use the lemma to give an algorithmic construction of 7-perfect lattices with 7 < 3. The following
theorem is essentially an algorithmic variant of the proof of existence given in [35]. Both the procedure to
build the lattice and to decode it run in time n®( . It should be noted that for any n-dimensional lattice, in
principle the closest vector problem can always be solved in time n®(™ [19]. However, the algorithm of [19]
for general lattices is rather complicated. In the theorem below we show how to build a lattice B together
with some (polynomial size) side information V that allows to solve the closest vector problem in lattice
L(B), still in time n®™ as in [19], but with a much simpler algorithm.

Theorem 2 There is an algorithm running in time n°™ that on input n outputs an n-dimensional 3-perfect
lattice Ly,. Moreover, the sequence of lattices {L,}n>1 is decodable in time nOM e there is an algorithm
CVPy, running in time n®MW+"/2 that on input a vector t € Q" outputs a lattice vector CVPy(t) € £(Ly)
closest to t.

Proof: The algorithm starts from an arbitrary n-dimensional easily decodable lattice £(By), e.g., the integer
lattice £(Bgo) = Z™ generated by the identity matrix By = I. Notice that the closest vector in Z™ to a target
t can be easily found by rounding each coordinate of t to the closest integer. Below we assume that By = I
and, in particular, det(Bg) = 1 and A;(Bg) = 1, but the construction works for any easily decodable lattice.

Starting from Bg, we iteratively build a sequence of lattice bases B; and auxiliary vectors v; for ¢ =
1,...,m for some m = O(nlogn) to be determined. The final output are basis B = B,, and set of vectors
V =[vy,...,Vy]. Foreach k=1,...,m, vector v; and basis By are computed as follows:

1. For any vector s € {—1,0,+1}", let t = (1/3)Bi_1s and compute the distance of t from the lattice
L(Byj_1). (We will show below how this can be done in time n®(1) . 3%))

2. If for all s € {—1,0,+1}", dist(t,£L(Br—_1) < 1, then set m = k — 1, and terminate with output
B =Byy_1 and V = [Vl, ce ;Vk—l]-

3. Otherwise (if dist(t, £L(Bg_1) > 1 for some s) proceeds as follows. Notice that since dist(t, £L(Bg_1)) >
0, it must be s # 0.

I

. Let i € {1,...,n} such that s; #0.
5. Set Vi = t.
6. Set By to the matrix obtained by replacing the ith vector in By_; with vg.

The algorithm uses a procedure to find closest vectors in lattice £(By). We will show that the maximum
number of iterations performed by the algorithm is m < (n/2)logsn = O(nlogn), and that for any k, the
closest vector problem in £(By) can be solved in time n®™) . 3% Tt follows that the total running time of
the algorithm is

O(m -n°M . 3m) = pO™

and that the closest vector problem in £(B) can also be solved in time n©1)+7/2,
The correctness of the algorithm is based on the fact that for any k,

e Vector 3vy, belongs to the lattice £L(Bg_1).
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e By is a basis for the lattice generated by [Bg_1|vi]-
e The shortest vector in £(By) has length 1.

The first property immediately follows by construction. For the second property, it is clear that L£(By)
is a subset of L([Bg—1|vk])- In order to prove L(Bg) = L([Bk—_1|vk]) we only need to show that the ith
vector of Bi_1 (namely, By_;e;) belongs to £(Bg). Notice that s; - By_1e; = 3vy — E#i s;Br_1e; =
3Be; — Z#i s;Bre; belongs to L(By). Since s; = %1, also By_1e; = +(s; - Bi_1€;) belongs to L(By).
Now, let’s get to the third property. Consider any nonzero vector in £(By). Since L(By) = L([Bg—1|Vk]),
any such a vector can be written as By_1x+ vy, - y. Moreover, since 3vy, € L(By_1), we can assume without
loss of generality that y € {—1,0,+1}. So, the length of By_1x + vy, -y is at least the minimum of A\ (Bj_1)
(if y = 0) or dist(£vy, L(Bg_1)) (if y = £1). But A\;(Bg—1) > 1 by induction, and dist(+vy, L(Bg_1)) =
dist(vg, £L(Bg—1)) > 1 by construction. It follows that A1 (By) > 1.

It is also easy to see that for any k, the determinant of lattice £(By) equals |det(By)| = 37% det(Bg) =
3% because each Bj can be obtained from Bj_; by first performing some elementary integer column
operations, and then dividing a column by 3. We can now prove that the algorithm performs at most
m = O(nlogn) iterations. Since A\;(By) = 1 and |det(B;,)| = 37*, by Minkowski’s theorem,

1=\ (Bi) < v/n|det(Bg)|Y/™ = /n3=*/m).,

It follows that
k< (1/2)nloggn = O(nlogn)

is an upper bound on the maximum number of iterations. (It can also be shown by a volume argument that
m = ©(nlogn) iterations are required in order to reach termination.)

Next we prove that upon termination p(Lj,) < 3 - A1(Ly)/2. We show that if p(Ly,) > (3/2) - A1 (Ly),
then the algorithm certainly performs one more iteration. By lemma 4, if p(L,) > (3/2)A\1(L,,) then there
exists a vector v = By_1x € L(Bg_1) such that

diSt(V/?),E(Bk_l)) Z /\1(Bk_1) Z 1.

Let s € {—1,0,+1}" be such that s = x (mod 3), i.e., (s — x)/3 € Z". We claim that the distance of
t = (1/3)Bj_1s from the lattice £L(Bg_1) is at least 1. Notice that

t = (1/3)Bk,1S = Bk,]_X/?) + kal (S — X)/3 € V/3 + ﬁ(Bk,I).

It follows that dist(t, L(Bg—_1)) = dist(v/3,L(Bk-1)) > 1, and therefore the algorithm does not terminate
at iteration k.

We conclude the proof of the theorem by giving a simple algorithm to solve the closest vector problem
in £(By) in time n®®) - 3k < nOM+n/2 Notice that any lattice point in £(Bj) can be written as Box +
[Vi,...,Vi]y where x € Z" and y € {—1,0,+1}*. So, in order to find the lattice point closest to some target
t, we can consider all vectors of the form t—[vy, ..., v,]y and compute their distance from £(Bg). Let y such
that dist(t — [vy,..., vk]y, £L(Bg)) is minimized, and let Box the lattice vector closest to t — [vy,...,Vvi]y.
The lattice vector in £(By,) closest to t is Box + [vy,...,vg]y. O

The theorem gives an algorithmic construction of almost perfect lattices and an algorithm to solve the
closest vector problem, however the running time is huge. The next theorem shows how to use these lattices
for small values of n to get a construction that runs in polynomial time.

Theorem 3 There exists a family of T(n)-perfect easily decodable lattices with T7(n) = O(y/nloglogn/logn).

Proof: In order to keep the construction polynomial in n, we use Theorem 2 to build a 3-perfect lattice M
in dimension m = logn/loglogn. Notice that such a lattice can be constructed in time

QO(mlog m) _ 20(103 nlog(logn/loglogn)/loglogn) _ nO(l) )

Moreover, the closest vector problem in this lattice can also be solved in time 20(mlogm) — pO(1)
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Now set L,, to the direct sum of (n/m) copies of M. The lattice vector in £(L,,) closest to a target t
is easily found by breaking t into n/m blocks, each with m coordinates in it, and finding the £(M) vector
closest to each block. Moreover, the length of the shortest nonzero vector in £(L,) is A; (M) because vectors
from different copies of M are orthogonal. Finally, the covering radius of L,, is y/n/m times p(M). So, L,
is 7(n)-perfect for

7(n) = M < 3v/n/m = O(y/nloglogn/logn).
A (M)/2

5 A generalized class of random lattices

In this section we define a class of random lattices that generalizes Ajtai’s one. The class is parametrized by
an easily decodable family of 7(n)-perfect lattices {£(Ly)}n>0 (with decoding algorithm CVPy), and two
functions a(n) and m(n). For any n > 0, we use decoding algorithm CVPy, and function a(n) to define a
finite group G, and then use G, to define a finite collection of m(n)-dimensional lattices. Assume function
a(n) satisfies

a(n) > 2v/mp(Ly). (11)

Using (11) and the fact that ||x — CVP(x)|| < p(Ly,) for all x € R”, Lemma 1 immediately gives a full rank
sublattice M,, C £(L,) such that
Vx € R".||[Mx|| = a(n) - ||x]]- (12)

Group G, is defined as the quotient
of £L(L,) modulo the “almost orthogonal” sublattice £(M,,) C L(L,,).

