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Abstract

An arithmetic formula is multi-linear if the polynomial computed by each of its
sub-formulas is multi-linear. We prove that any multi-linear arithmetic formula for the
permanent or the determinant of an n× n matrix is of size super-polynomial in n.

1 Introduction

Arithmetic formulas for computing the permanent and the determinant of a matrix have
been studied since the 19th century. Are there polynomial size formulas for these functions ?
Although the permanent and the determinant are among the most extensively studied compu-
tational problems, polynomial size formulas for these functions are not known. The smallest
known formula for the permanent of an n× n matrix is of size O(n22n). The smallest known
formula for the determinant of an n× n matrix is of size nO(log n). An outstanding open prob-
lem in complexity theory is to prove that polynomial size formulas for these functions do not
exist. Note, however, that super-polynomial lower bounds for the size of arithmetic formulas
are not known for any explicit function and that questions of this type are considered to be
among the most challenging open problems in theoretical computer science.

In this paper, we prove super-polynomial lower bounds for the subclass of multi-linear
formulas. An arithmetic formula is multi-linear if the polynomial computed by each of its
sub-formulas is multi-linear (as a formal polynomial), that is, in each of its monomials the
power of every input variable is at most one. Multi-linear formulas are restricted, as they
do not allow the intermediate use of higher powers of variables in order to finally compute a
certain multi-linear function. Note, however, that for many multi-linear functions, formulas
that are not multi-linear are very counter-intuitive. Note also that both the permanent and
the determinant are multi-linear functions in the input variables and that many of the well
known formulas for these functions are multi-linear formulas.
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We prove that over any field, any multi-linear arithmetic formula for the permanent or the
determinant of an n× n matrix is of size nΩ(logn).

In the same way, an arithmetic circuit is multi-linear if the polynomial computed by each
of its gates is multi-linear (as a formal polynomial). An obvious corollary of our result is that
over any field, any multi-linear arithmetic circuit for the permanent or the determinant of an
n× n matrix is of depth Ω(log2 n).

1.1 Multi-Linear Formulas

Let F be a field, and let {x1, ..., xm} be a set of input variables. An arithmetic formula is a
binary tree whose edges are directed towards the root. Every leaf of the tree is labelled with
either an input variable or a field element. Every other node of the tree is labelled with either
+ or × (in the first case the node is a plus gate and in the second case a product gate).

An arithmetic formula computes a polynomial in the ring F[x1, ..., xm] in the following way.
A leaf just computes the input variable or field element that labels it. A plus gate computes
the sum of the two polynomials computed by its sons. A product gate computes the product
of the two polynomials computed by its sons. The output of the formula is the polynomial
computed by the root. For a formula Φ, we denote by Φ̂ the output of the formula, that is,
the polynomial computed by the formula. The size of a formula Φ is defined to be the number
of nodes in the tree, and is denoted by |Φ|.

A polynomial in the ring F[x1, ..., xm] is multi-linear if in each of its monomials the power
of every input variable is at most one. An arithmetic formula is multi-linear if the polynomial
computed by each gate of the formula is multi-linear.

1.2 Previous Work

The best lower bound for the size of general arithmetic formulas for the permanent or the
determinant of an n×n matrix is a lower bound of Ω(n3) [K]. Super-polynomial lower bounds
for the size of general arithmetic formulas are not known for any explicit function. Such bounds
are only known for restricted cases. Among the most interesting results are the exponential
lower bound for the non-commutative case [N], and the exponential lower bound for formulas
of depth 3 (over finite fields) [GK, GR].1

Multi-linear arithmetic formulas were formally defined in [NW]. Previous to our result,
lower bounds for the size of multi-linear formulas were not known even for formulas of con-
stant depth. Exponential lower bounds for a variant of constant depth multi-linear formulas
were obtained in [NW].2 Lower bounds for several other restricted subclasses of multi-linear

1The depth of a formula is defined to be the maximal number of changes of labels (i.e., maximal number
of changes of gates from + to × or vice-versa) along a path from a leaf to the root of the formula (where the
maximum is taken over all such paths). In this paper we will not need this notion, except for this subsection.

2These bounds were obtained for the weaker model of constant depth set-multilinear formulas, where the
variables are partitioned into sets (e.g., the rows of a matrix) and it is assumed in addition that in the
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formulas were obtained in [N, NW, RS].

For general background on algebraic complexity theory and on the arithmetic complexity
of the permanent and the determinant, see [G1, G2, BCS].

1.3 Methods

The starting point for our proof is the partial derivatives method of Nisan and Wigder-
son [N, NW]. It was suggested in [NW] that for certain restricted subclasses of arithmetic
formulas (and circuits), the dimension of the space spanned by all partial derivatives of the
output is quite small. The method was used in [N, NW, RS, SW] to obtain lower bounds
for several subclasses of formulas and circuits. Note, however, that for multi-linear formulas
the dimension of the space spanned by all partial derivatives may be very large, even if the
formula is of linear size. In particular, that dimension may be much larger than the dimension
of the space spanned by all partial derivatives of the permanent or the determinant.