The random lattices are defined as the set of solutions of a homogeneous linear equation over group
G,. More precisely, for any m(n)-tuple of group elements g = [g1, ..., gm(n)]T € G?f(n), define the m(n)-
dimensional integer lattice

m(n)
Alg) ={xezZ™™: Y =g, =0}, (14)
i=1
where equation Y z; - g; = 0 is over group G,,.
We know from Proposition 4 that A(g) is a lattice with determinant at most | det(A(g))| < #G,,. In the

rest of this section, we prove that for any g € GT("), lattice A(g) always contains short (nonzero) vectors.
The main result of this paper (proved in Sections 6 and 7) is that although these short vectors are guaranteed
to exist, they are computationally hard to find when g is chosen uniformly at random. The following lemma
bounds the size of group G,.

Lemma 5 For any full rank n-dimensional lattice Ly, and any full rank sublattice M,, C L(L,) satisfying
(12), the size of group G, defined in (13) is at most

solr) /)"

#Gn < ( 2 (L)

Proof: The size of the group is #G, = | det(M,,)|/| det(Ly)|. We bound the two determinants separately.
By (12), the columns of M,, have length at most

Mpneil| < (3/2)a(n) - [les]| = 3a(n)/2.
Therefore, by Hadamard’s inequality

| det(My,)| < (3a(n)/2)".
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We bound the determinant of L, using Minkowski’s inequality A;(L,) < +/n|det(L,)|*/". Solving for
det(L,,), we get that the determinant of £(L,,) is greater than (A1 (Ly)/4/n)™. Combining the two bounds,
we get that group G, has cardinality

detM)] [ 3a(m)vi\"
#Cn = THat(Tn)] < (%(Ln)) ' (15)

O

A bound on the size of the shortest vector in A(g) easily follows from Proposition 4 and Minkowki’s first
theorem.

Theorem 4 Let G,, be a group satisfying the hypothesis of Lemma 5. For any g € G;"("), the length of the
shortest nonzero vector in the lattice A(g) defined in (14) is at most

3a(n)y/n) ™™™

A el A A .
MM < Vit - (G )
In particular, if a(n) = A (L) -n°W, and m(n) = ©(nlogn), then A(g) contains nonzero vectors of length

at most A1 (A(g)) < O(y/m(n)) = O(v/nlogn).

6 The iterative process

Let {A(g)}g cgm( be the class of random lattices defined in Section 5, and let 3 (n) an upper bound on the

length of the shortest nonzero vector in A(g). (E.g., 8(n) = O(y/nlogn), assuming a(n) = n®W ), (L,) and
m(n) = O(nlogn) as in Theorem 4.) We want to prove that finding nonzero vectors in A(g) of length at
most B(n) (when g is chosen uniformly at random) is at least as hard as the worst case instance of some
other lattice problem. In particular, we consider the problem of finding (for any given n-dimensional input
lattice B) n short linearly independent vectors S C £(B) such that ||S|| < n(B), where n(B) is some (non
necessarily polynomial time computable) quantity associated to lattice £(B). Formally, given oracle access
to a procedure F that on input g € Gm™ outputs (with non-negligible probability 5(n) = 1/n°®) over
the random choice of g and its internal coin tosses) a nonzero lattice vector F(g) € A(g) \ {0} of length
[|F(g)|] < B(n), we define a probabilistic polynomial time algorithm that on input any n-dimensional basis
B produces (with high probability) a full rank sublattice S C £(B) such that ||S|| < n(B). We remark that
while F is guaranteed to work (with high probability) only when the input g € G™™ is chosen uniformly
at random, the algorithm to find a set S of short vectors should work for any n-dimensional input basis B,
and its success probability is computed only with respect to the internal randomness of the algorithm.

This is the problem considered in [1], where n(B) = y(n) - bl(B), and bl(B) is the length of the shorted
lattice basis, i.e., [1] shows how to find a set of linearly independent vectors S that are not much longer than
(in fact, within a polynomial factor v(n) = n©® - B(n) from) ||B’|| for any basis B’ such that £(B) = £L(B').
In this paper, we consider a similar problem with n(B) = ~(n) - {(B). i.e., we find a set of vectors that
are not much longer than the generalized uniform radius ¢((B). Comparing the length of S to the radius
{(B) allows to achieve an approximation factor v(n) = 7(n)3(n) - w(v/Iogn) much smaller than any previous
reduction. In turns, as shown in Section 8, relating the radius f (B) to other lattice parameters allows
to achieve improved connection factors for many classical lattice problems as those considered in [1] (e.g.,
approximating the length of the shortest vector, or finding short linearly independent vectors) as well as new
ones (e.g., approximating the covering radius).

So, let’s get to the reduction. Given a basis B of an n-dimensional lattice, we want to find n linearly
independent vectors S such that ||S]| < n(B). As in [1, 15], the set S is computed via an iterative process:
starting from the input lattice basis B, one builds sets of shorter and shorter linearly independent lattice
vectors S C £(B). The process ends when a set S is found that satisfies ||S|| < n(B) (with high probability).
The core of this iterative process is a probabilistic procedure A that, on input lattice basis B, and a set
of n linearly independent vectors S C L£(B), outputs a new lattice vector s € £(B) linearly independent
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from S\ {s;} (for some i € {1,...,n}) such that [|s|| < %||si||. (These conditions on s can be compactly
expressed as s & span{s;: ||s;|| < 2||s||}.) When successful, the probabilistic procedure allows to replace s;
with a shorter vector s of length at most 1||s;||, while keeping the vectors in S linearly independent.™* Since
lattices are discrete objects, vectors s; cannot be shortened indefinitely, and at some point the probabilistic
procedure is bound to fail. So, as soon as the probabilistic procedure stops working we can conclude (with
high probability) that ||S|| < (B) holds true, i.e., we have found a set of short linearly independent vectors.
This iterative process is formalized in the next lemma.

Lemma 6 Assume that there exists a (probabilistic) polynomial time procedure A(-,-) that on input a lattice
basis B and a set of linearly independent vectors S C L(B) such that ||S|| > n(B), outputs (with non-
negligible probability 5(n) = 1/n°) over its internal coin tosses) a lattice vector s = A(B,S) € L£(B) such
that s ¢ span{s; | ||si|| < 2||s||}. Then, there is a probabilistic polynomial time (oracle) algorithm that on
input any lattice basis B, finds with probability exponentially close to 1 (and with polynomially many calls
to A), a set of linearly independent vectors S C L(B) such that ||S|| < n(B).

Proof: We remark that procedure A is assumed to work (with non-negligible probability) for any input
(B, S) such that [|S|| > n(B). Let 6(n) = n~*1) be the minimum probability that .A(B, S) is successful over
all possible n-dimensional B and S such that [|S|| > n(B). Let B be the input basis for which we want to
find linearly independent vectors S C £(B) such that ||S|| < n(B). Set S is computed as follows:

1. Initialize S = B (after optionally applying the LLL basis reduction algorithm to B).

2. Repeatedly call s = A(B,S), until either s & span{s; | ||s;|| < 2||s||} or the procedure fails more than

1 0 log, (defect(B))
= gy (2T

consecutive times, where € is the desired error probability.

3. If a vector s ¢ span{s; | ||s;]| < 2||s||} is found, let i be such that [|s|| < %||s;|| and s is linearly
independent from S\ {s;}. Replace s; with s and go back to step 2.