1.4 Discussion

A very interesting open problem in complexity theory is to give a deterministic polynomial time
algorithm for identity testing of arithmetic circuits (or formulas). Such an algorithm should
get as an input an arithmetic circuit (or formula) and decide in deterministic polynomial
time whether or not the output of the circuit is identically 0. A very interesting recent
result of Impagliazzo and Kabanets shows tight connections between proving lower bounds
for arithmetic circuits and designing such algorithms [IK].

In this work, we prove unconditional lower bounds for the subclass of multi-linear formulas.
Can our result be used to give a deterministic sub-exponential time algorithm for identity
testing for multi-linear formulas ?

2 Syntactic Multi-Linear Formulas

Let Φ be an arithmetic formula over the set of variables {x1, ..., xm}. For every node v in the
formula, denote by Φv the sub-formula with root v, and denote by Xv the set of variables that
appear in the formula Φv. We say that an arithmetic formula Φ is syntactic multi-linear if for
every product gate v of Φ, with sons v1, v2, the sets of variables Xv1 and Xv2 are disjoint.

Note that any syntactic multi-linear formula is clearly multi-linear. At the other hand,
a multi-linear formula is not necessarily syntactic multi-linear. Nevertheless, the following
proposition shows that without loss of generality we can assume that a multi-linear formula
is syntactic multi-linear.

polynomial computed by each gate of the formula each monomial contains exactly one variable from every set
that it depends on.
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Proposition 2.1 For any multi-linear formula, there exists a syntactic multi-linear formula
of the same size that computes the same polynomial.

Proof:
Let Φ be a multi-linear formula. Let v be a product gate in Φ, with sons v1, v2, and assume
that Xv1 and Xv2 both contain the same variable xi. Since Φ is multi-linear, Φ̂v is a multi-
linear polynomial and hence in at least one of the polynomials Φ̂v1 , Φ̂v2 the variable xi doesn’t
appear. W.l.o.g. assume that in the polynomial Φ̂v1 the variable xi doesn’t appear. Then
every appearance of xi in Φv1 can be replaced by the constant 0. By repeating this for every
product gate in the formula, as many times as needed, we obtain a syntactic multi-linear
formula that computes the same polynomial. 2

3 The Partial-Derivatives Matrix

Let f be a multi-linear polynomial over the set of variables {y1, ..., ym} ∪ {z1, ..., zm}. For a
multi-linear monomial p in the set of variables {y1, ..., ym} and a multi-linear monomial q in
the set of variables {z1, ..., zm}, denote by Mf (p, q) the coefficient of the monomial pq in the
polynomial f . Since the number of multi-linear monomials in a set of m variables3 is 2m, we
can think of Mf as a 2

m × 2m matrix, with entries in the field F. We will be interested in the
rank of the matrix Mf over the field F.

Let Φ be a multi-linear arithmetic formula over the set of variables {y1, ..., ym}∪{z1, ..., zm}.
For every node v in the formula, denote by Yv the set of variables in {y1, ..., ym} that appear
in the formula Φv, and denote by Zv the set of variables in {z1, ..., zm} that appear in the
formula Φv. Denote by b(v) the average of |Yv| and |Zv| and denote by a(v) their minimum.
Denote, d(v) = b(v)− a(v).

Recall that the output Φ̂ of the formula Φ is a multi-linear polynomial over {y1, ..., ym} ∪
{z1, ..., zm}. For simplicity, we denote the matrixMΦ̂ also byMΦ. For a node v in the formula,
we denote the matrix MΦv also by Mv. Note that in Mv all rows that do not correspond to
monomials in the set of variables Yv and all columns that do not correspond to monomials in
the set of variables Zv are identically zero. We will be interested in bounding the rank of the
matrix Mv over the field F. The following propositions give basic tools to bound that rank.
(Note, however, that the rank ofMv may be as large as 2

m (i.e., full rank), even if the formula
Φ is of linear size).

Proposition 3.1 Let Φ be a multi-linear arithmetic formula over the set of variables {y1, ..., ym}∪
{z1, ..., zm}, and let v be a node in Φ. Then

Rank(Mv) ≤ 2
a(v).

Proof:
W.l.o.g. assume that |Zv| = a(v). The matrix Mv has at most 2

|Zv | non-zero columns and

3We only consider monomials with coefficient 1.
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hence its rank is at most 2a(v). 2

Proposition 3.2 Let Φ be a multi-linear arithmetic formula over the set of variables {y1, ..., ym}∪
{z1, ..., zm}, and let v be a plus gate in Φ. Denote the sons of v by v1, v2. Then

Rank(Mv) ≤ Rank(Mv1) +Rank(Mv2).