4. If A failed more than t times consecutively, then output S.

The correctness of the procedure is based on the following observation: at iteration k, S C £(B) is a set of
n linearly independent lattice vectors such that [, [|s;]| < 27% - [], [|b;||. This is certainly true right after
initialization for ¥ = 0. Now, assume by induction that S C £(B) are n linearly independent vectors such
that [, [|si|| < 27%-TT, ||bi||. Assume also that a vector s & span{s; | ||s;|| < 2||s||} is found. Since S is a set
of n linearly independent lattice vectors, we have £(B) C span(S), and we can write s as a (not necessarily
integer) linear combination of the vectors in S. Let s = )", a;s;. From property s ¢ span{s; | [|s;|| < 2|s|},
there must exists an index ¢ such that «; # 0 and ||s;|| > 2||s||. It follows that s is linearly independent from
S\ {si}. So, replacing s; with s, results in a set {s1,...,8;-1,8,8i41,...,8,} of linearly independent lattice
vectors such that [s||- [T, ; Ils;ll = & I1, lls;ll < 2=+ T, 1l

We can now get an upper bound on the number of iterations. Since L£(S) is a full rank sublattice of
L(B), we have | det(B)| < |det(S)| <[], [Isi||- Therefore, our bound on [], ||s;|| implies that if the algorithm
performs k iterations, then it must be |det(B)| < 27% - [T, [|bs|, i-e.,

k < logy (] IIbill/ det(B)) = log, defect(B).

Notice that the maximum number of iterations log, defect(B) is polynomial in the size of the input B because
the orthogonality defect can be computed in polynomial time.'2

1 The iterative process as described here follows the proof given in [15]. The iterative process as formulated in [1, 8] required
a slightly more complicated basic procedure that on input B and S returns not just a vector s, but an entire set of linearly
independent vectors S’ such that ||S/|| < %||S||, and the entire set S is replaced by S’ at every iteration.

12Moreover, it can be shown that LLL reduced bases always have orthogonality defect at most 20(n?), So, by applying the
LLL reduction algorithm on the input basis B one can always guarantee that the number of iterations is O(n?), independently
of the size of the input.
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This proves that for any non-negligible §(n) = n=°1), and € > e"om, the algorithm outputs a set S in
polynomial time. We need to prove that the final output S satisfies ||S|| < n(B) with high probability. We
bound the probability that the algorithm terminates with a set S such that ||S|| > n(B). By union bound,
the probability of outputting such a set is at most the maximum number of iterations times the probability
of outputting such a set during any fixed iteration. Assume that the algorithm terminates at iteration k& and
outputs a set S such that [|S|| > n(B). This happens only if A(B, S) repeatedly fails in ¢ independent runs.
Since in each run the failure probability is at most 1 — §(n), the probability that S is output at iteration k is
at most (1 —&(n))t < e~t9(™) = ¢/log, defect(B). Since the number of iterations is at most log, defect(B),
by union bound the probability that the algorithm outputs a set S such that ||S|| > n(B) is at most €. O

In order to use Lemma 6, we need to exhibit an algorithm that, on input linearly independent vectors
such that ||S|| > n(B), finds with high probability a new short vector s. This is formalized in the next lemma
which will be proved in Section 7.

Lemma 7 Let {L,} a family of easily decodable T(n)-perfect lattices, B(n) > 1, m(n) = n°Y and v(n) =

B(n)T(n)w(y/logn). Then, if G, is the group associated to lattice L(L,,) and function a(n) = nAi(L,)v(n)/12
defined in Section 5, then following is true. Assume there exists a probabilistic polynomial time procedure F
that on input a uniformly chosen random vector g € GZ"("), produces a nonzero lattice vector F(g) € A(g)

of length || F(g)|| < B(n) with non-negligible probability 6(n) = 1/n°1). Then, there exists a probabilistic

polynomial time algorithm A7 (-,-) that on input any n-dimensional lattice basis B and a set of linearly inde-

pendent lattice vectors S C L(B) such that ||S|| > v(n) - {(B), outputs a lattice vector s = AF (B, S) € L£(B)

such that

Pr{s & span{si | 2||si|| <ls|l} = 2(6(n)).

Combining Lemma 6 with Lemma 7, we get the following theorem, which is the main technical result of
this paper.

Theorem 5 Let {L,} a family of easily decodable T(n)-perfect lattices, B(n) > 1, m(n) = n®Y) and y(n) =
B(n)T(n) - w(v/logn). If G, is the group associated to lattice L(Ly) and function a(n) = nA;(Ly)y(n)/12
defined in Section 5, then following is true. Assume there exists a probabilistic polynomial time procedure F
that on input o uniformly chosen random vector g € Gﬁ("), produces a nonzero lattice vector F(g) € A(g) of
length || F(g)|| < B(n) with non-negligible probability. Then, there is a probabilistic polynomial time algorithm
that on input any lattice basis B, finds with probability exponentially close to 1 a set of linearly independent
vectors S C L(B) such that ||S|| < v(n) - ¢((n).

7 'The iterative step

In this section we prove Lemma 7 from Section 6. Let F be a probabilistic polynomial time algorithm as
in the lemma. We use F to build algorithm A7 (B,S). It is convenient in the design and analysis of A to
assume that F is deterministic. So, first of all, in Subsection 7.1 we show how to probabilistically transform
a randomized F into a deterministic procedure. In Subsection 7.2 we show how to use a deterministic F
to build algorithm 4. The construction is based on a sampling algorithm that is described and analyzed
in Subsection 7.3. In Subsection 7.4 we prove some technical lemmas that are useful in the analysis of the
reduction. Finally, in Subsection 7.5 we prove that the algorithm of Subsection 7.2 satisfies Lemma 7. The
properties of the sampling procedure established in Subsection 7.3 are used only in the proofs of the technical
lemmas in Subsection 7.4, and these lemmas are only used in Subsection 7.5. So, at a first reading, the reader
might want to skip Subsections 7.3 and 7.4, and jump directly to Subsection 7.5 to see how the technical
lemmas are used to prove the main theorem.

7.1 Making the shortest vector procedure deterministic

Let F be a probabilistic procedure that on input a randomly chosen g € GT™ outputs a vector z = F(g)
such that z € A(g) \ {0} and ||z|| < B(n) with non-negligible probability d(n) = n=°1). We show how
to probabilistically convert F into a deterministic (polynomial time computable) function F' such that
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F'(g) € A(g) \ {0} for every g, and ||F'(g)|| < B(n) for a non-negligible fraction d(n)/4 of the inputs
ge G?("). The transformation is simple and uses standard probability amplification techniques.

Lemma 8 Assume there exists a probabilistic polynomial time algorithm F that on input a uniformly chosen
random vector g € G™ produces a nonzero lattice vector in A(g) of length || F(9)|| < B(n) with probability
d(n). Then there exists a deterministic polynomial time algorithm F' such that F'(g) € A(g) \ {0} for all
ge G™™ gnd [|F(g)|| < B(n) for a §(n)/4 fraction of the inputs g € Gm. Moreover, there is an efficient
(probabilistic) transformation from F to F' that succeeds with probability at least 1 — 2/e.

Proof: Consider F as a deterministic function that takes as input a vector g € Gﬂl(n) and a random string
r. Let X be the set of pairs (g, r) such that F is successful, i.e., F(g,r) € A(g) \ {0} and ||F(g,r)|| < B(n).
We know that Prg .{(g,r) € X} > d(n). Choose 2/5(n) random strings r1,...,72/5(n), and define F'(g) as
follows:

o If (g,7;) & X for all 4 = 1,...,2/§(n), then F'(g) outputs an arbitrary (possibly long) vector in
Ag) \ {0}

e Otherwise F'(g) = F(g,r;), where i is the smallest index such that (g, r;) € X.
Clearly, F'(g) € A(g) \ {0} for all g € G ™ We claim that with probability at least 1 — 2/e (over the

choice of r1,...,72/5m)), IF'(g)ll < B(n) for a §(n)/4 fraction of the inputs g. Let ¥ be the set of all g such
that Pr.{(g,r) € X} > d(n)/2. By Markov inequality

Pr{g Y} = Pr(l-Pr{(gr) € X} > 1-6n)/2)
< Eng[l —Pr.{(g,r) € X}]
- 1-4(n)/2
_ 1= Prg  {(g,7) € X}
1-4(n)/2
1-4(n)
S T55m)2

This proves that Y contains at least a d(n)/2 fraction of all g € GZ’("). Now, consider the expected number
of g € Y such that [|F'(g)|| > B(n), expectation computed over the choice of r = (ri,...,72/5(n)). By
linearity of expectation,

Expl#{g € Y: (|7 (g)ll > 5(n)}] > Pr{IF (@)l > B(n)}

geY
6(n) 2/8(n)
< > (-5
gey
< (#Y)-e Tl

It follow by Markov inequality that the number of g € Y such that || F'(g)|| > B(n) is larger than (#Y)/2
with probability at most 2/e over the choice of r. Therefore, with probability at least 1 —2/e over the choice
of randomness r, ||F'(g)|| < B(n) for at least #Y/2 values of g, which is at least a d(n)/4 fraction of all

ge G, O

7.2 The reduction

Let F be a deterministic procedure that on input a randomly chosen g € Gﬁ(") outputs a nonzero lattice
vector F(g) € A(g)\ {0}. We define a probabilistic polynomial time oracle algorithm A()(-, ) that given full
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rank n-dimensional lattice B and full rank sublattice S C £(B) as input, and oracle access to F, outputs a
lattice vector

s = A7 (B, S) € £(B).
In Subsection 7.5 we will prove that if [|F(g)|| < B(n) for a non-negligible fraction d(n) = n=%M) of the
inputs g and ||S|| > v(n) - ((B) (for approximation factor y(n) = 7(n)B(n) - w(y/logn)), then

Pr{s ¢ span{s;:[|sil| < 2[|s[|}} = Q(6(n)),

where the probability is computed over the random choices of algorithm A only.