Proof:
Follows since Mv is the sum of Mv1 and Mv2 . 2

Proposition 3.3 Let Φ be a syntactic multi-linear arithmetic formula over the set of variables
{y1, ..., ym} ∪ {z1, ..., zm}, and let v be a product gate in Φ. Denote the sons of v by v1, v2.
Then

Rank(Mv) = Rank(Mv1) ·Rank(Mv2).

Proof:
Since Φ is syntactic multi-linear, Yv1 , Yv2 are disjoint and so are Zv1 , Zv2 . Hence, the matrix
Mv (restricted to rows that represent monomials in Yv and columns that represent monomials
in Zv) is the tensor product of Mv1 (restricted to monomials in Yv1 and monomials in Zv1)
and Mv2 (restricted to monomials in Yv2 and monomials in Zv2). Hence, the rank of Mv is the
product of the rank of Mv1 and the rank of Mv2 . 2

4 Unbalanced Nodes

Let Φ be a syntactic multi-linear arithmetic formula over the set of variables {y1, ..., ym} ∪
{z1, ..., zm}. We say that a node v is k-unbalanced if d(v) ≥ k.

Let γ be a simple path from a leaf w to a node v of the formula Φ. We say that γ is
k-unbalanced if it contains at least one k-unbalanced node. We say that γ is central if for
every u, u1 on the path γ, such that u1 is a direct son of u (i.e., there is an edge from u1 to
u), we have b(u) ≤ 2b(u1). Note that for every node u in the formula, with sons u1, u2, we
have b(u) ≤ b(u1) + b(u2). Hence, by induction, for every node u in the formula, there exists
at least one central path that reaches u. In particular, at least one central path reaches the
root.

We say that a node v of the formula is k-weak if every central path that reaches v is
k-unbalanced. We say that the formula Φ is k-weak if the root of the formula is k-weak, that
is, every central path that reaches the root contains at least one k-unbalanced node. The
following lemma shows that if a node v is k-weak then the rank of the matrix Mv can be
bounded.
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Lemma 4.1 Let Φ be a syntactic multi-linear arithmetic formula over the set of variables
{y1, ..., ym} ∪ {z1, ..., zm}, and let v be a node in Φ. If v is k-weak then

Rank(Mv) ≤ |Φv| · 2
b(v)−k/2.

4.1 Proof of Lemma 4.1

First note that if v is k-weak then b(v) ≥ k, since otherwise a path that reaches v cannot
contain a k-unbalanced node. (Recall that there exists at least one central path that reaches v).
The proof of the lemma is by induction on |Φv|.

Case 1: v is a leaf.
In this case, the rank of Mv is at most 1, and the lemma follows since b(v) ≥ k.

Case 2: v is k-unbalanced.
In this case, a(v) = b(v) − d(v) ≤ b(v) − k. Hence, by Proposition 3.1, the rank of Mv is at
most 2b(v)−k.

Case 3: v is a product gate.
Denote the sons of v by v1, v2. W.l.o.g. assume that v is not k-unbalanced (otherwise we
can apply Case 2). Since the formula is syntactic multi-linear, b(v) = b(v1) + b(v2). W.l.o.g.
assume that b(v) ≤ 2b(v1). Since every central path that reaches v is k-unbalanced and since
v is not k-unbalanced, every central path that reaches v1 is k-unbalanced. Hence, v1 is k-weak
and by induction,

Rank(Mv1) ≤ |Φv1 | · 2
b(v1)−k/2.

By Proposition 3.1,

Rank(Mv2) ≤ 2
a(v2).

Hence by Proposition 3.3,

Rank(Mv) ≤ |Φv1 | · 2
b(v1)+a(v2)−k/2.

The lemma follows since b(v1) + a(v2) ≤ b(v1) + b(v2) = b(v) and since |Φv1 | ≤ |Φv|.

Case 4: v is a plus gate.
Denote the sons of v by v1, v2. W.l.o.g. assume that v is not k-unbalanced (otherwise we
can apply Case 2). Recall that b(v) ≤ b(v1) + b(v2) and as before assume w.l.o.g. that
b(v) ≤ 2b(v1). As before, it follows that v1 is k-weak. We will separate the proof into two
subcases, according to whether or not b(v) ≤ 2b(v2).

If b(v) ≤ 2b(v2) it follows in the same way that v2 is also k-weak. Since b(v) ≥ b(v1) and
b(v) ≥ b(v2), we have by induction
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Rank(Mv1) ≤ |Φv1 | · 2
b(v)−k/2,

and

Rank(Mv2) ≤ |Φv2 | · 2
b(v)−k/2.

Therefore by Proposition 3.2,

Rank(Mv) ≤ (|Φv1 |+ |Φv2 |) · 2
b(v)−k/2,

and the proof follows since |Φv1 |+ |Φv2 | ≤ |Φv|.