Procedure A works as follows. First of all, notice that using Babai’s nearest plane algorithm, matrix S
allows to approximate any vector x with a lattice point y € £(S) C £(B) within distance o = (v/n/2)||S||
from x.!3 Therefore, using Lemma 1, we can find an almost orthogonal sublattice £(C) C £(B) such that

Vx € R™.||Cx|| ~ n||S]| - ||x]|- (16)
Define the linear transformation
Y(x) = CM, 'x
such that ¢¥(m;) =¢; for all i = 1,...,n. Using (12) and (16) we get that
n[|S|]
a(n)
Notice that £(M,) is a common sublattice of both £(L,) and ¢~1(£(B)). Lemma 10 in the next
subsection shows how to use function v together with decoding algorithm CVPy, to simultaneously sample
groups G, = L(L,)/L£(M,,) and £(B)/L(C). The actual details of the sampling procedure are not important

at this point. Below we describe how to use any sampling procedure to define algorithm A% (B,S). After
defining a full rank sublattice C C £(S) and function 1 satisfying (17), algorithm A7 proceeds as follows:

Vx € R"éllw(X)ll < Ixll < 3ll ()1 (17)

1. Run the sampling procedure m(n)-k(n) times (where k(n) = w(logn) is a superlogarithmic function to
be specified) to generate vectors v; ; € L(B) and w; ; € L(L,),fori =1,...,m(n)and j =1,...,k(n).

2. Let a;; = [wij]lm, € Gp be the group element corresponding to lattice point w; ; and, for every
i=1,...,m(n), define group element a; = 372} a; ;.

3. Use oracle F to compute vector z = F(a) € A(a) \ {0}, where a = [a, ..., am(n)]T.
4. For any 1, j, let y; ; = vi; — ¥(w;,;), and output

m(n) k(n)

=3 w ) v &
i=1 j=1
In the following lemma, we prove that algorithm A7 is correct, i.e., the output vector s always belongs
to £(B).
Lemma 9 Let s be the output vector defined in (18). Then s € L(B).

Proof: Define the vector

W = Z Zi Z Wi,j-
i=1  j=1

13This is not a particularly critical part of the reduction, and using poorer rounding procedures (e.g., rounding off the
coordinates of x with respect to basis S to the closest integers as done in [1]) results in substantially the same connection
factors as using Babai’s nearest plane algorithm.
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Using the definition of y; ; and the linearity of v, we have

m(n)  k(n)
%Y Vig = z(Vij — (Wi ;) E :szw —h(w).
i=1 =1 i

The first term ), ; z;v;,; clearly belongs to £(B) because it is an integer linear combination of lattice vectors
vi; € L(B). We feed to prove that also the second term 1)(w) belongs to £(B). We show that w € £L(M,,).
Since 1 maps L(M) to £(C), it follows that ¥ (w) € L(C) C L(B).

Remember that z = F(a) € A(a), ie., Y, zia; = 0 (in G,). Since all w;; belong to £(L), also w is a
lattice point of £(L) and [w]m, € G.. The group element corresponding to lattice vector w is

m(n) k(n)

[W]M Z Zi Z Wz,] Zzi Zai,j = Zziai =0.
% j i

Since G, is the quotient of £(L,) modulo £(M,,), this proves that w € £L(M,,). O

7.3 The sampling procedure

In this subsection we define a sampling procedure to be used in the reduction of Subsection 7.2, and prove
some important properties about its output distribution. The sampling procedure is illustrated in Figure 1.

Lemma 10 There is a sampling algorithm that on input two full rank n-dimensional lattices L,, and B, a
full rank sublattice M,, C L(Ly,) and a non-singular linear transformation v such that C = ¢»(M) C £L(B),
outputs two vectors v € L(B) and w € L(L,) such that the following holds:

1. The group element [v]c is uniformly distributed over L(B)/L(C).
2. Y~ 1(v) € V(w,Ly), or, equivalently, v — p(w) € p(V(Ly,)).
3. The distribution of v — (W) is symmetric about the origin, and, in particular, Exp[v — ¢(w)] = 0.
4. wePM,)
Moreover, if lattice L, is easily decodable, then the sampling procedure runs in polynomial time.
Proof: We first show how to achieve the first two properties. Choose integers
di,...,dn €{1,...,det(C)/det(B)}

uniformly at random and let v"' = }".d;b; € £(B). By proposition 3, [v"']c is distributed uniformly at
random in £(B)/L(C). Then, compute w" = CVPr(yp~1(v")). Clearly, 1)=1(v") belongs to the Voronoi
cell V(w",L,). So, the pair (v, w") satisfies the first two properties.

Now, choose b € {0,1} uniformly at random and set v/ = (—1)’v"” and w' = (—1)’w". Clearly, for
any v" and w", the distribution of v/ — (w') = (—1)%(v" — ¢)(w")) is symmetric about the origin. So,
(v', w') satisfies the third property. We need to check that the first two properties are preserved. Since [v"]c
is uniformly distributed, also [-v"']c = —[v”]c is uniform. It follows that [v']c is uniformly distributed
because v’ is a convex combination of distributions v" and —v”. Finally, since Voronoi cells of a lattice are

symmetric, ~ ~
v —p(w') = (=1)°(v" = p(w")) € (=1)"V(Ly) = V(Ly).

This proves that (v', w') satisfies the first three properties.

In order to achieve also the fourth property, set v = (v/ —¢(w' — (w' mod M,,))) and w = (w' mod M,,).
Clearly, w € P(M,,), so, the fourth property is satisfied. We show that the first three properties are
preserved. Notice that v/ — v € ¥(L(M,,)) = L(C) and v — ¢(w) = v/ —)(w'). So, the first property is
satisfied because [v]c = [v']c, and the other two are also satisfied because they only depend on v — ¢(w).
O
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Figure 1: Sampling lattice points

The sampling procedure produces vectors v € £(B) such that [v]c is distributed uniformly at random
over the group £(B)/L(C). However, before the reduction modulo C, vector v is not necessarily distributed
uniformly over any set of lattice vectors. (This is due to lattice points v € £(B) such that ¢)~!(v) lies on
the boundary of Voronoi cells V(w,L,).) In the next lemma, we give simple upper and lower bounds on the
probability of outputting each vector v € £(B).

Lemma 11 Let (w,v) be generated according to a sampling procedure of Lemma 10. Then, for any v €
L(B), Pr{v = v} < |det(B)/ det(C)|. Moreover, ify)=1(V) belongs to the interior of a Voronoi cell V(w,L,,)
for some w € L(L,) N P(M,,), then Pr{v =¥} = | det(B)/ det(C)|

Proof: The upper bound is easy: for any v € £(B),
Pr{v =¥} < Pr{[v]c = [V]c} = | det(B)/ det(C)|

because [v]c is uniformly distributed over a set £(B)/L(C) of size | det(C)/ det(B)|.
Now assume 1~ 1(v) € V(W,L,) for some w € L£(L,) N P(M,,). We claim that if [v]c = [V]c, then
v = v, and therefore
Pr{v =v} > Pr{[v]lc = [V]c} = | det(B)/ det(C)].

Let [V]c = [V]c, i-e., v — ¥ € L(C). It follows that vector
y=9"1(v) =47 (%) = ¢ H(v - 7)
belongs to lattice 1~ (£(C)) = £L(M,,) C £(L,). Since ¥~1(¥) € V(W,L,,) by assumption,
P (V) =97 (V) +y € V(W +y,Ln),

i.e., v (v) is closer to W +y than to any other lattice point in £(Ly). But we know from Lemma 10 that
1~1(v) belongs to the Voronoi cell V(w,L,). Therefore, it must be w = w + y. We also know that both w
and w belong to P(M,,), and y € £L(M,,). So, w = W +y is possible only if y = 0, which implies v =v. O

Lemma 11 can be used to establish two important properties of the sampling algorithm of Lemma 10.
The distribution [v]c produced by the sampling algorithm is uniform. However, [w]m, is not in general
uniformly distributed over G,,. The first property is that, provided ||S|| is large enough, distribution of
[W]mMm, is relatively close to uniform.
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Lemma 12 Let (w,v) be generated according to the sampling procedure of Lemma 10. If n||S||A1 (L) >

6a(n)¢(B), then for any group element g € Gy,

1
#Gn
Proof: Fix group element g, and let wy be the unique lattice point in £(L,)NP(M,,) such that [wy]m, = 9.

Since w € P(M,,), [W]m,, = g if and only if w = w,. We estimate the probability that w = w,.
Notice that if v € ¢y(V(w,,L,)), then w = w,. Therefore,

Pr{[wlm, = g} ~

Pr{iw=w,} > Z Pr{v=v,}.

vg€P(V(wg,Ln))NL(B)
By Lemma 11, for any v, € 9(V(wgy,Ly)) N L(B), Pr{v =v,} = |det(B)/ det(C)|. So,

| det(B)|

Pr{iw=w,} > m

F#(p(V(wy,Ln)) N L(B)).

Similarly, if w = w,, then v € 9(V(w,,Ly)). Therefore,

Pr{w =w,} < Z Pr{v=v,} < [det(B)] #@W(V(wy,Ly)) N L(B)).

) | det(C)|
vga€Y(V(wy,Ln))NL(B)

In order to complete the proof, we need to estimate the number of lattice points from L(B) that belong
to Y (V(wy, Ly)) and ¢ (V(w,,L,)). Since V(wg, L) contains an open sphere of radius A; (L,)/2, using (17)
we get that ¥(V(wy,L,)) (and therefore, also ¢¥/(V(wy,Ly))) contains a sphere of radius

RSl A (Ln)
3a(n) 2

> {(B).

Therefore, by the definition of ((B), the number of lattice points in Y(V(wy,Ly)) (and p(V(wy,Ly))) is
approximately equal to

vol((V(wy,Ly)) VOl(@[)(V(WQ,Ln))‘

| det(B)] N | det(B)]

Combining this estimate with the upper and lower bounds on the probability that w = w,, we get

| det(B)] _vol(zb(V(wg,Ln)) _vol(p(V(wy,Ly))  vol(V(wy,Ly))  det(L,) 1

P =S T ©) T [de®) C [det@Ma)]  detM,) det(M,) ~ #Gn’

O

If v and w are generated according to the sampling procedure of Lemma, 10, then v —(w) is distributed
symmetrically about the origin. However, the same is not true if we consider the conditional probability
of v given a fixed value of w. The second property is that, provided ||S|| is large enough, then also this
conditional distribution is roughly symmetric.

Lemma 13 Let (w,v) be generated according to the sampling procedure of Lemma 10. If n||S||A1 (L) >

12a(n)((B), then for any h € R® \ {0} and g € G,

Pr{h- (v —4(w)) >0 [wlm, = g} >

= oo

Proof: Fix group element g, and let wy be the unique lattice point in £(L,,)NP(M,,) such that [wy]m, = 9.
Let @ = {x € V(wy,Ly):h-9(x —w,) > 0} be one of the two (open) halves of the Voronoi cell V(w,, L)
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defined by the hyperplane orthogonal to h that passes through the center wy. (See Figure 2.) First we
estimate the probability that v € 1(Q). Since Q is contained in V(w,,L,), by Lemma 11,

Prived(@}= Y Priv=v,}= % HW(Q) N L(B)).

vg€Y(Q)NL(B)

Notice that Q contains an open sphere of radius A; (Ly,)/4 centered in wy—h- (A1 (Ly)/(4||h[])). (See figure 2.)
Therefore, by (17), 1(Q) contains a sphere of radius

AlSl Au(Ta)
3a(n) 4

> {(B).

By definition of {(B), the number of lattice points in 1(Q) satisfies

vol(¥(9)) _ 1vol(p(V(wy,Ln)))

#W(Q) NLB)) ~ det(B) 2 det(B)

and

_ 1]det(B)| vol(y(V(wy,Ly))) _ 1vol(p(V(wy,Ln))) _ 1vol(V(wy,Ln)) 1
~ 2| det(C)| det(B) T2 det(p(My)) 2 det(M,)  2-#G,

Pr{v € 4(Q)}

Notice that if v € ¢(Q) then w = w, and h - (v — ¢(w,)) > 0. Therefore,

1

Pr{{wlw, = g Ak~ (v —(wy)) > 0} 2 Pr{v € ¥(Q)} 2 7

We can now compute the conditional probability,

Pr{h- (v —¢(w)) > 0A [w]m, = g}
Pr{[w]m, = g}
1
4-#G, -Pr{lwlm, =g}

Using Lemma 12, Pr{[w]m, = g} S 1/#G,, i.e., #G,, - Pr{[w]m, = g} < 3/2. Substituting in the previous
inequality we get

Pr{h-(v—-4(w)) >0|[wlm, =g} =

>

Pr{h- (v~ (W) > 0| [Wh, = g} > 2.
O

7.4 Some technical lemmas

In this Subsection we prove three technical lemmas that will be used to analyze the algorithm A7 (B, S)
defined in Subsection 7.2. In all three lemmas, matrices B and S are the inputs to A7, and a and s are
the intermediate value and final output computed by A”. The first lemma shows that the vector z = F(a)
computed during the execution of A% (B, S) is short with high probability.

Lemma 14 If n|S||A1(L,) > 6a(n) - ((B), then

Pr{|IF (@)l < An)} = (n) — — -

Proof: We know that Pr{||F(g)|| < B(n)} = 6(n) when g € G™ is chosen uniformly at random. By
Corollary 1, in order to prove the proposition it is enough to evaluate the statistical distance between the
distribution a generated by A” (B, S) and a uniformly distributed u, and show that A(a,u) = n—<®).
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V(w,L,)

Figure 2: The conditional distribution of sampled lattice points

First consider the distribution of a single group element a;; = [w;j]m, as output by the sampling
procedure. We know from Lemma 12 that if n||S||A1(L) > 6a(n){(B) then for any group element g € G,

1
Pr{a;; = g} = W

So, the probability distribution of each a; ; is not too far from uniform. Adding up a relatively small number

of a;; we get a group element a; = ng;) a;,; which is almost uniformly distributed. In particular, by

Proposition 9, the statistical distance between a; and a uniformly distributed u; € G is at most

Afas,u;) < k()1 (19)
Since random variables a; are independent, by Proposition 6 the statistical distance between vector a =
[a1, ..., @m(m)]" and a uniformly distributed u € G™™ g at most
m(n) m(n) TLO(I) (1)
A(a,u) < ; Afai,ug) < SR~ e " . (20)
a

The next lemma shows that the probability that the output vector s belongs to any arbitrary (n — 1)-
dimensional hyperplane is never too high, even if conditioned on the value of the vector a given as input to

F.

Lemma 15 If n|S||A1(L,) > 12a(n)((B), then for any g € Gm™ gnd (n — 1)-dimensional hyperplane H,
1
Pr{s€H|a=g}26.

Proof: We use Lemma 13 to prove that for any fixed g, the conditional probability that s ¢ H given a =g
is at least 1/6. Fix the values of w;; € L(L,) for all i = 1,...,m(n) and j = 1,...,k(n). Notice that
this uniquely determines also the value of a;; = (w;,; mod M), a; = }_; a;,; and z = F(a1, ..., an). Since
z = F(a) # 0, there exists a coordinate i such that z; # 0. Assume without loss of generality that z; # 0.
Fix also the value of all vectors y; ; for (4,7) # (1,1) and let

Y= Z zi+ (Vij — ¥(Wij))-
(6:)#(1,1)
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Notice that
s= zi-(Vij—(Wij) =y + 2z - (Vi1 — ¥(wi1)).
i

We want to bound the probability that s € H, or, equivalently,

vig—¢(wia) € (1/za)H-y)=H.