If b(v) > 2b(v2) then a(v2) ≤ b(v2) ≤ b(v)− k/2. Hence by Proposition 3.1,

Rank(Mv2) ≤ 2
b(v)−k/2.

Since v1 is k-weak, we have by induction

Rank(Mv1) ≤ |Φv1 | · 2
b(v)−k/2.

Therefore by Proposition 3.2,

Rank(Mv) ≤ (|Φv1 |+ 1) · 2
b(v)−k/2,

and the proof follows since |Φv1 |+ 1 ≤ |Φv|. 2

5 Random Partition

For any integer n, denote [n] = {1, ..., n}. In all that comes below, assume that n ≥ 10. Let
Φ be a syntactic multi-linear arithmetic formula over the set of variables X = {xi,j}i,j∈[n]. We
think of X as a matrix of variables, with n rows and n columns. Let m = dn1/3e.

We will define a random assignment A to the variables in X. Formally, A is a (randomly
chosen) function from the set of variables X to the set {0, 1}∪{y1, ..., ym}∪{z1, ..., zm}. That
is, for each variable in X, we assign either a value in {0, 1} or a variable in {y1, ..., ym} ∪
{z1, ..., zm}. The assignment will have the property that for each variable in {y1, ..., ym} ∪
{z1, ..., zm} there is exactly one variable in X that is assigned that value.

The assignment A is defined as follows. First choose, uniformly at random, for every i ∈ [m]
two values qi, ri ∈ [n], such that all the 2m chosen values are different. (We think of qi, ri
as the indices of rows). Then choose, uniformly at random, for every i ∈ [m] two additional
values si, ti ∈ [n], such that all the 2m chosen values are different. (We think of si, ti as the
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indices of columns). For every i, we consider the four variables xqi,si
, xqi,ti , xri,si

, xri,ti . With
probability half, we assign

(

xqi,si
xqi,ti

xri,si
xri,ti

)

−→

(

yi zi
1 1

)

that is,
A(xqi,si

) = yi , A(xqi,ti) = zi , A(xri,si
) = 1 , A(xri,ti) = 1

and with probability half, we assign

(

xqi,si
xqi,ti

xri,si
xri,ti

)

−→

(

yi 1
zi 1

)

that is,
A(xqi,si

) = yi , A(xqi,ti) = 1 , A(xri,si
) = zi , A(xri,ti) = 1

All other variables in X are assigned values in {0, 1}. This is done in the following way.
Denote

I = [n] \ {q1, ..., qm} \ {r1, ..., rm},

and
J = [n] \ {s1, ..., sm} \ {t1, ..., tm}.

Let π be an arbitrary perfect matching from I to J . For every i ∈ I, we assign xi,π(i) −→ 1,
that is A(xi,π(i)) = 1. To all other variables in X (that were not assigned values yet) we assign
the value 0.

Denote by ΦA the formula Φ after substituting in every variable of X the value assigned to
it by A. Note that we don’t collapse any gate in Φ. The size of ΦA is the same as the size of
Φ and there is a one to one correspondence between the nodes of ΦA and the nodes of Φ. The
only difference is that the labels of some of the leaves are changed. Since for each variable in
{y1, ..., ym} ∪ {z1, ..., zm} there is exactly one variable in X that is assigned that value, ΦA is
a syntactic multi-linear arithmetic formula over the set of variables {y1, ..., ym} ∪ {z1, ..., zm}.

The following lemma shows that if |Φ| is small then with high probability ΦA is k-weak
for k = n1/32.

Lemma 5.1 Let Φ be a syntactic multi-linear arithmetic formula over the set of variables
X = {xi,j}i,j∈[n], such that every variable in X appears in Φ, and such that |Φ| ≤ nε logn,
where ε is a small enough universal constant4 (e.g., ε = 10−6). Let A be a random assignment
to the variables in X, as above. Then, with probability of 1− o(1) the formula ΦA is k-weak,
for k = n1/32.

4We do not make any attempt to maximize ε and rather try to present the simplest proof that works for
some ε.
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6 Proof of Lemma 5.1

Let us first give a brief sketch of the proof. Intuitively, since the random assignment A has a lot
of randomness, every node v with large enough Xv will be k-unbalanced with high probability.
It can be proved that the probability that such v is not k-unbalanced is smaller than O(n−δ),
for some constant δ. This may not be enough since the number of central paths is possibly
as large as nε logn. Nevertheless, each central path contains Ω(log n) nodes so we can hope to
prove that the probability that none of them is k-unbalanced is as small as n−Ω(logn).

This, however, is not trivial since there are dependencies between the different nodes. We
will identify Ω(log n) nodes, v1, ..., vl, on the path (that will be ”far enough” from each other).
We will show that for every vi, the probability that vi is not k-unbalanced is smaller than
O(n−δ), even when conditioning on the event that v1, ..., vi−1 are not k-unbalanced.

6.1 Notations

To simplify notations, we denote in this section the formula ΦA by Ψ. There is a one to one
correspondence between the nodes of Φ and the nodes of Ψ. For every node v in Φ, there is
a corresponding node in Ψ and vice versa. For simplicity, we denote both these nodes by v,
and we think about them as the same node. Hence, Xv denotes the set of variables in X that
appear in the formula Φv, while Yv denotes the set of variables in {y1, ..., ym} that appear in
the formula Ψv, and Zv denotes the set of variables in {z1, ..., zm} that appear in Ψv. Denote,

α(v) = |Xv|/n
2.

For every i ∈ [m], there is a unique variable in X that is assigned the value yi. We denote
that variable by A−1(yi). In the same way, we denote by A

−1(zi) the unique variable in X
that is assigned the value zi. Note that the event that the formula Ψ is k-weak depends only
on the values of A−1(y1), ..., A

−1(ym) and A
−1(z1), ..., A

−1(zm) (and not on the values in {0, 1}
that are assigned to all other variables in X).

For every i ∈ [m], denote
W i = {A−1(yi), A

−1(zi)}.

Denote
W =

⋃

i

W i.

For every i ∈ [m] and every node v in Φ, denote

W i
v = W i ∩Xv.

For every node v in Φ, denote
Wv = W ∩Xv =

⋃

i

W i
v.
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A set W i
v can be of size either 0 or 1 or 2. For every node v in Φ, denote by W

′
v the union of

all the sets W i
v of size 1. That is,

W ′
v =

⋃

{i:|W i
v |=1}

W i
v.

Note that the event that a path γ in Ψ is central depends only on the content of the setW .
At the other hand, the event that a path γ is k-unbalanced depends also on the specification of
which variables inW were originated from A−1(yi) for some yi and which ones were originated
from A−1(zi) for some zi.

6.2 Generating A−1(y1), ..., A
−1(zm)

We will now describe an equivalent way to generate the variables A−1(y1), ..., A
−1(ym) and

A−1(z1), ..., A
−1(zm) (equivalent to the original way in which they were generated). This will

be done in three steps. In the first two steps we generate W 1, ...,Wm, and in the third step
we specify for every i, which variable in W i is A−1(yi) and which one is A

−1(zi).

1. Step 1: Generating W 1, ...,Wm.
For every i ∈ [m], choose wi

1 to be a (uniformly distributed) random element ofX. Then,
with probability half choose wi

2 to be a (uniformly distributed) random element of X at
the same row5 as wi

1 (and such that w
i
1 and w

i
2 are different), and with probability half

choose wi
2 to be a (uniformly distributed) random element of X at the same column as

wi
1 (and such that w

i
1 and w

i
2 are different). Finally, set W

i = {wi
1, w

i
2}.

2. Step 2: Repeating Step 1.
If for any i 6= i′ and any j, j ′ the variables wi

j and w
i′

j′ are either at the same row or at
the same column (of the matrix X) repeat the entire Step 1, until all variables are in
different rows and columns (except for wi

1 and w
i
2, for every i).

3. Step 3: Specifying A−1(yi), A
−1(zi).

For every i ∈ [m], with probability half fix A−1(yi) to be w
i
1 and with probability half

fix A−1(yi) to be w
i
2. Then fix A

−1(zi) to be the other variable.

We denote by µ the distribution on W 1, ...,Wm obtained by the above first two steps.
That is, we say that W 1, ...,Wm are distributed according to µ if they were generated by the
above first two steps.

We denote by µ∗ the distribution on W 1, ...,Wm obtained by applying only the first step.
That is, we say that W 1, ...,Wm are distributed according to µ∗ if they were generated by the
above first step.

5Recall that we think of X as a matrix of variables.
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Note that once the sets W 1, ...,Wm were generated, we also have the sets W,Wv,W
′
v (for

every v), as defined above. When W 1, ...,Wm are distributed according to µ∗, we think of
W,Wv,W

′
v as multi-sets, as they may contain variables more than once.

Since the probability for two variables in X to be at the same row or at the same column
is O(1/n) and since m = dn1/3e, the probability that Step 1 was repeated more than once
is o(1). Hence, the two distributions µ and µ∗ are of statistical difference o(1). That is, the
probability for any event according to µ is the same as its probability according to µ∗, up to
an additive term of o(1). This is helpful because in some cases the distribution µ∗ is somewhat
simpler to analyze.

Note that the event that a path γ in Ψ is central depends only on the first two steps. That
is, after the first two steps we already know which paths are central. At the other hand, the
event that a path γ is k-unbalanced depends on all three steps.

6.3 Technical Claims

We will now prove two claims that will be needed for our analysis. For the proof of the claims
we will use the following version of Chernoff’s bound (see for example [ASE] ,Corollary A.7).