Let h be a vector orthogonal to H' such that h-x < 0 for any x € H'. (Notice that since h is orthogonal to
H', the value h - x does not depend on the specific point x € H' we choose.) By Lemma, 13, the conditional
probability that h - (v11 — ¥(wy,1)) > 0 given wy ; is at least 1/6. But if h - (vy; — ¢(wy 1)) > 0, then
vig —Y(wy1) € H' because h-z < 0for all x € H'. O

The last lemma is the most complicated, and its proof will take the rest of this subsection.
Lemma 16 If a(n) = w(ny/k(n)B(n)p(L,)), then
Pr{[|F(a)|| < B(n) A 2[|s]| > [IS[|} = o(6(n)).
Proof: Let ¢ be the characteristic function of the set of all g € G™™ guch that | F(g)] < B(n):

o(g) ={ 1 if |F(g)l| < B(n) ) (21)

0 otherwise

We want to prove that the probability that ¢(a) = 1 and 2||s|| > ||S|| is o(d(n)). Since p(a) € {0,1} and
IS|| > 0, events p(a) =1 and ||s|| > ||S||/2 are simultaneously satisfied if and only if 4¢(a)||s||? > ||S||?>. By
Markov inequality, we immediately get

Pr{||F(a)ll < B(n) A lIsll > [ISIl/2}

Pr{dp(a)lls|* > [IS]I*}
4Explp(a)|s|l’]
- IIsi? '

So, we need to show that the expectation Exp[¢(a)||s||?] is o(6(n)||S||?). In order to bound the expectation
Exp[p(a)||s||?] we introduce some notation. For any 4,5 € {1,...,m(n)}, let ¢; ;: m(m 7 and fij: R® X
R” x (G,, = R be the functions

vij(8) = wiwjp(g) where w = 7 (g)
fii(vi,va,8) = (vi,v2) - ¢i;(g)
For any g € G7™ | let T'(g) be the real random variable

F(g) = Z Z fi,j(yi,th,h’g)' (22)

i,j=1 h,l=1

defined by the random choice of vectors y;;,y;,» produced during the execution of A% (B, S). These defini-
tions are justified by the following lemma.

Lemma 17 Ifa and s are the vectors produced by A7, then

I'(a) = [Is[*¢(a).

Proof: Functions g; ; satisfy ¢; j(a) = z;z;p(a), where z = F(a) is the output of F generated during the
execution of A7 (B, S). Using the definition of s we get

m(n) k(n)

L) = > > (i, yin)ei;(a)

i,j=1 h,I=1
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= > <Z Vit ) yj,h> zizjp(a)

i3
= <Zzi}'i,lazzj)'j,h>90(a)
il J.h
= lslP¢(a).

|

Using this notation, our problem can be reformulated as computing the expectation of I'(a), where

a € G™™ s the vector produced by our sampling algorithm. Let u € G™™ be a uniformly distributed
vector. By triangle inequality,

Exp([I'(a)] < Exp[['(u)] + | Exp[['(a) — [(w)]|.

We prove that both Exp[['(u)] and |Exp[['(a) — T'(u)]| are at most o(d(n) - [|S||*). First, we prove a simple
bound on the length of vectors y; ;. Notice that since ¢ 1(v; ;) € V(Wi ;,Ln), [ (vi;) — wijll < p(Ln),
and, by (17), yi; = ¥ (¥ (vij) — wi ;) has length at most

lyil < % (23)

The following lemma bounds Exp[I'(u)].

Lemma 18 Let u € G™ be an independent and uniformly distributed random variable. If a(n) satisfies the
hypothesis of Lemma 16, then
Exp[T(u)] < o(d(n)) - [IS*.

Proof: The key observation is that vector u is statistically independent from y; ;, yn;. Therefore,
ExpT(u)] = Y > Exp[(yis, ¥jn)ei;(w)]
ij hl

Z Z Exp[(yi,, ¥;.n)] - Expleps j(w)].

43 hyl

For all (3,1) # (4, h), random variables y;; and y;  are independent because they are generated in different
runs of the sampling algorithm. It follows that

Exp[(yi,,¥5,1)] = (Explyi,], Exp[y;n]) =0 (24)

because Exply;] = Exp[y;,»] = 0. On the other hand, if (¢, j) = (j, h) then

|2

<Yi,l7 Yj,h) = ||Yz',l

and ¢; j(u) = @; ;(u) > 0. Substituting in the previous equation, and using (23) we get

m(n) k(n)
Expl(w)] = Y ) Exp[llyill’] - Explpi,i(w)]
i=1 [=1
38|l p(Ln))* o
< —————— | -Exp[p;,i(u)]
2,3( a(n) ) o
_ <4\/—k(n>2|(|2)|| - p(Ln)) ExplY i)
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m(n)

Finally, we observe that for any g € Gy, " 7,

Z ¢ii(8) = IF(@)*¢(g) < B(n)* - ¥(g)

because ¢(g) = 0 whenever || F(g)|| > B(n). Combining the last two equations we obtain

a(n) a(n

Using a(n) = w(ny/k(n)p(Ln)B(n)), we get Exp[l'(u)] < o(d(n)) - [IS|*. O

Now consider the expectation of the difference Exp[I'(a) — I'(u)]. Notice that random variables I'(a)
and T'(u) depend not only on a and u, but also on the random choice of vectors y; ;. In particular, the
fact that distributions a and u are statistically close does not necessarily imply that Exp[I'(a) — I'(u)] is
small, because the statistical distance between the complete distributions underlying I'(a) and I'(u) (namely
(¥1,15-+>Ymksa) and (¥1,1,- .., ¥Ym,k, 1)) can be quite large. In order to bound the expectation of I'(a) —
I'(u), we first break this expression into smaller components as follows.

m(n) k(n)
[Exp[T(a) —T@)]| = |> > Explfi;(¥it,¥ina) = fij(¥it,¥in, )]
4,j=1 h,i=1
< > EDlfi (Vids Yimoa) = fij Vit ¥in W]
,4,h,1

We bound each term separately and show that for any i,5 € {1,...,m(n)} and [,h € {1,...,k(n)},

|Explfi; (Yit, ¥ihoa) = fij Vi ¥in w)]| = =0 - ||S||2 (25)

It follows that
|Exp[['(a) — T(u)]| < (m(n) - k(n))* - n~<M) - ||S||> = n=M) . |||,

For any fixed value of i, j, h, [, define distributions
DgPbh = (yi, ¥jn,a) (26)
DL’JJ’h = (yi,hyj,hau)' (27)
The next lemma shows that distributions D%5bP and D&7LP are statistically close.

Lemma 19 For any i, j, h, 1, the statistical distance between distributions D23bP and D3GR defined in (26,
27) is at most

. i m(n) —wln
A(DGH, D) < gy = e,

Proof:. In order to bound the statistical distance between Du3bR and D33bP | we define auxiliary distribu-

tions
Ni.glh A
Dy’ = (Yi,lay1',h; Q51,05 h, a)
Niglh o
D’ = (Yi,l7Yj,h7 ;1,05 h, )
where
4= Z G e = 4 AT i if (4,1) = (4, h)
L a—a;e; —a;pe; otherwise
PP . . 2,00 75 J
(0,0 g{(3,1),(4,h)}
and



Notice that Db3bh = f; oy (DE3LRY and Didbh = f; 1 (DE3LR) where f; .5 is the function

(yay,ag+aez) if (lal) = (.77 h)

o ! ; _
f%],l,h(y7y , @, Q 7g) { (y7yl’g + ae; + alej) otherwise

It follows, by Proposition 7, that
A(DEHR, DRy = A(fijan(DEPPR), fijan(DERR) < A(DEPHR, DR, (28)

Notice that a = Z(; D20, %0 and 1 are statistically independent from (y;;,¥;.n, @i, aj,n). Therefore,
by Proposition 5,

A(DLPHR DY = A((Yids Yiho Gis O3.hs A), (Vids Yihs Gty O, )
= A(a,n).
The components of &4 and 1 are totally independent. Therefore, by Proposition 6,

m(n)

Aa,0) = ) Alay, i)
t=1

Finally, notice that each 4, is uniformly distributed over G,,, while each a; is the sum of at least k — 2
independent random variables, each satisfying the hypothesis of Proposition 9. So, the statistical distance
(28) is at most

O
We use Lemma 19 to bound | Exp[f; ;(Du5bR) — f; ;(D&3LR)]|. Notice that for any g € G™,

4n||S||p(Ln)ﬂ(n))2: IS
a(n) w(k(n)’

i @i Vi @) < Iyadll - Iinll - i) < (

Therefore, by Proposition 8

ISII?
w(k(n))

_ lIsi?

o)’

| Exp[fi; (D7)~ fis (D)) = | Explfi ;(Dg7"")]=Explfi; (Dy")]] < A(DGH", D).

This proves (25) and completes the proof of the Lemma 16. O

7.5 Analysis of the reduction

In this subsection we prove Lemma 7. We first prove the lemma under the simplifying assumption that
procedure F is deterministic and it always outputs a nonzero lattice vector.

Lemma 20 Let {L,} a family of easily decodable T(n)-perfect lattices, y(n) = B(n)r(n) - w(v/logn) and
a(n) = nAi1(Ly)y(n)/12. Assume there exists a deterministic polynomial time procedure F that on input

a vector g € GT(H), produces a nonzero lattice vector F(g) € A(g) \ {0} such that ||F(g)|| < B(n) for
a non-negligible fraction §(n) = l/no(l) of the inputs. Then, there exists a probabilistic polynomial time
algorithm A7 (-,-) that on input any n-dimensional lattice basis B and a set of linearly independent lattice
vectors S C L(B) such that ||S|| > y(n) - {(B), outputs a lattice vector s = AF(B,S) € L(B) such that

Pr{s ¢ span{si | 2||s|| <[Is[|} = 2(5(n)).
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Proof: Let A be the algorithm described in Subsection 7.2 with

k(n) = % = w(logn).
Notice that
_ ndi(Ln) km)B)r(n) _ Bn)p(Ln)n k() _
an) = " FOSRI, Bt s = o/ BmB)o(L),

50, (11) and the hypothesis of Lemma 16 are satisfied. From the definition of a(n) and the assumption that

~

ISIl > ~v(n)¢(B), we get

~ ~

12a(n)((B) = nA1 (Ln)y(n)¢(B) < nAy(Ln)|IS|l.

So, also the hypotheses of Lemmas 14 and 15 are satisfied.
We already proved in Lemma 9 that s € £(B). We use Lemmas 14, 15 and 16 to prove that

Pr{s ¢ span{s;:[|si[| < 2[|s[|}} = Q((n)).

Let s; be any vector of length ||s;|| = [|S||, and consider the hyperplane H = span{s;:i # j}. Notice that if
[IS]| > 2||s|| then span{s;: ||s;|| < 2||s||} € H. Therefore if ||S|| > 2||s|| and s & H, then s & span{s;:||s;|| <
2/|s||}, and

Pr(s ¢ spanfsi: lsill < 2lisl[}} > Pr{s ¢ # A 2lls]| < [IS]}-

We know from Lemmas 14, 15 and 16 that Pr{||F(a)|| < B(n)} = §(n)—n—“®") Pr{s ¢ H |a = g} > 1/6 and
Pr{|F(a)|| < B(n) A2||s|| > |IS||} = o(6(n)). Therefore the probability that Pr{s & span{s;: ||s;|| < 2||s||} is
at least

Pr{s ¢ 1 A 2[s|| <[|S[[} >

> Pr{s ¢ HA2lls| < S| A | F(@)]| < B(m)}

> Pr{|F@) < A(n) As ¢ H} — Pr{|lF(a)]| < B(n) A2ls] > IISI}

= Y Pr{a=g}-Pris¢#|a=g}—Pr{|F@Il < A(n) A2ls] > S]]}
g:llF (&) I<8(n)

> Pr{|lF(@)] < fn)} - ¢ — old(n)

> (8(n) = n=0) - £ — o(d(n)) = A5(n)).

We combine Lemma 8 with Lemma, 20 to get a proof of Lemma 7.

Proof: Let F a probabilistic polynomial time procedure such that if g € G is chosen uniformly at
random, then F(g) € A(g) \ {0} and || F(g)|| < B(n). On input (B,S), algorithm A” (B, S) first transforms
F into a deterministic procedure F' using Lemma 8. We know that F'(g) € A(g) \ {0} for all g € G,
Moreover, with probability at least 1 — 2/e (probability over the randomness of the transformation from F
to F), [|F'(g)ll < B(n) for at least a non-negligible fraction d(n)/4 of the inputs g € G, Finally, A
applies Lemma 20 to F' to get an algorithm A', computes lattice vector s = A'(B,S) € £(B) and outputs
s.

If || F'(g)|| < B(n) for a non-negligible fraction §(n)/4 of the inputs, then the conditional probability that
s & {si | 2||sill < |Is|l} (given Prg{||F'(g)l| < B(n)} > d(n)/4) is ©(6(n)/4) = Q(é(n)). Since Prg{||7(g)l| <
B(n)} > 6(n)/4 with probability (over the randomness in the construction of F' from F) at least 1 — 2/e,
the overall probability that s & {s; | 2||s;|| < ||s||} is at least (1 —2/e) - 2(d(n)) = Q(6(n)). O

m(n)
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8 Applications

In this section we show how Theorem 5 immediately implies strong connections between the average case
and worst case complexity of various lattice approximation problems. We also show how to build provably
secure cryptographic (collision resistant) hash functions based on worst-case complexity assumptions.

Corollary 2 Let 7(n) < \/n be a function such that there exists a family of 7(n)-perfect easily decodable
lattices. For every polynomially bounded functions p(m) = m°®, m(n) = O(nlogn), and superlogarithmic
function w(logn), there exists a sequence of groups {G,} such that the following is true. If there is a

probabilistic polynomial time algorithm that on input a uniformly random g € Gn( ), outputs with non-
negligible probability a nonzero lattice vector s € A(g) \ {0} within a factor p(m(n)) from Minkowski’s bound

lIsll < p(m(n)) - Vm(n) - det(A(g))"/ ™™,

then there is a probabilistic polynomial time algorithm that on input any n-dimensional lattice B solves, with
probability exponentially close to 1, any of the following problems

1. [SIVP] Find a set S C L(B) of n linearly independent vectors such that
ISIl < u(m(n)) -n® - 7(n) - w(logn) - An(B).

2. [SVP] Compute an approzimation A1 such that

A1(B)
p(m(n)) - n?5 - 7(n) - w(logn)

<M < M(B).

3. [CRP] Compute an approzimation p such that
p(B) < p < p(m(n)) -n* - 7(n) - w(logn) - p(B).
4. [BDD?] Given also a target vector t € span(B), find a lattice vector v € L(B) such that
v =l < p(m(n)) - n* - 7(n) - w(logn) - p(B).

Proof: Let F(-) be a probabilistic polynomial time algorithm that finds nonzero vectors within a factor
pw(m) from Minkowski’s bound. We claim that F(-) also satisfies the hypothesis of Theorem 5 with

B(n) = Vnw(logn)u(m(n)) = w(v/m(n)u(m

and
y(n) = B(n)7(n)/w(logn) = vnu(m(n))r(n)w(logn).

Let a(n) and G, be as defined in Theorem 5. We know that with non-negligible probability F(g) returns a
nonzero lattice vector of length at most

IF(@)Il < plm(n)v/m(n) det(A(g))"/ ™.
Using the bound on | det(A(g))| < #G from Lemma 5, we get
n/m(n)
3a(n)y/n
1F @ < atm) o) (5007

5 n/m(n)
~ utm)) /) ()
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because n'®y(n)/8 = n®M) = 20087) and n/m(n) = 1/Q(logn). Therefore, || F(g)|| < B(n) with non-
negligible probability.

By Theorem 5, there exists a polynomial time algorithm S(-) that on input any n-dimensional lattice
basis B, finds (with probability exponentially close to 1) a set of n linearly independent vectors S = S(B)
such that [|S|| < y(n) - {(B). We show how to use this algorithm to solve all the problems in the conclusion
of the theorem.

1. [SIVP] Just run S = §(B) and output S. By (9)

ISl < v(n) - {(B) < ™ -y(n) - Aa(B) = %HQT(H)M(m(n))w(IOg n)An(B).