Lemma 6.1 (Chernoff Bound) Let χ1, ..., χl be mutually independent random variables,
such that, Pr[χi = 1] = p and Pr[χi = 0] = 1− p (for every i). Then for any c > 0,

Pr

[∣

∣

∣

∣

∣

l
∑

i=1

χi − pl

∣

∣

∣

∣

∣

> cpl

]

< 2e−2(cp)
2l.

Claim 6.2 With probability of 1− o(1), the following is satisfied for every node v in Φ.

1. If α(v) ≥ n−1/8 then
|Wv| ≤ 1.5 · α(v) · 2m,

|Wv| ≥ 0.5 · α(v) · 2m

2. If α(v) < n−1/8 then
|Wv| ≤ 1.5 · n

−1/8 · 2m

Proof:
For the proof of the claim, we assume that W 1, ...,Wm are distributed according to µ∗. The
claim is about the distribution µ. Nevertheless, as mentioned above, the statistical difference
between the distributions µ∗ and µ is o(1). That is, the probability for any event according
to µ is the same as its probability according to µ∗, up to an additive term of o(1). Hence, the
claim follows for µ as well.

Recall that we think of |Wv| as a multi-set. Denote,

σ1(v) = |Xv ∩ {w
1
1, ..., w

m
1 }|,
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and
σ2(v) = |Xv ∩ {w

1
2, ..., w

m
2 }|

(where we think of {w11, ..., w
m
1 } and {w

1
2, ..., w

m
2 } as multi-sets). Then

|Wv| = σ1(v) + σ2(v).

w11, ..., w
m
1 are m independent random variables uniformly distributed over X. The prob-

ability for each one of these variables to be in Xv is exactly α(v). Thus, σ1(v) is the sum of
m = dn1/3e indicator random variables and the probability for each of these variables to be 1
is α(v). Hence, by Chenoff’s bound, for every node v with α(v) ≥ n−1/8

Pr[|σ1(v)− α(v)m| > 0.5 · α(v) ·m] < 2e−n
1/12/2,

and in the same way

Pr[|σ2(v)− α(v)m| > 0.5 · α(v) ·m] < 2e−n
1/12/2.

Hence, for every node v with α(v) ≥ n−1/8,

Pr[||Wv| − α(v)2m| > 0.5 · α(v) · 2m] < 4e−n
1/12/2.

In the same way, by Chenoff’s bound, for every node v with α(v) < n−1/8,

Pr[σ1(v) > 1.5 · n
−1/8 ·m] < 2e−n

1/12/2,

and
Pr[σ2(v) > 1.5 · n

−1/8 ·m] < 2e−n
1/12/2.

Hence, for every node v with α(v) < n−1/8,

Pr[|Wv| > 1.5 · n
−1/8 · 2m] < 4e−n

1/12/2.

Since we assumed that the number of nodes in Φ is at most nε log n, the proof of the claim
follows by the union bound. 2

Claim 6.3 With probability of 1 − o(1), the following is satisfied for every node v in Φ. If
1/8 ≥ α(v) ≥ n−1/8 then

|W ′
v| ≥ (1/16) · α(v) ·m.

Proof:
As before, we assume that W 1, ...,Wm are distributed according to µ∗, and we think of W ′

v as
a multi-set. Since the probability for any event according to µ is the same as its probability
according to µ∗, up to an additive term of o(1), the claim follows for µ as well.

Let v be a node with 1/8 ≥ α(v) ≥ n−1/8. Say that a row, in the matrix of variables X,
is dense if at least half of the variables in the row are contained in Xv. Say that a column, in
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the matrix of variables X, is dense if at least half of the variables in the column are contained
in Xv. Since |Xv| = α(v)n2, at most 2α(v)n rows are dense and at most 2α(v)n columns are
dense. Hence, at most 4α(v)2n2 variables in X are in both, dense row and dense column.
Since α(v) ≤ 1/8, this is at most α(v)n2/2. Hence, at least half of the variables in Xv are
either not in a dense row or not in a dense column. We call these variables good variables.

For every i ∈ [m], the probability for (wi
1 ∈ Xv) ∩ (w

i
2 6∈ Xv) can be bounded as follows.

The probability for wi
1 ∈ Xv is α(v). Given that w

i
1 ∈ Xv, with probability at least half w

i
1

is good. If wi
1 is good then w.l.o.g. it is not in a dense row. Then, with probability half w

i
2

is chosen to be at the same row as wi
1. If w

i
2 is chosen to be at the same row as w

i
1 and that

row is not dense then with probability of at least half wi
2 6∈ Xv. Altogether, the probability

for (wi
1 ∈ Xv) ∩ (w

i
2 6∈ Xv) is at least α(v)/(2 · 2 · 2) = α(v)/8.

Denote by σ the number of indices i ∈ [m], such that (wi
1 ∈ Xv) ∩ (w

i
2 6∈ Xv). Thus,

σ is the sum of m indicator random variables and the probability for each of these random
variables to be 1 is at least α(v)/8. Since α(v) ≥ n−1/8, by Chernoff’s bound

Pr[σ < (1/16) · α(v) ·m] < 2e−n
1/12/128.

Since |W ′
v| ≥ σ,

Pr[|W ′
v| < (1/16) · α(v) ·m] < 2e

−n1/12/128.

Since we assumed that the number of nodes in Φ is at most nε log n, the proof of the claim
follows by the union bound. 2

6.4 Central Paths are Unbalanced

Once ~W ≡ (W 1, ...,Wm) was generated (by the first two steps of Subsection 6.2), it is already
determined whether or not the statements of Claim 6.2 and Claim 6.3 are satisfied. If both
statements are satisfied (for every node v) we say that ~W is good. Note that ~W is good with
probability 1− o(1).

Once ~W was generated, it is also already determined whether or not each path γ (from a

leaf to a node in Φ) will be central in Ψ. If ~W determines γ to be central in Ψ we say that

γ is central for ~W . More formally, γ is central for ~W if for every u, u′ on γ, such that u′ is a
direct son of u, we have |Wu| ≤ 2|Wu′ |.

We denote probabilities conditioned on the event that some specific ~W was chosen by
Pr[ · | ~W ]. We will show that if γ is central for ~W (after the first two steps) then with high
probability the third step makes γ unbalanced in the formula Ψ.

Claim 6.4 Assume that ~W is good and γ is a path from a leaf to the root of Φ, such that γ
is central for ~W . Then,

Pr[γ is not k-unbalanced in Ψ | ~W ] ≤ n−Ω(logn).

13



Proof:
Assume that ~W is good and that γ is a path from a leaf to the root of Φ such that γ is central
for ~W . All probabilities in the proof of the claim are conditioned on the event that that
specific ~W was chosen. For simplicity, we omit the conditioning on ~W from the discussion
and the notations.

Recall that the first node of γ is a leaf and hence α(v) for that node is at most 1/n2, and
the last node of γ is the root and hence α(v) for that node is 1. Note that α(v) is monotonously
increasing along γ. Let v1, ..., vl be nodes on γ, chosen by the following process: Let v1 be the
first node on γ, such that α(v1) ≥ 100 ·n

−1/8. For every i, let vi+1 be the first node on γ, such
that α(vi+1) ≥ 100 · α(vi). Stop when such vi+1 doesn’t exist or α(vi+1) > 1/8. Denote by l
the index i of the last vi in this process.

Since γ is central, for every u, u′ on γ, such that u′ is a direct son of u, we have |Wu| ≤

2|Wu′ |. Since ~W is good, it follows from Claim 6.2 that α(v1) < 1000 ·n
−1/8 and that for every

i ∈ [l − 1], we have α(vi+1) < 1000 · α(vi). Hence, the process above continues for Ω(log n)
steps. To summarize, we have l = Ω(log n) and nodes v1, ..., vl on γ , such that

1. For every i ∈ [l],
1/8 ≥ α(vi) ≥ 100 · n

−1/8

2. For every i ∈ [l − 1],
α(vi+1) ≥ 100 · α(vi)

Since ~W is good, it follows from Claim 6.2 and Claim 6.3 that for every i ∈ [l − 1], we can
bound |W ′

vi+1
| by

|W ′
vi+1
| ≥ 2|Wvi

| ≥ 200 ·m · n−1/8 ≥ 2 · n1/8.

Denote by E the event that γ is not k-unbalanced in the formula Ψ. For every i ∈ [l], denote
by Ei the event that the node vi is not k-unbalanced in the formula Ψ. Since E ⊂ ∩i∈[l]Ei,

Pr[E ] ≤ Pr





⋂

i∈[l]

Ei



 =
∏

i∈[l]

Pr



Ei

∣

∣

∣

∣

∣

∣

⋂

i′∈[i−1]

Ei′





We will bound for every i > 1 the conditional probability Pr[Ei | ∩i′∈[i−1] Ei′ ].

Fix i ∈ {2, ..., l}. For simplicity, denote the variables ofWvi
by {x1, ..., xr}, where r = |Wvi

|.
Note that Wvi−1

⊂ Wvi
. Denote,

S = W ′
vi
\Wvi−1

and
T = Wvi

\ S.

Since |W ′
vi
| ≥ 2|Wvi−1

| ≥ 2n1/8,

|S| ≥ |Wvi−1
| ≥ n1/8.
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For every j ∈ [r], the assignment A determines whether A(xj) is in the set {y1, ..., ym} or
in the set {z1, ..., zm}. Let χj be 1 if A(xj) ∈ {y1, ..., ym} and 0 if A(xj) ∈ {z1, ..., zm}. By the
definition of d(vi) (see Section 3),

d(vi) =

∣

∣

∣

∣

∣

∣

∑

j∈r

χj −
r

2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

{j:xj∈S}

χj +
∑

{j:xj∈T}

χj −
r

2

∣

∣

∣

∣

∣

∣

.