2. [SVP] On input basis B, run S = S(B*) where B* is the basis of the dual lattice, and output 1/||S|].
By (4),
ISl > A(B*) >

A(B)
Also, by (10),

IS[| < y(n) - {(B*) <

N W

n®-7y(n)/M(B) = %n2‘5T(n)u(m(n))w(log n)/Xi(B).

3. [CRP] This time, we run S = §(B*) and output /n||S||/2. By (2),
VnlS[l/2 = (vVn/2)An(B) = p(B).

Moreover, by Theorem 1,

3 3
VallS[l/2 < 5n'? -y (n) - p(B) = Sn’r(n)u(m(n))w(logn) - p(B).
4. [BDD”] In order to find a lattice point close to target t, we first run S = S(B*) and then execute
Babai’s nearest plane algorithm using sublattice S and target t. The result is a point within distance
v/1]|S||/2 from the target. As in the proof for the covering radius problem, this bound satisfies

vnliS)l/2 < gnZ’T(n)u(m(n))w(log n) - p(B).

O

Notice that in the proof of Corollary 2, the definition of group G,, implicitly depends on function m(n).
This is because in Theorem 5 the definition of group G, depends on the value of a(n), which in turns,
depends on the value of 8(n). Moreover, the definition of B(n) in the proof of Corollary 2 depends on
u(m(n)). So, unless pu(-) is a constant function, group G, can be selected only after the value of m(n)
has been chosen. The following corollary immediately follows from Corollary 2 by setting p(m) = 1, and
observing that the definition of group G, does not depend on m(n) when u(m) is constant.

Corollary 3 Let 7(n) < +/n be a function such that there exists a family of T(n)-perfect easily decodable
lattices. For every superlogarithmic function w(logn), there exists a sequence of groups {G,} such that for
any m(n) = O(nlogn), the following is true. If there is a probabilistic polynomial time algorithm F(-) that
on input a uniformly random g € G?(n), outputs with non-negligible probability a shortest nonzero lattice
vector s € A(g) \ {0} (or, even, just a vector satisfying Minkowski’s bound ||s|| < \/m(n) - det(A(g))*/™™)))
then there is a probabilistic polynomial time algorithm that on input any n-dimensional lattice B solves, with
probability exponentially close to 1, any of the following problems

1. [SIVP] Find a mazimal set of linearly independent vectors within n* - 7(n) -w(logn) from the shortest.

2. [SVP] Approzimate M\1(B) within a factor n*>® - 7(n) - w(logn).
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3. [CRP] Approzimate p(B) within a factor n? - 7(n) - w(logn).

4. [BDD?] Given also a target vector t € span(B), find a lattice vector v € L(B) within distance n® -
7(n) - w(logn) - p(B) from t.

We now turn to the construction of collision resistant hash functions. Following [15], for any g € G?(n),

define function hg: {0,1}™™ — G,, by

hg(x) = Zgﬂiz
i=1

Notice that function hg maps m(n) bits to log, #G bits. If m(n) > c-log, #G, then the function compresses
the size of input x by a factor ¢, and collisions hg(x) = hg(y) (for x # y) are guaranteed to exist by the pigeon
hole principle. We prove that, if the key g is chosen at random, then these collisions are computationally
hard to find.

Corollary 4 Assume no probabilistic polynomial time algorithm solves problems SIVP, SVP, CRP or
BDD? with probability exponentially close to 1 within the factors specified in Corollary 8. Then for any
¢ > 1 and m(n) = max(c-log, #Gn,nlog, n), there exist no probabilistic polynomial time algorithm that on

input o random key g € G?(n), outputs with non-negligible probability a collision to function hg, i.e., two
binary strings x #y such that hg(x) = hg(y).

Proof: Notice that m(n) > ¢-log, #Gp, so function hg is a hash function with compression ratio c. Assume
F(g) = (x,y) be a collision finder algorithm, and notice that if F is successful, then x —y € A(g) \ {0} is a

lattice vector of length at most
Ix —yll < vm(n).

|det(A(g))] > det(Z") = 1.
So, lattice vector x —y € A(g) satisfies Minkowski’s bound

Ix -yl < V/m(n) < v/m(n) det(A(g))/™™.

Therefore, collision finder F can be easily transformed in a short vector algorithms satisfying the conditions
in Corollary 3. By Lemma 5, the size of G, is at most

N

Since A(g) is a sublattice of Z™,

#%s(

Therefore m(n) = max(c-log, #Gp,nlogyn) = O(nlogn), and we can invoke Corollary 3 to get an algorithm
to approximately solve SIVP, SVP, CRP and BDD”. This contradicts the assumption that some of SIVP,
SVP, CRP and BDD? cannot be efficiently approximated. O

9 Conclusion and open problems

We related the computational complexity of finding shortest lattice vectors on the average (in appropriately
defined random classes of lattices) to the worst-case complexity of approximating various lattice problems.
As in [1], the random class of lattices is quite natural: lattices are defined as the set of solutions to a
uniformly random homogeneous linear equation over a suitably chosen Abelian group. The worst-case
approximation factors achieved depend on the class of easily decodable lattices used in the definition of
the group. In particular, if 7(n)-perfect easily decodable lattices are used, then finding shortest vectors in
random lattices is at least as hard as approximating the length of the shortest vector in any lattice within a
factor y(n) = n237(n)w(logn). Even for 7(n) = y/n (which correspond as a special case to Ajtai’s random
class of lattices) this improves previously known best connection factor from n**¢ [8] to n3w(logn). We also
showed that finding shortest vectors in random lattices is at least as hard as approximating within a factor
n%r(n)w(logn) any of the following problems:
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e [SIVP] Computing a maximal set of shortest linearly independent vectors
e [CRP] Computing the covering radius
¢ [BDD’] Computing a lattice vector within distance maxx dist(x, £(B)) from a given target,

improving [8] in the case of SIVP, and connecting the average case complexity of the shortest vector problem
to two new computational problems on lattices that might be of independent interest.

We also gave polynomial time constructions of easily decodable 7(n)-perfect lattices with 7(n) = o(y/n).
These constructions allow to achieve connection factors n?*w(y/lognloglogn) (for SIVP, CRP and BDD?)
and n3w(y/lognloglogn) (for SVP). While this improvement over 7(n) = y/n is not substantial, it suggests
that further investigation of almost perfect lattices might allow to find easily decodable 7(n)-perfect lattices
with much smaller 7(n), e.g., 7(n) = n¢ or even 7(n) = O(1). This would immediately reduce the connection
factor for all the above problems by about /n.

Another possible source of improvement are better bounds relating the fundamental constants associated
to a lattice. Our main theorem (Theorem 5) shows that finding short vectors on the average is at least as
hard as finding vectors that are not much longer than a new lattice quantity we call the generalized uniform
radius. All other results are obtained by first relating the generalized uniform radius to the covering radius
(Theorem 1), and then bounding the covering radius in terms of other lattice constants using standard
transference theorems and other well known bounds (Proposition 2). In particular, (9) and (10) show that
the generalized uniform radius is at most O(n'-%) times A, (B) or at most O(n?) times 1/A;(B*). It would
be interesting to improve (9) and (10) to show, for example, that

~

¢(B) < O(n)An(B). (29)

and .
¢(B) < O0(n)/A(BY). (30)

Whether these bounds hold true is a natural geometric question, and proving them would be of independent
interest. Moreover, it would allow to reduce the connection factors for SIVP and SVP by O(y/n) and
O(n), respectively. Together with the construction of almost perfect easily decodable lattices, this would
immediately improve the connection factors for both SVP and SIVP to just n!-*w(logn). Connections with
such small approximation factors are currently known only for restrictions of the (worst-case) shortest vector
problem to lattices with special structure where the shortest vector is unique is some technical sense [34].

Notice that by (4), bound (30) would also imply (29). Also, (30), if correct, would be asymptotically
optimal because Conway and Thompson (see [32]) showed that there exist self dual lattices such that p(B) -
A3 (B) > O(n), and by Proposition 10 p(B) < ¢(B) < {(B). We conjecture that (30) holds true, and that
there exist random lattices such that finding shortest vectors on the average (with non-negligible probability)
is at least as hard as approximating the length of the shortest nonzero vector (or finding a maximal set of
shortest linearly independent vectors) in any n-dimensional lattice within a factor n!-3w(logn).
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