Denote,
σ =

∑

{j:xj∈S}

χj

and
τ =

∑

{j:xj∈T}

χj

Then,
d(vi) = |σ + τ − r/2|.

By the process we described for generating A (see Section 5 and Subsection 6.2), the
variables {χj : xj ∈ S} are mutually independent and are chosen independently from {χj : xj ∈
T}. That is, the variables {χj : xj ∈ S} are mutually independent even when conditioning
on any event in the variables {χj : xj ∈ T}. Hence, σ has the binomial distribution with
parameters |S| and 1/2, even when conditioning on any event in the variables {χj : xj ∈ T}.
Hence, σ does not get any specific value with probability larger than O(|S|−1/2), which is
at most O(n−1/16), even when conditioning on any event in the variables {χj : xj ∈ T}.
Therefore, d(vi) also does not get any specific value with probability larger than O(n

−1/16),
even when conditioning on any event in the variables {χj : xj ∈ T}.

By the definition of T , we have Wvi−1
⊂ T , and hence the event ∩i′∈[i−1]Ei′ depends only

on the variables {χj : xj ∈ T}. Hence, d(vi) does not get any specific value with probability
larger than O(n−1/16), even when conditioning on the event ∩i′∈[i−1]Ei′ . Recall that vi is
not k-unbalanced iff d(vi) < k. Since d(vi) is integer, the probability for that is at most
O(k · n−1/16) = O(n−1/32), even when conditioning on the event ∩i′∈[i−1]Ei′ . That is,

Pr



Ei

∣

∣

∣

∣

∣

∣

⋂

i′∈[i−1]

Ei′



 ≤ O(n−1/32)

We can now bound

Pr[E ] ≤
∏

i∈[l]

Pr



Ei

∣

∣

∣

∣

∣

∣

⋂

i′∈[i−1]

Ei′



 = n−Ω(logn)

2

We can now complete the proof of Lemma 5.1. By Claim 6.4, if ~W is good and γ is a
path from a leaf to the root of Φ, such that γ is central for ~W , then γ is not k-unbalanced
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with probability of at most n−Ω(logn). The number of paths from a leaf to the root of Φ is
the same as the number of leaves in Φ, which is smaller than nε logn (and we assumed that ε

is small enough). Hence, by the union bound, if ~W is good then with probability 1− o(1) all

central paths from a leaf to the root of ψ are k-unbalanced. Since ~W is good with probability
1− o(1), we conclude that with probability 1− o(1) the formula Ψ is k-weak. 2

7 Lower Bounds for Permanent and Determinant

We will now prove our main theorem.

Theorem 1 Any multi-linear arithmetic formula for the permanent or the determinant of an
n× n matrix (over any field) is of size nΩ(logn).

Proof:
Let us start with the permanent. Let Φ be a multi-linear arithmetic formula over the set of
variables X = {xi,j}i,j∈[n] (where n ≥ 10), and assume that the output of Φ is the permanent
of X. Assume for a contradiction that |Φ| ≤ nε logn, where ε is the universal constant from
Lemma 5.1. By Proposition 2.1, we can assume w.l.o.g. that Φ is syntactic multi-linear.

Let A be a random assignment to the variables in X, as defined in Section 5. Then, ΦA is
a syntactic multi-linear arithmetic formula over the set of variables {y1, ..., ym} ∪ {z1, ..., zm}.
By Lemma 5.1, with probability of 1 − o(1) the formula ΦA is k-weak, for k = n1/32. Hence,
by Lemma 4.1, with probability of 1− o(1)

Rank(MΦA
) ≤ nε logn · 2m−k/2 < 2m.

At the other hand, since the output of Φ is the permanent of X, the output of ΦA must
be the permanent of the matrix {A(xi,j)}i,j∈[n]. By the definition of A (see Section 5), the
permanent of that matrix is always

f(y1, ..., ym, z1, ..., zm) ≡
m
∏

i=1

(yi + zi).

Note that Mf is a permutation matrix: For every multi-linear monomial p in the set
of variables {y1, ..., ym} there is exactly one multi-linear monomial q in the set of variables
{z1, ..., zm} such that Mf (p, q) = 1 (and otherwise Mf (p, q) = 0), and vice-versa. Hence,

Rank(MΦA
) = Rank(Mf ) = 2

m

(which is a contradiction).6

6Interestingly, the definition of f gives a linear size multi-linear formula for f . Thus, f has very small
multi-linear formulas. Nevertheless, the formula ΦA cannot output f because it is k-weak.

16



The proof for the determinant is exactly the same, except that the determinant of the
matrix {A(xi,j)}i,j∈[n] is, up to a sign,

g(y1, ..., ym, z1, ..., zm) ≡
m
∏

i=1

(yi − zi),

and as before,
Rank(Mg) = 2

m.

2
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